Title: Handgrip strength and ideal cardiovascular health among Colombian children and adolescents: The FUPRECOL Study

Article Type: Original Article

Keywords: Muscular strength; Risk factors; Cardiovascular health; Health behaviours; Prevention.

Corresponding Author: Dr. Robinson Ramirez-Vélez, Ph.D

Corresponding Author's Institution: Universidad del Rosario

First Author: ROBINSON RAMIREZ-VELEZ, Ph.D

Order of Authors: ROBINSON RAMIREZ-VELEZ, Ph.D; Alejandra Tordecilla-Sanders, MSc; Jorge E Correa-Bautista, Ph.D; Mark D Peterson, Ph.D; Antonio Garcia-Hermoso, Ph.D

Abstract: Objective: To evaluate the association between handgrip strength and ideal cardiovascular health in Colombian children and adolescents.

Study design: During the 2014-2015 school years, we examined a cross-sectional component of the FUPRECOL study. Participants included 1,199 (n=627 boys) youths from Bogota (Colombia). Handgrip strength was measured with a standard adjustable hand held dynamometer and expressed relative to body mass (HG/body mass) and as absolute values in kilograms. Ideal cardiovascular health, as defined by the American Heart Association, was determined as meeting ideal levels of the following components: four behaviours (smoking status, body mass index, cardiorespiratory fitness, and diet) and three factors (total cholesterol, blood pressure and glucose).

Results: Higher levels of handgrip strength (both absolute and relative values) were associated with a higher frequency of ideal cardiovascular health metrics in both sexes (p for trend ≤0.001). Also, higher levels of handgrip strength were associated with a greater number of ideal health behaviours (p for trend <0.001 in both boys and girls), and with a higher number of ideal health factors in boys (p for trend <0.001). Finally, levels of handgrip strength were similar between ideal versus non-ideal glucose or total cholesterol groups in girls.

Conclusions: Handgrip strength was strongly associated with ideal cardiovascular health in Colombian children and adolescents, and thus supports the relevance of early targeted interventions to promote strength adaptation and preservation as part of primordial prevention.
Manuscript

Manuscript (revised), with pgs numbered

Click here to view linked References

1. **Title:** Handgrip strength and ideal cardiovascular health among Colombian children and adolescents: The FUPRECOL Study

2. **Running title:** Handgrip strength and cardiovascular health in Colombian youth

3. Robinson Ramírez-Vélez, PhD¹, (E:mail: robinson.ramirez@urosario.edu.co)

4. Alejandra Tordecilla-Sanders, Msc¹, (E:mail: alesanders_0615@hotmail.com)

5. Jorge Enrique Correa-Bautista, PhD¹, (E:mail: jorge.correa@urosario.edu.co)

6. Mark D. Peterson, PhD²,³, (E:mail: mdpeterz@med.umich.edu)

7. Antonio Garcia-Hermoso, PhD⁴,⁵ (E:mail: antonio.garcia.h@usach.cl)

¹ Centro de Estudios para la Medición de la Actividad Física «CEMA». Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá D.C, Colombia.

² Department of Physical Medicine and Rehabilitation, University of Michigan, Ann Arbor, Michigan, United States.

³ Global REACH, University of Michigan Medical School, University of Michigan, Ann Arbor, Michigan, United States.

⁴ Laboratorio de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, USACH, Santiago, Chile.

⁵ Facultad de Ciencias de la Actividad Física, Universidad San Sebastián, Santiago, Chile.

Reprint requests: Robinson Ramírez-Vélez, PhD. Universidad del Rosario, Bogotá, D.C, Colombia. Phone: +57 (1) 2970200 ext. 3428, E:mail: robin640@hotmail.com // robinson.ramirez@urosario.edu.co

Robinson Ramírez-Vélez, PhD: Wrote the first draft of the manuscript.

Statement of honorarium, grant, or other form of payment: The FUPRECOL Study was carried out with the financial support of Instituto Colombiano para el Desarrollo de la Ciencia y la Tecnología “Francisco José de Caldas” COLCIENCIAS (Contract Nº 671-2014 Code 122265743978). This article presents independent research commissioned by COLCIENCIAS under its Programme Grants for Applied Research funding scheme (Convocatoria 671-2014). The content of this paper reflects the author’s views alone, and the Colombian Community or the COLCIENCIAS is not liable for any use that may be made of the information contained herein.

Key words: Muscular strength; Risk factors; Cardiovascular health; Health behaviors; Prevention.

Competing interests: The authors declare that they have no competing interests.
ABSTRACT

Objective: To evaluate the association between handgrip strength and ideal cardiovascular health in Colombian children and adolescents.

Study design: During the 2014–2015 school years, we examined a cross-sectional component of the FUPRECOL study. Participants included 1,199 (n=627 boys) youths from Bogota (Colombia). Handgrip strength was measured with a standard adjustable handheld dynamometer and expressed relative to body mass (HG/body mass) and as absolute values in kilograms. Ideal cardiovascular health, as defined by the American Heart Association, was determined as meeting ideal levels of the following components: four behaviours (smoking status, body mass index, cardiorespiratory fitness, and diet) and three factors (total cholesterol, blood pressure and glucose).

Results: Higher levels of handgrip strength (both absolute and relative values) were associated with a higher frequency of ideal cardiovascular health metrics in both sexes (p for trend ≤0.001). Also, higher levels of handgrip strength were associated with a greater number of ideal health behaviours (p for trend <0.001 in both boys and girls), and with a higher number of ideal health factors in boys (p for trend <0.001). Finally, levels of handgrip strength were similar between ideal versus non-ideal glucose or total cholesterol groups in girls.

Conclusions: Handgrip strength was strongly associated with ideal cardiovascular health in Colombian children and adolescents, and thus supports the relevance of early targeted interventions to promote strength adaptation and preservation as part of primordial prevention.
INTRODUCTION

Low muscular strength, as determined by handgrip dynamometry, is a recognized marker of poor health during adolescence1,2, and is associated with disease and mortality in adulthood3-5. Numerous studies support an inverse relationship between muscular strength and cardiovascular disease (CVD) risk factors in young populations, and generally express muscular strength relative to body mass1,6. Epidemiological studies indicate that muscle weakness has been associated with a higher frequency of adverse health consequences including obesity, systemic low-grade inflammation, and insulin resistance7-10. CVD events occur most frequently during or after the fifth decade of life, and yet the precursors of disease originate in childhood and adolescence1,11.

In response to the increasing burden of CVD risk factors, the American Heart Association established several strategic goals12. In 2010, the American Heart Association released a set of cardiovascular health metrics for adults and children that were intended to prioritize cardiovascular health, as opposed to cardiovascular disease12. Population-representative studies have shown a low prevalence of ideal cardiovascular health (CVH) metrics in U.S. children and adolescents, particularly for achieving physical activity recommendations and dietary intake13,14. Data from the Cardiovascular Risk in Young Finns Study and The Healthy Lifestyle in Europe by Nutrition also demonstrated that children and adolescence with a higher number of ideal CVH components had a reduced risk for hypercholesterolemia, hypertension, and elevated blood glucose15. Increases in ideal CVH are directly associated with aortic elasticity16 and healthier levels of cardiorespiratory fitness in adolescents17. Among adults, a recent systematic review18 reported an inverse association between number of ideal CVH metrics and early all-cause
and CVD-related mortality. Improved understanding of the health-risks associated with
muscle weakness will help to inform the development of targeted interventions for different
phenotypes.

Obesity and physical inactivity are leading CVD risk factors among Hispanic/Latino
adults, raising concerns about whether an increased risk of these conditions also is
manifested at younger ages. Previous research has demonstrated an independent
association between muscle weakness and increased cardiometabolic risk factors.

In Colombia, a region which has undergone a well-documented epidemiologic
transition and epidemic of CVD, relatively little research on physical activity and
physical fitness exists. Therefore, describing the magnitude of these risk factors in
youth is important for prioritizing prevention and public health efforts. Nevertheless,
there have been no studies to date to determine the association between handgrip strength
and ideal CVH in Latin American youth. Therefore, the objective of the present study was
to investigate the relationship between handgrip strength and ideal CVH among Colombian
children and adolescents.

METHODS

Participants and Study Design

This study aimed to examine the relationships between physical fitness levels,
healthy and unhealthy behaviors, and cardiometabolic risk factors in Colombian children
and adolescents. During the 2014–2015 school years, we examined a cross-sectional
component of the FUPRECOL study (in Spanish, ASOCIACIÓN DE LA FUERZA
PRENSIL CON MANIFESTACIONES DE RIESGO CARDIOVASCULAR
TEMPRANAS EN NIÑOS Y ADOLESCENTES COLOMBIANOS). The sample
consisted of children and adolescents (boys $n = 4,000$ and girls $n = 4,000$) aged 9–17.9 years. Blood sampling was randomly performed in one-third of the recruited subjects (n=2,775). From this subgroup, 1,199 schoolchildren (52.2% boys) had valid data muscular strength and all components included in the ideal CVH concept. There were no differences in the study key characteristics (i.e., age, sex distribution, BMI, and muscular strength) between the current study sample and the original FUPRECOL Study sample (n=8,000, all $p>0.100$). The children and adolescents were of low to middle socioeconomic status (SES, 1–3 defined by the Colombian government), enrolled in public elementary and high schools (grades 5 through 11), and from the capital district of Bogota in a municipality in the Cundinamarca Department in the Andean region. A convenience sample of volunteers was included and grouped by sex and age with 1-year increments (a total of 9 groups).

Measurements

Handgrip strength assessment

Consistent with recommendations28,29, we restricted our analysis to the following health-related30 field-based tests that have demonstrated adequate levels of criterion-related validity, and reliability$^{27-29}$ in the assessment of two dimensions of muscular strength: handgrip strength and normalized handgrip strength in kg/body mass in kg$^{31-33}$. Handgrip was measured using a standard adjustable hand held dynamometer (Takei Digital Grip Strength Dynamometer Model T.K.K.540®, Takei Scientific Instruments Co., Ltd, Niigata, Japan). Participants were given a brief demonstration and verbal instructions for the test, and if necessary, the dynamometer was adjusted to the participant’s hand size according to predetermined protocols27. Handgrip strength was measured with the subject in a standing position, with the shoulder adducted and neutrally rotated, and arms parallel but not in contact with the body. The participants were asked to squeeze the handle as hard as
possible for a maximum of 3-5 seconds, and no verbal encouragement was given during the
test. Handgrip strength performance was recorded as the best score from either hand,
without consideration for hand dominance. Since there is substantial covariance between
strength capacity and body mass—and, moreover, the links between muscle strength and
both physical function and chronic health are mediated by the proportion of strength
relative to body mass—grip strength was normalized as strength per body mass [i.e. (grip
strength in kg)/(body mass in kg)]. Handgrip measurements in a subsample (n=229, median
age = 12.8 ±2.4 y, 46.2±12.4 kg, 1.50±0.1 m, 19.9±3.1 kg/m²) were recorded to ensure
reproducibility on the day of the study. The reproducibility of our data was R=0.96. Intra-
rater reliability was assessed by determining the intraclass correlation coefficient (0.98, CI
95% 0.97 to 0.99). Monthly, each dynamometer was tested using a standardized calibration
procedure which showed that the device was within 1 kg of accuracy over the whole
measuring range (from 0 to 100 kg), and with a 100 g sensitivity.

Anthropometric measurements

Body weight was measured in the subjects’ underwear and with no shoes, using
electronic scales (Tanita® BC544, Tokyo, Japan) with a low technical error of measurement
(Technical error of measurement = 0.510%). Height was measured using a mechanical
stadiometer platform (Seca® 274, Hamburg, Germany; Technical error of measurement =
0.01%). Body mass index (BMI) was calculated as the body weight in kilograms divided by
the square of height in meters (kg/m²). Obesity status was defined as having a BMI above
the age and sex-specific thresholds of the International Obesity Task Force (IOTF)³⁴.
Participants who had a BMI <85th percentile were categorized as meeting the ideal
cardiovascular health criteria for BMI.

Biochemical determinations
Blood samples were collected between 6:00 and 8:00 am by two experienced paediatric phlebotomists after at least 12 hours fasting. Before the extraction, fasting condition was confirmed by the child and parents. Blood samples were obtained from an antecubital vein, and analyses were subsequently completed within 1 day from collection. In children and adolescence, levels of total cholesterol have been defined as “ideal” <4.40 mmol/L (<170 mg/dL), or “non-ideal” ≥4.40 mmol/L (≥170 mg/dL). Fasting serum glucose concentrations were analysed enzymatically and also classified as ideal <5.6 mmol/L (<100 mg/dL), or non-ideal ≥5.6 mmol/L (≥100 mg/dL). Inter-assay reproducibility (coefficient of variation) was determined from 80 replicate analyses of 8 plasma pools over 15 days, and shown to be 2.6% for total cholesterol and 1.5% for serum glucose. None of the study youths were on any drug treatments.

Resting blood pressure

Blood pressure was measured using an electronic oscillometric device, (Riester Ri-Champion model, Jungingen, Germany) after being seated in a quiet room for 10 min with their back supported and feet on the ground. Two blood pressure readings were taken with a 10 min interval of quiet rest. Before blood pressure session monitoring, the accuracy of the device was tested against a standard mercury sphygmomanometer in a random sub-sample (n=25) to ensure that there was no consistent difference of >10 mm Hg in measured blood pressure; and inter-observer variability was R=0.96. Mean systolic blood pressure was defined as ideal (<90th centile and mean diastolic blood pressure <90th centile), or non-ideal (systolic blood pressure ≥90th centile or diastolic blood pressure ≥90th centile). All centile-based threshold limits were sex- and age-specific and selected on the basis of the International Diabetes Federation35 and the modified De Ferranti et al.36 definitions of metabolic syndrome.
Dietary Assessment

Dietary intake and food consumption was assessed by the Kidmed questionnaire37. This tool consists of sixteen questions related to the principles of Mediterranean dietary patterns. The score ranges from −4 to 12 points, since questions with negative connotations with respect to the Mediterranean diet are assigned a value of −1 (frequent intake of fast food, increased consumption of sweets, skipping breakfast, frequent intake of pastries for breakfast). Parameters with positive connotations are assigned + 1 point (e.g. takes a fruit or fruit juice every day, consumes fish regularly (at least 2–3 times/week)) as indicated previously37. As suggested by Serra-Majem et al.37, the total score was divided into three categories of Mediterranean diet quality: (1) ≤3 points = poor diet quality; (2) 4–7 points = average diet quality; and (3) ≥8 points = good diet quality (optimal Mediterranean diet style). Participants who had at least ≥8 points were categorised as having an ideal healthy diet, whereas children and adolescents with <7 points were classified as having a non-ideal healthy diet.

Cardiorespiratory fitness

Although the American Heart Association relied on physical activity to determine active habits, we used estimated cardiorespiratory fitness (CRF) due to its robust association with cardiovascular risk factors38, and ideal CVH12,17 in this population. We estimated CRF with the 20 m shuttle run test, as previously described by Leger et al.39. Participants ran in a straight line between two lines 20 m apart, while keeping pace with pre-recorded audio signals. The initial speed was 8.5 km/hr and increased by 0.5 km/hr each minute. The test was finished when the participant failed to reach the end lines, keeping pace with the audio signals on two consecutive occasions or when the subject stopped because of fatigue. Results were recorded to the nearest stage (minute) completed.
Healthy cardiorespiratory fitness was defined by using either the cut-off by sex- and age
(shuttle-runs or estimated VO$_{2peak}$) listed in the healthy fitness zone (needs improvement
and health risk). The FITNESSGRAM40 has been shown to have cardio-metabolic health
predictive value41, and VO$_{2peak}$ cut-off points were validated against the presence of
metabolic syndrome using nationally representative U.S. data41,42.

Smoking habits

Data on smoking were collected via self-reported questionnaires [number of
cigarettes smoked per day]. Students who reported that they had never smoked were
categorised as having an ideal smoking status and those who reported having smoked one
or more cigarettes were categorized as presenting a non-ideal smoking status.

Sexual maturation

Sexual maturation was classified based on Tanner staging43, which uses self-
reported puberty status to classify participants into stages I to IV44. Each volunteer entered
an isolated room where they categorized the development of their own genitalia (for boys),
breasts (for girls), armpits (for boys) and pubic hair (for both genders) using a set of images
exemplifying the various stages of sexual maturation. The reproducibility of our data
reached R=0.78.

Ideal cardiovascular health

The metrics for ideal cardiovascular health in children and adolescents defined by
the American Heart Association12 were followed as precisely as possible (Table I, available
at www.jpeds.com). Finally, each participants was categorised into 5 health levels based
on the number of ideal CVH metrics in the ideal range: the healthiest level (favourable
ideal CVH score) was defined as having \geq5 metrics, the intermediate levels as 2 to 4
metrics in the ideal range, and the unfavourable level as having 0-1 ideal CVH metrics. We
collapsed 0 with 1 and 5 with 7 ideal metrics due to relatively few youths who had 0 (2% of
total cohort) or 6 (8% of total cohort) and 7 (2% of total cohort) ideal CVH metrics.

Ethics Statement

The Review Committee for Research on Human Subjects at the University of Rosario
[Code N° CEI-ABN026-000262] approved all of the study procedures. A comprehensive
verbal description of the nature and purpose of the study and its experimental risks was
given to the participants and their parents/guardians. Written informed consent was
obtained from parents and subjects before participation in the study. The protocol was in
accordance with the latest revision of the Declaration of Helsinki and current Colombian
laws governing clinical research on human subjects (Resolution 008430/1993 Ministry of
health).

Statistical analysis

The data are presented as means, standard deviations, and percentages. The t-test
was used to compare unadjusted means by sex. Differences on handgrip strength (both
absolute and normalized handgrip strength in kg/body mass in kg) between ideal and non-
ideal cardiovascular health components were assessed by analysis of covariance
(ANCOVA), with handgrip strength as a dependent variable, the cardiovascular health
component (ideal vs non-ideal) entered as a fixed factor, age as a covariate, and sexual
maturation as a random factor. The association between handgrip strength and ideal CVH
metrics, as well as with ideal CVH behaviours and factors separately, was assessed by
ANCOVA as explained above. Analyses were conducted for boys and girls separately. The
associations between normalized handgrip strength in kg/body mass in kg and four
behaviours (smoking status [number of cigarettes smoked per day], body mass index, CRF
[shuttle-runs], and diet [score ranges from −4 to 12 points]) and three factors (total cholesterol, blood pressure and glucose) were tested by means of Pearson correlation coefficients. All analyses were performed using the Statistical Package for Social Sciences (v. 22.0 for WINDOWS, Chicago, USA), and the level of significance was set to 0.05.

RESULTS

The 1,199 scholars included 627 boys, and mean age was 13.1 (2.2) years. Boys had lower levels of total cholesterol than girls (p< 0.001), and girls had lower cardiorespiratory fitness, handgrip strength and normalized handgrip strength (p< 0.001) (Table I).

Table 1 about here

Higher levels of handgrip and normalized handgrip strength were associated with a higher number of ideal CVH components in both boys (p for trend <0.001) and girls (p for trend <0.001) (Figure 1).

Figure 1 about here

Higher levels of handgrip strength were associated with a higher number of ideal health behaviours (p for trend <0.001 in both boys and girls) (Figure 2A and Figure 2C), and with a higher number of ideal health factors in boys (p for trend <0.001) (Figure 2B and Figure 2D).

Figure 2 about here

Levels of handgrip strength (both handgrip and normalized handgrip strength) were different between ideal versus non-ideal components except for glucose or total cholesterol groups in girls (Table II). Overall, similar results were observed when we included physical activity instead of CRF (data not shown). Finally, in both sexes, we found an inverse correlation between normalized grip strength and number cigarettes smoked per day (r=--
0.356, P < 0.01), BMI (r= -0.604, P < 0.01), CRF (r= -0.424, P < 0.01), diet score (r= -
0.104, P = 0.45), total cholesterol (r= -0.238, P < 0.01), blood pressure (r= -0.220, P < 0.05)
and glucose (r= -0.016, P < 0.01).

Table II about here

DISCUSSION

The findings of the present study indicate that handgrip strength is positively
associated with the ideal CVH index among Colombian children and adolescents. The
importance of muscular strength is recognized in most current recommendations for
maintaining and improving health status, and preventing chronic diseases. A recent meta-
analysis highlights the importance of developing muscular strength in youth for a number
of health-related benefits in young population. Also, our study suggests a positive link
between ideal CVH metrics and handgrip (for both absolute and relative values). In spite of
the fact that there are very few studies on this topic, Ruiz et al. showed that higher levels
of CRF were associated with a higher number of ideal CVH components in both boys and
girls. These findings together with our results confirm that physical fitness should be
considered a hallmark factor for meeting ideal CVH components.

Several studies have showed the relationship between individual components
included in the ideal CVH and handgrip strength in children and adolescents. As the
American College of Sports Medicine recently recommended the incorporation of grip
strength testing as a component of musculoskeletal fitness assessment in children, it is
important to not only understand the link between variability in this measured outcome and
that of health risks, but also from the context of translating meaningful risk-stratification
information to clinical and public health audiences. Moreover, a very recent systematic
review and meta-analysis revealed strong evidence for an inverse association between
musculoskeletal fitness and cardiometabolic risk factors among adolescents^{32}.

Regarding health behaviours, there is a well-established link between BMI, physical
activity, cardiopulmonary fitness, and muscular strength^{48}. However, there is less evidence
pertaining to the relationship between handgrip strength and healthy dietary adherence in
younger populations. Therefore, considering the limited number of studies that have
previously examined these associations, it is difficult to compare our results. A cross-
sectional study in Spanish adolescents showed that there was not relationship between
handgrip strength and ideal diet; the authors hypothesized that results seemed to be more
associated with physical activity levels and aerobic capacity at these ages^{49}. Regarding
smoking habits, the small number of available studies has shown inconsistent results. A
previous study reported that smoking habits were not related with handgrip strength^{49};
however, another Spanish study in children and adolescents suggests that those who had
muscle weakness had a significantly higher odds ratio of reporting smoking tobacco
sometimes^{50}. In our study, we found an inverse correlation between normalized grip
strength and number cigarettes smoked per day (r=-0.356, P < 0.01). Cross-sectional and
longitudinal studies showed that smoking affects the body through, for example, increased
oxidative stress, which negatively influences the muscles^{3,5,51}. Circulating cigarette smoke
constituents seem to play an important role in the underlying molecular mechanisms of
muscle damage, such as reduced oxygen delivery and impair mitochondrial function^{52}.

These findings are particularly important from a public health perspective, given the
well-known negative consequences of smoking and the fact that this behavior starts already
at young ages. Regarding health factors, the role of muscular strength in prevention of
cardiovascular disease has become increasingly recognized^{39}. Our results show higher
values of handgrip strength in children and adolescents who had ideal health factors as compared to peers that not meet ideal condition. The exception for this was for total cholesterol and glucose in girls, which could be explained by the small number of youth with non-ideal factors (2% and 6%, respectively).

The present findings lend strong support to the growing body of literature revealing a link between muscle weakness and increased cardiometabolic risk factors;7-10 and yet, the mechanisms underlying this association are still to be determined. It has been hypothesized that one possible mechanism by which healthy muscular strength exerts favorable health effects may be its capacity to reduce chronic low-grade inflammation. In the Pan-American HELENA study, Artero et al.9 found an inverse association between muscular strength with lower levels of markers of chronic inflammation such as C-reactive protein, complement factors C3 and C4, leptin and white blood cell counts in adolescents, even after adjusting for gender, age, cardiorespiratory fitness, maturation, and socioeconomic status. In addition, Steene-Johannessen et al.7, Cohen et al.8 and Peterson et al.53 reported strong evidence of the inverse associations between muscular strength and cardiometabolic risk factors such as HOMA index, triglycerides, and blood pressure, positive associations with markers of endothelial function, and lower arterial stiffness. Differences in body distribution of excess adiposity could be another explanation, as there are studies that suggest that muscular strength is a stronger influence on cardiometabolic abnormalities17,19,31,33. However, further research is needed to confirm these mechanisms, especially in the pediatric population.

There are some limitations to this study. The observations of our study are limited by the descriptive and cross-sectional design, and therefore direction of causality cannot be determined. Another limitation was that adherence to the Mediterranean diet was measured
by a self-administered questionnaire, so some of the questions may have been
misinterpreted deliberately or unintentionally by some participants. Future research is
needed to better describe the age- and sex-specific trajectories of strength as a predictor of
comorbidities across the lifespan and, perhaps just as importantly, to apply robust analyses
that can compartmentalize risk into hierarchical categories\(^5\). Finally, it should also be
noted that the formation of the ideal CVH metrics relies on the use of binary variables and
on the assumption that all health behaviours and factors contained in this index contribute
the same to the final score\(^1\).

The findings of this study indicate that handgrip strength is positively associated
with ideal CVH metrics in Colombian youths. These results provide an important public
health message that children and adolescents do not necessarily have to reach all 7 metrics
to gain CVH benefits. Moreover, the data suggest that preventive efforts should be focused
on those with few ideal health behaviors or factors, and should target early development of
handgrip strength to reduce the risk of premature health problems.

ABBREVIATIONS

- CVD: Cardiovascular disease
- CVH: Cardiovascular health
- CCI: Intraclass correlation coefficient
- BMI: Body mass index
- IOTF: International Obesity Task Force
- CRF: Cardiorespiratory fitness
ACKNOWLEDGEMENTS

We thank the children and adolescents who participated in the study and their parents and teachers for their collaboration. We also acknowledge the members involved in fieldwork for their efforts, particularly physical activity and health masters students for their work in the Field-based fitness assessment.

FIGURE LEGEND

Figure 1. Association between handgrip strength and normalized grip strength [measured as grip strength in kg/body mass in kg] across ideal CVH metrics in schoolchildren. (A) Boys and (B) Girls.

Figure 2. Levels of handgrip strength and normalized grip strength [measured as grip strength in kg/body mass in kg] across ideal CVH behaviours (smoking, body mass index, cardiorespiratory fitness, and Mediterranean diet adherence) and ideal health factors (total cholesterol, blood pressure, and plasma glucose) in schoolchildren; (A-B) Boys and (C-D) Girls.

REFERENCES

24. Gualteros JA, Torres JA, Umbarila-Espinosa LM, Rodríguez-Valero FJ, Ramírez-Vélez R. A lower cardiopulmonary fitness is associated to an unhealthy status

28. Committee on Fitness Measures and Health Outcomes in Youth, Food and Nutrition Board, Institute of Medicine; Pate R, Oria M, Pillsbury L, editors. Washington (DC). National Academies Press (US); 2012.

Table I. Characteristics of children and adolescents in Bogota, Colombia [mean (SD) or frequencies], by sex.

<table>
<thead>
<tr>
<th></th>
<th>Girls (n=572)</th>
<th>Boys (n=627)</th>
<th>All (n=1,199)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>12.9 (2.2)</td>
<td>13.3 (2.2)</td>
<td>13.1 (2.2)</td>
</tr>
<tr>
<td>Body mass (kg)</td>
<td>42.1 (9.0)</td>
<td>45.8 (11.3)</td>
<td>44.0 (10.4)</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>149.3 (10.2)</td>
<td>155.7 (13.7)*</td>
<td>152.6 (12.5)</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>18.6 (2.3)</td>
<td>18.5 (2.0)</td>
<td>18.6 (2.2)</td>
</tr>
<tr>
<td>Tanner stage Prepuber/Puber/Pospuber, (%)</td>
<td>7/89/4</td>
<td>6/84/10</td>
<td>6/86/8</td>
</tr>
<tr>
<td>Resting blood pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>106.4 (11.1)</td>
<td>109.6 (12.4)</td>
<td>108.0 (11.9)</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>66.3 (7.7)</td>
<td>66.0 (8.0)</td>
<td>66.1 (7.8)</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>78.3 (13.3)</td>
<td>79.7 (12.9)</td>
<td>79.1 (13.1)</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>140.9 (21.9)</td>
<td>133.3 (24.6)*</td>
<td>136.9 (23.6)</td>
</tr>
<tr>
<td>Mediterranean diet adherence (-4 to 12 points)</td>
<td>7.1 (2.0)</td>
<td>7.0 (1.8)</td>
<td>7.0 (2.1)</td>
</tr>
<tr>
<td>Cardiorespiratory fitness (mL/kg/min)</td>
<td>41.1 (3.9)</td>
<td>45.6 (4.7)*</td>
<td>43.5 (4.9)</td>
</tr>
<tr>
<td>Muscular strength</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handgrip strength (kg)</td>
<td>19.6 (5.4)</td>
<td>25.3 (9.2)*</td>
<td>22.6 (8.2)</td>
</tr>
<tr>
<td>Normalized grip strength*</td>
<td>0.47 (0.08)</td>
<td>0.54 (0.11)*</td>
<td>0.51 (0.10)</td>
</tr>
</tbody>
</table>

*Handgrip strength/body mass.

* t-test was applied to compare unadjusted means by sex (p<0.001).
Table II. Handgrip (kg) and normalized grip strength (measured as handgrip strength/body mass) mean and SE estimates by ideal CVH metrics, by sex.

<table>
<thead>
<tr>
<th>Health behaviours</th>
<th>Girls (n=572) Mean (SE)</th>
<th>Boys (n=627) Mean (SE)</th>
<th>p value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ideal N%</td>
<td>HG</td>
<td>HG/BM</td>
<td>HG</td>
</tr>
<tr>
<td>Smoking</td>
<td>217/38</td>
<td>19.6</td>
<td>0.461 (0.004)</td>
</tr>
<tr>
<td>Body mass index</td>
<td>538/94</td>
<td>19.6</td>
<td>0.469 (0.003)</td>
</tr>
<tr>
<td>Cardiorespiratory fitness</td>
<td>440/77</td>
<td>20.6</td>
<td>0.465 (0.006)</td>
</tr>
<tr>
<td>Mediterranean diet adherence</td>
<td>103/18</td>
<td>19.9</td>
<td>0.465 (0.003)</td>
</tr>
<tr>
<td>Health factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood pressure</td>
<td>532/93</td>
<td>19.7</td>
<td>0.465 (0.003)</td>
</tr>
<tr>
<td>Glucose</td>
<td>561/98</td>
<td>20.6</td>
<td>0.482 (0.003)</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>538/94</td>
<td>19.9</td>
<td>0.464 (0.003)</td>
</tr>
</tbody>
</table>

aFrom analysis of covariance with age as covariate and Tanner stage as random factor

HG: Handgrip (kg); HG/BM: normalized grip strength (measured as handgrip strength/body mass), CVH: cardiovascular health
Table I. Definition of the Ideal Cardiovascular Health Metrics (<20 Years of Age) as Defined by the American Heart Association and the Criteria Used in this Study.

<table>
<thead>
<tr>
<th>Health behaviors</th>
<th>AHA Definition</th>
<th>Definition in this Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smoking</td>
<td>Never tried; never smoked whole cigarette</td>
<td>Never smoked a cigarette</td>
</tr>
<tr>
<td>Body mass index</td>
<td><85th percentile</td>
<td><85th percentile</td>
</tr>
<tr>
<td>Physical activity</td>
<td>≥60 min of moderate- or vigorous-intensity activity every day</td>
<td>Healthy CRF was defined by using either the cut-off by sex- and age (shuttle-run or estimated VO2peak) listed in the healthy fitness zone</td>
</tr>
<tr>
<td>Diet</td>
<td>4–5 components*: Fruit and vegetables: ≥4.5 cups/d</td>
<td>Mediterranean diet quality</td>
</tr>
<tr>
<td></td>
<td>Fish: 2 or more 3.5-oz‡ servings/wk</td>
<td>Participants who had at least ≥8 points were categorised as having an ideal healthy diet</td>
</tr>
<tr>
<td></td>
<td>Fiber-rich whole grains: 3 or more 1-oz-equivalent servings/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sodium: <1500 mg/d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sugar-sweetened beverages: ≤450 kcal (36 oz)/wk</td>
<td></td>
</tr>
<tr>
<td>Health factors</td>
<td>Total cholesterol <170 mg/dL (<4.40 mmol/L)</td>
<td><170 mg/dL</td>
</tr>
<tr>
<td></td>
<td>Blood pressure <90th percentile</td>
<td><90th percentile</td>
</tr>
<tr>
<td></td>
<td>Plasma glucose <100 mg/dL (<5.6 mmol/L)</td>
<td><100 mg/dL</td>
</tr>
</tbody>
</table>
Figure 1
Click here to download Figure: Fig 1.eps

A

Handgrip (kg)

0 5 10 15 20 25 30 35 40 45 50

Ideal cardiovascular health metrics

p for trend 0.001

B

Handgrip (kg)

0 5 10 15 20 25 30 35 40 45 50

Ideal cardiovascular health metrics

p for trend 0.001
Figure 2

Click here to download Figure: Fig 2.eps

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Handgrip (kg)

Ideal cardiovascular behaviours metrics

- **Ideal health factors metrics**

- **Handgrip (kg)/body mass**

- **p for trend**

- 0.001

- 0.008

- 0.330