GESTIÓN ECONÓMICA DE RECURSOS NATURALES: UNA PROPUESTA PARA LAS CIENCIAS DE LA COMPLEJIDAD

HERNANDO RUBIANO BARRERO

TRABAJO DE GRADO

MAESTRÍA EN DIRECCIÓN Y GERENCIA DE EMPRESAS
FACULTAD DE ADMINISTRACIÓN
COLEGIO MAYOR DE NUESTRA SEÑORA DEL ROSARIO

BOGOTÁ, D. C., SEPTIEMBRE DE 2011
GESTIÓN ECONÓMICA DE RECURSOS NATURALES: UNA PROPUESTA PARA LAS CIENCIAS DE LA COMPLEJIDAD

HERNANDO RUBIANO BARRERO

TRABAJO DE GRADO

TUTOR
CARLOS EDUARDO MALDONADO CASTAÑEDA

MAESTRÍA EN DIRECCIÓN Y GERENCIA DE EMPRESAS
FACULTAD DE ADMINISTRACIÓN
COLEGIO MAYOR DE NUESTRA SEÑORA DEL ROSARIO

BOGOTÁ, D. C., SEPTIEMBRE DE 2011
A Susana del Pilar, mi eterna compañera
Agradezco a Carlos E. Maldonado C. su apoyo para la elaboración del texto; su obra sobre las Ciencias de la Complejidad inspiró éste trabajo.
TABLA DE CONTENIDO

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCCIÓN</td>
<td>1</td>
</tr>
<tr>
<td>1. LA DISOCIACIÓN DE LA NATURALEZA Y LA ECONOMÍA</td>
<td>6</td>
</tr>
<tr>
<td>1.1. Economía preclásica</td>
<td>7</td>
</tr>
<tr>
<td>1.2. Economía clásica y economía marxista</td>
<td>11</td>
</tr>
<tr>
<td>1.3. Economía marginalista</td>
<td>14</td>
</tr>
<tr>
<td>1.4. Propuesta keynesiana</td>
<td>16</td>
</tr>
<tr>
<td>2. LA CONEXIÓN DE LA ECONOMÍA ESTÁNDAR Y LA NATURALEZA</td>
<td>18</td>
</tr>
<tr>
<td>2.1. Economía ambiental</td>
<td>20</td>
</tr>
<tr>
<td>2.1.1. Economía del bienestar</td>
<td>20</td>
</tr>
<tr>
<td>2.1.2. Economía institucional: el problema del Costo Social</td>
<td>21</td>
</tr>
<tr>
<td>2.1.3. Regulaciones e instrumentos económicos</td>
<td>23</td>
</tr>
<tr>
<td>2.2. Economía de los recursos naturales</td>
<td>24</td>
</tr>
<tr>
<td>2.2.1. La economía de los recursos no renovables</td>
<td>24</td>
</tr>
<tr>
<td>2.2.2. La economía de los recursos renovables</td>
<td>25</td>
</tr>
<tr>
<td>2.3. ¿Crecimiento económico o desarrollo sostenible?</td>
<td>27</td>
</tr>
<tr>
<td>3. LAS ALTERNATIVAS</td>
<td>30</td>
</tr>
<tr>
<td>3.1. Bioeconomía</td>
<td>30</td>
</tr>
<tr>
<td>3.1.1. Fundamentos: termodinámica y biología</td>
<td>30</td>
</tr>
<tr>
<td>3.1.2. De la bioeconomía a la economía ecológica</td>
<td>37</td>
</tr>
<tr>
<td>3.1.3. La función de producción de la bioeconomía</td>
<td>38</td>
</tr>
<tr>
<td>3.1.4. La función de costo energético de la economía ecológica</td>
<td>43</td>
</tr>
<tr>
<td>3.2. Teoría general de sistemas</td>
<td>45</td>
</tr>
<tr>
<td>3.3. Ciencias de la complejidad</td>
<td>50</td>
</tr>
<tr>
<td>4. CONCLUSIONES</td>
<td>64</td>
</tr>
<tr>
<td>5. BIBLIOGRAFIA</td>
<td>69</td>
</tr>
</tbody>
</table>
RESUMEN

Como una propuesta alternativa en la gestión de recursos naturales, este texto enlaza los fundamentos de la bioeconomía y las ciencias de la complejidad, en especial, con la termodinámica del no equilibrio y el concepto de estructuras disipativas; son dos discursos fundados en la segunda ley de la termodinámica, la entropía, con muchas coincidencias en su desarrollo, pero en apariencia irreconciliables por su mirada diferente en la generación de orden - desorden. Se describe la disociación del hombre y la economía con la naturaleza durante dos siglos y el infructuoso intento de conectarlo con la economía ambiental. En esta misma línea, se presenta la economía ecológica que retoma los fundamentos de la bioeconomía y desarrolla una alternativa analítica que, aunque tiene el mérito de haber quebrado el monopolio de la economía estándar, no ha logrado trascender. Se concluye que los desarrollos planteados por la bioeconomía sobre la función de producción, la teoría del valor y la raíz del conflicto social pueden ser pilares de una estructura sólida en una propuesta de gestión de los recursos naturales desde las ciencias de la complejidad.

PALABRAS CLAVE

Gestión económica de recursos naturales, ciencias de la complejidad, economía ecológica, estructuras disipativas, bioeconomía, entropía, termodinámica del no equilibrio, sistemas alejados del equilibrio

ABSTRACT

As an alternative in the management of natural resources, this text links the basics of bioeconomy and the sciences of complexity, specially with non equilibrium thermodynamics and the concept of dissipative structures; two speeches based on the second law of thermodynamics, entropy, with many
similarities in their development, but apparently irreconcilable, by their different approach in the generation of order-disorder. The dissociation of humanity and the economy with nature for two centuries and the unsuccessful attempt to connect them with environmental economics is described; in this same line, ecological economy –a theory that incorporates the fundamentals of bioeconomy and develops an analytical alternative that has the merit of broken the standard economics monopoly, but has failed to transcend– is presented. The conclusion is that the developments of bioeconomy concerning the role of production, the theory of value and the root of social conflict can be pillars of a solid structure within a proposal of natural resources management designed from the perspective of the sciences of complexity.

KEYWORDS

Economic management of natural resources, sciences of complexity, ecological economy, dissipative structures, bioeconomy, entropy, non-equilibrium thermodynamics, systems departed from equilibrium
INTRODUCCIÓN

Este trabajo se fundamenta en el concepto de que el deterioro ambiental en nuestro planeta es responsabilidad directa de la civilización industrial y de su concepción de progreso, materializada en el modelo de crecimiento económico vigente.

El objetivo es discutir cómo se gestionan los recursos naturales por la economía estándar, la bioeconomía y la termodinámica del no equilibrio.¹

El argumento central de este texto es que el modelo de la economía estándar -que considera el crecimiento económico como una panacea para todos los males- no tiene el instrumental adecuado, para gestionar la demanda creciente de los recursos naturales y la consiguiente producción de residuos contaminantes, ni siquiera apoyándose en la economía ambiental actual, que da cuenta del instrumental de las externalidades para ello.

La bioeconomía, es una propuesta alternativa que rompe el monopolio de la economía estándar y enfatiza en que el proceso económico es entrópico. Con la incorporación de los principios de la termodinámica clásica, en especial la Ley de la Entropía, la bioeconomía presenta una respuesta a la problemática actual del ambiente.

En este texto se propone integrar el instrumental desarrollado por la bioeconomía en la termodinámica del no equilibrio y así consolidar un modelo teórico para gestionar los recursos naturales desde las ciencias de la complejidad.

¹ En este texto, se entiende como economía estándar la economía tradicional, esto es, el modelo neoclásico; la bioeconomía hace referencia a la propuesta de modelo económico de Nicholas Georgescu-Roegen, presentada, en lo fundamental, en su obra “La Ley de la entropía y el proceso económico”. (1971). Las termodinámica del no equilibrio es una de las ciencias de la complejidad, las otras son: la teoría del caos, la teoría de las catástrofes, la teoría de los fractales, las lógicas no formales y las ciencias de redes
La propuesta puntual es complementar las ciencias de la complejidad, en particular la termodinámica del no equilibrio, con los instrumentos clave de la bioeconomía: la teoría del valor, la función de producción y el componente explicativo del conflicto social (el desarrollo del principio de consumo exosomático, tomado de la biología), para aportar solidez y avanzar en la instrumentalización de la gestión económica de los recursos naturales, desde la visión de las ciencias de la complejidad.

N. Georgescu-Roegen, se ha inspirado en el pensamiento de dos científicos: Vernadsky y Lotka. Es a Lotka (cf. *Elements of Physical Biology*, 1925) a quien le atribuye la definición correcta de los principios de consumo endosomático y consumo exosomático de energía, siendo este último, quizás, el principio más importante de la ecología humana. Pero además Georgescu-Roegen está en deuda con Lotka no sólo por el concepto de tecnología como instrumento exosomático, sino también por los fundamentos biológicos de la economía (cf. Grinevald, 1990, p.106).

Vernadsky, por su parte, lo influye con sus obras *La Géochime* (1924) y *La Biosphère* (1926) “ya que fue el primer científico, en la historia de la ciencia moderna, quien observó actividades del hombre en interacción con los ciclos globales naturales de los elementos: ¡había llegado la hora de ecología humana!” (Grinevald, 1990, p. 101, en Martínez Aleir, 1992, p.25).
Hay que tener en cuenta, sin embargo, que antes que Georgescu–Roegen desarrollara sus planteamientos, la ciencia ya había reflexionado desde hacia un siglo sobre la relación entre economía y termodinámica. Así, por ejemplo, S. Podolinsky estableció el principio bautizado con su nombre, que afirma que una sociedad no es viable a menos que el rendimiento energético del trabajo humano cubra su costo en términos económicos, es decir, que la productividad energética del trabajo humano sea superior a la eficiencia de dicho trabajo, y considera al ser humano como una máquina térmica que transforma calor en trabajo; Patrick Geddes –quien elaboró una tabla input-output en términos físicos para analizar cómo se transforman la energía y los materiales en productos finales asociando, sin duda, las tesis fisiocratas y las leyes de la termodinámica – utiliza matrices como herramienta en el análisis intersectorial de uso de energía (cf. Geddes, en Martínez Alier. Ed., 1995, p. 38); y Federick Soddy, quien sostenía que la energía es el capital de la sociedad y que la agricultura es la actividad económica dominante. Son ellos quienes, pese a no ser economistas, fueron precursores de las ideas de la economía ecológica (cf. Martínez Alier, et. al, 1997, p.11-35).

El documento está estructurado así: en el primer capítulo se hace una presentación, desde la economía estándar, de la teoría del valor: se toma como hilo conductor la noción de producción para presentar cómo el concepto de valor va cambiando hasta consolidar como preponderante el valor de cambio – dejando a un lado el entorno, la naturaleza– es decir, se muestra cómo el sistema económico pasa de reconocer un mundo físico ligado a la naturaleza, al mundo autosuficiente de valores monetarios y del trabajo, en el cual predomina la adquisición de riqueza, más que a la producción de la misma.

En el segundo capítulo, el objetivo es presentar los diferentes enfoques teóricos que conectan la economía con la naturaleza y para gestionar el uso de los recursos naturales y el “control” de la contaminación. Se explica el origen de la economía ambiental con sus vertientes principales: la economía del bienestar desarrollada por A. Pigou y la economía institucional de R.H. Coase,
ambas se reducen, en esencia, a abordar el problema ambiental desde la lógica tradicional de costo-beneficio de la economía estándar. En seguida, se expone sobre la economía de los recursos naturales, destacando que las reglas de explotación propuestas (Hotelling, 1931), en el caso de los recursos no renovables son considerados como un bien normal, estándar, y por lo mismo se busca optimizar su productividad en la extracción -con la tasa de interés como variable central- sin tener en cuenta su carácter de agotable. En la exposición sobre los recursos renovables se encuentra que los modelos concebidos para su gestión (explotaciones pesqueras y forestales, por ejemplo) pueden dar luces para la gestión económica en general de los recursos naturales, destacando uno de los principios fundamentales del capitalismo: el derecho sobre la propiedad privada; se aborda, además, el concepto de sostenibilidad y su interpretación, dicho concepto se constituye en uno de los ejes de la discusión actual sobre la gestión de recursos naturales.

En el tercer capítulo, se presentan las alternativas más viables para gestionar los recursos naturales: la bioeconomía de Georgescu-Roegen, base del desarrollo de la economía ecológica, la teoría general de sistemas y la termodinámica del no equilibrio -como una de las ciencias de la complejidad-. Se propone, en este capítulo, complementar la termodinámica del no equilibrio: las estructuras disipativas y la autoorganización, expuesta por Prigogine y su grupo de trabajo y que finalmente, resuelve la paradoja de las flechas del tiempo: Darwin versus Carnot, con el instrumental desarrollado desde la bioeconomía: la función de producción, la teoría del valor y el principio de consumo exosómatico.

Se da apertura en la investigación de la gestión de los económicas de los recursos naturales, hacia el horizonte maravilloso de las ciencias de la complejidad; dejando atrás el análisis lineal de la economía estándar y el abyecto pesimismo la termodinámica clásica y comenzar así la gestión de los recursos naturales de acuerdo a cada contexto económico, social y ecológico.
particular, con el fin último de privilegiar la vida y no exclusivamente como un medio para acumular valor de cambio exclusivamente
1. LA DISOCIACIÓN DE LA NATURALEZA Y LA ECONOMÍA

En este capítulo, se muestra que el hombre pasa de privilegiar y respetar la naturaleza -economía fisiocrata-, a privilegiar el trabajo y el valor de cambio -economía clásica-; y que el modelo neoclásico de corte mecanicista con base en lo aproducible, lo negociable y lo productible, reduce el análisis y no considera la naturaleza.

Con fundamento en la premisa que “la evolución del pensamiento económico [y la producción, desde luego] están vinculadas con la concepción que, de su relación con la naturaleza hayan podido tener los hombres” (Passet, 1996, p.71), enseguida se presenta cómo el sistema económico adoptó, en el análisis como eje central, lo monetario, dejando de lado los aspectos físicos, la naturaleza.

Ante todo, se debe señalar que por cuenta de esta decisión, el “aparato productivo”, en tan sólo doscientos cincuenta años la especie humana ha logrado que se alcancen escalas de depredación de la Naturaleza y niveles de contaminación con emisiones a la biosfera que están fuera de control y que avanzan a una velocidad sin precedentes. “Todo lo que ese hombre ha hecho durante los últimos doscientos años lo pone en la situación de un fantástico despilfarrador” (Georgescu-Roegen, 1971, p.67). Es así que el darle un uso económico al acervo terrestre de baja entropía se ha convertido en el principal problema para el destino de la humanidad (cf. Georgescu-Roegen, p.70, en Daly, 1989).

Esta sección ubica el contexto en el cual el hombre, y la economía en particular, se disoció de la naturaleza; no es un resumen histórico. En lo que tiene que ver con el enfoque del análisis de la noción de producción, algunas partes de esta sección están escritas a partir del texto de Juan Manuel Naredo “La Economía en Evolución” (2003) y del libro de Miguel Cuerdo y José L. Ramos, “Economía y Naturaleza: una historia de las ideas” (2000). A pesar de no estar de acuerdo en todos los aspectos con Naredo, en esta sección se toma como hilo conductor el mismo fundamento de la noción de producción.

H. Daly, en 1980, sostiene que “el hombre ha vivido el 99% de su existencia en la Tierra en condiciones muy próximas a un estado estacionario. El crecimiento económico es esencialmente un fenómeno de los pasados 200 años, y sólo en los últimos 50 se ha convertido en el objetivo fundamental de las naciones. El crecimiento es una aberración, no la norma” (cf. Carpintero 2006, p.189-90).
Se recrea la evolución del pensamiento económico, que comienza “oficialmente” en el siglo XVII con la concepción de que el hombre no produce nada (todo se lo dispensa la Naturaleza) hasta llegar al siglo XXI cuando se afirma con omnipotencia, y sin admitir discusión alguna, que el hombre lo produce todo. Para este análisis se toma como hilo conductor la noción de producción y su concepción con respecto a la naturaleza y, específicamente, a la utilización de los recursos naturales en el proceso económico. Se gira en torno a tres conceptos: la riqueza, la naturaleza y el trabajo.⁴

1.1. Economía preclásica

Hacia mediados del siglo XVIII, los fisiócratas “enfocaron la investigación en adecuar los principios del gobierno económico de las naciones a las estructuras que el mundo presenta en forma natural” (Quesnay, 1974, p.8). A partir de este principio, la doctrina fisiócrata marca una ruptura con los argumentos mercantilistas reinantes en la primera mitad del siglo XVIII, que señalaban que la riqueza a escala mundial es constante y, por tanto, un país no podía aumentarla sino a expensas de otro (Pasinetti, 1975, p.13). En un juego de suma cero, el comercio externo y el expolio en otros territorios son la fuente para la acumulación de riquezas.

De las ideas mercantilistas se viró, entonces, hacia la concepción de que el comercio beneficia a todas las partes involucradas en él. Se presenta una interpretación diferente sobre el origen y causa de crecimiento de la riqueza, se impone la creencia que con su trabajo, y con ayuda de la ciencia, el hombre puede acelerar los procesos de generación y perfeccionamiento que tenían lugar en la tierra; el hombre se sintió capaz de controlar e incrementar a su voluntad la producción, suplantando el papel activo que se atribuía hasta entonces a las potencias celestes en la creación de las riquezas: “las rentas

⁴ Estos son los conceptos que recoge W. Petty en la clásica “ecuación natural” que expresa el valor de las cosas: “El trabajo es el padre y principio activo de la riqueza mientras la tierra[naturaleza] es la madre” (Cuerdo, M. y Ramos J.M, 2000, p. 28)
son producto de las tierras y de los hombres. Las tierras, sin el trabajo de los hombres, carecen por completo de valor” (Quesnay, 1974, p-155). Simultáneamente, con C. Linneo, se gesta una visión integral –holística– del mundo natural que generó los conceptos de economía de la naturaleza y equilibrio de la naturaleza. De esta manera, “no había cabida para la idea de evolución ni para la extinción de especies, porque ello suponía trastocar el Plan de la Creación” (Cuerdo et al., 2000, p.24),

En este contexto, la escuela fisiócrata se topa frente a la decisiva y gran bifurcación presentada entre la economía de los valores pecuniarios y la economía de la naturaleza. Por una parte, trata del intercambio entre los hombres y, por otra, de la economía de los recursos naturales, que desde una mirada física considera la relación del hombre con su entorno y extiende su análisis a la biósfera y a los recursos suministrados por la Naturaleza (cf. Naredo, 2003, p.459). En lo principal, por ignorancia sobre la naturaleza de los procesos físicos y de las técnicas para calcular las cantidades físicas de los recursos naturales, la escuela fisiócrata termina por aplicar, en su argumentación teórica, el concepto de valor de cambio y fijar la atención en la producción más que en la adquisición y reparto de riquezas, soslayando los problemas sociales y ambientales al pregonar que esta concepción es benéfica para toda la sociedad en su conjunto (cf. Naredo, 2006, p.4).

Se destacan dos categorías clave y reiterativas en los fundamentos de ésta escuela: la de producto neto, que se define como un excedente de los bienes producidos para ser incorporado en el proceso de producción y reponer lo consumido, y la de un proceso circular que, además de producir un excedente, reproduce los bienes consumidos en el proceso y así retroalimenta la actividad productiva en el siguiente periodo.

La categoría de producto neto concebida por los fisiócratas se identifica conceptualmente con la economía ecológica y la termodinámica (Naredo, 2003, p.104). Los fisiócratas postulan que debe privilegiarse la mayor reproducción
posible, considerando los resultados físicos; Quesnay, al respecto, manifiesta que “…las naciones agrícolas tienen otro punto de vista, un punto de vista más útil para ellas y, a la vez, más amplio: no han de tender más que a aumentar tanto como sea posible la reproducción para incrementar y perpetuar las riquezas que pueden ser gozadas por los hombres. Para ellas, el dinero sólo es una riqueza menor que sirve de intermediaria y que, sin la reproducción, desaparecería en un momento” (1974, p.64).

El sistema fisiócrata tiene el mérito de identificar, entre otros aportes importantes, por primera vez en la economía, el concepto de función de producción y la noción de clases sociales (clases de ciudadanos), concepto y noción que siempre permanecerán en todas las teorías y realidades económicas (cf. Carpintero, 2006, p.89). Las clases de ciudadanos configuran una estructura social que generan intercambios o flujos de bienes materiales entre ellas; el Tableau économique representa estos intercambios proponiendo una distribución de la riqueza en la sociedad.

Además del aporte de este potente instrumento analítico, F. Quesnay hace una excepcional descripción del sistema económico, en donde incorpora las diferentes categorías y su interacción para el análisis: destaca, entre otros elementos, la importancia del Estado y de los impuestos, de la tasa de interés, del papel del dinero, y del comercio exterior. Evidentemente, no pretendía reducir la economía a un modelo estático, sino por el contrario en su exposición, por ejemplo, a manera de “simulación”, tomaba casos prácticos y reales y en ellos aplicaba los conceptos, para avizorar diferentes posibilidades y, a partir de allí, señalar el derrotero a seguir. Era consciente de la incertidumbre que la naturaleza genera: “la agricultura es inseparable de cierto número de graves accidentes que a veces destruyen por completo las cosechas, como las heladas, el granizo, el añublo (la roya), las inundaciones, la muerte del ganado, etc.” (Quesnay, 1974, p. 44). También tenía en cuenta los conceptos de renovación y mantenimiento de los activos, y diferenciaba las clases de cultivos, señalando, por ejemplo, que los más exigentes eran los
viñedos y la horticultura. Es claro que el pensamiento fisiocrático tenía una visión integral del sistema económico y se fundaba en la interacción con la naturaleza y, específicamente, con la agricultura, la pesca y la minería.

Visto desde una perspectiva actual, el enfoque fisiócrata se presenta como precursor de la contabilidad energética de la economía ecológica, por lo cual a los economistas (apelativo dado a los fisiócratas) se les atribuye ser pioneros de la economía ecológica (cf. Naredo, 2003, p.104-105; Cuerdo et. al., 2000, p.33).

Desde esta perspectiva, el Tableau économique ofrece una palpitante actualidad. Si se expresaran en energía los flujos en él representados su coherencia resulta incontrovertible, colocándose en línea con los trabajos que enjuician la gestión de recursos desde una perspectiva energética. (Naredo, 2003, p.105).

K. Marx, llamó al Tableau économique, “indiscutiblemente la idea más brillante de que la economía políti ca había sido culpable hasta entonces” (P. Swezy, 1942, [1979]), p.87).

En resumen, existía un excedente neto esencial del sistema económico, y la agricultura era la única que lo producía. El progreso consistía en el continuo incremento de este producto neto físico. Los economistas fueron entonces precursores en definir el concepto de productivo como creador de excedente; producir no era simplemente “revender con beneficio”, sino contribuir a aumentar la riqueza renaciente (recursos renovables), distinguiendo, además, entre, excedente, producto bruto y costo como el concepto unificador de la economía política.

Por otra parte, A. Smith en su “Investigación sobre la Riqueza de las Naciones” (1776, [1982], p.591-613) explica los fundamentos del sistema agrícola que considera el producto de la tierra como la única fuente de riqueza de un país; critica este sistema por menospreciar la industria urbana, afirma
que es falso considerar como improductivos a los artesanos, porque no son como los criados domésticos, pues su trabajo aumenta el ingreso real de la sociedad. Para aumentar el producto anual, dice, se requiere la participación tanto de los agricultores como de ellos, y sostiene, además, que el comercio y la industria pueden procurar la subsistencia que el sistema considera como única renta. A. Smith reconoce la importancia y las bondades, por decirlo de alguna manera, del sistema fisiocrata:

No obstante, y pese a todas sus imperfecciones de este sistema, es acaso el que más se aproxima a la verdad, entre cuantos hasta ahora se han publicado sobre Economía Política, y por tanto, es digno de la consideración de todo hombre que desee examinar atentamente los principios de esta importante ciencia. Aunque en su empeño por considerar el trabajo que se emplea en el cultivo de las tierras como el único productivo de cuantos se emplean en la sociedad, sean demasiado restringidas y mezquinas las ideas propugnadas por el aludido sistema, en cambio al representarse la riqueza de las naciones como fundada, no en el acervo imperecedero del dinero, sino en los bienes consumibles que anualmente se reproducen por el trabajo de la sociedad, así como el proponer la perfecta libertad, como el único y eficaz remedio para hacer esta anual reproducción lo más grande que sea posible, la doctrina parece a todas luces tan justa como generosa y liberal. (Adam Smith 1776, [1982]. p.605).

El único punto doctrinal de consideración en el cual difería Smith de los fisiócratas era en la afirmación de éstos de que sólo la agricultura es “productiva”. Sin embargo, Smith nunca desarrolló el concepto de producto neto en la actividad manufacturera. (Dobb, 1932, [1978] pp. 13-18). Pero es aquí, precisamente, en donde se comienza a gestar el viraje desde la agricultura hacia la industria como centro de la actividad económica, un hecho que conduce inexorablemente a la “ruptura epistemológica posfisiocrática” que, finalmente, revela la desconexión del sistema económico de la Naturaleza.

1.2. Economía clásica y economía marxista

La teoría clásica se caracteriza por la separación de la noción de producción del contexto físico y su generalización a todo tipo de actividades económicas.
Se destaca y se reconoce el trabajo como la fuente principal y exclusiva de generación de riqueza; se conceptúa además que los aportes de la naturaleza son gratuitos e inconmensurables; más adelante, ésta se eliminará finalmente de forma definitiva en el análisis; la tierra se convierte en un objeto pasivo e “incómodo”. Es una fase antropocéntrica: el hombre que se sometía con modestia a la naturaleza, pasó a dominarla (Passet, 1996, p.71) y a sustituirla como fuente generadora de riqueza. De aquí, obviamente, se desprendieron consecuencias que cambiaron la visión de otros campos, además del económico.

A. Smith, en esta fase de transición, aceptaba algunos elementos físicos. Entre sus “taras” fisiocráticas, se destaca el valor que le da a la agricultura y a la distinción entre trabajo productivo e improductivo, que tiende a considerar la producción en términos físicos (cf. Cuerdo, 2000, p.42), mientras que D. Ricardo y K. Marx separaron en forma contundente y definitiva la producción de todo contenido natural: todo lo hace el hombre y su trabajo. En este sentido, Ricardo afirma que

“la riqueza de una nación puede ser incrementada de dos maneras: empleando una porción mayor del ingreso en mantener el trabajo productivo –lo que no sólo aumentará la cantidad sino el valor de la masa de mercancía– o sin emplear ninguna cantidad adicional de trabajo, haciendo más productiva la misma cantidad lo cual aumentará la abundancia. En el segundo caso con la misma mano de obra se producirá más” (Ricardo 1985, p.207-8),

lo que quiere decir un aumento de la productividad del trabajo.

El sistema económico privilegia las relaciones sociales y enfoca su interés hacia el valor de cambio, desde la agricultura (rendimientos decrecientes) hacia la industria (rendimientos contantes o crecientes) y “su unificación bajo normas abstractas, en correspondencia con la unificación de las actividades económicas que tuvo lugar bajo la noción cada vez más omnicomprensiva de producción” (Naredo, 2003, p.109).
T. Malthus, quien puede ser considerado un heterodoxo entre los economistas clásicos, estaba más cerca de los fisiócratas, pero al final también abandonó el enfoque físico para acoger el punto de vista pecuniario: “entiende que la agricultura beneficia de forma inmediata e indiscutible a la sociedad, mientras que la industria y el comercio, pueden beneficiarla de forma más indirecta, o incluso perjudicarla” (Cuerdo, 2000, p. 45-46). Se destaca en los planteamientos de Malthus la correlación entre el crecimiento de la población y su capacidad de sostenimiento, esto es, la capacidad de producir medios de subsistencia, que lo llevaron a concluir que la calidad de vida desmejoraría cada vez más, ante la imposibilidad de un crecimiento *ad infinitum* de los recursos vitales (cf. Cuerdo, 2000, p. 45-46).

Afirman los economistas clásicos que “las cosas valen más o menos en proporción a la mayor o menor cantidad de *trabajo* que exija su producción”, sentencia de la cual se puede abstraer que la riqueza de una nación depende de la eficiencia de los trabajadores. El foco de la atención apunta entonces a privilegiar lo social (las relaciones entre las personas), y se exaltan, por lo tanto, los valores de cambio (categoría social) al desvincular la concepción física del análisis. La importancia que se concedía al uso y los servicios de la tierra en la generación y acumulación de riqueza se desplazó hacia los servicios del capital, hecho que permite generalizar la noción de *producción*. Es por ello que en el proceso de producción no se consideran entradas de energía y materiales.

K. Marx agrega al análisis el importante, y controvertido, concepto de plusvalía y destaca al trabajo y las relaciones sociales de producción como ejes de su investigación. La plusvalía determina si un trabajo es productivo o improductivo: si hay un intercambio de trabajo por capital y se aumenta el valor, ese aumento permite definir que se trata de trabajo productivo.

El punto crítico y de inflexión del análisis económico que ha trascendido hasta hoy se presenta en la adopción por parte de los economistas clásicos y
de Marx de una visión monetaria del sistema económico, que se funda en el intercambio entre los hombres. Esta dimensión rechaza y abandona la concepción física, que considera al proceso económico como un sistema abierto en el cual el hombre interactúa con su entorno natural. Marx, además, critica con rudeza el enfoque fisiócrata por la falta de solidez en el modelo que pretendía examinar de manera ligera, por decir lo menos, magnitudes físicas con magnitudes monetarias. A partir de esta contundente crítica de los economistas clásicos y de Marx a la gestión de recursos desde una mirada física, se renunció a ella y se redujo al terreno del valor monetario.

1.3. Economía marginalista

“Todo está en Adam Smith” afirmó A. Marshall en sus Principios (Naredo, 2003, p.186), lo que puede significar que en efecto, la revolución neoclásica, en verdad no se produjo: la concepción general del pensamiento económico neoclásico es una continuación del pensamiento de los clásicos, claro está, ganando en precisión y (en la tan mencionada) coherencia interna, por cuenta de la adopción de la analogía mecánica y del cálculo infinitesimal en el análisis.⁵

Entre otros objetivos, para elevar el nivel de la ciencia económica, Jevons, en Londres, Menger, en Viena, y Walras, en Lausana, cimientan la escuela de pensamiento neoclásico. Cada uno por su lado, pero de modo simultáneo, en el decenio de 1770 acuden a la física de Newton (con sus leyes de la locomoción) y a la geometría euclidiana (con las funciones punto, por ejemplo), retoman las nociones de riqueza, producción, consumo, capital y sistema económico de los clásicos y, lo más importante, la argumentación central que ve en el afán de

⁵ En este mismo sentido, C.E. Maldonado afirma que “el fundamento de la economía clásica y neoclásica coincide por completo con la extensión y los contenidos mismos de la lógica formal, y las posibilidades, el sentido, los alcances y las limitaciones de la economía clásica y neoclásica coinciden, por completo, con los de la lógica formal; incluso los contenidos de la una se corresponden con los de la otra” (Maldonado, 2005 a, p.36)
adquisición de riqueza la fuerza motriz impulsora de la economía. Se centran en la búsqueda de “leyes generales y universales que se impondrían a todos, sea cual fuere la diversidad de los sistemas” (Passet, 1992, p.80).

Siguiendo la línea de análisis de la noción de producción, se puede señalar que Walras define lo apropiable, lo intercambiable y lo productible, como el núcleo del sistema, económico marginalista:

1. Las cosas útiles y limitadas en su cantidad **son apropiables.** Las cosas inútiles escapan a la apropiación; nadie trata de apropiarse de cosas que no tienen uso alguno [...] La apropiación (y en consecuencia, la propiedad, que no es más que la apropiación legítima o conforme a la justicia) se ejerce sobre toda la riqueza social, y nada más que sobre la misma [...].

2. Las cosas útiles, limitadas en cantidad, **son valiosas e intercambiables.** [...] el fenómeno del valor de cambio, al igual que el fenómeno de la propiedad, se aplica a toda la riqueza social y nada más que ella.

3. Las cosas útiles, limitadas en cantidad, **son industrialmente productibles o multiplicables.** Quiero decir con esto que tiene interés producirlas o multiplicar su cantidad en la mayor medida posible mediante esfuerzos regulares y sistemáticos [...] El valor de cambio, la industria, la propiedad, son, por tanto, tres fenómenos generales [...] cuyo escenario es la riqueza social y nada más que la riqueza social. (Walras, citado por Cuerdo (2000, p.94) y por Naredo (2006, p. 232), “Designando, dice Walras, con el nombre de riqueza social toda cosa, material o inmaterial, que vale y que se intercambia” (Naredo, 2003, p.202).

Esta concepción del sistema económico, de hecho, excluye los recursos naturales del objeto mismo de la economía, mientras estos no sean valorados e intercambiados.

En la cita anterior está el núcleo de la economía marginalista, en la que se evidencia que todo gira en torno a los valores monetarios y pecuniarios. Y desde luego, que los recursos naturales no pueden estar presentes en este modelo económico.

Ahora bien, desde el punto de vista de la racionalidad de la ciencia clásica, del método, el paradigma marginalista considera que la optimización, sujeta a
restricciones, define la naturaleza esencial de la ciencia económica, afirmación que se observa en la ya clásica definición de economía de Robbins, y que, al decir del economista matemático Kelvin Lancaster, es prácticamente una formulación del problema general de optimización: “La economía es la ciencia que estudia el comportamiento humano como una relación entre fines y medios escasos que admiten usos alternativos” (1972, p.26). Desde la otra orilla, N. Georgescu-Roegen lo enuncia así:

Pareto no es el único que sostiene que el proceso económico tiene límites naturales definidos. La misma postura caracteriza a la del pensamiento que ha seguido las atractivas sendas abiertas por los primeros marginalistas matemáticos y a la que se ha llegado a denominar habitualmente de economía estándar. Una formulación más reciente de esta postura dice que el ámbito de la economía se limita al estudio de cómo unos medios dados se aplican a satisfacer fines dados. Dicho en términos más específicos: en un determinado momento del tiempo, vienen dados los medios a disposición de todo individuo, así como sus fines futuros; también vienen dados las vías (técnicas y sociales) en que esos medios pueden usarse directa o indirectamente para satisfacer los fines dados, juntamente o por separado; el objeto esencial de la economía es determinar la asignación de los medios dados hacia la satisfacción óptima de los fines dados. Así es como la economía se reduce a “la mecánica” de la utilidad y del “interés”. En efecto, todo sistema que implique un principio de conservación (medios dados) y una regla de maximización (satisfacción óptima) es una analogía mecánica. (Georgescu-Roegen, 1971, p. 393).

La teoría marginalista es el modelo dominante. Este modelo estándar, que ha perdurado por más de dos siglos con su ideal mecanicista y newtoniano, es criticado por ahístórico, por estar al margen del fluir del tiempo, por antiestético y porque de manera impensable se sostiene campante en la escena.

1.4. Propuesta keynesiana

Ante la imposibilidad de emitir explicaciones coherentes frente a la crisis económica de 1929, irrumpe la teoría de J.M. Keynes que parte prácticamente de los postulados vigentes desde Adam Smith y propone la intervención del Estado y alcanzar el pleno empleo y el desarrollo. No hubo, en verdad, una ruptura, ni una revolución, sino que se reforzó la unidad en torno al mismo objeto de estudio y a las mismas categorías de análisis; tal vez por dar una
continuidad a la ideología que sostiene el sistema económico. Tan es así lo anterior, que Keynes afirma en las notas finales de *La Teoría General de la ocupación, el interés y el dinero*, (1936):

Nuestra crítica de la teoría económica clásica aceptada no ha consistido en buscar los defectos lógicos de su análisis, como en señalar que los supuestos tácticos en que se basa se satisfacen rara vez o nunca, con la consecuencia de que no pueden resolver los problemas económicos del mundo real. Pero si nuestros controles centrales logran establecer un volumen global de producción correspondiente a la ocupación plena tan aproximadamente como sea posible, la teoría clásica vuelve a cobrar fuerza de aquí en adelante (Keynes, 1974, p.333).

En conclusión, se evidencia que por cuenta del modelo mecanicista hay continuidad en el aislamiento de la naturaleza en el análisis económico. Los recursos naturales no tienen importancia alguna y, por el contrario, toma fuerza y se afianza todo aquello que es objeto de valoración pecuniaria e intercambio.
2. LA CONEXIÓN DE LA ECONOMÍA ESTÁNDAR Y LA NATURALEZA

Como se afirmó en el capítulo anterior, a comienzos del decenio de 1970 confluyeron varios acontecimientos que pusieron en el orden del día del debate internacional el tema del medio ambiente mundial y sacaron a la luz las deficiencias de la economía estándar para analizar los problemas de índole ambiental. Los economistas ortodoxos reaccionaron y trataron de conectar de nuevo la naturaleza con la economía; para ello, adoptaron métodos destinados a valorar e internalizar, en numerario, los impactos negativos que sobre el medio ambiente produce la creciente actividad económica; el análisis restringe su aplicación al ámbito de los bienes y servicios a los cuales el mercado les fija precio.

Surge así la economía ambiental, que desarrolla una gama amplia de métodos para valorar los costos y beneficios del medio ambiente (cf. Cuerdo, et. al., 2000, pp. 121-156). Los problemas de gestión de los recursos naturales se plantean como externalidades que son valoradas con los elementos básicos de la economía estándar: costos y beneficios calculados en dinero. Ante los problemas de gestión de la Naturaleza, la economía ambiental es el baluarte para mantener la ideología dominante.

Existen, sin embargo, asimetrías de diferente naturaleza que impiden una solución adecuada a los problemas de degradación ambiental suscitados por la actividad e intervención del hombre sobre el medio; para el mecanismo de valoración por excelencia de la economía estándar, el mercado, es difícil, sino imposible, valorar con precisión los daños causados por la contaminación ambiental y la degradación de los recursos naturales, hechos palpables que afectan negativamente a los habitantes actuales de la tierra y que, sin duda, afectarán a generaciones futuras que, incluso, no han nacido aún.

Surge, en aras de considerar los recursos naturales y las inserciones en el medio ambiente, la propuesta alternativa de la bioeconomía de Nicholas
Georgescu-Roegen, quien, valiéndose de los principios de la termodinámica, incorpora al análisis económico los flujos y “stocks” de energía y materiales; la bioeconomía (posteriormente economía ecológica) es un desarrollo teórico que tiene el mérito de quebrar el monopolio centenario de la economía estándar, a partir de considerar la naturaleza entrópica del proceso económico.

En éste capítulo, entonces, se presenta cómo la ruptura ambiental, producto de las tasas crecientes de actividad económica e industrialización (cf. Kapp, 1970, p.129), es abordada por la ciencia económica desde ópticas diferentes: a) desde la economía ambiental, que se fundamenta en la teoría de la Economía del Bienestar de A. C. Pigou (1920), y en el enfoque de la Economía Institucional, que se sustenta en el “Problema del Costo Social” de R.H. Coase (1960), -ambas tendencias formulan sus propuestas de solución a la luz del reduccionista modelo de la economía clásica, (Cuerdo et. al., 2000, pp 123-142) (Naredo, 1997, pp. 249-275)-; y b) desde un punto de vista alternativo con la bioeconomía de N. Georgescu-Roegen (1971), que evidencia la profunda relación entre la termodinámica, en forma especial la Ley de la Entropía, y el proceso económico. Con este cambio de enfoque se supera, tal como se verá en este capítulo, el dogma mecanicista que ha regido el pensamiento económico. Estas visiones e interpretaciones conducen a proponer alternativas para la gestión de los recursos naturales, dejar atrás la disociación entre naturaleza y el proceso económico.
2.1. Economía ambiental

2.1.1. Economía del bienestar

Después de doscientos años de la implantación del modelo económico vigente y ante el hecho de que la gestión de los recursos naturales y el deterioro ambiental se volvieran problemas —que afectan el proceso económico y lo más importante, la vida misma de la especie humana y cuya búsqueda de soluciones es prioritaria—, de manera accidental, por decir lo menos, la propuesta teórica de la Economía del Bienestar (Pigou, 1920) se volvió protagonista porque entre la extensa gama de externalidades del sistema económico y del mercado, detectadas por Pigou, se cuenta la contaminación ambiental. Dichas externalidades, o ‘fallos del mercado’, deben ser subsanadas para reestablecer el óptimo económico en la asignación eficiente de los recursos en la sociedad por la acción impecable del Estado, que busca siempre el ‘bien común’, impulsando o restringiendo las actividades económicas con subsidios e impuestos.

A partir de las ideas presentadas por Pigou sobre las divergencias entre el producto social y el privado, se desarrolló la llamada tradición pigouviana, “que, ante cualquier externalidad ambiental, elevó a la categoría máxima la necesidad de intervención estatal fijando un impuesto sobre el ‘contaminador’ por una cuantía equivalente al daño marginal neto, de forma que alcanzase un nivel de contaminación ambiental óptimo o eficiente” (Cuerdo, et. al. 2000, p.117).

El desarrollo de estos conceptos generales y su aplicación a los problemas de contaminación y a las externalidades negativas, o ‘deseconomías externas’ —que genera la actividad económica emprendida por las empresas o los individuos y que afecta en forma directa a otros individuos y a la sociedad—, se tiene como consecuencia que el costo social es superior al costo individual de las empresas, que obtienen beneficios a costa del desarrollo de su actividad y

No obstante que este enfoque trata de trascender el modelo económico establecido -que supone que el mercado de libre competencia arbitra todas las actividades-, al mostrar la “existencia de efectos sobre terceros no recogidos por el mercado” también reduce su análisis a la medida del bienestar económico o crematístico, es decir, en términos pecuniarios o de dinero exclusivamente. Esto implica en muchos casos la obtención de medidas y controles benévolos, por parte del Estado, de los daños sociales. “El problema técnico estribaba en conseguir una estimación aceptable del coste social y de las externalidades, para hacer que el impuesto (o subsidio) estuviese en consonancia” (Naredo, 2003, p.266).

A pesar del cuestionamiento al modelo económico y a las fuerzas del mercado, la economía del bienestar se reduce a obtener un óptimo de contaminación ‘medido’ en términos monetarios y ‘castigado’ por un impuesto, con lo cual se puede concluir que el sistema coopta esta propuesta al llevarla a la lógica tradicional costo-beneficio. Además, la propuesta de la economía del bienestar es cuestionable porque considera sólo el punto de vista unilateral del contaminador y deja solo al Estado en su intervención para encontrar soluciones a las externalidades ambientales.

2.1.2. Economía institucional: el problema del Costo Social

Sin salirse, tampoco, del marco de la economía estándar, la crítica y el enfoque alternativos a la argumentación de Pigou son plasmados por R.H. Coase en su artículo “El problema del costo social” (1960); además de criticar el enfoque intervencionista del Estado, en la corrección de las externalidades, se centra en juzgar el modelo por no tener presente las instituciones. Coase
aborda el problema de las externalidades como un problema reciproco en el cual se destaca el rol del mercado sin descartar por completo al Estado como agente interventor (cf. Cuerdo et. al., 2000, p.132).

El “teorema” de Coase establece que siempre se llegará a una asignación final de derechos que permitirá alcanzar la situación del óptimo social (en la que se maximiza el valor de la producción total).

Contrario al análisis unidireccional del problema de las externalidades que sustentó Pigou, R.H. Coase esgrimió que éste es reciproco: la solución al problema tiene que considerar al agente emisor y al receptor de la externalidad. Además, el punto de referencia, para la obtención de un producto total, está acotado por posibilidades reales y no teóricas o ideales, previa, desde luego, una mediación o arreglo social concreto y voluntario entre las partes involucradas.

Se debe dar una negociación entre las partes: el agresor y el agredido. Esta negociación, que es de tipo pecuniario, de mercado, de libre competencia y sin intervención del Estado, siempre permitirá eliminar cualquier externalidad, bajo unas condiciones ideales: inexistencia de los costos de transacción y derechos de propiedad perfectamente definidos. De esta manera, se resuelve el problema económico del impacto medioambiental sin necesidad de impuestos (cf. Cuerdo, et. al. 2000, p. 133).

Los supuestos de la no existencia de costos de transacción y de derechos de propiedad perfectamente definidos centran la discusión y llevan, por un lado, a aceptar la intervención del Estado y a dar relevancia a las decisiones de los tribunales jurídicos y, por otro, a cuestionar la supuesta novedad de los planteamientos de Coase, cuyos efectos locales de delimitación de la propiedad no permiten visualizar los problemas medioambientales importantes que se “extienden por los ecosistemas o se acumulan en el tiempo, amenazando con romper los equilibrios que mantienen la vida evolucionada en
el planeta o, cuando menos, con provocar catástrofes irreversibles" (Naredo, 2003, p.270).

El enfoque del costo social incluye en su análisis la importancia de las reglas formales e informales de la sociedad que deben ser valoradas en la investigación de los problemas medioambientales y económicos en general; por ejemplo, las presiones políticas y el cabildeo en los parlamentos a la hora de legislar en temas relacionados con el ambiente son cruciales.

Se puede afirmar que, además de su dificultosa y casi imposible aplicación práctica, las propuestas de gestión de recursos naturales para erradicar las externalidades ambientales, la Economía del Bienestar de Pigou y la del problema del costo social Coase son complementarias y siguen el camino trazado por la economía estándar, que reduce la gestión de los recursos naturales a los valores de cambio y a lo estrictamente pecuniario; ambos enfoques circunscriben los recursos naturales al universo de lo *apropiable* que está en la búsqueda de optimización de una ganancia y de un óptimo de producción económica.

2.1.3. Regulaciones e instrumentos económicos

Dentro de la misma corriente pecuniaria, es pertinente destacar que los Estados con su potestad de intervención y en su práctica diaria utilizan regulaciones e instrumentos que tienen como objetivo disminuir las externalidades producidas por la actividad económica.

Con sustento en la premisa: "el que contamina paga", como ente regulador, arbitro de los diferentes agentes del mercado y como representante de la sociedad, el Estado tiene la facultad de imponer cánones o cargas fiscales. Estos se fijan sobre emisiones contaminantes del aire, al ruido, a los residuos sólidos y sobre productos concretos, como lubricantes, pesticidas, fertilizantes,
entre otros. El Estado también tiene la facultad de otorgar ayudas financieras: subsidios, préstamos blandos y exenciones tributarias.

Las medidas e instrumentos utilizados por el Estado no surten los efectos esperados porque es imposible la valoración pecuniaria de la actividad productiva sobre el medio ambiente. Además, siempre existirán agentes que tienen mejor y mayor información que otros, incluso que el Estado mismo.

Pese a que se trata de independizar la gestión del poder ejecutivo del Estado, –a través de la creación de entes autónomos como contrapesos para una administración de los recursos equitativa, flexible y eficiente que los preserve y que además controle la contaminación –, la tendencia es a que el poder dominante coopte el sistema y que finalmente no se logren los objetivos de optimización ambiental propuestos.

Subyace en está parte del análisis, que el derecho a la propiedad, que es quizá el tema central que a la postre va a definir y a permitir desatar el nudo gordiano para resolver los problemas del medio ambiente, es un factor institucional intocable en el sistema de producción capitalista vigente, pero que merece ser tratado consecuentemente con la naturaleza del problema planteado.

2.2. Economía de los recursos naturales

2.2.1. La economía de los recursos no renovables

La optimización de la explotación de los recursos naturales agotables a lo largo del tiempo tiene que ver con el ritmo de extracción y con la asignación intergeneracional de los mismos.

En 1931 Harold Hotelling, en el artículo “La economía de los recursos agotables”, propuso su regla de extracción desde la idea “del precio neto, es
decir, de beneficio marginal, pero sin establecer restricción alguna al precio de mercado del recurso a lo largo del tiempo”. Se busca con esta propuesta la solución óptima que permita una renta de agotamiento constante, que a su vez determine una tasa de extracción. Se trata de un modelo que tiene como objetivo la optimización de la extracción y la regla de extracción óptima propuesta, supone enfrentar la explotación del recurso agotable igual a como se enfrentaría cualquier otra inversión: maximizando los rendimientos netos. Sin embargo, es evidente que la explotación de un recurso no renovable es de naturaleza distinta: dicho recurso se va agotando si se pretende obtener una renta fija con su extracción (cf. Cuerdo, et. al, 2000, p.165). El problema de agotamiento de los recursos es de naturaleza intertemporal y es abordado desde la teoría estándar de la mecánica clásica, que no incluye el tiempo como variable explícita. Se emprende así la búsqueda de un óptimo de “un recurso agotable a lo largo de un período de tiempo que puede alcanzar un número indefinido de generaciones” (Naredo, 2003, p.259).

Además, no es posible una asignación intertemporal e intergeneracional de los recursos no renovables porque no existe, no es posible una verdadera transacción: los no nacidos, las futuras generaciones, no participan en el mercado y, sin embargo, se afectan por el mercado. Dado que la economía estándar no puede ofrecer solución alguna para descontar los beneficios y los perjuicios futuros, se llega así a una de las críticas centrales de la economía ecológica: la inconmensurabilidad de los elementos que componen la economía (cf. Martínez Alier, et.al., 1991, p.13).

2.2.2. La economía de los recursos renovables

El desarrollo teórico de la economía de los recursos naturales renovables se aborda desde la biología y la ingeniería.
Los recursos renovables, que tienen como característica común que se reproducen en períodos de tiempo más o menos cortos, son heterogéneos en su naturaleza y, por lo mismo, en su gestión.

Elementos como la temporalidad y los derechos de propiedad son tenidos en cuenta, y su tratamiento es diferente de acuerdo con la naturaleza del recurso. La explotación pesquera a mar abierto ofrece singulares características en cuanto a la estacionalidad y a los derechos de propiedad que no están definidos y que pueden llevar a la extinción de especies. La variable tiempo y el derecho de propiedad en una explotación de un bosque, por ejemplo, son evidentemente diferentes.

Y es precisamente en las explotaciones pesqueras y en las explotaciones forestales que la gestión de los recursos naturales ha tenido un desarrollo teórico importante: para las explotaciones pesqueras, se han elaborado propuestas que van desde modelos estáticos, pasando por las funciones logísticas hasta llegar a modelos dinámico más complejos. Los trabajos pioneros proceden de la biología –M.B. Schaefer (1954) y H.S. Gordon (1954) – y son modelos estáticos sobre la optimización del tiempo y sobre los problemas que acarrea la indefinición de los derechos de propiedad (cf. Cuerdo, et. al., 2000, p.175).

A partir de las funciones logísticas, se ha aprendido mucho sobre la dinámica de las poblaciones y se interpreta la utilización 'óptima' de un recurso natural renovable. La aproximación desde lo biológico permite que se analice no solamente el recurso como bien de capital, pues el entorno también juega un papel crucial. La interacción entre biología y economía es interesante en este aspecto y puede dar luces para dar solidez a la conexión entre naturaleza y economía.
2.3. ¿Crecimiento económico o desarrollo sostenible?

En el documento de la ONU Nuestro futuro común (1987), se propone la meta del desarrollo sostenible (sustainable development), definida así:

“Es el desarrollo que satisface las necesidades de la generación presente sin comprometer la capacidad de futuras generaciones para satisfacer sus propias necesidades. Encierra en sí dos conceptos fundamentales:

- el concepto de “necesidades”, en particular las necesidades esenciales de los pobres, a las que se debería otorgar prioridad preponderante;
- la idea de limitaciones impuestas por el estado de la tecnología y la organización social sobre la capacidad del medio ambiente para satisfacer las necesidades presentes y futuras (Nuestro futuro común, 1987, p.67, citado por Riechmann, p.14, 1995).

El concepto de desarrollo sostenible polariza la opinión de los economistas y el debate es importante en el contexto de la gestión de los recursos naturales.

Por un lado, los economistas ecológicos sostienen que dicho concepto es espurio, no expresa más que la idea que se tiene de hacer sostenible el crecimiento económico actual en vez de buscar soluciones ecológicas alternativas.

Se abrazará de nuevo –dice Naredo– la fe en la salvación por el crecimiento económico, envolviéndolo, eso sí, con el término más ambiguo de desarrollo y aderezándolo con el adjetivo de sostenible. (Naredo, 2006, p.26).

Por tanto, la frase desarrollo sostenible sería lo que los anglosajones denominan un oxímoron⁶, o combinación de términos contradictorios o incongruentes. (Margalef, 1996, en Naredo, 2006, p.27).

⁶ Según la RAE: Combinación en una misma estructura sintáctica de dos palabras o expresiones de significado opuesto, que originan un nuevo sentido; p. ej., un silencio atronador.
(1987)-, que cuestionó el crecimiento económico, suavizaron el tono del discurso y cambiaron la tendencia del argumento inicial:

A las limitaciones que la escasez de recursos y el exceso de residuos ponían a la viabilidad del crecimiento ilimitado, se respondió reforzando la meta del desarrollo con el calificativo de sostenible. Es decir, se respondió por el camino de buscar términos cuyo carácter sintético facilite el consenso y soslaye o dé por superados los conflictos originarios. Se consiguió así un discurso único, blindado contra cualquier otro que trate de poner en cuestión su significado. (Naredo, 2006, p.182).

De otro lado, otros economistas defienden el concepto de desarrollo sostenible, porque la base es la perfecta sustituibilidad de los factores: el factor capital natural puede ser sustituido por el factor capital manufacturado y así se resuelve el problema del agotamiento de los recursos naturales y, por ende, el de la contaminación. Así, se presentan desde este punto de vista,

Dos diferentes interpretaciones u orientaciones en el pensamiento económico: la economía de la sostenibilidad débil y la economía de la sostenibilidad fuerte; la diferencia entre ambas radica en el lado de la oferta y, más concretamente, en el concepto de sustituibilidad factorial, dado que los pensadores de la economía de la sostenibilidad fuerte niegan la posibilidad de sustitución entre el capital natural y el capital manufacturado. Esta negación tiene una importancia radical, puesto que para los fundamentos neoclásicos de la economía la no sustituibilidad es tan grave como la no elección: se podría decir, que deja sin objeto a la propia Ciencia Económica convencional. Al menos en lo referido a la asignación de los recursos naturales. (Cuerdo, et. al., 2000, p.197).

R. Solow realiza elaboraciones teóricas sobre el tema de la sostenibilidad; la idea general es que se pueden armonizar el crecimiento económico y el uso de recursos naturales no renovables “de manera que en lo esencial no es necesario alterar el programa de maximización a que están acostumbrados a resolver los economistas” (Cuerdo et. al., 2000, p.200). La conclusión más importante del desarrollo teórico de Solow es:

El stock finito de recursos (he excluido aquellos completamente reciclables) debería ser agotado óptimamente de acuerdo con las reglas generales de la gestión del uso óptimo de los activos reproductibles. En particular, las generaciones más tempranas están obligadas a aprovecharse del stock
(óptimamente claro) siempre que aumenten el stock de capital reproducible. (Solow, 1974, p.41, en Cuerdo et. al., 2000, p.201)

Solow afirma que el equipo de capital puede considerarse sustitutivo de los recursos naturales y que “[…] si puede lograrse con gran facilidad la sustitución de los recursos naturales por otros factores, en principio no habrá problema. En este caso, el mundo puede seguir adelante sin recursos naturales, de modo que su agotamiento es sólo un acontecimiento, no una catástrofe” (Solow, 1974b, 153, en Carpintero, 2006, p.194).

Georgescu-Roegen controvierte este tipo de afirmaciones de Solow esgrimiendo que los factores capital y recursos naturales son complementarios y sostiene que “el capital no puede ser reproducido sin la ayuda de una oferta adicional de recursos naturales” (Georgescu-Roegen en Carpintero 2006, p.194). Como bien se sabe, el acervo de capital solo existe y tiene sentido como instrumento de explotación de los recursos naturales.

Georgescu-Roegen también cuestiona la función de producción neoclásica y la variante Cobb Douglas – Solow Stiglitz, critica la mezcla entre elementos flujo y elementos fondo. Solow y Stiglitz, afirma, no hubiesen podido llevar a cabo su truco de magia si hubiesen sido conscientes de que, primero, todo proceso material consiste en la transformación de unos materiales en otros (los elementos flujo) por parte de unos agentes (los elementos fondo) y, segundo, que “los recursos naturales se ven afectados por el proceso económico. No son como cualquier otro factor de producción. Un cambio en el capital o en el trabajo sólo puede reducir la cantidad de residuos generados en la producción de una mercancía. Ningún agente puede crear o destruir los materiales con los que trabaja. Tampoco el capital puede crear la sustancia de la que está formado” (Georgescu-Roegen en Carpintero, 2006, p.196).

7 La edición No. 22 de “Ecological Economcis” está dedicado por completo al desarrollo de esta polémica.
3. LAS ALTERNATIVAS

3.1. Bioeconomía

3.1.1. Fundamentos: termodinámica y biología

El modelo económico mecanicista “exacto”, aún vigente, ha dominado el pensamiento económico y se funda en la locomoción que tiene carácter reversible y no cualitativo, con todas las implicaciones que ello conlleva. Pero una vez se incorpora en el análisis la aplicación de los principios de la termodinámica se hace posible franquear esta trascendental situación y, al mismo tiempo, se contribuye a la conexión entre las ciencias sociales y las naturales, hecho que, finalmente, conduce a la ruptura epistemológica de la economía (cf. Naredo, 2003, p. xxv), tal como antes se había presentado en la ciencias de la Naturaleza y en la filosofía.

Dicha ruptura se comienza a hacer evidente cuando se confrontan dos elementos: la locomoción reversible y la entropía irreversible. La regla del equilibrio general, la cual dicta que “todo es reversible, como en la mecánica”, se enfrenta a, o mejor, en palabras de Georgescu-Roegen, ocupa un lugar junto a, - la lección de la termodinámica: “los fenómenos reales se mueven en una dirección concreta e implican un cambio cualitativo” (Georgescu-Roegen, 1975, pp. 94-97). Este enunciado corresponde en perfecta analogía, ni más ni menos, al Segundo Principio de la termodinámica o Ley de la Entropía que enuncia que el calor se mueve siempre por sí mismo sólo en una única dirección, desde el cuerpo más caliente hacia el más frío.

En los primeros años del decenio de los setenta del siglo pasado, con fundamento en la Ley de la Entropía, Georgescu-Roegen, inspirado en la original aportación de Sadi Carnot y el libro de E. Schrödinger, What is Life? (1944), contrasta el proceso de producción agrícola y el industrial basado en sus diferencias biofísicas (cf. Process in farming versus process in
manufacturing: a problem of balanced development (1965))- da la partida oficial al cuestionamiento de la economía estándar desde una perspectiva ‘bioeconómica’, e incorpora en la investigación la idea de que el proceso económico es de naturaleza entrópica: “sólo un análisis de la íntima relación existente entre la Ley de la Entropía y el proceso económico puede hacer surgir a la superficie los aspectos categóricamente cualitativos para los que no tiene cabida la analogía mecánica de la economía moderna” (Georgescu-Roegen,1971, p.47).

El análisis se centra en entender, desde la Ley de la Entropía, que en la economía y en su proceso productivo existe una distinción cualitativa entre la energía y los materiales con baja entropía que recibe (son valorables) y los residuos en estado de alta entropía que expulsa (son invalorables). Desde ésta perspectiva analítica, se entiende la entropía como “el índice de la cantidad de energía no disponible en un sistema termodinámico dado en un momento de su evolución” (Georgescu-Roegen, 1975, p.97).

Georgescu-Roegen muestra la oposición de la mecánica y la termodinámica, que toma forma con la segunda ley de la termodinámica y demuestra cómo el proceso económico está regido por ella, que es “por naturaleza la más económica de todas las leyes naturales” (1971, p.352).Este proceso no puede ser explicado en forma exclusiva por la mecánica porque es un proceso vital, que como tal es irreversible, y lo es irrevocablemente. De ahí que es la Ley de la Entropía la que evidencia los efectos cualitativos del proceso económico en el cual, se reitera, entran recursos con baja entropía y salen residuos con alta entropía y cuya resolución final, paradójicamente, no es distinta a obtener el “flujo misterioso e inmaterial de disfrute de la vida” (Georgescu-Roegen, 1971, p.353).

Con esta propuesta, que hace la inclusión explícita de los recursos naturales y los residuos en el análisis económico, el panorama analítico de la economía cambia en lo fundamental; cambia el mismo objeto de estudio de la economía y
lleva incluso a algunos autores a anunciar el cambio de estatuto epistemológico de la ciencia económica (cf. Naredo, 2003, p.459). La Ley de la Entropía “es la mayor transformación experimentada jamás por la física; indica el reconocimiento [...] de que existe en el universo un cambio cualitativo. Aún más importante es el hecho de que el carácter irrevocable proclamado por esta ley establece sólidamente la distinción lógica entre locomoción y verdadero acontecer” (cf. Georgescu-Roegen, 1971, p.54-55).

“El hecho es que la base material de la vida es un proceso entrópico” (Georgescu-Roegen, 1971, p.55). Así, es pertinente observar que una vez se tiene en cuenta la naturaleza entrópica del proceso económico, hay que reconocer la influencia directa de la Naturaleza en la formación de valor. Es pertinente reiterar que con la incorporación de las leyes de la termodinámica se surte un cambio sustancial en el horizonte analítico, que se observa con nitidez al enunciar que, mientras que la economía estándar pretende determinar y controlar, con exactitud, dónde y cuándo tienen y tendrán lugar los acontecimientos, a la vez que sostiene el mito de que cualquier tipo de escasez puede ser compensada a través del mecanismo de los precios (cf. Georgescu-Roegen, 1975, p.100), desde la óptica del análisis termodinámico clásico, la indeterminación entrópica no permite determinar ni cuándo, ni qué ocurrirá con exactitud. Sin embargo, y pese a ese “defecto”, la Ley de la Entropía “determina la dirección general del proceso entrópico de todo sistema aislado” (Georgescu-Roegen, 1971, p.57).

Aquí es preciso señalar entonces, que el problema medular se encuentra en la finitud y escasez de los recursos naturales, porque “la lucha económica del hombre se centra en la baja entropía del medio” (Georgescu–Roegen, p. 66, 1989, en Daly 1989). Dicha escasez se origina en la naturaleza unidireccional irreversible e irrevocable de la degradación entrópica de la energía y la materia, lo que conduce a argumentar a Georgescu–Roegen que “el proceso económico no es una cuestión aislada y circular, como representan la economía estándar y el marxismo”, por lo que “la extracción de recursos naturales no es en absoluto
una actividad intrascendente. Por el contrario, es el elemento que a largo plazo determinará el destino de la humanidad” (Georgescu-Roegen, 1989, en Daly pp. 61-72).

Se plantea, además que las inserciones en el medio, es decir, la contaminación ambiental, es otro grave problema, adyacente y complementario a la extracción de recursos, que no tiene solución y que afecta de manera directa a los actuales seres humanos que habitan la Tierra. Se presenta, igualmente, porque no se reconoce por parte de la economía estándar (ni por el marxismo como corriente económica opuesta) la naturaleza entrópica del proceso económico. No tiene solución, porque no existe reciclaje alguno que obvie el uso de baja entropía, como tampoco hay evidencia de actividades industriales que no emitan residuos como desechos. Dicho por Cournot: “no existe la máquina perfecta”.

Se puede sintetizar que “el proceso económico no hace más que transformar baja entropía en desechos. Cuanto más rápido se desarrolla el proceso económico, más rápido se acumulan desechos nocivos. Para la tierra en su conjunto, no hay ningún proceso de eliminación de desechos” (Georgescu-Roegen, 1971, p.379). ¡Es un sistema cerrado!

Para explicar el proceso económico, Georgescu-Roegen construye un edificio teórico que incorpora a profundidad en el análisis los conceptos de irreversibilidad, irrevocabilidad, disipación, vector temporal, cambio, degradación entrópica, evolución, innovación por combinación, indeterminación entrópica, e incertidumbre, entre los más importantes. Dicha estructura teórica descansa sobre la termodinámica clásica o del equilibrio y sus leyes, en especial en la Ley de la Entropía de la cual se aduce que

[…] es la forma más simple por la que se reconoce la existencia de los verdaderos acontecimientos de la naturaleza, pero su excepcional importancia para nuestra orientación epistemológica se deriva del hecho de que el reconocimiento procede de la ciencia cuyo punto de partida es que la materia no está sujeta a Cambio. (1996, p.228).
Se destaca que el elemento fundamental de la mencionada Ley es precisamente que hace posible la distinción entre procesos reversibles e irreversibles. Los procesos irreversibles aclaran el problema del Tiempo, y se enfatiza en que “[el] auténtico mérito de la termodinámica clásica es el de clarificar el problema del Tiempo en relación con la naturaleza” (1971, p.261).

Para hacer el enlace entre esta rama de la física que es la termodinámica y la economía, Georgescu-Roegen subraya el origen económico de la investigación que permite enunciar los poderosos principios termodinámicos.

Visto retrospectivamente, es evidente que la esencia del problema por el que se interesaba Carnot es económica: determinar las condiciones en las que podría obtenerse la máxima salida de trabajo mecánico a partir de una entrada determinada de calor libre. (1971, p.347).

La primera relación entre baja entropía y valor económico se detecta cuando se analiza las necesidades primarias e indispensables del hombre y se concluye que estas son exclusivamente biológicas, y que “la vida biológica se alimenta de baja entropía” (1971, p.348).

Por otro lado, la Ley de la Entropía indica que cuando se observa el aspecto físico del proceso económico este no es circular, como pregonía la economía estándar, sino unidireccional: no se crea ni se consume materia ni energía, sino que únicamente se transforma baja entropía en alta entropía. La incorporación de la Ley de la Entropía en el análisis del proceso económico tiene innumerables aristas que es pertinente analizar: el hecho que el proceso económico sea de naturaleza entrópica significa que se produce una degradación creciente. Este proceso económico se gesta en aras de obtener un logro final: el placer de vivir y en el que subyace una actividad intencional selectiva que dirige y enfoca la baja entropía de acuerdo con unas reglas que varían de acuerdo al lugar y al tiempo. Estas especiales actividades no físicas, que son esencia del proceso económico, son, finalmente las más
susceptibles de cambio y manipulación, en forma eficiente, ante un eventual programa bioeconómico que permita paliar el inexorable aumento de la entropía en el sistema aislado (cf. Georgescu-Roegen, 1971, p. 253 y p.353).

No obstante que la esencia del proceso económico es entrópica y la Ley de la Entropía rige el proceso y su evolución, se deben tener presente los siguientes puntos: “primero, que la Ley de la entropía se aplica solamente en un sistema aislado en su conjunto, y segundo, que un proceso aislado en equilibrio entrópico (en un estado caótico) es homogéneo en sí mismo y no tiene tampoco energía libre en relación con sí mismo” (Georgescu-Roegen, 1971, p.253).

Pese a que en forma visionaria Georgescu-Roegen incorporó en el análisis económico las diferentes categorías que de la termodinámica y, en particular, de la ley de la entropía se desprenden, y logró llenar el vacío de la disciplina económica que se propuso al escribir su obra, su propuesta está limitada: en primer lugar, por la concepción de que el aumento de la entropía y el desorden aprehendido por la termodinámica se desenvuelve en un sistema aislado, lo que conduce a sin salidas dramáticas, cargadas de un irremisible pesimismo; y, en segundo término, por tener presente en su estudio, únicamente, el flujo de materiales y energía, sin considerar los flujos inmateriales, de información y financieros, que son esenciales en el análisis económico.

Por otra parte con conceptos tomados de la biología, Georgescu-Roegen plantea las bases del conflicto social y considera dentro de sus categorías teóricas básicas de análisis los instrumentos endosomáticos y los exosomáticos. Según A. Lotka, cada uno de los seres vivos nace con unos órganos que varían según la especie y la variedad, y los denomina instrumentos endosomáticos, encargados de asimilar y distribuir eficientemente baja entropía para conservar la vida. Pero el ser humano, además, usa “órganos” extensivos a su constitución biológica que Lotka denomina instrumentos exosomáticos (los medios de producción), que lo facultan para
alcanzar una mayor eficiencia en la obtención de baja entropía, esto es, menos uso de energía que la que se gasta utilizando únicamente los órganos endosomáticos. De estos principios se desprenden las siguientes conclusiones: 1) que la diferencia entre el hombre y los demás seres vivos en la lucha entrópica por la vida la constituye el consumo exosomático,8 2) que dicho consumo engendra el conflicto social en la especie humana y 3) que el proceso económico es una continuación del proceso biológico.

Georgescu-Roegen afirma que el conflicto social no es una mera creación del hombre sin raíz alguna en las condiciones humanas materiales, tesis que comparte con Marx, aunque no tenga la misma visión para su resolución (cf. 1971, p. 380).

La producción se convirtió en una actividad social, y dejó de ser una actividad familiar o de clan, una vez los instrumentos exosomáticos se perfeccionaron por el uso eficiente del principal órgano endosomático del hombre: el cerebro. Dicha perfección derivó en una ventaja para la persona o colectividad que la desarrolló y se convirtió en una fuente de enorme desigualdad entre los diferentes hombres y sociedades. Este problema no ha dejado de crecer y es, y seguirá siendo por siempre, el centro del conflicto social (cf. Georgescu-Roegen, 1971, p.382).

La eterna raíz del conflicto social sobre distribución de la renta reside en el hecho de que nuestra evolución exosomática ha convertido la producción en una tarea social. Evidentemente, la socialización de los medios de producción no podría modificar este hecho. Sólo si la humanidad retornase a la situación en la que cada familia es una unidad económica autosuficiente, dejarían los hombres de luchar por su cuota anónima de renta total. Pero la humanidad nunca podría invertir su evolución exosomática ni mucho menos la endosomática. La socialización de los medios de producción tampoco garantiza implícitamente -como lo afirmó Marx- una solución racional del conflicto distributivo. [...]

La propiedad colectiva de los medios de producción es, muy probablemente, el

8 “la existencia del hombre se encuentra irrevocablemente ligada al empleo de instrumentos exosomáticos y, consecuentemente, al uso de recursos naturales, de la misma manera que, por ejemplo, está unida en la respiración al uso de los pulmones y del aire” (Georgescu-Roegen, [1971], 1996, p.67)
único sistema compatible con cualquier modelo distributivo. (Georgescu-Roegen, 1971, p.382) (Cursivas en el texto)

3.1.2. De la bioeconomía a la economía ecológica

Sobre lo expuesto en la sección anterior se construye la teoría de la economía ecológica, que se concentra en el estudio de los flujos de energía y de materiales: el metabolismo de las economías.

El desarrollo teórico de la economía ecológica se fundamenta, en lo esencial, en la “bioeconomía” de Georgescu-Roegen y “aborda las relaciones entre los ecosistemas y los sistemas económicos en sentido amplio.[…] lo cual implica una visión amplia, ecológica, interdisciplinaria y holística sobre el problema de estudiar y gestionar nuestro mundo" (Costanza, 1989, p.2).

Puntualmente, Martínez Alier y Schulüpmann (1991, pp.13-14) en primer término señalan que la economía ecológica critica el instrumental de la economía estándar, porque no puede valorar en dinero los efectos de larga duración de la polución, ni puede definir la asignación de recursos agotables, generalmente se asignan valores bajos (usualmente) a los perjuicios para nuestros descendientes, lo que evidencia la inconmensurabilidad de los elementos que componen la economía, es decir, que estos elementos no se pueden valorar en dinero, según las reglas del mercado; y en segundo lugar la economía ecológica explica el uso de la energía y los materiales en ecosistemas humanos.

Se desprende de lo anterior que la economía ecológica se fundamenta en los estrechos vínculos que debe existir entre la ecología y la economía, contrario a la separación de lo económico y lo natural o físico que rige con la economía estándar, que “contempla el proceso económico en relación con la
Naturaleza como un negocio sin aportaciones ni rendimientos”. (Georgescu-Roegen, 1971, p.46)

Para decirlo de manera precisa, la economía ecológica considera “los procesos de la economía como parte integrante de esa versión agregada de la naturaleza que es la biosfera y los ecosistemas que la componen” (Naredo, 2006, p.13)

La economía ecológica está a la vanguardia de los estudios que conectan el medio ambiente y la economía; la revista Ecological Economics publica cualquier tema que ligue la economía con el medio ambiente, sin embargo, se han creado indicadores y medidas del metabolismo de la economía, se toma en consideración lo físico, alejado de lo estrictamente monetario, se ha desarrollado la función de costo energético; además se reflexiona sobre los conflictos sociales y las consecuencias que desata la explotación indiscriminada de recursos minerales y energéticos.

3.1.3. La función de producción de la bioeconomía

La función punto que representa matemáticamente la función de producción usada por la economía estándar se controvierte, porque presenta la noción que el proceso económico es circular y actúa como un sistema cerrado; se enfatiza, además, en que el modelo teórico y matemático básico que se desarrolla a partir de la función de producción omite generalmente la entrada de recursos naturales y la salida de residuos como desechos. En términos amplios, no se considera la economía como parte de la biosfera, sino que funciona aislada de la naturaleza; la noción de producción se funda sobre un enfoque mecanicista, que tiene en cuenta la ley de la conservación de la energía y la materia, que es igual a la primera ley de la termodinámica y no considera nunca la entropía, que enfatiza en la irreversible degradación de la materia y la energía, sin la cual
puede obviarse el principal problema económico: la escasez de recursos naturales.

La función de producción estándar, de la cual afirma Georgescu-Roegen que “como imagen representativa de la realidad (física) es cero”, se contrasta con la función de producción que se fundamenta en los flujos y fondos involucrados en el proceso económico, formulada desde la bioeconomía de Georgescu–Roegen, (1971, pp.275-345); esta función alternativa propuesta alcanza una cota explicativa más alta que la función de producción neoclásica, porque, entre otras cosas importantes, además de incorporar las leyes de la termodinámica, marca diferencias y especificidades para cada uno de los sectores económicos, recoge el tiempo como una variable explícita, y diferencia, como “inputs” del proceso entre flujo y “stock” e incluye los recursos naturales; además del producto, en el “output”, tiene en cuenta los desechos que expulsa el proceso.

Las consecuencias: rompe la estructura analítica originaria y el enfoque mecanicista del que formaba parte. No es ahora una simple relación mecánica de causa y efecto, que no tenía en cuenta los recursos naturales. Deja atrás las ecuaciones diferenciales ordinarias y por lo mismo pierde correspondencia con los planteamientos mecanicistas; incluye el factor temporal y la irreversiblebilidad, -que nunca antes se consideraron-, es decir, el proceso está sujeto a la ley de la Entropía; propone un enfoque globalizador propio de la termodinámica y no acepta el supuesto de la perfecta sustituibilidad de los factores.

Mientras que la función de producción estándar encubre diferencias entre una amplia gama de procesos, hay una única vía de progreso tecnológico, un único desarrollo de las fuerzas productivas y existe una relación causal expresada por un simple vector de cantidades; en el funcional (función de funciones) propuesto se aprecian diferentes posibilidades (funciones) para obtener un producto, con respecto al tiempo, al uso que se hace de los equipos, al los recursos a determinados elementos en calidad de flujo, stock o
fondo, o a la eliminación de desechos. Se abre entonces, la posibilidad de analizar la economía en el uso de los recursos correspondiente a cada uno de las opciones tecnológicas que se permitan para obtener determinado producto o resultado.

La función de producción estándar formulada inicialmente por el economista sueco K. Wicksell, es la expresión Cobb-Douglas “la cual inesperadamente tuvo una gran aceptación en el tratamiento marginalista de la producción” (Pasinetti, 1985, [1975], p.45).

Esta función se representa como una función homogénea de primer grado, de la forma:

\[Y = f(L, K) \]

La introducción del factor capital en la función de producción, confirma que la realidad debe ajustarse a los modelos de la economía estándar: el “avance” analítico de considerar el factor capital hace necesario plantear el supuesto fuerte que “el sistema económico se produce un solo bien y en el que éste sirve tanto de bien de consumo como de bien de capital”; de esta manera se logra la coherencia y lógica del sistema y se obvia el problema fundamental al incluir el capital que es que “el tipo de beneficio se define en relación al valor de los bines de capital, mientras que la función de producción es una relación en la que sólo se pueden incluir variables en términos físicos”. (Pasinetti, 1985, [1975], pp.44-47)

Georgescu Roegen pregunta: ¿por qué un proceso productivo se representa en la economía neoclásica por un vector ordinario (en el que cada coordenada es un número) sí, como se ha afirmado, cada coordenada en la representación analítica de un proceso es una función del tiempo?; “existe una única explicación de la discrepancia: los economistas, más que otros científicos, han tratado en el concepto de proceso de una manera displicente”. (1971, p.300)

una función básica de una empresa es su función de producción, que muestra qué cantidades de entradas (factores) pueden transformarse en qué cantidades
de salidas (producto). En esta breve frase se encuentra inmersa casi toda noción inductora de error que rodea el concepto de proceso en la literatura económica (Georgescu-Roegen, 1971, p.301)

Georgescu–Roegen analiza la función de producción a partir de profundizar en el concepto de proceso, el cual complementa con la noción matemática de función, hasta derivar hacia una funcional:

$$O_o T(t) = F (R_o T(t), I_o T(t), W_o T(t), M_o T(t); L_o T(t), K_o T(t), H_o T(t))$$

En donde se tiene lo siguiente:

<table>
<thead>
<tr>
<th>COORDENADAS DE FLUJO Y FONDO EN EL PROCESO DE PRODUCCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordenadas –Flujo Coordenadas -Fondo</td>
</tr>
<tr>
<td>Inputs</td>
</tr>
<tr>
<td>-De la Naturaleza R(t) - Tierra ricardiana L(t)</td>
</tr>
<tr>
<td>-Inputs corrientes I(t) - Capital K(t)</td>
</tr>
<tr>
<td>-Mantenimiento M(t) - Trabajo H(t)</td>
</tr>
<tr>
<td>Outputs</td>
</tr>
<tr>
<td>-Producto O(t)</td>
</tr>
<tr>
<td>-Residuos W(t)</td>
</tr>
</tbody>
</table>

Tomado de Carpintero (2006, p.144)

Además de definir los límites analíticos del proceso, incorpora su duración temporal, define una función dependiente del tiempo, en la cual presenta las cantidades de factor o producto que han cruzado la frontera temporal $[0,T]$ que define el propio proceso desde el principio hasta el final.

Previa la distinción entre flujos, “stocks” y fondos, cuya incorporación y diferenciación dentro del modelo permite tener imagen fisiológica del proceso de producción, se descompone y se analiza todos y cada uno de los elementos básicos de un proceso de producción, separando los procesos parciales que

9 En matemáticas el concepto de funcional es una función de funciones
denomina *proceso elemental* sobre la base de que todo sistema de producción, cualquiera que sea su tipo, es un sistema de procesos elementales.

Esta función de producción se diferencia de la función estándar por “... la forma detallada en que se describen las interrelaciones existentes entre los diversos componentes del proceso bajo consideración, y la atención prestada al cambio cualitativo inherente a todo proceso real” (Georgescu-Roegen, en Carpintero, 2006, p.106)

También, y es importante dentro del análisis la especificidad que cada proceso dentro de cada sector presenta, porque, por ejemplo, se permite tener en cuenta, entre muchas otras cosas, contrario a la teoría neoclásica, “si el problema en cuestión se refiere a la actividad agrícola o a la industrial”, porque se sabe que existe “una diferencial sustancial entre las estructuras de las actividades productivas agrícolas e industriales” (Georgescu-Roegen, 1971, p.318)

En oposición a las representaciones estándar del proceso de producción, este nuevo punto de vista admite *la interrelación y el cambio cualitativo* como elementos fundamentales dentro del proceso económico. (Carpintero, 2006, p.145)

Aquí en este punto se debe destacar tres elementos importantes que se incorporan en el análisis:

- el tiempo, que se incorpora de manera coherente en el proceso de producción, con todo el tema de irreversibilidad subyacente
- lo que aunado a la integración dentro del análisis de la ley de la Entropía, captando recursos naturales con baja entropía y la salida de desechos como residuos con alta entropía,
- y que junto con el cambio cualitativo: entrada de materiales y energía y salida de producto y residuos
Esta visión posibilita que se pueda observar, en toda su dimensión, la no linealidad del sistema económico, destacándose la vinculación del entorno y de los recursos naturales para la producción de mercancías y de desechos, como fuente del sistema metabólico que da origen a la función de costo energético.

3.1.4. La función de costo energético de la economía ecológica

La investigación sobre la asignación y gestión de recursos desde la propuesta de Georgescu-Roegen, quien incorpora los recursos naturales, de manera explícita, derivó hacia un enfoque que hace énfasis en la cantidad de material y energía que un proceso productivo o un sector productivo utiliza en sus procesos, dejando al margen los valores de cambio o de mercado y a partir de aquí diferenciar entre tipos de procesos económicos, para poder ordenarlos y tomar decisiones con respecto a la eficiencia en el uso del capital natural.

Se trata de un enfoque de costo energético, que en esencia busca sustituir, en un proceso productivo, los costos monetarios por los costos físicos con el objeto de establecer la medida de eficiencia del capital natural: la relación entre consumo de energía y trabajo efectuado, que, en últimas, no es nada diferente al desarrollo del principio de Podolinsky.

El conocer el coste energético de un producto o un sector e incluso de una economía, permite comparar, saber si se acelera el proceso entrópico comparando unos procesos económicos con otros. Por ejemplo, sabiendo el costo energético de un producto determinado y su evolución a lo largo del tiempo, se puede establecer si ese proceso económico acelera la entropía en la medida en que incurra en un mayor costo energético por unidad de producto. La agricultura es un sector en el cual se ha aplicado este enfoque y se llega a la conclusión en términos generales que la mecanización aparentemente ha aumentado la productividad, pero lo ha hecho desde el punto de vista crematístico o económico, porque desde el punto de vista de consumo de baja entropía se presenta el hecho que, al decir de Georgescu-Roegen, “nos
estamos comiendo con mayor rapidez el “capital” de baja entropía del que está
dotado nuestro planeta.” (Cuerdo et. al., 2000, p.276)

Al examinar el coste energético en los procesos industriales se ha detectado
una importante asimetría entre la revalorización monetaria y el coste físico, la
cual se acentúa a medida que los procesos avanzan hacia la venta del
producto final. (Naredo y Valero, 1999, en Cuerdo et. al., p.277)

Es imperativo que para lograr gestionar y asignar los recursos naturales de
manera acertada se debe considerar la principal conclusión obtenida al usar el
enfoque de costo energético:

la especialización productiva mundial provoca cada vez mayores brechas entre
los países situados en los momentos finales del proceso de producción y los
países especializados en la extracción o en la primera transformación. Además,
dado el tipo de especialización productiva de estos últimos, se produce en ellos
una mayor entropía, con lo que en el futuro tendrán menos posibilidades de
desarrollarse. (Cuerdo et. al., 2000, p.277).

Se ha demostrado por varios autores, en especial, Martínez Alier, desde la
economía ecológica, que utiliza el enfoque de costo energético, la hipótesis del
intercambio desigual que sume a los países en la imposibilidad de
desarrollarse.

Pérez (2008), para el caso de la economía colombiana demuestra para el
período 1970-2004, a partir de la identificación de los flujos de energía y
materiales, que en el intercambio comercial internacional hay una distribución
asimétrica de los beneficios y costos ecológicos y sociales, en el cual se
refuerza las relaciones de dependencia que se incrementan por las relaciones
de intercambio desiguales. Todo lo anterior produce un impacto ambiental
negativo en este país, por el aumento del volumen de recursos naturales: agua,
tierra, energía y materiales, utilizados en la actividad económica exportadora.

No hay claridad absoluta sobre el objeto de la economía ecológica, según
Ropke (ver nota 6) este es amplio y aún no se encuentra bien definido;
Costanza (1991, en Cuerdo, 2000, p.279), el objeto es la gestión de la sostenibilidad y Martínez Alier habla de la elasticidad exosómatica; sin desconocer, en ningún momento, la importancia de las investigaciones, es evidente que la tendencia al análisis del metabolismo de los procesos económicos, -para lo cuál se ha logrado diseñar indicadores y medidas, algunas de gran sofisticación que con la ayuda del computador se vuelven de fácil cálculo-; al final de cuentas los mencionados indicadores reducen a términos de energía el comportamiento de las economía. Por ello algunos autores claman por una gestión de los recursos naturales desde una perspectiva más amplia, la de una economía abierta: desde un enfoque sistémico a partir de la teoría general de sistemas, por ejemplo.

3.2. Teoría general de sistemas

Como un paso hacia adelante en la reflexión de la conexión de la economía con la Naturaleza, “de lo económico con lo viviente” (Passet), y, además ante limitaciones del método analítico dominante, que restringe el estudio a sistemas cerrados y saberes parcelados, alojados en compartimientos estancos, se preconiza la teoría general de sistemas, la cibernética y el pensamiento complejo, como opciones válidas:

…se trata de abrir la puerta de lo económico hacia la multidimensionalidad de enfoques y la transdisciplinariedad de sus practicantes y de desplazar el razonamiento desde el sistema económico hacia una economía de sistemas” (Naredo, 2003, p. xxvii)

El observar la economía como sistema abierto induce a pensar en la teoría de general de sistemas y en la cibernética, como el enfoque a seguir para la resolución de los problemas que plantea la gestión de los recursos naturales y por ello Kapp (1976), Margalef (1978), Passet (1979), Cuerdo (2000), y Naredo (2003), entre muchos otros autores, se empeñan en su uso, y es porque se trata de un enfoque globalizador y multidisciplinar, no excluyente del analítico.
Por ejemplo, R. Passet adopta este enfoque, en uno de sus libros más destacados: “L’économique et le vivant” (1996), que tiene como tema central, precisamente, la relación entre la economía y la Naturaleza:

Análisis de las relaciones, visión global, puesta en evidencia de los niveles de organización, enfoque multidisciplinar: tales son, en efecto, los rasgos del enfoque sistémico que preconiza L. Von Bertalanffy y que nosotros adoptaremos aquí. (Passet, 1996, p.48).

Es más, se sostiene que la ecología y la termodinámica de los sistemas abiertos como disciplinas que abordan la gestión de los recursos naturales, disponen de “aparatos conceptuales y de formulaciones teóricas elaboradas” gracias a la “aparición de la cibernética y de las abstracciones matemáticas de la llamada teoría general de sistemas” (Naredo, 2003, p.465)

Además, desde otro ángulo, Naredo subraya la intensa relación entre la economía de la naturaleza, es decir la ecología, y la cibernética y la teoría general de sistemas, citando a R. Margalef quien define la ecología como “el estudio de los sistemas a un nivel en el cual los individuos u organismos completos pueden ser considerados elementos de interacción, ya sea entre ellos, ya sea como una matriz ambiental laxamente organizada. Los sistemas, a este nivel, se denominan ecosistemas” (Naredo, 2003, p.466)

Cuerdo al sintetizar las características que distinguen la economía ecológica señala que:

El enfoque del coste energético no hace sino abundar en la idea de una Economía Ecológica que trasciende los valores de cambio de mercado. De forma global, se puede decir que esta orientación encuentra su principal acomodo en la propuesta de Kapp cuando reclama un enfoque de sistema abierto para la economía: el enfoque sistémico. (Cuerdo et. al., 2000, p. 278)

Kapp, quién desde el enfoque de la economía institucional, aborda el análisis de la gestión de los recursos y en general la economía con una mirada heterodoxa, cuestiona también el método de análisis parcelario, que considera la economía como un sistema cerrado, sin relación con el sistema social y
ambiental, cuando la realidad es interdependiente y por ello no se logra comprender las rupturas ambiental y social. Rupturas que se constituyen en un gran desafío para los investigadores sociales y económicos que tienen que pensar en la interdependencia de los diferentes sistemas, para finalmente, obtener un estado de equilibrio ecológico y económico y así mantener la reproducción y el crecimiento socioeconómico.

Además de criticar la economía estándar y sus medidas por insatisfactorias y además confusas, Kapp, opina que el alcance del análisis microeconómico con respecto a la naturaleza es muy limitado, lo que afecta la teoría económica de raíz, a nivel conceptual (costos y tipo de rendimientos), en la elección de los criterios de evaluación y agregación (en función del dinero y los valores de cambio) y por tanto en la delimitación del campo de la investigación. No está de acuerdo con que los problemas ambientales se encasillen como externalidades porque no permite ver con claridad las repercusiones ambientales y sociales que generan las actividades de las empresas. En síntesis, propone:

En primer lugar, sería necesario abandonar el enfoque convencional que trata a los sistemas como sistemas cerrados o semicerrados y adoptar un enfoque de sistemas para el análisis de los procesos económicos.[...] Aunque pensar en términos de sistemas no se ha convertido en una “teoría”, proporciona una nueva perspectiva (paradigma) para la representación teórica de las complejas relaciones entre la economía y el medio ambiente humano. [...] El pensamiento sistémico es también una precondición para la adecuada percepción de las cadenas causales que dan lugar a la ruptura ambiental. [...] Finalmente, el pensamiento sistémico constituye el primer paso para el desarrollo de nuevos paradigmas que ayuden a la formulación de estrategias de planificación ambiental. Aún nos encontramos en el comienzo del pensamiento sistémico cuyas dificultades son considerables y no deben subestimarse. (Kapp,1972, en Aguilera , 1995, p.241).

Dicho de otra forma: el nuevo enfoque ha de ser tal que se “permita manejar las interrelaciones dinámicas entre los sistemas económicos y el conjunto total de los sistemas físico y social” (Kapp, 1994 [1976]: 331, en Cuerdo et. al. 2000, p. 278) esto tiene consecuencias importantes para la gestión y la asignación de recursos, puesto que, tal y como lo plantean los economistas ecológicos, es preciso reconocer que no se trata de gestionar un recurso determinado, sino de
gestionar ecosistemas en los que es necesario mantener el equilibrio material. Si, efectivamente, el ecosistema es la “unidad apropiada” de gestión, esto “cuestiona la noción [tradicional] de propiedad privada” (Aguilera y Alcántara, 1994, 29), además, perdería fuerza y sentido el mercado como mecanismo de asignación de recursos, lo que conllevaría trasladar “el centro de discusión económica desde el interior del mercado hacia informaciones e instituciones exteriores al mismo, con el consiguiente cambio de estatuto de la propia economía” (Naredo, 1994, p. 377 en Cuerdo, 2000, p.278).

Se plantea, además, la necesidad de un análisis holístico siendo este un “enfoque teórico básico derivado de una observación “ambiental” de la realidad, que es otra teoría más, cuya forma moderna data del año 1926. El holismo, sostiene que, como consecuencia de la existencia de un ambiente complejo, todos los fenómenos deben ser analizados dentro del contexto de ese medio ambiente” (Dopfer, 1978, p.21), y no solamente analizarlos, sino integrarlos con los de otras disciplinas diferentes a la economía; una tarea complicada por cuanto se hace necesaria la comprensión básica de las disciplinas no económicas pertinentes. Circunscrito de esta manera, la visión adecuada de la realidad por un economista más el concepto de percepción ambiental y la idea de que la investigación debería dirigirse de una manera holística, queda enfocado el análisis del sistema como una teoría y una metodología unificadas (cf. Dopfer, 1978, pp.21-22).

Se da cuenta, entonces, que la teoría general de sistemas enfatiza en las relaciones interdependientes entre las diferentes disciplinas, para comprender las propiedades y características específicas del sistema con una visión global.

Maldonado y Gómez señalan:

El pensamiento sistémico determina su propio ámbito de trabajo se interesa en “sistemas” esto es, en complejos de elementos que se encuentran en interacción. De esta suerte, las interacciones y en consecuencia, las relaciones-constituyen el foco de trabajo de la teoría, el enfoque o el pensamiento sistémico - tres maneras de designar una misma geografía.
A partir de la capacidad de relacionar, el pensamiento sistémico plantea un cruce o una integración entre disciplinas y ciencias diferentes, y esta integración se daría justamente en el marco de la teoría general de sistemas (von Bertalanffy) o de las aproximaciones sistémicas. G. Bateson plantea esta misma idea en términos de la búsqueda de y el trabajo con patrones (patterns); es lo que el denomina “la pauta que conecta” (the connecting pattern)." (Maldonado et, al, 2010, p.33)

Está claro que, el paradigma marginalista desde el punto de vista teórico ha sido superado, no puede dar explicación de las crisis cada vez más frecuentes, o mejor, permanentes; -entendienddo crisis como la incapacidad para enfrentar el desafío de [cada] época- (cf. Dopfer, 1978, p.13); son de diferente naturaleza y no puede explicar en su lógica graves problemas como la pobreza, la inequidad, entre otros y fundamentalmente de la precaria gestión de los recursos naturales. Por ello se pretende enlazar, a través de y por, la teoría general de sistemas, la cibernética y el pensamiento complejo, y así dar tono y forma a las diferentes metodologías alternativas propuestas para gestionar los recursos. Se entiende el afán y el buen propósito de los autores, que finalmente han tenido el merito de conectar de nuevo la naturaleza y la economía, de relacionar todas y cada una de las disciplinas que hasta ahora han funcionado en compartimentos estancos, eclipsadas por cuenta del método analítico parcelario vigente; sin embargo, esta visto que su propuesta no es adecuada para resolver el problema de la asignación y la gestión de recursos.

El pensamiento sistémico espera que el rompecabezas se arme por completo; que estén y encajen todas las piezas, es decir, que este toda la información disponible para la toma de decisiones. (cf. Maldonado, 2011, p.35)

Además que cómo lo señala Leff (1994), la teoría general de sistemas, tiene un fuerte componente de carácter ideológico “porque los modelos aplicables a la diferentes estructuras teóricas, al reducir la especificidad de los procesos reales a sus características formales comunes desconocen los principios materiales de los que dan cuenta las diferentes ciencias”… lo que en últimas
permite utilizar [manipular] dichos modelos ideológicamente, en la dinámica de los procesos históricos, por ejemplo.

Tal vez porque “el problema de la articulación de las ciencias no consiste en forjar un hilo conductor, una metodología, conceptos o estructuras analógicas comunes, o un metalenguaje, que permitan integrar y unificar el conocimiento de la realidad. [...] Lo importante es analizar como confluyen en un proceso determinado,…a partir de la especificidad de cada una de las ciencias legítimamente constituidas” (Leff, 1994, p.43)

En el mismo sentido, Maldonado afirma que:

El pensamiento complejo es, strictu sensu, una epistemología. [...] En consecuencia, el rasgo diferenciador más claro entre las ciencias de la complejidad y el pensamiento complejo es precisamente éste, a saber: en el caso de Morín se trata de intuiciones, ideas, espíritu y propósitos que, ciertamente, no son rechazables sin más. En el caso de las ciencias de la complejidad se trata de argumentos, demostraciones, lógica(s), rigor, experimentos, modelaciones y simulaciones que han enriquecido de manera fundamental la comprensión del mundo y del universo, y que constituyen, a todas luces, una auténtica revolución en el conocimiento.” (Maldonado. 2011, p.43)

La gestión económica de los recursos naturales se constituye en un fenómeno complejo porque, a todas luces, cumple con los requisitos de las ciencias de la complejidad y está dentro del estadio de la revolución científica en marcha que se gestó y está creciendo: las ciencias de la complejidad.

3.3. Ciencias de la complejidad

Sólo hasta 1944, con E. Schrödinger, los intentos de desarrollar un análisis evolucionista de los fenómenos físicos dieron sus frutos, intentos que comenzó desde mediados del siglo XIX, L. Boltzmann, con la entropía como hilo conductor. Schrödinger sostiene que un organismo vivo es neguentrópico, esto es que niega la entropía, evita la degradación remontando la flecha del tiempo que caracteriza al estado físico inerte en equilibrio, en últimas un organismo se
puede mantener vivo sólo y sólo si extrae baja entropía de su entorno (cf Maldonado et. al., p.19, 2011) y a partir de allí la investigación se ha desarrollado hasta la física de los procesos de no-equilibrio, ciencia nueva que ha creado los conceptos de autoorganización y de estructuras disipativas:

…las condiciones de no equilibrio en el sistema han hecho posible evitar el estado de desorden térmico, y transformar una parte de la energía suministrada por el entorno en comportamiento ordenado de un nuevo tipo, gracias a la formación de una estructura disipativa. Se trata de un régimen caracterizado por la ruptura de simetría, una gran posibilidades de elección y las correlaciones de alcance macroscópico. Por este motivo podemos afirmar que hemos asistido literalmente al nacimiento de la complejidad. (Nicolis, G. y Prigogine, I., [1987], 1994, p.30)

Según Prigogine este tipo de estructuras emergen en puntos de bifurcación, son puntos en los cuales las viejas estructuras son inestables y se desarrollan nuevas estructuras: he aquí el nacimiento de lo complejo.

Es claro que la termodinámica del no equilibrio con los conceptos de estructuras disipativas, autoorganización, bifurcación se pueden aplicar en la economía y desde luego en la gestión de los recursos naturales.

El mayúsculo problema de la gestión adecuada de los recursos naturales, tiene una alta posibilidad de encontrar luces de soluciones con “las herramientas” de las ciencias de la complejidad. El desarrollo se fundamenta en el fenómeno de la irreversibilidad, en el comportamiento de la materia en sistemas alejados del equilibrio y en la formación de estructuras disipativas; es un nuevo estadio que permite comprender que es posible que la irreversibilidad genere también orden y no solamente de desorden y en donde la flecha del tiempo no es pérdida, ni desgaste ni ilusión sino es creación y puede ser fuente de orden.

En palabras de Prigogine:

En primer lugar, nuestro rechazo a la banalización de la irreversibilidad se apoya en el hecho de que incluso en física la irreversibilidad ya no puede asociarse sólo al aumento del desorden. Por el contrario, los desarrollos recientes de la
física y de la química de no-equilibrio muestran que la flecha del tiempo puede ser fuente de orden. [...] la irreversibilidad conduce a la vez al desorden y al orden. Lejos de equilibrio, el papel de la irreversibilidad, se torna aún más sorprendente. Crea nuevas formas de coherencia. (Prigogine, 1997, p.29-30)

Además, se puede cotejar que en efecto la gestión económica de los recursos naturales, se puede tratar desde las ciencias de la complejidad al confrontar lo que caracteriza un fenómeno complejo se puede revisar en Maldonado:

Cuando los fenómenos, sistemas y comportamientos en el mundo y en la naturaleza se vuelven complejos o se comportan en términos de complejidad – por ejemplo, con propiedades de emergencia, autoorganización, no-linealidad, sinergia y otros-, entonces existe un conjunto de ciencias –las ciencias de la complejidad-, justamente-, que contribuyen a explicar y a comprender de que se trata. (2009, p.10)

Además y como lo menciona Prigogine:

El mantenimiento de la organización en la naturaleza no es, -y no puede ser- asunto que realice una gestión centralizada; el orden sólo puede mantenerse mediante una autoorganización. Los sistemas autoorganizadores permiten la adaptación a las circunstancias ambientales; por ejemplo, reaccionan a modificaciones del entorno gracias a una respuesta termodinámica que los torna extraordinariamente flexibles y robustos ante perturbaciones externas. Queremos destacar la superioridad de los sistemas autoorganizadores con respecto a la tecnología habitual, que evita cuidadosamente la complejidad y administra de manera centralizada la mayor parte de los procesos técnicos. [...] Una tecnología enteramente nueva deberá ser desarrollada para explotar el gran potencial de ideas y de reglas de los sistemas autoorganizadores en materia de procesos tecnológicos. Los sistemas biológicos, en los que se forman productos complejos con una precisión, una eficacia y una velocidad sin igual, son un buen ejemplo de la superioridad de los sistemas autoorganizadores (Biebracher, Nicolis y Schuster citados por Prigogine 1997, p.78-9).

En esta parte se quiere mostrar que, los principales pilares de la estructura de la bioeconomía propuesta por Georgescu-Roegen, pueden complementar, en lo fundamental, a las ciencias de la complejidad para construir un camino alternativo y cierto, para la gestión económica de los recursos naturales.

En este punto del estudio y con respecto al enfoque a seguir en la gestión de los recursos naturales, hay dos posiciones claras, válidas y que polemizan
entre sí, pese a que se pueden complementar; en dicha polémica está presente la resolución de la paradoja de la flecha del tiempo, de Carnot versus Darwin.

La hipótesis a demostrar es que la economía y en particular la gestión de los recursos, puede, a partir de los planteamientos propuestos desde la bioeconomía, complementar a la termodinámica del no equilibrio: las estructuras disipativas y la autoorganización, expuesta por Prigogine y su grupo de trabajo y que finalmente, resuelve la paradoja de las flechas del tiempo: Darwin versus Carnot, contestando afirmativamente a la pregunta: ¿pueden simultáneamente tener razón Carnot y Darwin? (Prigogine, 1977, p.166).

Así se abre la investigación hacía el horizonte maravilloso de las ciencias de la complejidad:

En rigor, el nudo grueso de lo que es complejidad, de lo que caracteriza a las ciencias de la complejidad consiste en el abordaje, el estudio y las resoluciones entre dos flechas del tiempo diametralmente opuestas: de un lado, la flecha de la termodinámica, y de otra parte la flecha de la biología.” (Maldonado et. al, 2011, p.17).

En palabras de Schneider y Sagan:

Progresivo y regresivo, el mundo estaba ahora dividido por una autopista de tiempo. Le tocaría a una nueva termodinámica, la del no equilibrio, tomar un helicóptero para completar los dos sentidos del tráfico y presentar la evolución y la termodinámica como elementos de una misma corriente. (2005, p.77).

Es preciso dejar atrás el análisis ideal de la linealidad de la economía estándar y la termodinámica clásica y explorar en la termodinámica del no equilibrio, para comenzar a gestionar los recursos naturales de acuerdo a cada contexto económico, social y ecológico particular, con el fin último de crear vida y no exclusivamente como un medio para acumular valor de cambio.

Para llevar a cabo esta tarea, no se debe desconocer la propuesta de N. Georgescu – Roegen, quién con base en las leyes de la termodinámica incorpora los recursos naturales en la investigación y en el análisis; es fundamental y es un hito:
Georgescu-Roegen cumple el papel del gran precursor sobre quién recae todo el mérito de haber inscrito inequívocamente el desarrollo económico dentro de la corriente entrópica universal –que contribuye por lo demás acelerar-. Al defender dicha tesis, el autor abría las puertas a la economía ecológica y a la bioeconomía, que el paradigma posterior de la “destrucción creadora” hará progresar (Passet, 1996, p.35).

En este contexto enseguida se presentan diferentes puntos de vista de interpretación de la bioeconomía y su relación con la termodinámica del no equilibrio: Martínez Alier y Schlüpmann, Naredo, Sathel y Passet; posteriormente se buscan los elementos que pueden complementar ambas propuestas: la bioeconomía y las estructuras disipativas.

Martínez Alier10 y Schlüpmann en su ya clásico texto “La economía y la ecología” (1991) en la sección titulada “Los científicos producen ideología” del capítulo “El discurso de Rudolf Clausius” expone y centra de manera precisa la discusión; los autores descalifican abiertamente la aplicación de la analogía social y económica de la termodinámica del no equilibrio:

Economistas como Georgescu-Roegen quieren cuantificar el proceso económico industrial, que disipa grandes cantidades de materia prima y energía, análogamente a los procesos termodinámicos, de tal forma que se pueda medir el crecimiento entrópico, frenarlo con procesos de reciclaje o, en todo caso, establecer una base racional para calcular los costos de nuestra sociedad de consumo. No se trata pues de transferir conceptos de las ciencias naturales a los conflictos sociales anunciando con resonancias spenglerianas la decadencia entrópica, sino de situar la economía en su marco evidente de ecología humana. Por otro lado, termodinámicos como Ilya Prigogine y algunos sinergéticos11 insisten en las posibilidades entrópicas, entrópico-reductoras de los “sistemas abiertos” y trazan atrevidas comparaciones entre procesos socioantropológicos y procesos fisicobiológicos, utilizando la palabra clave de la termodinámica de los sistemas abiertos, la “autoorganización”. Esas transferencias y analogías no parecen bien logradas. Son -de momento o para siempre- demasiado burdas.12(Martínez Alier et. al.,1991, p.103).

10 Joan Martínez Alier, prolífico autor catalán, quien es de los principales exponentes de la escuela de la economía ecológica, el enfoque de su obra es, en esencia, social.

11 Martínez Alier y Schlüpmann comentan : “Un físico de Jena, Félix Auerbach, publicó un libro con el título \textit{La dueña del mundo y su sombra}, cuya insistencia estaba en el pesimismo de la entropía, pero el propio Auerbach introdujo la noción de “ectropismo” para describir el hecho de que en un sistema abierto a la entrada de energía, la entropía puede decrecer. Ahora bien, en un sistema cerrado, la entropía no puede más que crecer por tanto el adverbio “entrópicamente” se convirtió en sinónimo de “irreversiblemente” ” (Martínez Alier, 1991, p.102)
Estos autores, extractan y exponen con precisión el problema a resolver, y lo fundamental del trabajo de Georgescu-Roegen y son, además, explícitos en cuanto al núcleo de la discusión: la degradación entrópica por la contaminación y el agotamiento de los recursos naturales; no aceptan la interpolación analítica desde y hacia la termodinámica del no equilibrio, las estructuras disipativas y el concepto de autoorganización con el desarrollo planteado por Georgescu-Roegen.

Sin embargo, y en oposición a lo expuesto, en este texto, se sostiene que la bioeconomía va más allá del reciclaje y el cálculo del consumo de la sociedad, como lo plantea en general la economía ecológica; este hecho se evidencia en pleno cuando se afirma que el verdadero producto del proceso económico es un flujo inmaterial: el placer de vivir.

No obstante, se reconoce, por parte de la corriente ecológica de la economía, en el desarrollo de la sociedades humanas elementos como “la organización y la complejidad”, y con fundamento en las tesis de Vernadsky aceptan la diferencia misma de la energía de acuerdo con las circunstancias de uso, elementos, que sin duda, tiene que ver con el proceso entrópico de la economía y en particular con las gestión de los recursos naturales.

El ver la economía como un flujo entrópico no implica, en modo alguno, ignorar las propiedades antientrópicas de la vida y, en general, de los sistemas abiertos a la entrada de energía. Hace falta explicitar esta posición, dada la moda del “Prigoginismo social” es decir, la doctrina que sostiene que las sociedades humanas (como pueden ser el Japón, o la Comunidad Económica Europea, o la ciudad de Nueva York) son estructuras que disipan energía pero se autoorganizan las mismas de tal manera que no hay que preocuparse del agotamiento de los recursos ni de la contaminación del ambiente (Proops, 1989, p. 62, en Martínez Alier, 1992, p.50) Georgescu-Roegen en La Ley de la Entropía y el proceso económico” (1971), presenta la economía como un flujo entrópico pero dentro de un sistema abierto a la entrada de energía ya que la Tierra recibe energía solar del exterior y la sociedad humana revela un desarrollo constante de organización y complejidad (Griveland, 1987). De ahí a los optimismos metafóricos del “Prigoginismo social” hay no obstante una larga distancia, que Georgescu-Roegen no franquea. La discusión es bien antigua y, se remonta al mismo nacimiento de la economía ecológica. Vernadsky (1924) explicó que la energética de la vida era contraria a la energética de la matière brute. (Martínez Alier, 1992, p.50).
R. Passet (1996, p.35), está de acuerdo con Georgescu-Roegen en la afirmación de que el proceso económico es de naturaleza entrópica y que no “puede escapar al segundo principio de la termodinámica”. Está inclinado hacia los conceptos de Prigogine de estructuras disipativas y de autoorganización de la vida en defensa de la degradación entrópica. Se reconoce y se aprecia que la vida deriva parte de la energía disipada hacia la construcción y mantenimiento de estructuras complejas. Passet considera, además, el proceso económico como un proceso de “destrucción creadora”, concepto acuñado por Schumpeter y que trata de asimilar al de estructuras disipativas: la generación de orden desde el desorden.

Naredo muestra, lo que su juicio, es la debilidad de cada una de las posiciones: por un lado está el pesimismo de Georgescu-Roegen quién ... subraya que el despliegue de complejas estructuras y potentes “medios exosomáticos”, propio de la civilización industrial, se apoya en inventos “prometéicos” que desencadenan procesos explosivamente insostenibles a escala agregada, al tener que inscribirse en un sistema cerrado (en materiales) que es planeta Tierra. […] Siendo poco optimista respecto de las posibilidades que brindan nuevos “inventos” para que, al igual que la fotosíntesis, puedan soportar el proceso económico sin acrecentar el deterioro global del sistema cerrado en el que se desenvuelven; y para la otra posición manifiesta que “la teoría de las “estructuras disipativas” de Prigogine se adapta como anillo al dedo al funcionamiento de los sistemas económicos, pero dice poco acerca de sus implicaciones y costes a escala planetaria. (Naredo, en Passet, 2000, pp.17-18).

Por otra parte, Stahel (2005), trata de ajustar la propuesta de Georgescu-Roegen con el concepto de destrucción creativa de Schumpeter y el concepto de estructuras disipativas, de Prigogine, como generadoras de orden.

Stahel está con Georgescu –Roegen en cuanto a que el proceso económico no es circular sino unidireccional, ya que consiste en una continua transformación de baja entropía en alta entropía: residuos o contaminación.

Sin embargo, si como propone Roegen (sic) tenemos en cuenta el proceso económico, como una extensión de la biología se verá que el objetivo principal es la generación de alta entropía. Por tanto, para entender este proceso como
un todo, tenemos que estudiar la generación de alta entropía como un proceso externo a la economía, así como la generación de baja entropía, de estructuras ordenadas, dentro de ella.12 (Stahel, p. 373, en Ecological Economics, 2005)

Stahel, al considerar la conexión biológica, expuesta por Georgescu-Roegen, argumenta que cualquier proceso económico genera orden: estructuras de baja entropía como las casas, el pan, las computadoras e inmediatamente conecta esta noción con la complejidad creciente y con el tercer estadio de la termodinámica: la del no equilibrio, y hace una analogía entre las estructuras disipativas de Prigogine y el concepto de desarrollo destructor creador de Schumpeter; para finalizar por ensalzar la disipación como uno de los nuevos estados de la materia.

Parece sorprendente la exposición de Sathel, porque Georgescu-Roegen, a lo largo a ancho de su obra, nunca se cansa de sostener y demostrar, que es imposible, material y físicamente, “el contrabando” de entropía baja; ¿será qué no se ha comprendido la definición de entropía? En definitiva no, es tan solo una interpretación de los sistemas alejados del equilibrio, que se autoorganizan, que se ordenan.

Desde el punto de vista económico y social, y en particular de la gestión de los recursos naturales, ambos enfoques desde la termodinámica, pueden tener el mismo objetivo: trascender el paradigma newtoniano mecanicista de la locomoción e incorporar la irreversibilidad y como consecuencia de ello el Tiempo: “Llegamos así a dos descripciones sustancialmente diferentes: la dinámica, aplicable al mundo de las masas en movimiento, y la termodinámica, base de la ciencia de lo complejo.” (Prigogine, 1997, p.161). Situación esta última en la cual “los fenómenos reales se mueven en una dirección concreta e implican cambio cualitativo” (Georgescu-Roegen, 1975, p.97).

12 “However, if we consider the economic process, as Roegen himself proposed, as an extension of the biological life-sustaining process, we will see that its primary aim is to generate low and not high entropy. Therefore, in order to understand this process as a whole, we have to study the generation of high entropy external to the economic process, as well as the generation of low entropy, of ordered structures, within it.” (Stahel, p. 373, en Ecological Economics, 2005)
Lo anterior sin desconocer la diferencia nuclear de ambos enfoques: “*en sentido estricto la termodinámica clásica y la termodinámica del no-equilibrio son una sola y misma ciencia que comprende dos momentos: el clásico, que pivota alrededor de la noción de equilibrio y por tanto, ulteriormente, de muerte, y la nueva cuyo centro es el no-equilibrio, y en consecuencia la vida*”. (Maldonado et. al., 2011, p.62).

Se delimita por Prigogine, la investigación, en cuanto al objeto de la economía:

Nuestro problema, por tanto, no es reducir el ser vivo a una única definición, sino aprender a definir la “economía política” de los procesos naturales, aprender de qué forma la energía, la materia, las informaciones son acumuladas, transformadas, distribuidas. Y podemos pensar que la economía política de la naturaleza se encontrará muy alejada de los calmos modelos de división del trabajo y de gestión armoniosa y centralizada a los que se ha asociado durante mucho tiempo la idea de organismo” (Prigogine, 1997, p.219).

Con respecto a la naturaleza entrópica del proceso económico desde la termodinámica clásica (Georgescu-Roegen), se consume baja entropía o energía disponible y se produce un residuo o alta entropía; el proceso es reversible e irrevocable (irrevocable, en cuanto solo se presenta una única vez); la propuesta de ejecutar un programa bioeconómico frugal, por demás, denota pesimismo frente al futuro de la humanidad; si se sigue por la senda del crecimiento económico de la economía estándar, a la especie humana no le queda otra opción diferente a su extinción, por cuenta de la degradación entrópica.

El hecho de incorporar la termodinámica al proceso económico, es significativo por cuanto acaba con el monopolio epistemológico mecanicista de la física; a Georgescu-Roegen se le puede abonar este mérito; y es él quién, además, profundiza en el análisis de la relaciones del segundo principio de la termodinámica y el proceso económico, y logra introducir la entropía como una nueva variable del sistema, que permite la simplificación analítica sin perder la perspectiva de las definiciones e importancia de los categorías y clases de la
energía involucradas en el proceso económico. (Georgescu-Roegen, 1971, p.50).

Cabe preguntar: ¿Finalmente, a dónde le apunta la propuesta de Georgescu-Roegen y con base en qué nociones, conceptos y categorías la construye?

El discurso elaborado por Geogescu-Roegen es riguroso, con fundamento desde la misma filosofía de la ciencia, explica y desarrolla cada uno de los conceptos y categorías; a partir de aquí nace y se desarrolla la economía ecológica, que estudia y mide el metabolismo de las economías, estudia los flujos de energía y materiales de las diferentes economía, creando indicadores alternativos y específicos.

Con base en las leyes de la termodinámica se construye una propuesta económica en la cual se incorporan los recursos naturales y la contaminación en el análisis del proceso de producción, y destaca como pilares: la teoría del valor, la función de producción y las relaciones sociales o en forma más precisa, el conflicto social a partir, este último, de conceptos tomados de la biología.

¿A esta propuesta construida desde la termodinámica clásica se le puede dar continuidad, en lo fundamental, en las ciencias de la complejidad, para esbozar, por lo menos, un modelo de gestión económica de los recursos naturales?

La respuesta inmediata puede ser negativa, e incluso se puede llegar a afirmar que los dos son enfoques irreconciliables, si se analiza desde la termodinámica clásica que, se reitera, reconoce el carácter entrópico del proceso económico.

Al respecto, Georgescu-Roegen precisa:
Otras cosas son escasas en un sentido que no es aplicable a la tierra, primero, porque la cantidad de baja entropía dentro de nuestro entorno decrece (al menos) continua e irrevocablemente, y, segundo, porque no podemos utilizar más que una sola vez una cantidad dada de baja entropía” (1996, p.349) (Cursivas en el texto).

Y en esta última frase está la razón del por qué el enfoque entrópico de la bioeconomía no podría entroncarse en las ciencias de la complejidad, específicamente en la termodinámica del no equilibrio; Goergescu-Roegen es reiterativo, y por todos los medios, a lo largo de su obra, insiste en este punto que aunque sutil, es crucial: “no es posible quemar el mismo trozo de carbón una y otra vez ad infinitum”; la ley de la entropía es la raíz de escasez económica. “En el contexto de la entropía, toda acción de hombre o de organismo, más aún, todo proceso en la naturaleza debe dar como resultado un déficit para el sistema en su conjunto” (Goergescu-Roegen, 1975, p.99).

Sin embargo, una vez considerada la faceta física del proceso económico, la conclusión es que, desde el punto de vista puramente físico, el problema económico es entrópico: no crea ni consume materia sino que solamente transforma baja entropía en alta entropía. Ahora bien, el conjunto del proceso físico del entorno material es igualmente entrópico. ¿Qué distingue entonces el primer proceso del segundo? Las diferencias son dos:

Para empezar, el proceso e del entorno del entorno material es automático en el sentido que prosigue por sí mismo. El proceso económico, por el contrario, depende de la actividad de los seres humanos que, al igual que el demonio maxwelliano, seleccionan y dirigen la baja entropía del entorno de acuerdo con ciertas reglas definidas, si bien tales reglas pueden variar en el lugar y en el tiempo. La primera diferencia, por tanto, es que, mientras en el entorno material no hay más que reorganización, en el proceso económico hay también selección, o mejor, una actividad seleccionadora.

Y dado que la selección no es una ley de la materia elemental, la actividad seleccionadora debe alimentarse de baja entropía. Por consiguiente, el proceso económico es en realidad más eficiente que la reordenación automática en la producción de más alta entropía, es decir, de desechos. ¿Cuál podría ser la raison d’être de semejante proceso? La respuesta es que la verdadera “salida” del proceso económico no es un flujo de salida de desecho sino el placer de vivir. Esta cuestión representa la segunda diferencia entre el proceso y el avance entrópico del entorno material. Sin reconocer este hecho y sin introducir el concepto de placer de vivir en nuestro armamento analítico no estamos en el mundo económico ni podemos descubrir la verdadera fuente de valor económico que es el valor que la vida tiene para cada individuo portador de vida.
Se observa así que no podemos llegar a una descripción completamente inteligible del proceso económico en tanto nos limitemos a conceptos puramente físicos. Sin los conceptos de actividad intencional y *placer de vivir* no podemos estar en el mundo económico. Y ninguno de esos conceptos equivales a un atributo de materia elemental o puede expresarse en términos de variables físicas. (Georgescu-Roegen, 1971, p.354-5). (Cursivas mías)

De la anterior extensa cita, se infiere que el pensamiento y propuesta desde la bioeconomía, -que incorpora los recursos naturales- se puede enlazar con las ciencias de la complejidad, y así conformar un sólido discurso económico que integra un mismo cuerpo la función de producción, una teoría del valor y desde la biología, el vital tema de las relaciones sociales con la termodinámica del no equilibrio, las lógicas no formales y la ciencia de redes.

Primero porque la función de producción –que se explicó en extenso en la sección precedente- convertida en el funcional o función de funciones, separa los procesos parciales que denomina *proceso elemental* sobre la base de que todo sistema de producción, cualquiera que sea su tipo, es un sistema de procesos elementales incorpora el Tiempo, lo hace también de manera explícita con los recursos naturales y con los desechos del proceso. La función de funciones distingue los diferentes sectores, en particular, el sector industrial y el sector agrario, en el cual los tiempos son diferentes y las producciones diferentes, y desde luego las entradas y salidas al sistema también lo son.

Lo que encaja y se complementa

... con la consideración por parte del problema del desorden y el orden en el plano de la dialéctica entre unidades concretas (sean partículas, moléculas o insectos) y estructuras globales formadas por gran cantidad de estas unidades (Prigogine,1983, p.157)

En cuanto a la teoría del valor se reconoce que el output verdadero del proceso económico no es el flujo físico de residuos generados como desechos, sino el disfrute de la vida; flujo que es trascendental en el ser humano, en el enriquecimiento de la vida, en el logro de la armonía interna del ser, con lo cual se privilegia, precisamente, el ser como tal y no el tener; la generación de este
flujo lo que al fin de cuentas redundará en procesos de autoorganización, generadores de orden en el medio ambiente.

Finalmente, el tema del ordenamiento social se asocia al planteamiento bioeconómico de Georgescu-Roegen que indica como la especie humana es única y se diferencia del resto de especies que habitan la faz de la tierra por cuanto “somos la única especie que en su evolución ha violado los límites biológicos” y ello por cuenta del uso de instrumentos exosomáticos, que conllevan a utilizar, imprescindiblemente, recursos naturales. (Georgescu-Roegen, 1971, [1996], p.67). El punto esencial en este tema de discusión es la propiedad privada sobre los instrumentos exosomáticos que originan el conflicto social y que es fuente de la inequidad y la desigualdad entre los seres humanos, incluso de un mismo país.

Y es aquí, de manera precisa, en donde es menester hacer confluir los dos puntos de vista:

Mientras para Georgescu-Roegen el hombre es un “fantástico despilfarrador” y afirma que “no puede haber duda al respecto: todo uso de los recursos naturales para satisfacer necesidades no vitales lleva consigo una menos cantidad de vida en el futuro” (Georgescu-Roegen, 1971, p.67).

Para las ciencias de la complejidad:

“notablemente, los sistemas vivos son sistemas o estructuras derrochadoras, lo cual, se traduce, en otro contexto y lenguaje como el reconocimiento de que la reserva del universo, la fortaleza del mundo, no estriba en un sistema económico limitado y regulado, sino, por el contrario, por el hecho de que los sistemas vivos son esencialmente posibles gracias a la redundancia. Mejor aún, la vida misma es un sistema redundante, y ahí se funda exactamente su fortaleza”. (Maldonado, et. al., 2011, p.20).

La fortaleza de la propuesta económica de la bioeconomía, puede constituirse en la base estructural del edificio teórico, que desde las ciencias de la complejidad, en particular con la termodinámica del no equilibrio, se puede
construir para gestionar los recursos naturales y contribuir así a la solución del principal problema que afronta, en esta época, la especie humana.

Se abre así un panorama amplio de trabajo, que los gestores, directores y gerentes de empresas, deben emprender (junto con otros profesionales) y así comenzar a redefinir el objeto mismo de la disciplina administrativa.
4. CONCLUSIONES

La gestión económica de recursos naturales, en general y como tradicionalmente es entendida, al centrarse en el razonamiento monetario y pecuniario, desvía su atención del deterioro ambiental y social. De allí que se origina un medio ambiente ignorado en cuanto al daño causado, ya que solo registra los costos de extracción de los recursos naturales.

Es pertinente que la teoría del desarrollo económico además de lo monetario, incluya lo físico y lo social. Algunos autores (Naredo, Kapp, Cuerdo, Passet, entre otros) vislumbran que la economía debe cambiar radicalmente su visión en el análisis y ser tratada de forma sistémica, lo que, en palabras de Naredo, lleva necesariamente a un cambio de estatuto epistemológico en la ciencia económica. No obstante los buenos propósitos, este tipo enfoques terminan siendo cooptados ideológicamente por el sistema dominante.

Un tratamiento de la economía con la teoría general de sistemas o basado exclusivamente en el pensamiento complejo, no puede identificar suficientes elementos para abordar el problema en discusión. Como si se puede realizar a partir de las ciencias de la complejidad. De esta manera se puede complementar el estudio con las leyes de la termodinámica, las cuales en su momento contribuyeron a visualizar que en el pensamiento económico se podía quebrar el monopolio de la teoría estándar y trascender este pensamiento único. Por lo tanto se requiere identificar las diversas asimetrías y elementos no lineales (en lo social, en lo físico y en lo económico) y, por el lado de las ciencias de la complejidad, aquellas “herramientas” que permitan configurar un discurso coherente con la realidad observada y en pos, finalmente, de la vida.

Es factible, entonces, construir un modelo económico, desde las ciencias de la complejidad: la función de producción, la teoría del valor y la dinámica de las relaciones sociales de la propuesta bioeconómica pueden ser los pilares que lo sustentan.
El ecosistema, se puede adoptar como unidad fundamental del sistema económico, lo cual conduce a una tarea interdisciplinaria entre antropólogos, sociólogos, economistas, administradores, gestores y directores de organizaciones, y ecólogos, entre otros, que tienen como primera misión explorar el tema con una mirada desde la no linealidad o, lo que es lo mismo, desde las ciencias de la complejidad.

El análisis de una economía como sistema abierto, que incluye el uso de los recursos naturales y los residuos (que finalmente se convierten en desechos), conduce a considerar que entre la economía y la ecología debe existir una simbiosis que las fortalezca. Esto permitirá poder paliar o evitar el expolio y la degradación de los recursos naturales. Desde el lado de la economía, para que esa cooperación se traduzca en resultados positivos, debe tratar varios elementos clave que marcaran un cambio de rumbo: (i) las asimetrías entre países ricos y pobres que se presentan por el mercado, y (ii) el manejo financiero o el concepto de propiedad privada que surgirá del hecho de que el ecosistema es la unidad que debe ser tratada, trabajada y analizada revisando la teoría de la propiedad y la fundamentación que la regula.

Con base en la analogía termodinámica, en especial con la ley de la entropía, se puede ha permitido incorporar en el análisis económico, la utilización de los recursos naturales y los desechos para así construir la fundamentación de la economía ecológica. Al respecto, es preciso seguir avanzando en el análisis y establecer cómo las ciencias de la complejidad brindan elementos para ello.

La vida el objeto pleno de estudio de las ciencias de la complejidad. Con ellas, y particularmente en este caso –de la termodinámica del no equilibrio- se abre un panorama más amplio de posibilidades para abordar el problema de la gestión económica de recursos naturales. Es el panorama del optimismo, que puede ser enfrentado, con conocimiento de causa y por lo mismo con responsabilidad, por el director y gerente de empresas. Así, la administración,
al considerar la gestión de los recursos naturales como actividad imprescindible, va más allá de la concepción de óptima estrategia de ventaja competitiva que permite vencer a los competidores en la conquista del mercado y de la aplicación de modelos para obtener una rentabilidad superior al promedio. Además, de esta manera se podría lograr la tan anhelada perdurabilidad de la empresa como institución suprema de éste momento histórico, siempre y cuando el ser humano logre dar solución, ante todo, al problema que tiene amenazada la supervivencia de la especie humana: el deterioro ambiental que produce la explotación indiscriminada de los recursos naturales y la generación de desechos. Esto se produce, en general, por la irracional meta de crecimiento \textit{ad infinitum} de las actividades industrial, comercial y financiera propias de esta civilización.

En términos generales, el discurso ecológico, que se ha convertido en lugar común en diferentes ámbitos, en especial en el empresarial y gubernamental, implica que en la dirección y gerencia de empresas y, en general, en cualquier proyecto que se desarrolle, la gestión de los recursos naturales es una variable imprescindible a tener presente. Sin embargo, cuando los directores y gerentes de empresa implementan planes, programas o proyectos en pos de lograr el desarrollo sostenible, se encuentran enfrentados al desconcierto de no saber cómo realizar esta importante tarea.

O. Aktouf (2004) afirma que los directores y gerentes de empresa, los MBA, “se han convertido en el brazo armado de la política neoliberal reinante”, sugiriendo con ello que asumen el objetivo último es obtener altas rentabilidades y márgenes de utilidad para los accionistas, aplicando la estrategia más conveniente. Ahora, además de seguir impulsando las empresas y conservar los indicadores de rentabilidad, deben producir sin menoscabar el medio ambiente.

Surgen, entonces, cuestionamientos alrededor del tema. ¿Qué es desarrollo sostenible y cómo una organización o una empresa pueden contribuir a
lograrlo? ¿Son suficientes los diferentes estudios de impacto ambiental de aire y de agua para afrontar responsablemente las actividades productivas de la empresa? ¿Existen elementos más allá de estos estudios de impacto que den bases a las empresas para seguir produciendo bajo los principios rectores de crecimiento, de obtención de óptimas rentabilidades para los accionistas y, desde luego, perdurando en el tiempo, sin deteriorar el ambiente?

Al explorar las posibles respuestas a los interrogantes anteriores, se encuentra que se debe ir más allá de la elemental aplicación de los conceptos administrativos “normales”. La crisis y problemática medio ambiental y de gestión de los recursos naturales se constituye en un problema de orden transversal que, finalmente, los directores deben enfrentar desde otras perspectivas.

Se encuentra, por lo general, que las respuestas no están en el mismo objeto de estudio de la ciencia administrativa y, por lo mismo, de manera espontánea, se desemboca en manejo tradicional del sistema económico. Es así que, desde la concepción de la transdisciplinariedad, el presente trabajo aborda el estudio de este problema particular, -que afecta a la administración de empresas- desde su “causa raíz”, a fin de proponer alternativas de solución.

Con base en la premisa de que es necesario intervenir a fondo las causas que generan el deterioro ambiental en general, este texto propone que la gestión de los recursos naturales debe ser abordada por las ciencias de la complejidad y, en particular, por las ciencias de la termodinámica del no equilibrio. No se dan respuestas contundentes y específicas a los problemas planteados desde la administración, pero se propone explorar un enfoque alternativo en busca de las mismas.

La administración debe ir más allá de concebir estrategias de competitividad que se adapten a los modelos macro económicos tradicionales, para que directores y gerentes de empresas puedan dejar de ser simples ejecutores de
quienes conciben la teoría y política económica, -causa coadyuvante del problema del deterioro ambiental-. Este trabajo es constituye una propuesta general y un alerta sobre esta problemática.

Es vital, contribuir a la confluencia real entre los planteamientos discursos de la ecología y la economía, utilizando para ello como conexión las ciencias de la complejidad.
5. BIBLIOGRAFÍA

Maldonado, Carlos Eduardo (2005b). Exploración de una teoría de la complejidad. En Maldonado, Carlos Eduardo (Ed.), Complejidad: Revolución científica y teoría (pp. 113-143), Bogotá: Universidad del Rosario Editorial

Ropke, Inge (2005). Ecological Economics. Trends in the development of ecological economics from the late 1980s to the early 200s, 55, 262-290

