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Abstract

This paper analyzes some optimal fiscal, pricing, and capacity investment

policies for controlling regional monopoly power in the natural gas industry.

By letting the set of control instruments available to the social planner vary,

we provide a characterization of the technological and demand conditions

under which “excess” capacity in the transport network arises in response to

the loss of the two other control instruments, namely, transfers and pricing.

Hence, the analysis yields some insights on an economy’s incentives to in-

vest in infrastructures for the purpose of integrating geographically isolated

markets.
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1 Introduction

Following the US and the UK that reformed their natural gas industries in

the late 70s and the 80s respectively, the EU has launched in the late 90s

structural policies for enhancing gas-to-gas competition with the objective

of complete liberalization of the market by 2007. More recently, EU Mem-

ber States have been heavily investing in the development of their pipeline

networks and Liquefied Natural Gas (LNG) liners. Such investments can be

seen as driven by the need to anticipate growth of demand and import de-

pendency. Indeed, gas penetration in energy consumption across activities

in Europe has increased from less than 10% in the 70s to a current level of

about 25% with an external dependency around 50%.1 Still, some observers

have come to wonder whether such large-scale investments in capacity ex-

pansion are all that needed (Junola, 2003) and can be justified only on

demand pressure and security of supply grounds. In this paper, we focus on

the industrial organization role of transport capacity investments, namely,

on their impact on market structure and the exercise of market power in the

natural gas industry.

Since bringing the benefits of competition to consumers is a stated goal

of the EU gas directive adopted in 1998 and amended in 2003 and given

the high concentration of both commodity supply and transport in the EU

region, it makes sense to investigate the role of network investments in the

liberalization process. An issue that is particularly important for the EU

is the nature of policies that should accompany this liberalization process

and their effectiveness in mitigating the economic distortions that would

result from a competitive market structure which is expected to be at best

imperfect in the foreseeable future. A widely used transitory instrument

for fostering gas-to-gas competition that has had varying degrees of success

throughout the countries of the Union is gas release.2 This paper considers

fiscal, pricing, and investment in capacity policies for improving market

1Algeria, Norway, and Russia are the main suppliers for Europe.
2Chaton et al. (2008) have analyzed gas release as a short term instrument with the

objective of fostering gas-gas competition and Chaton et al. (2012) have examined its
interaction with investments in transport capacity.
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efficiency and focuses on the role of transport network expansion.3

The relationship between network capacity and market structure in en-

ergy markets has attracted the attention of both empirical and theoretical

economists. For the case of the US gas industry, a large empirical literature

has examined the impact of investments in sub-network interconnection on

the degree of market integration and the level of competition (see, among

others, Doane and Spulber, 1994, and De Vany and Walls, 1994). From a

more theoretical perspective, in electricity, a stream of the literature has

examined the direct impact of transmission capacity on local market power

(see, e.g., Borenstein et al., 2000 and Léautier, 2001) reaching the conclu-

sion that transmission link expansion is effective for promoting competition.

Building on a framework developed in Cremer et al. (2003), Cremer and

Laffont (2002) argue that countering local market power in the natural gas

industry might necessitate building excess transport capacity. McAfee and

Reny (2007) also highlight the role of excess transport capacity in the de-

termination of market power in natural gas transportation markets. The

purpose of this paper is to further investigate the relationship between net-

work size and regional market power.

At this initial stage of our investigation, the theoretical framework on

which our analysis rests assumes away information problems.4 We consider a

social planner who possesses complete information on demand and technol-

ogy and controls the market power of an incumbent monopoly in a regional

commodity gas market with a set of three instruments: transfers between

consumers and the firm, pricing of the gas commodity, and investments

in the capacity of the transport network. Starting from a situation where

this whole set of control instruments is available to the social planner and

reducing this set by first removing transfers and then transfers and price,

should make the social planner rely more intensively on transport capacity

3Note that the problem of market power due to geographic isolation, which is the
subject of this paper, is common in economics. Breaking up the isolation by investing in
means of communications is obviously a solution but how much to invest is the relevant
question.

4Gasmi and Oviedo (2010) use a similar complete information framework to show how
regulation of the upstream transport activity interacts in a socially optimal way with
downstream gas-gas imperfect competition.
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in order to counter monopoly power. Hence, fulfilling this objective with-

out the ability to use transfers and control price can be expected to require

a strictly higher level of transport capacity. Giving a characterization of

the technological and demand conditions under which this “excess capacity

hypothesis” holds is the main motivation of this paper. Our analytical strat-

egy consists first in characterizing the optimal policies under the alternative

control schemes, i.e., the optimal levels of the instruments used in each con-

trol regime, and then examining the relative levels of capacity these policies

prescribe. These comparisons allow us to assess the extent to which trans-

port capacity compensates for the lack/loss of the two other instruments of

market power control. This analysis of optimal dimensioning of networks

thus yields some insights on society’s incentives to invest in infrastructure

in increasingly liberalized markets.

The plan of the paper is as follows. The next section describes the model

of the industry configuration we consider and its basic theoretical ingredi-

ents. Sections 3, 4, and 5 characterize the optimal policies under three

control schemes. These schemes are, respectively, one that lets the social

planner have the largest set of instruments of market power control, namely,

transfers, price, and capacity, one in which transfers are not allowed, and one

in which the social planner controls only the capacity of the transport net-

work. Section 6 focuses on the capacity variable and presents results on the

excess capacity hypothesis. We summarize our main findings, discuss some

of their policy implications, and give some directions for further research in

the conclusion. Formal proofs and some illustrations of the optimal policies

using some specific functional forms for the demand and cost functions are

given in the appendix.

2 Industry configuration

Consider a regional natural gas commodity market, market M , supplied

by a monopoly, firm m, producing with a technology described by a cost

function Cm(qm) = θqm + Fm, where qm is output, θ is marginal cost, and
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Fm > 0 is fixed cost.5 Gas is also supplied at marginal cost c in a competi-

tive market, market Cp, which is geographically distinct from market M but

could be linked to it if a pipeline of capacity K is built at cost C(K), where

C(·) is increasing convex, C ′(0) = 0, and C ′′(0) > 0. Figure 1 below gives

a schematic representation of this industry configuration. We assume that

the regional monopoly’s marginal cost is greater than marginal cost of gas

produced in market Cp, i.e., θ > c.6 Gas produced under competitive con-

ditions in market Cp and imported into the regional commodity gas market

M should counter the exercise of market power by firm m in this market.

s s

Cp

c

M

Cm(θ, qm) = θqm + Fm

K, C(K)

-

Figure 1: Industry configuration

Our analysis rests on the presumption that the very reason for a social

planner to support a policy of building a transport line that links these

two markets is to allow imports of gas from market Cp into market M that

would bring consumers in this latter market the benefits of competition.

Letting QM (·) represent these consumers’ demand function, assumed to be

downward-slopping and concave, if a quantity of gas corresponding to full

capacity of the pipeline K is shipped from the competitive market into

the regional market, firm m remains a monopoly on the residual demand

QM (pM )−K, where pM is price. We assume that the social planner knows

the demand and cost functions QM (·) and Cm(·) and seeks to determine

policies that would restrain the firm from exerting its monopoly power in the

regional market. An obvious yet important policy would be to interconnect

this regional market and the competitive market Cp with a pipeline. The

question then is what the optimal size of this pipeline should be and the

answer to this question should clearly depend on what other instruments

the social planner has to mitigate the monopoly power of firm m.

5We assume that the fixed cost Fm is bounded and later provide a technical justification
for this assumption. Even though shutting down the firm is sometimes prescribed by the
optimal policies considered in this paper, the financing of this fixed cost is always taken
into account.

6This assumption reflects the standard productive inefficiency consequence of market
power.
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As is common in public economics, we assume that this public inter-

vention takes place under second-best conditions in which public funds are

raised through distortionary taxes at a (social) cost of λ > 0. Also, in the

industry configuration considered in the paper we focus only on demand

in the regional market and any pricing policy implemented in this market

wouldn’t affect welfare in the competitive market where price is at the first-

best level (marginal cost c). Hence, without loss of generality, we do not

include welfare achieved in this competitive market into the analysis.7

We start from a situation where the social planner has the ability to

control the regional monopoly by means of three instruments, namely, (pos-

sibly two-way) transfers between consumers and the firm, price, transport

capacity of the network, and hence monopoly output. We then restrict the

set of available control instruments. We first consider the case where the

social planner may not use transfers when setting the price and capacity

levels. Then, we examine the situation where in addition to the fact that

transfers are not allowed, the social planner can only influence the gas com-

modity price in the regional market through transport capacity that affects

the residual demand of the monopoly.

3 Controlling the regional monopoly with

transfers, price, and transport capacity

In this section, we assume that the social planner may use public funds to

make transfers between consumers and the firm. These funds are raised

through taxation that generates welfare losses so that a monetary transfer

to the firm T costs society (1+ λ)T where λ is the cost of public funds. Let

S(·) represent gross surplus of consumers in market M . Total supply of gas

QM (pM ) in this market, composed of K units imported from the competi-

tive market and qm units produced locally by firm m, brings taxpayers an

7Another factor that is excluded from the analysis without affecting the main quali-
tative results is the marginal cost of transport which here is normalized to zero. Alter-
natively, one can assume that this marginal cost of transport is a positive constant and
include it in c, i.e., write c = cp + ct where cp is now the marginal cost of production in
the competitive market and ct is the marginal cost of transport.
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aggregate (net) welfare V given by

V = {S(QM (pM ))− pMQM (pM )}
+{(1 + λ) [(pM − c)K − C(K)]} − {(1 + λ)T} (1)

This taxpayers’ welfare comprises three parts: the net surplus of consumers

in the regional market M , the social valuation of profits generated by the

K units of gas imported from the competitive market, and the social cost

of the transfer T made to the firm. The welfare of firm m is measured by

its utility U that sums its profits from sales and the transfer it receives:

U = {(pM − θ) [QM (pM )−K]− Fm}+ T (2)

When controlling the regional monopoly, the social planner has to ac-

count for the participation constraint of the firm and the constraint of non-

negativity of its output:8

U ≥ 0 (3)

qm = QM(pM )−K ≥ 0 (4)

The utilitarian social welfare function W is the sum of taxpayers’ welfare V

and firm’s utility U . Substituting for V from (1) and for T from (2) yields

social welfare

W = {S(QM (pM )) + λpMQM(pM )

−(1 + λ) [θ(QM(pM )−K) + cK + C(K) + Fm]} − λU (5)

as the social valuation of total production minus its social cost, minus the

social opportunity cost of the firm’s utility. From this expression of social

welfare we see that reducing the monopoly’s utility, its “rent,” is socially

desirable for, as can be seen from (2), this utility includes a transfer of

public funds collected through distortive taxation. Similarly, we see from

(5) that the social valuation of total production explicitly includes the fiscal

value of the revenues that it generates λpMQM (pM ).9

8The output nonnegativity constraint needs to be taken into account here because
transfers T (here unconstrained in sign and magnitude) can be used to finance any fixed
cost that wouldn’t be recovered through revenues from gas.

9Indeed, these revenues allow the government to rely less on public funds raised through
taxation at a deadweight loss.
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With transfers, monopoly output, and capacity as instruments of control,

the social planner’s program consists in maximizing social welfare W given

by (5) with respect to pM , K, and U , under the firm’s participation and

output nonnegativity constraints, respectively (3) and (4).10 Letting φ and

ν denote the Lagrange multipliers associated with these two constraints

respectively, and using the fact that ∂S(QM )/∂QM = pM , the following

first-order conditions obtain:11

λQM + (1 + λ) (pM − θ)Q′

M + νQ′

M = 0 (6)

(1 + λ) [(θ − c)− C ′(K)]− ν = 0 (7)

−(λ− φ) = 0 (8)

φU = 0 (9)

ν [QM −K] = 0 (10)

From (8) and (9), we immediately see that the participation constraint is

binding, i.e., U = 0 and, indeed, transfers allow the social planner to totally

extract (finance) the firm’s profit (deficit). Letting ε(QM ) designate the

price-elasticity of demand in market M , the first-order conditions (6)-(10)

allow us to state the following proposition:12

Proposition 1 When price (or equivalently output) and capacity are both

controlled by the social planner and, in addition, the latter can use public

funds to make transfers between consumers and the firm, one of two following

policies (K, pM , ν) arises:

(i) The policy (0 < K < QM , pM > θ, ν = 0) in which the local monopoly

meets part of the market demand and price and capacity satisfy

pM − θ

pM

(

=
pM − (c+ C ′(K))

pM

)

=
λ

1 + λ

1

ε(QM )
(11)

(1 + λ)C ′(K) = (1 + λ)(θ − c) (12)

10Note that as long as the social planner controls monopoly output and transport ca-
pacity, he totally controls price in market M .

11To minimize notation and where it doesn’t lead to any ambiguity, the arguments of
some of the demand and cost functions will be dropped in the presentation.

12An illustration of the approach used to solve the social planner program is provided
in the appendix. The proof of Proposition 1 and those of the other propositions in this
paper are also given in the appendix.
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(ii) The policy (K = QM , pM > c, ν > 0) in which the local monopoly is

shut down, market demand is entirely met through imports, and the

markup of the import activity is given by

pM − (c+ C ′(QM ))

pM
=

λ

1 + λ

1

ε(QM )
(13)

Under policy (i), the condition (θ − c) < C ′(QM ) holds, i.e., the firm’s

marginal cost, θ, is smaller than the marginal cost of imports when the

latter meet the entire market demand, c + C ′(QM ). Under policy (ii) the

reverse is true.

Note that, thanks to the availability of transfers, the policies described

in Proposition 1 are not responsive to the value of the fixed cost, Fm. Under

both policies we see from equations (11) and (13) that pricing obeys a Ram-

sey principle according to which the price markup is inversely proportional

to the price-elasticity of demand in the regional market.13 When ν = 0,

i.e., when the local monopoly is active, it is indeed optimal to let it apply a

markup (see (11)) since public funds are costly and the social planner can

use transfers to capture this markup. As to capacity, it is set such that the

social marginal cost of imports, (1 + λ)[c + C ′(K)], is equal to the social

marginal cost of local production, (1 + λ)θ, a relationship that can be seen

from (12). When ν > 0, i.e., when the firm is shut down, its fixed cost is

financed through transfers and there is still a markup but now the relevant

marginal cost is that of imported gas (see (13)).

4 Controlling the regional monopoly with price

and capacity only

We now assume that the social planner can still set the transport capacity

and the firm’s output level, and hence fully controls price in market M , but

transfers between consumers and the firm are no longer permitted. Social

13Note that here the coefficient of proportionality is a function of λ and hence, in
contrast to the standard Ramsey formulas, is exogenous.
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welfare W is expressed as

W = {S(QM (pM ))− pMQM (pM )}
+{(1 + λ) [(pM − c)K − C(K)]}
+{(pM − θ) [QM (pM )−K]− Fm} (14)

that is, as the sum of the net consumer surplus, the social value of the profits

generated by the K units imported from the competitive market, and the

profits of the firm that now cannot be transferred to consumers. Gathering

terms, we obtain

W = S(QM (pM )) + λpMK

− [θ(QM (pM )−K) + Fm]− (1 + λ) [cK + C(K)] (15)

Cross-examining (5) and (15), we see that as now transfers are not allowed,

the social planner assigns a fiscal value λpMK only to the revenues generated

by the K units shipped from the competitive market Cp into the regional

market M .

The social planner maximizes social welfare given by (15) with respect

to price and capacity, under the participation constraint (nonnegativity of

profits), that now does not include transfers, and the firm’s output nonneg-

ativity constraint

Πm = (pM − θ) [QM (pM )−K]− Fm ≥ 0 (16)

qm = QM(pM )−K ≥ 0 (17)

Given that transfers are not allowed, it makes sense for us to consider only

the policies with pM > θ when the firm is active, which is always the case

from (16) since we assume Fm > 0.14 Hence, from now on, we focus on the

set defined by the participation constraint (16) hereafter referred to as the

participation set.

Letting φ denote the Lagrange multiplier associated with the partici-

pation constraint, the system of first-order conditions that characterize the

14When there is no fixed cost, i.e., Fm = 0, cases where the firm is shut down may arise.
In such cases, because the social planner does not face the concern of financing a fixed
cost, the relevant constraint is (17).
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optimal policy is given by

λK + (pM − θ)Q′

M + φ [(pM − θ)Q′

M + (QM −K)] = 0 (18)

(1 + λ) [(θ − c)− C ′(K)] + (λ− φ) (pM − θ) = 0 (19)

φ [(pM − θ) (QM −K)− Fm] = 0 (20)

(pM − θ) (QM −K)− Fm ≥ 0 (21)

To rule out the possibility of having K < 0 we assume that the fixed cost is

bounded so that

Fm ≤ −
λQ2

M +
[

(1 + λ)(θ − c)Q′

M +
√
Γ
]

QM

2(1 + λ)Q′

M

(22)

where Γ ≡ [λQM + (1 + λ)(θ − c)Q′

M ]2 − 4(1 + λ)2(θ − c)QMQ′

M .15

The next proposition characterizes the alternative pricing and transport

capacity policies associated with this two-instrument control scheme.

Proposition 2 When price (or equivalently output) and capacity are both

controlled by the social planner but the latter cannot use public funds to make

transfers between consumers and the firm, there are two exclusive candidate

policies (K, pM , φ) with one of them having two possible forms:

15This upper-bound is obtained as follows. When Fm > 0, we look for the conditions
characterizing a policy of the type (0, pM > θ, φ > 0). Substituting for K = 0 in the
system of first-order conditions (18)-(20), we see that such a policy is defined by

φ = λ+
(1 + λ)(θ − c)QM

Fm
and φQM +

(1 + φ)FmQ′
M

QM
= 0.

Solving for Fm, yields the right-hand side term of the inequality (22). It is easy to see that
any Fm smaller than this term will indeed yield K > 0. Moreover, it can be shown that
(22) implies Fm ≤ −Q2

M/Q′
M , which is a condition that ensures that the participation set

be nonempty for nonnegative values of K. The latter condition is derived as follows. For
the participation set to be nonempty for K ≥ 0 it suffices that the largest K that makes
the participation constraint binding be nonnegative. Such a K is found by solving the
following program:

max
pM ,K

K

s.t. (pM − θ) [QM (pM )−K]− Fm = 0

K ≥ 0

It is then easy to show that such a capacity level satisfies [Q′
MFm + (QM −K)2]/Fm ≤ 0.

Now, if this inequality holds for K = 0, it will clearly hold for any K > 0.
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(i) The policy (K = 0, pM > θ, φ > λ) which consists in building no

capacity and letting the local monopoly earn a markup that makes it

just break even:

pM − θ

pM
=

φ

1 + φ

1

ε(QM )
(23)

(ii) The policy (0 < K < QM , pM > θ, φ ≥ 0) which prescribes building

capacity and setting price above marginal cost. This policy takes one

of the two following forms:

(a) The policy (0 < K < QM , pM > θ, φ = 0), characterized by

pM − θ

pM
=

λK

QM

1

ε(QM )
(24)

pM − (c+ C ′(K))

pM
=

λ

1 + λ

K

QM

1

ε(QM )
(25)

(1 + λ)C ′(K) = (1 + λ)(θ − c)− λ2 K

Q′

M

(26)

(b) The policy (0 < K < QM , pM > θ, φ > 0) in which the pricing

and capacity building rule are characterized by

pM − θ

pM
=

[

λK + φ(QM −K)

(1 + φ)QM

]

1

ε(QM )
(27)

pM − (c+ C ′(K))

pM
=

[

λK + φ(QM −K)

(1 + λ)QM

]

1

ε(QM )
(28)

(1 + λ)C ′(K) = (1 + λ)(θ − c) +
Υ

(QM −K)
(29)

where Υ ≡ m
Πm

× [λQM (QM −K) + (1 + λ)Q′

MFm] > 0, and

mΠm
= pM−θ

(QM−K)+(pM−θ)Q′
M

= Fm

Q′
MFm+(QM−K)2

Under policy (i) the fixed cost hits its bound, i.e., the condition (22) is

satisfied with equality. Whenever (22) is satisfied with strict inequality only

policies of type (ii) may arise. Policy (ii-a) corresponds to the case where the

marginal cost of the regional monopoly, θ, equals the “net” social marginal

cost of imports, (1 + λ)[c + C ′(K)] − λpM , i.e., Q′

M

[

C ′′(K)− C′(K)
K

]

−
λK
Q′

M
Q′′

MC ′′(K) < 0, and the firm’s variable profits are larger than the fixed
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cost, i.e., Fm < −λK (QM−K)
Q′

M
. Policy (ii-b) corresponds to the case where

either of these inequalities is reversed.

From Proposition 2, we see that when the solution of the constrained

welfare maximization program allows the monopoly to earn positive profits

(case where φ = 0), i.e., under policy (ii-a), it makes a markup which is

inversely related to the elasticity of demand and increases with the share of

imports in the total consumption of gas in the regional market. The reason

for this latter result is that the social marginal valuation of capacity increases

with price. As to the markup made on imports, it is increasing with the

share of these imports in total demand but it is less sensitive to it than the

firm’s markup. From the capacity building rule under this policy, we see

that the social cost of the marginal unit of gas shipped from the competitive

market, (1 + λ)[c + C ′(K)], net of the fiscal revenue of this imported gas

unit, λpM , equals the social cost of having this unit produced by the local

monopoly, θ.

When it is optimal to let the local monopoly active and just break even

((qm > 0, K > 0, and φ > 0)), i.e., under policy (ii-b), the markup made by

the monopoly is again inversely related to the regional market demand elas-

ticity. However, the proportionality term is the ratio of the fiscal valuation

of the revenues from imports, λpMK, plus the valuation the planner assigns

to the fact that revenues made by the firm help to relax the participation

constraint, φpMqm, to the social valuation of the aggregate revenues in the

regional market in the case where these revenues were exclusively generated

by the firm, (1 + φ)pMQM . The markup from imports has a similar struc-

ture but the denominator of the proportionality term is the social valuation

of aggregate revenues in the case where total demand is met by imports,

(1 + λ)pMQM .16 Under this zero-profit policy, optimal capacity makes the

“net” social cost of the marginal unit of gas shipped from the competitive

market, (1+λ)[c+C ′(K)]−λpM , just equal to the social cost of having this

unit produced by the local monopoly, θ, net of the value the planner assigns

to the contribution of this unit to the relaxation of the firm’s participation

16This interpretation is obtained after multiplying the right-hand side expressions of
(27) and (28) by pM/pM .
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constraint, φ(pM − θ). Indeed, these profits can no longer be collected by

the planner who now lacks the instrument (transfers) that would allow him

to do so.

Finally, under policy (i) the fixed cost is so high that it is optimal to let

the regional monopoly cover full market demand and hence no capacity is

built (K = 0).

5 Controlling the regional monopoly with

transport capacity only

We now assume that the social planner lacks an additional instrument of con-

trol, namely, setting the monopoly’s level of output, and hence he can only

partially affect price in market M through the residual demand. Transport

capacity is therefore the only instrument left to him to counter the exer-

cise of local market power by the firm in this market. In practice though,

we model this case as if the social planner continues to set the price level,

but now this price has to fall within a profit-maximizing-constrained set of

values. Let us be more specific.

For a given volume of gas K imported from the competitive market, the

firm remains a monopoly in its local commodity gas market on the residual

demand QM (pM ) − K. Given this demand, the firm sets price so as to

maximize its profit Πm given by

Πm = (pM − θ) [QM (pM )−K]− Fm (30)

The first-order condition of this profit-maximization problem is

(pM − θ)Q′

M +QM −K = 0 (31)

while the second-order condition that ensures that we are indeed at a max-

imum is Ω ≡ (pM − θ)Q′′

M + 2Q′

M < 0.

Given that transfers are not allowed, the form of the social welfare func-

tion for this control scheme is analogous to the one described in the previous
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section which we restate here:

W = S(QM (pM )) + λpMK

−θ(QM(pM )−K)− (1 + λ) [cK + C(K)]− Fm (32)

The program of the social planner consists in maximizing social welfare given

by (32) with respect to pM andK, under the regional monopoly participation

constraint, Πm ≥ 0, where Πm is given by (30), its output nonnegativity

constraint, qm ≥ 0, and its profit-maximization constraint (31).17 As in the

previous section, let us focus on policies with pM > θ in which case the

firm’s output nonnegativity constraint can be ignored.18 Letting φ and η

designate the Lagrange multipliers associated with the firm’s participation

and profit-maximization constraints, respectively, we obtain the following

first-order conditions:19

λK + (pM − θ)Q′

M − ηΩ = 0 (33)

(λ− φ) (pM − θ) + (1 + λ) [(θ − c)− C ′(K)] + η = 0 (34)

φ [(pM − θ)(QM −K)− Fm] = 0 (35)

(pM − θ)(QM −K)− Fm ≥ 0 (36)

(pM − θ)Q′

M +QM −K = 0 (37)

The following proposition summarizes the policies characterized by these

first-order conditions.

Proposition 3 When capacity is the only instrument controlled by the so-

cial planner, it is always built and there are two exclusive candidate policies

(K, pM , φ, η):

17Strictly speaking, the second-order condition of the firm’s profit-maximization pro-
gram should also be taken as a constraint. The standard way to deal with this issue, is to
check ex post that this second-order condition is satisfied by the solution of the program.

18Indeed, (pM − θ) > 0 and (31) imply qm ≥ 0. Note that in this case there is no need
for a constraint on the size of the marginal cost gap.

19The Lagrange multiplier associated with the profit-maximization constraint (31), η, is
interpreted as the social marginal cost of letting the regional monopoly maximize profits.
Indeed, η > 0 implies that a reduction in the optimal price markup made by the firm
results in a higher level of welfare. However, note that from the cross-partial derivative
of the welfare function (32), ∂2W/∂pM∂K = λ, a reduction in the price markup leads to
a decrease in the optimal capacity level. In particular, when η > 0 a reduction in import
capacity is welfare improving.
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(i) The policy (0 < K < QM , pM > θ, φ = 0, η 6= 0) characterized by

pM − θ

pM
=

[

λK − ηΩ

QM

]

1

ε(QM )
=

[

QM −K

QM

]

1

ε(QM )
(38)

pM − (c+C ′(K))

pM
=

[

λK − η(Ω−Q′

M )

(1 + λ)QM

]

1

ε(QM )
(39)

(1 + λ)C ′(K) = (1 + λ)(θ − c)− λ(QM −K)

QM
′

− QM − (1 + λ)K

Ω
(40)

where Ω is as defined above.

(ii) The policy (0 < K < QM , pM > θ, φ > 0, η 6= 0) characterized by the

average cost pricing rule

pM − θ

pM
=

[

QM −K

QM

]

1

ε(QM )
=

√

−QM
′Fm

QM

1

ε(QM )
(41)

pM − (c+ C ′(K))

pM
=

[

(1 + φ)[λK − ηΩ] + ηQ′

M

(1 + λ)QM

]

1

ε(QM )
,(42)

K = QM −
√

−QM
′Fm (43)

Under policy (i) the marginal cost of the local monopoly θ plus the

shadow cost of the firm’s profit maximization constraint, η, equals the

“net” social marginal cost of imports, (1 + λ)[c + C ′(K)]− λpM , and

the resulting firm’s variable profits are larger than the fixed cost, i.e.,

Fm < − (QM−K)2

Q′
M

. Under policy (ii) this condition holds with equality,

i.e., Fm = − (QM−K)2

Q′
M

.

Proposition 3 says that when the solution allows for positive profits by

monopoly (φ = 0), i.e., under policy (i), this firm earns a markup which

is proportional to the share of its output in the aggregate demand and

inversely related to the elasticity of demand. The size of this markup is

larger (smaller) than that under the control scheme where the social planner

had total control over pricing, described in section 4, if the shadow cost of

the firm’s profit maximization constraint, η, is positive (negative). Optimal

capacity is determined by balancing the net social cost of having an extra

unit imported from the competitive market, (1+λ)[c+C ′(K)]−λpM , against

16



the cost of having that unit produced locally by the monopoly, θ, plus the

social cost of complying with the profit-maximization constraint, η.

When this mono-instrument control scheme yields no profits for the local

monopoly at the optimum (φ > 0), i.e., under policy (ii), the firm’s markup

is inversely related to the elasticity of demand but increases with the size

of the fixed cost. Since in this particular case capacity is used by the social

planner as a residual instrument to make the firm just break even, it is

decreasing in Fm (see (43)).

6 Role of transport capacity

So far, we have characterized optimal policies obtained under three control

schemes that are differentiated by the set of control instruments available to

the social planner. More specifically, we have considered the benchmark case

in which the social planner can use transfers, capacity, and price to mitigate

regional monopoly power. Then, we have studied the more realistic cases

in which first, transfers are not allowed, second, neither transfers nor price

control are possible. By comparing the levels of transport capacity achieved

under these three alternative market power control schemes, we now provide

a characterization of some conditions that would be interpreted as leading to

“excess” capacity in the sense that, under these conditions, optimal policies

command systematically higher levels of transport capacity.

For clarity of exposition, we refer to the schemes described in section

3 (control of price and capacity with transfers), 4 (control of price and

capacity without transfers), and 5 (control of capacity only) as schemes A,

B, and C respectively. We study the evolution of network capacity as the set

of instruments that the planner uses maximize social welfare gets reduced.

Letting KA, KB, KC , and pAM , pBM , pCM designate the optimal levels of

transport capacity and price achieved under the respective control schemes,

we proceed by pairwise comparisons and identify some conditions under

which the excess capacity hypothesis holds, i.e., under which the loss/lack

of control instruments necessitates higher investments in transport capacity

17



in order to mitigate regional monopoly power.20

6.1 Excess capacity due to the loss of transfers as a control

instrument

When analyzing the impact of the loss of (only) the ability to use transfers

between consumers and the firm, the relevant comparison is between schemes

A and B. We express the first-order conditions of the constrained welfare

maximization programs under these schemes, (6), (7), and (18), (19) as

follows:

∂WA

∂pM
+ νAQ′

M = 0 (44)

∂WA

∂K
− νA = 0 (45)

∂WB

∂pM
+ φB ∂Πm

∂pM
= 0 (46)

∂WB

∂K
− φB(pM − θ) = 0 (47)

Examining the left-hand sides of (44), (46), and (45), (47), we see that

∂WB

∂pM
=

∂WA

∂pM
− λ

∂Πm

∂pM
(48)

∂WB

∂K
=

∂WA

∂K
+ λ(pM − θ) (49)

A casual look at (44)-(49) suggests that the (endogenous) shadow cost of

the constraint of nonnegativity of the firm’s output, νA, the (endogenous)

shadow cost of its participation constraint, φB , and the (exogenous) social

cost of public funds, λ, are going to influence the relative optimal levels of

transport capacity. The following proposition formalizes this relationship.

Proposition 4 The loss of (only) transfers as a control instrument has the

following consequences. When the shadow cost of the participation constraint

under scheme B, φB, is smaller than the social cost of public funds, λ,

20Each pairwise comparison is illustrated by using specific functional forms and partic-
ular parameter values. This empirical analysis is based on simulations with respect to two
sensitivity parameters that play an important role in our theoretical model, namely, the
marginal cost gap (θ − c) and firm m’s fixed cost Fm.
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i.e., (λ − φB) > 0, society suffers a net marginal cost from letting the firm

make positive profits under this scheme and “excess” capacity is needed, i.e.,

KB > KA.

As an illustration of this proposition, Figures 2a and 2b below exhibit

the sign of the capacity differential, (KB −KA), and that of νA and φB , in

terms of the marginal cost gap, (θ − c), and the fixed cost, Fm, assuming

the functional forms given by

QM (pM ) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > c (50)

and for the grid of parameters values (λ, ω, γ, c) ∈ {(1/3, 1/2, 10, 2), (1/3, 1/15, 10, 2)}.21

21These two sets of parameter values allow us to examine both the case where the
polynomial ω(1 + λ)− λ2 is positive and negative.
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Figure 2a: (KB −KA), νA, Figure 2b: (KB −KA), νA,

φB with ω(1 + λ)− λ2 > 0 φB with ω(1 + λ)− λ2 < 0

Cross-examining the upper and lower parts of Figures 2a and 2b, we

see that whenever the solution under scheme B is interior (φB = 0), so is

the solution under A (νA = 0), and KB > KA. Note that, as stated in

the proposition, these figures show that the sign of the capacity differential

(KB −KA) is the same as that of (λ− φB).
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6.2 Excess capacity due to the loss of price control

Suppose now that the social planner initially has two control instruments,

price and capacity, and then looses the ability to set price. In order to

analyze the impact of such a reduction in the set of control instruments,

the relevant comparison is between schemes B and C. Since the welfare

functions of these two schemes are identical and scheme C has an additional

constraint (the firm’s profit-maximization constraint), let us express its first-

order conditions (33), (34), and (37) as

∂WB

∂pM
− ηCΩ = 0 (51)

∂WB

∂K
− φC(pM − θ) + ηC = 0 (52)

∂Πm

∂pM
= 0 (53)

These first-order conditions give us reasons to expect that the shadow costs

of the participation constraint under B and C, φB and φC , and that of the

profit-maximization constraint under C, ηC , are going to be influential in the

determination of the relative size of transport capacity. These expectations

are confirmed in the next proposition.

Proposition 5 When price and capacity are first controlled by the social

planner and then the latter looses price control, the impact on network ca-

pacity is as follows. When the social marginal cost of letting the firm max-

imize profits is positive, i.e., when ηC > 0, the lose of price control by the

social planner entails “excess” capacity, i.e., KC > KB.

Figures 3a and 3b below show the sign of the capacity differential, (KC−
KB), and that of φB, φC , and ηC in terms of the marginal cost gap, (θ− c),

and the fixed cost, Fm, assuming the functional forms given by (50) and

under for the grid of parameter values used in the previous subsection.
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Figure 3a: (KC −KB), φB , φC , Figure 3b: (KC −KB), φB , φC ,

ηC with ω(1 + λ)− λ2 > 0 ηC with ω(1 + λ)− λ2 < 0

Comparing the upper and lower parts of Figures 3a and 3b, we see that

whenever the solution under scheme C yields ηC > 0, the capacity differen-

tial is such that KC −KB > 0. With the functional forms (50), condition

Q′

M

[

C ′′(K)− C′(K)
K

]

− λK
Q′

M
Q′′

MC ′′(K) < 0 does not hold and Figure 3b con-

firms the statement in Proposition 2 that whenever ω(1 + λ)− λ2 < 0, the

solution under B has φB > 0.22

22This condition represents the inequality (1+λ)Q′
MC′′(0)+λ2 > 0 stated in Proposition

2.
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6.3 Excess capacity due to the loss of both transfers and

price as control instruments

Finally, let us assume that the social planner initially has three control

instruments, price, capacity, and transfers, and then can neither use transfers

nor set price. The effect of such a removal of two control instruments can

be analyzed by comparing schemes A and C. Let us express the first-order

conditions associated with scheme C, (33), (34), and (37) as

∂WA

∂pM
− λ

∂Πm

∂pM
− ηCΩ = 0 (54)

∂WA

∂K
+ (λ− φC)(pM − θ) + ηC = 0 (55)

We see from these first-order conditions that the shadow cost of the con-

straint of nonnegativity of the firm’s output under A, νA, that of the par-

ticipation constraint under C, φC , and that of the profit-maximization con-

straint under C, ηC , should play an important role in the determination of

the relative size of transport capacity. The next proposition clarifies this

role.

Proposition 6 When price, capacity, and transfers are initially available

to the social planner as tools to mitigate monopoly power and then he looses

the ability to use transfers and set price, then, provided that after the reduc-

tion in the set of control instruments the firm earns strictly positive profits,

when the social marginal cost of letting the firm maximize profits is positive,

i.e., when ηC > 0, the loss of the two control instruments entails “excess”

capacity, i.e., KC > KA.

Figures 4a and 4b below show the sign of the capacity differential, (KC−
KA), and that of νA, φC , and ηC in terms of the marginal cost gap, (θ− c),

and the fixed cost, Fm, assuming the functional forms given by (50) and for

the grid of parameter values previously used.
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Figure 4a: (KC −KA), νA, φC , Figure 4b: (KC −KA), νA, φC ,

ηC with ω(1 + λ)− λ2 > 0 ηC with ω(1 + λ)− λ2 < 0

As stated in Proposition 6, we see from these figures that when firm’s

profits are not only maximized (ηC 6= 0) but also strictly positive (φC = 0),

sign[KC −KA] = sign[ηC ] when ηC > 0, and hence KC > KA.23

23Observe from these figures that there does not exist a case where νA > 0, φC = 0,
and ηC > 0. The reason for this is that if under A the firm is shut down (qm = 0) and if
allowing it to maximize profits under C is socially costly (ηC > 0), then there is no reason
for letting it earn strictly positive profits under this scheme (φC > 0).
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7 Conclusion

The gas industry throughout the world, in particular in the European Union,

has been facing an important question which is raised in most of the infras-

tructure sectors. In a context where reforms aimed at opening to competi-

tion some segments of the industry are conducted, how to make sure that

the exercise of monopoly power by incumbents inherited from the histori-

cal market structure is not going to be an impediment to the liberalization

process. This paper has provided an analysis of some policies that a social

planner can use to mitigate regional monopoly power in the gas commodity

market. We have considered optimal policies implementable through three

control instruments, transfers, price, and transport capacity, and we have

we have focused on the role of capacity.

As a starting point, we have considered a benchmark situation where the

social planner, having complete information, may use transfers between con-

sumers and a regional monopoly, control the gas commodity price, and set

the capacity of a pipeline used to import competitive gas into the regional

market. We then have examined the effect on the pipeline capacity of the

planner’s loss of the ability to use transfers and control the price. A com-

parative analysis of these control mechanisms has allowed us to shed some

light on the extent to which these various tools of mitigating regional mar-

ket power interact, in particular, to show that transport capacity might be

a good substitute to other “less controllable” instruments such as transfers

and tariffs.

The analysis has also allowed us to explore the incentives of an econ-

omy to develop transport infrastructure in order to fight market power. In

addition to the standard allocative inefficiency due to market power in a

geographically isolated market, in our model with complete information the

social planner has to account for a productive inefficiency and the financing

of a fixed cost. Moreover, our model explicitly accounts for the fact that

public funds are costly. Clearly then, the incentives of the social planner

to build infrastructure capacity depend on many factors. These factors, as

highlighted by our analysis, include the width of the panoply of control in-
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struments that are available to the planner, how relatively inefficient the

regional firm is, the magnitude of the burden imposed by the financing of

the fixed cost, the cost structure of the capacity building activity, and how

costly raising public funds through taxation is. Putting these factors to-

gether and solving the various tradeoffs involved is, as can be expected, not

straightforward. Nonetheless, we derive some propositions that yield some

instructive qualitative information on how the various control instruments

interact and in particular the degree to which the social planner should in-

tensify investments in infrastructure in order to exert competitive pressure

on regional monopolies.

In the benchmark case where the social planner has full control of the

regional firm through transfers, capacity, and price the only relevant factor

is how severe the productive inefficiency is. If the marginal cost gap is

substantially large, the social planner finds it worthwhile to intensively invest

in transport capacity to the point of inducing the shutting down of the

regional firm even if a fixed cost needs to be financed. If the marginal

cost gap is small, the social planner finds it beneficial to put some, but not

extreme, competitive pressure on the regional firm by moderately investing

in transport capacity and letting the firm earn a markup that is recoverable

through transfers anyway.

When transfers are no longer available but the social planner still controls

capacity and price, it is optimal not to build capacity only in the case where

the fixed cost is so large that the social planner is merely constrained to let

the firm entirely meet market demand so as to earn enough profits to finance

such an extremely large fixed cost. If the fixed cost is not prohibitively high,

building capacity to generate some competition allowing both the firm and

the import activity to earn markups is optimal.

When not only transfers but also pricing are beyond the social planner’s

control, competitive pressure through investment in transport capacity, be it

small, is always optimal. The extreme policy that consists in intensively in-

vesting in capacity to the point of inducing the shutting down of the regional

firm is optimal only when the firm’s productive inefficiency is extremely high

and the fixed cost to be financed is arbitrarily small.

26



Control of monopoly power is to a large extent the subject of regulatory

economics. The purpose of this paper was to explore the analysis of the in-

teraction among regulatory tools under the admittedly strong assumption of

complete information. We have demonstrated that excess capacity can itself

be considered as a strategic regulatory instrument. A necessary extension

of our analysis is to introduce asymmetric information on the firm’s produc-

tion technology. Our conjecture is that under incomplete information, the

additional objective of controlling for the monopoly’s information rent will

affect in some important ways the role of network capacity investments.

27



A Appendix

Controlling the regional monopoly with transfers, price, and transport capac-

ity

Illustration of the program resolution approach: To study the solution to the system of first-
order conditions (6)-(10), we proceed in two steps. First, we consider the unconstrained
maximization program (maximization of (5)) in the capacity-price (K-pM ) space, and
then we introduce the firm’s output nonnegativity constraint (4).24

An unconstrained welfare maximizing capacity-price pair satisfies the following first-
order conditions25

λQM + (1 + λ) (pM − θ)Q′
M = 0 (A.1)

(1 + λ) [(θ − c)− C′(K)] = 0 (A.2)

For the social welfare function (5), sign[∂2W/∂K∂pM ] = 0, which says that the so-
cial marginal valuation of capacity remains unaffected by changes in the regional market
price.26 Hence, in the K-pM space, the first-order condition with respect to price (A.1)
can be represented by a line parallel to the K-axis at the price level pM = θ − [λ/(1 +
λ)]QM/Q′

M .27 Similarly, the first-order condition with respect to capacity (A.2) is a
line parallel to the pM -axis at the capacity level K such that (θ − c) = C′(K), i.e., at
K = C′−1

((θ− c)).28 The unique solution to the system constituted of the two equations
(A.1) and (A.2) corresponds then to the intersection of these two lines.

Next, the nonnegativity set defined by the constraint (4) has a boundary which is
decreasing and concave with slope 1/Q′

M in the K-pM space. If the capacity-price pair
that solves (A.1) and (A.2) yields qm > 0, and this will be the case if and only if

K = C′−1
((θ − c)) < QM (pM )|

pM=θ−
λQM

(1+λ)Q′

M

, (A.3)

then this pair will also be the solution of the constrained program of the social planner.
In this case, total demand in market M cannot be met exclusively by imports K at the
prevailing price. Otherwise, the solution to the constrained maximization program will be
at the tangency point of a welfare level curve and the boundary of the nonnegativity set
characterized by:29

− (1 + λ) [(θ − c)− C′(QM)]

λQM + (1 + λ) (pM − θ)Q′
M

=
1

Q′
M

(A.4)

24Since U = 0, we can ignore the firm’s participation constraint (3).
25The welfare function given in (5) will be strictly concave if, for any capacity-price

pair, the condition (1 + λ)C′′(K) [(1 + 2λ)Q′
M + (1 + λ)(pM − θ)Q′′

M ] < 0 holds. As we
assume both C′′(K) > 0 for any K ≥ 0 and a concave downward-sloping demand schedule,
provided (pM − θ) ≥ 0, the former condition is always satisfied. Thus, the optimal price
and capacity levels are not only local but also global interior welfare maximizers.

26For a general convex firm’s cost function, sign[∂2W/∂K∂pM ] = sign[(1 + λ)C′′
mQ′

M ]
which is either negative or zero.

27Strict concavity of the social welfare function (5) insures that this differential equation
defines a unique line for nonnegative prices.

28Note that since C′ is increasing convex, its inverse exists.
29Given our demand and capacity building cost assumptions, second-order conditions

are always satisfied.
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To further illustrate the resolution of this three-instrument control scheme, let us con-
sider the case where demand is linear and the technology of capacity building is represented
by a quadratic cost function. More specifically, let

QM (pM) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > c (A.5)

With these functional forms, the first-order condition with respect to price (A.1) is a
horizontal line crossing the pM -axis at pM = θ + [λ/(1 + 2λ)](γ − θ), whereas that with
respect to capacity (A.2) is a vertical line crossing theK-axis at K = (θ−c)/ω. See Figures
A1a and A1b. The shaded areas correspond to the set defined by the local monopoly
output nonnegativity constraint (4) which here is the set of (K, pM ) pairs satisfying K +
pM ≤ γ.
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Figure A1a: Interior solution Figure A1b: Boundary solution

When (A.3) holds, we obtain the interior solution to (6)-(10) as the intersection of the
two lines shown in Figure A1a. More specifically, when

(θ − c) <

[

ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]

(γ − c) (A.6)

the (interior) solution is

K =
(θ − c)

ω
(A.7)

pM = θ +

[

λ

1 + 2λ

]

(γ − θ) (A.8)

This solution corresponds to policy (i) of Proposition 1. When (A.3) does not hold,
the boundary solution at the tangency point shown in Figure A1b is obtained. More
specifically, when

[

ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]

(γ − c) ≤ (θ − c) < (γ − c) (A.9)

this boundary solution is

K =

[

1 + λ

(1 + 2λ) + ω(1 + λ)

]

(γ − c) (A.10)

pM = c+

[

λ+ ω(1 + λ)

(1 + 2λ) + ω(1 + λ)

]

(γ − c) (A.11)
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and corresponds to policy (ii) described in Proposition 1.

Proof of Proposition 1: With (θ − c) < C′(QM ), the first-order condition (7) yields ν = 0
in which case (10) yields 0 < K < QM and (6) and (7) are rewritten as (11) and (12).
When (θ − c) ≥ C′(QM ), (7) yields ν > 0 in which case (10) yields K = QM and (6)
combined with (7) yield (13). �

Controlling the regional monopoly with price and transport capacity

Illustration of the program resolution approach: For the purpose of analyzing the solution
to (18)-(21) in the K-pM space, we first consider the unconstrained maximization program
and then introduce the participation set. An unconstrained welfare maximizer capacity-
price pair satisfies the following first-order conditions:

λK + (pM − θ)Q′
M = 0 (A.12)

(1 + λ) [(θ − c)− C′(K)] + λ(pM − θ) = 0 (A.13)

Second-order conditions for such an unconstrained local social welfare maximizer are syn-
thesized by

λQ′
M

λKQ′′
M −Q′

M
2 <

(1 + λ)C′′(K)

λ
(A.14)

Observe that, for the welfare function (15), sign[∂2W/∂K∂pM (= λ)] > 0.30 Hence, under
this control scheme without transfers, the social marginal valuation of capacity increases
with the regional market price.

In the K-pM space, provided that Q′′′
M ≤ 0 and C′′′(K) ≥ 0, the first-order condition

with respect to price of the unconstrained program (A.12) can be represented by an
increasing concave function, with slope λQ′

M/[λKQ′′
M −Q′

M
2
], which crosses the pM -axis

at pM = θ. Similarly, the first-order condition with respect to capacity (A.13) can be
represented by an increasing convex function, with slope (1 + λ)C′′(K)/λ, which crosses
the pM -axis at pM = θ − ((1 + λ)(θ− c)/λ) ≤ θ. These two functions representing (A.12)
and (A.13) cross at most twice for any K and at most once for K > 0.

Since (θ−c) > 0, at K = 0 the increasing concave function representing (A.12) implies
a strictly larger level of price than the one implied by the increasing convex function
representing (A.13). Therefore, such functions are expected either to cross only once or
not at all. It is straightforward to show that in the case they cross only once, the crossing
point, which is a solution to (A.12)-(A.13), satisfies the second-order conditions (A.14) for
the unconstrained welfare maximization program.

The participation set is a convex set in the K-pM space when both qm > 0 and
pM > θ. Its boundary has a slope mΠm

given by

mΠm
=

pM − θ

(QM −K) + (pM − θ)Q′
M

=
Fm

Q′
MFm + (QM −K)2

(A.15)

30For a general convex cost function of the regional monopoly, sign[∂2W/∂K∂pM ] =
sign[λ+C′′

mQ′
M ] R 0. Therefore, in general the effect of an increase in the regional market

price pM on the social marginal valuation of capacity depends on the relative magnitude
of λ. This shows the simplification that the specific cost function Cm(θ, qm) = θqm + Fm

allows to achieve.
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If the capacity-price pair that satisfies (A.12)-(A.14) belongs to the participation set, it
will also be a solution to the constrained welfare maximization program. Otherwise, the
constrained welfare maximizer is at a tangency point between a welfare level curve and
the boundary of the participation set, characterized by:31

mΠm
= − (1 + λ) [(θ − c) −C′(K)] + λ(pM − θ)

λK + (pM − θ)Q′
M

(A.16)

Because the shape of the participation set is sensitive to the size of the fixed cost Fm,
closed-form solutions are difficult to obtain. To understand the nature of this difficulty,
let us assume for a moment that there is no fixed cost and focus on the region defined by
the first-order condition with respect to price (18).

For the functional forms given in (A.5), the function representing the first-order con-
dition of the unconstrained program (A.12) is a line of slope λ while that representing
(A.13) is a line of slope ω(1+λ)/λ. From the second-order condition (A.14), the crossing
point between these two lines is an unconstrained welfare maximizer if ω(1 + λ)/λ > λ
and this is so independently of the value of the fixed cost Fm.

Let us now examine the participation set for the relevant area where pM − θ ≥ 0.
With Fm = 0 the boundary of this set will be flat when (pM −θ) = 0 and will have a slope
equal to −1 when (pM − θ) > 0 and K = QM on this negatively-slopped portion of the
boundary. Figures A2a and A2b below show these features. The shaded areas correspond
to the participation set defined by (16) and the upward-slopping lines represent the first-
order conditions (A.12) and (A.13).
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Figure A2a: Interior solution Figure A2b: Boundary solution

with ω(1 + λ)− λ2 > 0 with ω(1 + λ)− λ2 < 0

31The second-order conditions for this boundary solution are synthesized by

[

(1 + λ)(QM − (1 + λ)K)2C′′(K)
]

Q
′′′

M

− [φ(QM −K) + λK]
[

(2φ2 + 3φ− 2λ)(QM −K) + λ(1 + 2λ)K
]

Q′
M

2

+ [φ(QM −K) + λK]3 Q′′
M ≤ 0
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In both of these figures the downward-slopping dashed line represents the (K, pM ) pairs
satisfying [(pM − θ)Q′

M + (QM −K)] = 0. Figures A3a and A3b below show the geomet-
ric characterization of the first-order condition with respect to price of the unconstrained
program (A.12). Provided that φ is nonnegative, the (K, pM ) pairs satisfying (18) belong
to the shaded areas in these figures. For alternative values of the cost-gap θ − c, we see
from (19) that the solution of the constrained program lies on the bold segments shown
in Figures A3a and A3b.

Mp

0)KQ(Q)p(

0
p

W

MMM

M

0)KQ(Q)p(

0
p

W

MMM

M

K K

Mp

0)KQ(Q)p(

0
p

W

MMM

M

0)KQ(Q)p(

0
p

W

MMM

M

Figure A3a: Locus of solutions Figure A3b: Locus of solutions

with ω(1 + λ)− λ2 > 0 with ω(1 + λ)− λ2 < 0

Now, when we proceed to generalize this argument to the case where Fm > 0, the
bold segments representing the solution to the constrained program in Figures A3a and
A3b become curves, and more importantly, their shapes are sensitive to the size of the
fixed cost. Figures A4a and A4b below show these bold curves for two different values of
Fm with those on the upper parts corresponding to a lower fixed cost than those on the
lower parts. Cross-examining Figures A2a-A2b and A3a-A3b, we see that when there is
no fixed cost solutions with φ > 0 happen only in the negatively-sloped portion of the
boundary of the participation set. In contrast, with a positive fixed cost a solution with
φ > 0 may lie on either the positively- or negatively-sloped portion of the boundary of
the participation set. This “indeterminacy” of the solution suggests that numerical and
simulations methods may be appropriate for studying the behavior of the endogenous
variables of this scheme pM , K, and φ.
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with ω(1 + λ)− λ2 > 0, Fm > 0 with ω(1 + λ)− λ2 < 0, Fm > 0

Proof of Proposition 2: Since θ − c > 0, the functions representing (A.12) and (A.13) do
not cross at K = 0, but we know that they cross at most once at a point where K > 0.
However, a policy that prescribes K = 0 might still be optimal if Fm is high enough to
satisfy (22) with equality. These features characterize policy (i) given in the proposition.

If a crossing point of the functions representing (A.12) and (A.13) exists and belongs to the

participation set (in which case qm > 0), i.e., using (21) and (A.12), if Fm < −λK (QM−K)
Q′

M
,

this interior point, which from (A.13) is characterized by (1+λ)[c+C′(K)]−λpM = θ, is
picked up as the solution of the constrained welfare maximization program. Such crossing
point is defined by λ2K = (1+λ)Q′

M [(θ−c)−C′(K)], rewritten as (26), which results from
(A.12) and (A.13), rewritten as (24) and (25). Now, to guarantee that it exists, solving
(26) for λ2 and substituting into the second-order conditions (A.14) yields the technical

condition Q′
M

[

C′′(K)− C′(K)
K

]

− λK
Q′

M
Q′′

MC′′(K) < 0. This characterizes policy (ii-a).

If the crossing point of the functions representing (A.12) and (A.13) does not exist or
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lies outside the participation set, the optimization program picks the boundary solution
satisfying (18), (19), and (A.16). These conditions are rewritten, respectively, as (27),
(28) and (29). This corresponds to policy (ii-b). �

Figures A5a-A5d illustrate these policies for specific functional forms in the K−pM space
for the simplified case under which the cost gap (θ − c) converges to cero.32
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Figure A5c: Policy (ii-b) Figure A5d: Policy (ii-b)

32Figure A5a is based on the functional forms (A.5), (λ, ω, γ, θ = c) ∈
{(1/3, 1/2, 10, 2), (3/2, 1/2, 10, 2)}, respectively, and Fm = 10.24. Figures A5b and
A5c employ the linear demand in (A.5), the capacity building cost function C(K) =
(ω
3
K + σ

2
)K2, (λ, ω, σ, γ, θ = c) ∈ {(3/2, 1/2, 1/200, 10, 2), (3/2, 1/15, 1/200, 10, 2)}, and

with Fm = 3 and Fm = 10, respectively. Finally, Figure A5d uses the specification and
parameter values in Figure A5c with Fm = 3.
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Controlling the regional monopoly with transport capacity only

Illustration of the program resolution approach: Turning to the study of the solution to the
system (33)-(37) in the K-pM space, observe that since social welfare under this control
scheme is the same as that in the previous section, so is the analysis of the unconstrained
maximization program. When constraints are introduced in the maximization program,
however, an additional one arises here, namely, the profit-maximization constraint (31).
Such a constraint is represented in the K-pM space by a decreasing concave function with
slope −Q′

M/[(QM − K)Q′′
M − 2Q′

M
2
] and intercept point strictly in the interior of the

participation set. Furthermore, this function crosses the boundary of the participation set
at a point where the latter is infinitely sloped.33

Equation (33), (34), and (37) define a tangency point between a welfare level curve
and the function that represents the profit-maximization constraint. Hence, such a point
satisfies

− Q′
M

(QM −K)Q′′
M − 2Q′

M
2
=

(1 + λ) [(θ − c)− C′(K)]Q′
M − λ(QM −K)

[QM − (1 + λ)K]Q′
M

(A.17)

If such a tangency point satisfies the firm’s participation constraint (36) with a strict
inequality, it is an interior solution.34 Note from (A.17) that K = 0 cannot be a tan-
gency point, and hence not an interior solution. If such a tangency point violates (36),
the solution to (33)-(37) lies at the intersection of the function representing the profit-
maximization constraint and the boundary of the participation set where, recall, the latter
is infinitely sloped.35

Let us illustrate the solution under this control scheme using the functional forms
(A.5). In this case, the set defined by the firm’s profit maximization constraint (31) is a
line of slope −1/2 that crosses the boundary of the participation set at the point where
the latter is infinitely sloped, as shown in Figures A6a and A6b. The shaded regions
correspond to the participation set defined by (30). The upward-slopping lines represent
the price and capacity first-order conditions of the unconstrained program, respectively,
(A.12) and (A.13). The downward-slopping dashed line is the set of (K, pM ) pairs which
satisfy the profit-maximization constraint of the local monopoly (31).

33The reader can check that such a crossing point is characterized by the condition

Fm

(QM (pM)−K)
= − (QM(pM )−K)

Q′
M

Solving for Fm and substituting into the expression of the slope of the boundary of the
participation set (A.15) yields the slope of this set at the crossing point.

34Second-order conditions are synthesized as:

−Ω2(1 + λ)C′′(K) + 2λΩ−
[

(QM −K)(Q′′
M − ηQ′′′

M )

Q′
M

]

+ [Q′
M − 3ηQ′′

M ] < 0

Note that for a downward-sloping linear demand, the former condition holds for any value
of η.

35In this case, second-order conditions are always satisfied. It is worthwhile noting that
(22) and (A.17) imply that transport capacity is always built under this scheme. This
point will be further discussed in the next section.
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Figure A6a: Interior solution Figure A6b: Boundary solution

Figure A6a sketches the case in which the solution lies in the interior of the partici-
pation set. This interior solution is

K =
(1 + 2λ)(γ − c) + (3 + 2λ)(θ − c)

1 + 4λ + 4ω(1 + λ)
(A.18)

pM = θ +
[λ+ 2ω(1 + λ)] (γ − c)− (θ − c) [2 + 3λ+ 2ω(1 + λ)]

1 + 4λ+ 4ω(1 + λ)
, (A.19)

and emerges when the condition

(θ − c) <
(γ − c) [λ+ 2ω(1 + λ)]−

√
Fm [1 + 4λ+ 4ω(1 + λ)]

2 + 3λ+ 2ω(1 + λ)
(A.20)

holds. It represents policies of type (i) in the proposition. When condition (A.20) does
not hold, the solution is on the boundary of the participation set. Figure A6b shows such
a boundary solution given by

K = γ − θ − 2
√
Fm (A.21)

pM = θ +
√
Fm (A.22)

This solution represents the policies of type (ii) in Proposition 3.

Proof of Proposition 3: Before sketching the proof, let us recall from our discussion that
precedes the proposition in the text that K = 0 is never a solution to the constrained
welfare maximization program.

Since (θ − c) > 0 and Fm > 0, the capacity-price pair that maximizes the firm’s profit,
defined by (37), belongs to the participation set if (36) holds with a strict inequality, i.e.,

if the fixed cost belongs to the interval Fm < − (Qm−K)2

Q′

M
. Since by definition an interior

solution satisfies (A.17), which stems from (33), (34), and (37), pricing and capacity
building obey (38)-(40). Finally, given that φ = 0, (34) can be rewritten as (1 + λ)[c +
C′(K)]− λpM = θ + η. This characterizes policy (i).
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If the tangency point between a welfare level curve and the function representing the
profit-maximization constraint, defined by (A.17), does not belong to the participation
set, transport capacity is used by the planner as a residual instrument to make the local
monopoly just break even. From the illustration of the program resolution under this
scheme, we know that the social planner will choose a point where the boundary of the
participation set has an infinite slope. From (A.15), we see that such a point satisfies
Q′

MFm + (QM − K)2 = 0, rewritten as (43). Rewriting the first-order condition with
respect to price (33), and plugging the condition Q′

MFm + (QM −K)2 = 0 into it, yields
(41). Finally, (33) and (34) yield (42). This defines policy (ii). �

Proof of Proposition 4: As C′(K) ≥ 0 and looking at (7) and (19), we have

sign[KB −KA] = sign[(1 + λ)[C′(KB)− C′(KA)]]

= sign[(λ− φB)(pBM − θ) + νA] (A.23)

Given that νA ≥ 0, it follows from (A.23) that if (λ−φB) > 0, sign[KB−KA] > 0. When
(λ − φB) < 0, we need to show that sign[KB − KA] < 0. We do so, by analyzing the
optimal capacity level only in the case where sign[KB − KA] might be ambiguous, i.e.,
when both φB and νA are strictly positive.

If φB > 0 and νA > 0, from (44)-(47), ∂WA/∂pAM > 0, ∂WA/∂KA > 0, and ∂WB/∂KB >
0.36 Under B, the solution lies on the boundary of the participation set and is charac-

terized by (A.16), rewritten as − ∂WB/∂K

∂WB/∂pM
= (pM−θ)

∂ΠB
m/∂pM

. Using (48) and (49), we obtain

− ∂WB/∂K

∂WB/∂pM
= − ∂WA/∂K

∂WA/∂pM
= (pM−θ)

∂ΠB
m/∂pM

. This says that at the point where the boundary

of the participation set is tangent to a welfare level curve in B, the former is also tangent to
a welfare level curve in A. Since νA > 0, the solution under A has KA = QM characterized
by (A.4). Figure A7 illustrate this feature for the case where indeed Fm > 0.37
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Figure A7: Solutions with νA > 0, φB > 0, and Fm > 0

We know from section 4 that the participation set is included in the nonnegativity set for
pM ≥ θ (see Figure A7). Hence, any boundary solution under scheme B yields a level of
capacity no greater than that under A, i.e., KB ≤ KA. �

36To simplify notation, from now on we define ∂W i/∂piM ≡ ∂W i/∂pM |pM=pi
M

and

∂W i/∂Ki ≡ ∂W i/∂K|K=Ki for i ∈ {A,B,C}.
37This figure employs the functional forms (A.5) with parameter values (λ, ω, γ, θ, c) =

(1/3, 1/2, 10, 5, 2). The size of the fixed cost is Fm = 3.
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Proof of Proposition 5: Direct comparison of the first-order conditions with respect to
capacity under schemes B and C, (19) and (34), yields

sign[KC −KB ] = sign[(1 + λ)[C′(KC)−C′(KB)]]

= sign[(λ− φC)(pCM − θ)− (λ− φB)(pBM − θ) + ηC ] (A.24)

We proceed to analyze the behavior of (A.24) for the possible realizations of φB , φC , and
ηC , assuming first that the latter is positive and then negative.

If ηC > 0 and φC = 0, we see from (51) and (52) that the constrained solution of C,
which lies inside the participation set, satisfies ∂WB/∂pCM < 0, ∂WB/∂KC < 0, and
∂Πm/∂pCM = 0.38 Two cases might arise according to whether or not φB is zero. First,
when the solution to the constrained program under B is interior, φB = 0, ∂WB/∂pBM =
∂WB/∂KB = 0. It is straightforward to see that KC > KB and pCM > pBM . Second, when
the solution to the constrained welfare maximization program under B yields φB > 0, we
see from (47) that ∂WB/∂KB > 0. Given that ηC > 0, this solution satisfies ∂WB/∂pBM <
0.39 Putting these properties together, we see from (46) that ∂Πm/∂pBM > 0, saying that
at this boundary solution under B, firm’s marginal revenue is lower than its marginal cost.
It then directly follows that pCM > pBM and KC > KB .

If ηC > 0 and φC > 0, we know from section 5 that the solution of the constrained program
under C is at the point where the boundary of the participation set is infinitely sloped,
which has the largest K of all the points in the participation set. From (51)-(53), the
constrained solution of C satisfies ∂WB/∂pCM < 0 and ∂Πm/∂pCM = 0. Again, two cases
are to be considered. First, if the solution under scheme B yields φB = 0, since it lies in
the interior of the participation set, it automatically implies a lower level of capacity than
that under C, i.e., KC > KB . Second, if the solution of B yields φB > 0, we see from (47)
that ∂WB/∂KB > 0. From ηC > 0, it should be the case that ∂WB/∂pBM < 0. Using the
latter inequality in (46) we obtain ∂Πm/∂pBM > 0, and hence pCM > pBM and KC > KB .

To sum up, so far we have that when ηC > 0, KC > KB and pCM > pBM . Let us now
consider the cases where the Lagrange multiplier of the profit-maximization constraint ηC

is negative.

When ηC < 0 and φC = 0, we see from (51)-(53) that the constrained solution of C
satisfies ∂WB/∂pCM > 0, ∂WB/∂KC > 0, and ∂Πm/∂pCM = 0. Two cases arise depending
on the sign of φB. First, when φB = 0, we directly see that KC < KB and pCM < pBM .
Second, when φB > 0, the boundary solution satisfies ∂WB/∂pBM > 0, ∂WB/∂KB > 0,
and ∂Πm/∂pBM < 0. In this case, (∂WB/∂KC−∂WB/∂KB) = −ηC−φB(pBM−θ) ≷ 0, and
hence the capacity comparison is ambiguous. It is worth noting that while the capacity
ranking is ambiguous, that of pricing is not. Indeed, since ∂Πm/∂pBM < 0, we obtain
pCM < pBM .

When ηC < 0 and φC > 0, we see from (51)-(53) that the constrained solution of C

38It is worthwhile noting that the existence of this type of solution depends of the fact

that there exists aK > 0 satisfying the condition Q′
M

[

C′′(K)− C′(K)
K

]

− λK
Q′

M
Q′′

MC′′(K) <

0. When the former condition is not satisfied, no solution with ηC > 0 and φC = 0 exists.
39If we assume that the boundary solution of B lies on the region with ∂WB/∂pBM > 0,

the tangency between a welfare level curve and the boundary of the participation set lies in
their negatively sloped regions. By definition, when the boundary of the participation set
is negatively sloped, it lies to the right of the function representing the profit-maximization
constraint. Then, the solution to the constrained program in C should be characterized
by ∂WB/∂pCM > 0. But, this contradicts ηC > 0.
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satisfies ∂WB/∂pCM > 0, ∂WB/∂KC > 0, and ∂Πm/∂pCM = 0. The only case to be
analyzed then is when φB > 0.40 Under this case, since ηC < 0, we have ∂WB/∂pBM > 0,
∂WB/∂KB > 0, and ∂Πm/∂pBM < 0. In this case, (∂WB/∂KC − ∂WB/∂KB) = −ηC −
φB(pBM − θ) + φC(pCM − θ) ≷ 0, and again the capacity comparison is ambiguous. Note
that from ∂Πm/∂pBM < 0, we obtain pCM < pBM .

Summarizing, we see that when ηC < 0, pCM < pBM , but the capacity ranking remains
undetermined. �

Proof of Proposition 6: A cross-examination of the first-order conditions with respect to
capacity under schemes A and C, (7) and (34), shows that

sign[KC −KA] = sign[(1 + λ)[C′(KC)− C′(KA)]]

= sign[(λ− φC)(pCM − θ) + ηC + νA] (A.25)

We proceed to analyze the behavior of (A.25) for the possible realizations of νA, φC , and
ηC , assuming first that the latter is positive and then negative. If ηC > 0 and φC = 0,
from (55) we get that the solution under C satisfies ∂WA/∂KC = −λ(pCM − θ)− ηC < 0.
The only case that is relevant to examine is when νA = 0.41 In this case, ∂WA/∂KA = 0
and then it is easy to see that KC > KA.

If ηC > 0 and φC > 0, two cases might arise according to whether or not νA = 0.
When νA = 0, we see from (55) that the solution under C satisfies ∂WA/∂KC = −(λ −
φC)(pCM−θ)−ηC ≷ 0, and hence the capacity comparison is undetermined. When νA > 0,
the solution under A satisfies KA = QM and we directly conclude that KC ≤ KA.

Summarizing, we have obtained that sign[KC −KA] = sign[ηC ] when ηC > 0 but only in
the case where φC = 0. Let us now consider the case where the Lagrange multiplier of the
profit-maximization constraint ηC is negative. If ηC < 0 and φC ≥ 0, the capacity ranking
is undetermined since the solution under C satisfies ∂WA/∂KC = −(λ− φC)(pCM − θ) −
ηC ≷ 0. �

40Indeed, the largest K attained by the participation set is strictly lower than that
obtained from the condition ∂WB/∂pBM = ∂WB/∂KB = 0 which defines an interior
solution under B.

41Indeed, if νA > 0, we see from (45) and (55) that ηC = −νA − λ(pAM − θ). Since
φC = 0, it should be the case that under A, pAM > θ and hence ηC < 0, a contradiction.
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