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Abstract. This study find by empirical evidence a fast and accu-
rate way to calculate the price of a European Call using the Heston
(1993) model.

It calculate and uses a benchmark price calculated with the men-
tioned Heston 1993 pricing approaches and the trapezoidal rule
with a = 1e-20000; b = 300; N = 10000000, to find which com-
bination of Heston pricing process and numerical schems leads to
a computationally faster and more accurate price process. Two
equivalent pricing methods and seven numerical schemes are cal-
culated in order to find wich combination take less time to be
compute and is closes to the benchmark as posible. The study
uses Q-measure in the sense of spot data, and the other P-measure
in the sense of historical data. That mean the study calculate
two parameter sets. one under mesure Q and other under P by
Maximum Likelihood and non-linear least square function, respec-
tively, to somehow proof the conclution dose not depents on how
the parameter are found. Study stands that the accuraste way
to calculate the Heston price in the Colombian FX market data
used is consolidating the integrals for the probability P1 and P2
that the original framework propose and solve the integral using
Gauss-Legendre or Gauss-Laguerre.
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2 JAVIER LÁZARO

1. Introduction

In developed markets, the Heston model and a wide variety of more
complex models have been implemented to make better and accu-
rate valuations of options so that affordable Hedging Strategies can
be made. The drawback of these models is that the advantage of a
more realistic modeling of the variance can be offset by the costs of
calibration and implementation due to the fact that closed-form for-
mulas are rarely available like in BSM (Black-Scholes-Merton) model.
See [GT11].

In an emerging market such as the one in Colombia, those more
complex models are implemented by a few as a result of the market
liquidity. In other words, if the profit of use de profit of selling options
at the Heston price in a hedge strategy is not atractive to investors, the
market hardly will improve the liquidity. Investors should have incen-
tives to move their money from colombian equities and fixed income
to the derivatives market. The reader may find usedfull the process of
finding the price of an european call option in the Colombian FX mar-
ket computationally faster and accurate so a better replicating portfolio
can be used.

In order to achive the goal, the study shows how to implement the
Heston model, a more complex model than BSM , with two equivalent
approaches and seven different numerical schemes to find wich combi-
nation leads to a more computationally faster and accurate valuation
of call options in the Colombian FX market. Think about to equivalent
”formulas” that have one or two integrals, and in order to solve them,
the study present sevent diferent ways to do it.

The to equivalent pricing approaches or ”formulas” are (i) the Hes-
tons original paper and its Characteristic function, (ii) Consolidating
the integrals for the probability P1 and P2 that the original framework
propose. In the Apendix, the interest reader can found other evivalent
pricing method

Diferent ways to solve the integral are presented and each of them
are called numerical scheme. The first four are Newton Cotes formulas
(i)Mid-Point (ii) Trapezoidal rule, (iii) Simpson’s rule, (iv) Simpson’s
3/8 rule. The remaining schemes are Gaussian Cuadratures: (v) Gauss-
Laguerre, (vi) Gauss-Legendre, (vii) Gauss-Lobato.
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Furthermore, this study calculate de price under the mesure Q and P
to show in some way that the conclusion does not depend on the mea-
sure used. In order to do that, the paremeter set Θ = {κ, θ, σ, v0, ρ} is
estimated by Maximum Likelihood (hereafter MLE)[AW09] under the
risk neutral mesure Q and also by calibration using a non-linear least
square function (hearafter NLLS) under mesure P . The study will go
into this topic later.

Evenmore, in one hand, to find the accurate solution, the study cal-
culate a benchmark price that have at least 41 decimal1 and compare all
prices with those in order to find which combination of price approach
and numerical scheme have the smallest error. In the other, to find the
computationally faster price approach and numerical scheme the time
the code took to calculate de price is averaged and compere. How the
benchmark is calculated and chosen will be explained in chapter 9.

The data used in this study was chosen in a trading session with-
out high impact of political or macronomic news that could afected the
price of the underlying. Likewise, the correlated currencies did not have
sudden movements compared with the dollar. The data used in this
study was from July 12, 2016. This day opened at 2,935 COP/USD
and closed at 2,918 COP/USD.

Figure 1. Market Data Used

Finally, this study uses Rouag book [RH13] as a detailed guide. The
mathematical formulas for the pricing calculation as well as a big part
of the code were heavily supported on his book. Thanks to his awesome

1To fulfill the study goal, it will be assumed that the level of acurracy of the
bencjmark will absolute because it is going to be the initial assumption to find the
most accurate price
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work this study is possiblee

1.1. How is the Study Organized. The study is composed of eigth
chapters. The first one is the already mentioned introduction. The
second one focuses on the theoretical framework and the approaches.
Chapter three is oriented to the numerical schemes that solved the re-
maining integral. The FX Market Conventions are explain in chapter
four In chapter five and six the estimation and calibration topic is cov-
ered respectively. Chapter seven checks how the benchmark is defined.
Chapter eigth proofs wich pricing approach has the fastest numerical
scheme with the most accuracy. Chapter nine ilustrated how the study
find the most accurate method. Chapter ten ilustrate how the accu-
rate method and faster scheme are used to reach the conclusion of the
study. Finally, chapter eigth presents the conclusions.

2. The Heston Model

This chapter presents the original Heston framework and introduces
the reader to other six equivalent pricing approaches, presented in the
order they where published.

2.1. Heston 1993. The Heston (1993) models the underling with two
SDE, one for the price, St and one for the variance vt.

(2.1.1)
dSt = µStdt +

√
vtStdW1,t

dvt = κ(θ − vt)dt + σ
√
vtdW2,t)

EP [dW1,t dW2,t] = ρdt

Where:

(2.1.2)

µ drift process of the underling,
κ > 0 mean reversion speed of the variance,
θ > 0 mean reversion level of thevariance,
σ > 0 volatility of volatility,
v0 > 0 initial level of volatility,

λ volatility risk parameter.

Hence, the model is constituted by a bivariate system of SDE where
W1,t has a correlation ρ ∈ [−1 1] with W2,t and is expected to be pos-
itive in the USD-COP FX market since investors seek shelter in the
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strongest foreign exchange when vt increases. The correlation param-
eter, ρ, controls the skewness of the density of the logarithm of the
underlying, when its positive the probability density will be positive
skewed.

Under the risk neutral mesure Q the model stand:

(2.1.3)
dSt = rStdt +

√
vtStdW̃1,t

dvt = [κ(θ − vt)− λSt,vt,t]dt + σ
√
vtdW̃2,t)

where W̃ is the Brownian motions under the risk-neutral process,
λSt,vt,t is the the volatility risk parameter. λ 2, is set to zero because it
is embedded into κ∗ and θ∗:

(2.1.4)

λSt,vt,t = λv

dSt = rStdt +
√
vtStdW̃1,t

dvt = κ∗(θ∗ − vt)dt + σ
√
vtdW̃2,t)

EQ[dW̃1,t dW̃2,t] = ρdt

where κ∗ = κ+ λ and θ∗ = κθ
κ+λ

When estimating the risk-neutral parameters. For notation simplic-
ity the asterisk will be drop and it will be understood hereafter that
the study is dealing with the risk-neutral measure.

The characteristic function (hereafter CF) approach to option pricing
of Heston 1993 can be applied to the characterization of call prices in
the form of discounting the expected value of the payoff function under
the risk-neutral measure as:

(2.1.5)

C(k) = e−rdτEQ[(St −K)+]

= e−rdτEQ[(St −K)1St>K ]

= e−rdτEQ[St1St>K ]−Ke−rdτEQ[1St>K ]

= Ste
−rf τP1 − Ke−rdτP2

where the quantities P1 and P2 represent the probability of the op-
tion expiring ITM conditional on the filtration, Ft, under the measure
Q. In other words P1 uses the underlaying as numerarie while P2 uses

2 Estimation of λ is subject-matter to its own research. See Bollerslev et all.
(2011)[BGZ11]
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the bond, Bt. Bakshi and Madan (2000)[BM00] prove that the deriva-
tion of the call price under change of numerarie is valid for the BSM
and Heston model.

In the BSM world, P1 = φ(d1) and P2 = φ(d2) are calculated
straightforward, on the other hand, for the Heston model to obtain
such probabilities the inversion theorem of the CF of Gil-Pelaez (1951)
[GP51] must take place. For details on pricing with CF see Zhu (2009)
[Zhu09]. To implement the inversion theorem, the CF must be known.
Heston (1993) proposes the following CF:

(2.1.6) fj(φ;xt, vt) = exp( Cj(τ, φ) + Dj(τ, φ)vt + iφxt)

for j = 1, 2. Heston (1993) stands that the CF for the log-returns,
xT = lnSt, is a way to exploit the linearity coefficient on the model
PDE (Partial Differential Equation). The calculation of the Heston
PDE is slightly more difficult than BSM PDE. The interested reader
can follow up the derivation in Rouah (2013) to get:

(2.1.7)

∂Pj
∂j

+ ρσv
∂2Pj
∂v∂x

+
1

2
v
∂2Pj
∂x2

+
1

2
σ2v

∂2Pj
∂v2

+ (r + µjv)
∂Pj
∂x

+ (a− bjv)
∂Pj
∂v

= 0.

where µ1 = 1
2
, µ2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ. The CF

will follow the PDE (2.1.7) as a consequence of the Feyman-Kac the-
orem that stipulates the solution f(φ;xt, vt) = E[ei φ lnSt |xt, vt], which
is the CF for XT = lnSt. Once it is known that the PDE (2.1.7) can
be applied to the CF, one may proceed.

To find the coefficients of the CF (2.1.6) one must express the PDE
(2.1.7) for the CF3, express the six partial derivate of the new PDE in
terms of the solution proposed by Heston (1993) (2.1.6), replace in the
new PDE, solve the remaining Riccati equation Dj and the ordinary
differential equation Cj in order to get:

(2.1.8)

Dj(τ, φ) =
bj − ρσiφ+ dj

σ2

(
1− edjτ

1− gjedjτ

)
,

Cj(τ, φ) = riφτ +
a

b

[
(bj − ρσiφ+ dj)τ − 2ln

(
1− gjedjτ

1− gj

)]
,

3change Pj for fj
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where gj =
bj−ρσiφ+dj
bj−ρσiφ−dj , dj =

√
(ρσiφ− bj)2 − σ2(2µjiφ− φ2) for

j=1,2.

Note that the CF does not depend on the strike, but it does on the
maturity, τ . This implies, when computing the Non-linear least square
function for calibration purposes, the values for f1(φ) and f2(φ) can
be calculated only once for each maturity and must be used repeatedly
across the deltas.4 This method will save computational time, because
by far, the CF is the most time consuming operation. In spite of the
advantages of the mentioned method the loss of accuracy in the param-
eters can affect the results of the study and will not be implemented.
For details on accelerating the calibration see Kilin (2006) [Kil06].

The disadvantaged of the CF proposed by Heston (1993) is the dis-
continuities at some points. Albrecher et al. (2007) [AMS] propose a
CF in (2.1.9) that is equivalent to the Heston (1993) (2.1.8) but causes
less numerical problems. For the derivation of the ”Heston little trap”
CF, one must multiply Dj by exp(−djτ) in the numerator and denom-
inator and take out from the logarithm in Cj the term exp(djτ), and
make some algebraic operations to express the logarithm in terms of
cj:

(2.1.9)

Dj(τ, φ) =
bj − ρσiφ− dj

σ2

(
1− e−djτ

1− cje−djτ

)
,

Cj(τ, φ) = riφτ +
a

b

[
(bj − ρσiφ− dj)τ − 2ln

(
1− cje−djτ

1− cj

)]
.

where cj = 1
gj

=
bj−ρσiφ−dj
bj−ρσiφ+dj

.

In this accurate Heston implementation, the CF proposed by Al-
brecher et al. (2007) is always used. Once the CF is defined, applying
the inversion theorem of Gil-Pelaez (1951) the probabilities P1 and P2
are obtained:

(2.1.10)

Pj = Pr(lnST > lnK) =
1

2
+

1

π

∫ ∞
0

[
e−i φ lnKfj(φ;x, v)

iφ

]
dφ

It is worth mention that the integral will be compute in the real part.

4In FX market the quoted options are in terms of deltas not strikes. Later
chapters focus on this.
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Therefore the Heston (1993) price equation needs to compute the
probabilities Pj for j=1,2. and apply them on (2.1.5).

This study uses the following sniped code 2 to calculate de Heston
(1993) price.

Figure 2. Heston(1993) Code

2.2. Consolidating the integrals of Heston (1993). Since the in-
tegrals are virtually the same, equal domain,[0∞] and integration vari-
able, φ, it is possible to express the Heston price under one integral. In
other words, the probabilities P1 and P2 can be joint up into a single
integral which speed up the numerical integration.

(2.2.1)

C(K) =
1

2
Ste
−rf τ − 1

2
Ke−rdτ

+
1

π

∫ ∞
0

Re

[
e−i φ lnK

iφ
(Ste

−rf τf1(φ;x, v)−Ke−rdτf2(φ;x, v))

]
dφ

The advantage of this pricing method is reduced computational time
by almost one-half. For more details see [RH13].

This study uses the following sniped code 3 to calculate the integral
And then uses 4 to calculate the Consolidating the integrals of Heston

(1993) price
Now that all the Heston prices approaches have been presented, the

numerical schemes must be introduced. The numerical schemes will be
treated in the following section.
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Figure 3. Consolidating the integrals of Heston (1993) Code

3. Numerical Schemes

Due to the non existence of the anti-derivate of the Heston integrand,
the probabilities P1,2 must be approximated numerically. This task is
challenging. The first challenge lies in the CF not being defined at zero,
even though the integration domain is [0,∞), meaning that the lower
boundary of the integral is represented by a very small number and the
upper boundary for a number that represents infinity. In others words
the domain [0,∞) will be represented by [a, b] where a should be close
to zero, and b is as big as desired.
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Figure 4. Calculating the price of Consolidating the
integrals of Heston (1993) Code

The second challenge lies on the oscillation of the integrand. For
some parameters, maturities, and deltas5, the integrand can oscillate
wildly, implying that it does not decay quickly to zero and a large num-
ber for the upper boundary will be needed. In general, the oscillation
and speed of decay vary inversely with maturity. For example, in a one
week option, the integrand will oscillate much more than the one year
option. See figure 22 vs 24 to see the oscillation. The reason behind
the oscillation in short maturities is the limitation of not only the He-
ston model, but the stochastic volatility models as well. However, this
can be solved by adding jumps to the pricing process, see Bates (1996)

5Strikes are expressed in therms of delta in the FX market



AN ACCURATE HESTON IMPLEMENTATION 11

[Bat96].

In order to solve the previous challenge, the right choice of b must
be made. b can be chosen with the MD (multi-domain) integration
approach of Zhu (2010) to select the upper limit. In this integration
approach the domain [0,∞) will be represented by [a, b], where a should
be close to zero, and b is as big as desired. Once the integration interval
where the numerical method will be applied is defined, it is split into
N parts and each part is integrated as a whole. The probability is cal-
culated as the sum of the area under the curve of each subinterval, but
only when the subinterval area is greater than a determined tolerance
level. Otherwise, the subinterval area is not taken into account and the
calculation will stop.

As an example, one can consider the following case: an interval
[a = 1e − 5, b = 150] used to represent [0,∞), N = 3 and a toler-
ance level of 1e − 6 6. To implement the MD method, the interval is
first split into N parts, [1e−5, 50], (50, 100], (100, 150]. The first inter-
val is integrated by the decided method, and it yields a result greater
than the tolerance level, meaning it will be summed up. The same
procedure applies to the next intervals, and in this case, the result of
the second interval is also greater than the tolerance. However, when
the last interval is integrated, the resulting value is less than the tol-
erance, and therefore it contributes little to the area. In other words,
the integral decays to zero near 100, and therefore the last interval will
not be take into account. At this point the MD method will stop. In
the example, the integration domain was reduced from [1e − 5, 150]
to[1e− 5, 100] due to the MD. See figure5.

This method will assign a wider domain for shorter maturities and
a narrower for longer ones. Zhu (2010) states that this is an optimal
method for assigning the upper limit of the integral. However, if N
increases, the computational time increases as well, due to the fact
that instead of making one integral, it now has to make at least N
integrals. Furthermore, the ad − hoc choice of the upper limit must
always be done since the interval must be defined in all cases. The
most accurate way, regardless of the time, is to plot the integrates P1,2

for all the maturities and all the deltas, choose b based on the graph,
and apply the MD method with a large N value. It is worth noting

6Using a small tolerance leven of ≤ 1e − 6 with M > 1e6 subintervals of area
coul lead to an error of order 1
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that other methods for finding b exist, such as the one in lewis (2000):
b = max[1000, 10/

√
v0τ ].

Figure 5. Multi Domain Function

The third challenge lies in the discontinuity of the CF over the do-
main [0,∞). To solve this problem, the CF of Albrecher et al. (2007)
was applied. Since ”The little Heston Trap” always works, other more
complex alternatives to overcome this problem, like the rotation algo-
rithm of Kahl and Jäckel (2005) [KJ05] and the ones proposed on Zhu
(2010) are not taken into account.See figure6.

The numerical methods taken into account were Newton-Cotes (here-
after NC) rules and Gaussians Quadratures (hereafter GQ). Both of
these approximate the remaining Heston integral over the domain [a, b]
by equation (3.0.1). They calculate the area as the sum of the func-
tion evaluated at the abscissas, x1, ...xN , multiplied by their respective
weight w1, ...wN .
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Figure 6. Multi Domain Function

(3.0.1)

∫ b

a

f(x) dx ≈
N∑
j=1

wj f(xj)

The NC rules are easy to understand since they are the simplest in-
tegration rules. Unfortunately, they require the most computational
time. Using equation (3.0.1) to defined the NC rules implies that
the abscissas are equidistant, making the integration interval equality
spaced. This implies that computational time dramatically increases
for an accurate integration because many abscissas are needed. The
drawback of NC rules lies in calculating the weights since they are not
equal for all the abcsissas and are method depending. The weights are
also dependent of N, the numbers of parts the intervals must be split in.

On the other hand, the GQ abscissas and weights, beside from being
less, are unequally spaced and calculated by functions depending on
the method. Each quadrature has one equation for the abscissas and
one for the weight. The abscissas are specified in advance, so the up-
per and lower boundary problem is solved. The disadvantage with this
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method lies on its complexity, however, once the abscissas and weights
are calculated, applying the method becomes a straightforward and
trivial exercise. The GQ substantially reduces the computational time
vs NC due to the facts that the numerical method adapts to some how
fit the integral. The value of the abscissas and weights depend on the
choice of N. In this study, N will be 32 for all GQ, following the guid-
ance of Rouah (2014).

To numerically evaluate the Heston integrals P1,2 using the prosed
numerical methods, the abscissas and weights must be calculated first.
Then, as the following step, the integrand is evaluated at each abscissa
and the result is multiplied by the corresponding weight. Once this
is done, the result is store in a vector and all the terms of the vector
must be added in order to calculate the integral. In other words, apply
equation (3.0.1).

The numerical methods that were taken into account were: four
NC rules and three GQ. The following subsections introduce all the
mentioned numerical methods. The literature on numerical methods is
rich and there are excellent text books like Burden and Faires (2010)
[BF10] and Abramowitz and Stegun (1964), [AS64] which the reader
may check for further details.

3.1. Mid-Point. It approximates the integral as the sum of rectangles,
each with the same width, xj+1−xj, and height equal to the integrand
evaluated at the mid point of the interval width. The Mid-point rule
is defined as:

(3.1.1)

∫ b

a

f(x) dx ≈ h

N−1∑
j=1

f

(
xj + xj+1

2

)
where the abscissas are defined as xj = a+ (j− 1)h and the weights as
wj = h = (b− a)/(N − 1),with x1 = a, xN = b.

The code used in this study to implement the Mid-Point numerical
scheme 7 to calculate de Heston (1993) price is:

3.2. Trapezoidal Rule. It approximate the integral as the sum of
trapezoids, each with equal width, xj+1 − xj, and the height equal
to the integrand evaluated at the end point of each subinterval. The
trapezoids are constructed by drawing a segment between f(xj) and
f(xj+1). The formula for the Trapezoidal rule is:
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Figure 7. Mid-Point Code

(3.2.1)

∫ b

a

f(x) dx ≈ h

2
f(x1) + h

N−1∑
j=1

f(xj) +
h

2
f(xN)

where the abscissas and h are defined as the Mid-point rule. w1 =
wN = h/2 and wj = h for j = 2, ..., N − 1.

The code used in this study to implement the Mid-Point numerical
scheme 8 to calculate de Heston (1993) price is:

Figure 8. Trapezoidal Rule Code

3.3. Simpson’s Rule. Each NC rule is more complicated than the
previous one and less than the subsequent. This NC uses quadratic
polynomials in the approximation, following Rouah (2014). The inte-
gral is defined as:
(3.3.1)∫ b

a

f(x) dx ≈ h

3
f(x1) +

4h

3

N
2
−1∑

j=1

f(x2j) +
2h

3

N
2∑
j=1

f(x2j−1) +
h

3
f(xN)
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where the abscissas and h are defined as the Mid-point and Trapezoidal
rule, but with w1 = wN = h/3 along with wj = 4h/3 when j is even,
and wj = 2h/3 when is odd.

The code used in this study to implement the Mid-Point numerical
scheme 9 to calculate de Heston (1993) price is:

Figure 9. Simpson’s Rule Code

3.4. Simpson’s 3/8 Rule. This rule is a refinement of the previous
one. It uses cubic polynomials in the approximation of the integral and
is the more sophisticated NC rule in this study. It is defined as:
(3.4.1)∫ b

a

f(x) dx ≈ 3h

8
f(x0)+

6h

8

N−3∑
j=3,6,9,...

f(xj)+
9h

8

N−1∑
j 6=3,6,9,...

f(xj)+
3h

8
f(xN)

Note that this rule stars with x0 because the abscissas are defined as:
xj = a + ih for i = 0, ..., N where N is divisible by three and with
h = (b− a)/N . The weights depend on whether j is divisible or not by
three:

wj =

 3h/8 if j = 0 or j = N
6h/8 if j = 3, 6, 9, ...
9h/8 if j 6= 3, 6, 9, ...

The implementation of all the NC rules presented here are straightfor-
ward, although the calculation of the weights may be tricky at times.
For the Simpson’s Rule and Simpson’s 3/8 rule one must be careful with
the fact that N must be divisible by three and that this will directly
affect calculation of the weights.

The code used in this study to implement the Simpson’s Rule 3/8
numerical scheme 10 to calculate de Heston (1993) price is:
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Figure 10. Simpson’s Rule 3/8 Code

3.5. Gauss-Laguerre. This quadrature is specially relevant because
it is designed for the domain [0,∞). Its abscissas are the roots of the
Laguerre polynomial, LN(x), defined as:

(3.5.1) LN(x) =
N∑
k=0

(−1)k

k!

(
N

k

)
xk

where the last term in (3.5.1) is the binomial coefficient. The weights
function uses the derivative of LN(x) evaluated at each abscissas in the
following equation:

(3.5.2) wj =
(n!)2exj

xj[L
′
N(xj)]2

The code used in this study to implement the Gauss-Laguerre nu-
merical scheme 11 to calculate de Heston (1993) price is:

Figure 11. Gauss-Laguerre Code

3.6. Gauss-Legendre. This quadrature is designed for the domain
[−1, 1] so in order to be used, one must modified the Heston domain
through the transformation:

(3.6.1)

∫ b

a

f(x0) dx =
b− a

2

∫ 1

−1

f

(
b− a

2
x+

a+ b

2

)
dx
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In this approach the endpoints of the transformation (3.6.1), [a, b] are
not included in the abscissas, allowing the user to set a = 0 and b = xN .
The abscissas are the roots of the Legendre polynomial, PN :

(3.6.2) PN(x) =
1

2N

bN/2c∑
k=0

(−1)k
(2N − 2k)!

k!(N − k)!(N − 2k)!

where b c is the floor function. When N is even, PN(x) contains only
even powers of x, and vice-versa. The implementation of this method
must ensure the inclusion of zeros where the polynomial does not have
a power of x. For example if N is even, one must guaranteed that the
odd powers are filled with zeros.

The G-Legendre weights depend on the derivative of the Legendre
polynomial, PN(x). The weight function is defined as:

(3.6.3) wj =
2

(1− x2
j)[P

′
N(xj)]2

It is worth emphasizing the fact that the domain transformation
(3.6.1) must be correctly applied in order to properly implement this
quadrature.

The code used in this study to implement the Gauss-Legendre nu-
merical scheme 12 to calculate de Heston (1993) price is:

Figure 12. Gauss-Legendre Code

3.7. Gauss-Lobatto. This last quadrature is also designed for the in-
terval [−1, 1], and therefore the domain of the Heston integrand must
be modified like in the prior quadrature using transformation (3.6.1).
This method uses the roots of the derivative of the Legendre polyno-
mial of order N-1 to calculate the abscissas. G-Lobatto uses the lower
and upper bound of the integral as the first, x1 = a, and last, xN = b,
abscissas. This is the main difference with G-Legendre.
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The weight function of G-Lobatto use the derivative of the Legendre
polynomials. The weight function is defined as:

(3.7.1) wj =
2

N(N − 1)[PN−1(xj)]2

for j=2,...,N. However, for the end points the weights must be defined
by the following expression:

(3.7.2) w1 = wN =
2

N(N − 1)

To implement this method one can not set a = 0 because the first ab-
scissa is x1 = a and the CF is not defined at zero.

All the mentioned approaches in chapter 2, Heston and the improve-
ment ”Heston little trap” and consolidating the integral, were imple-
mented with the seven numerical methods mentioned above, in order
to calculate the Heston price.

The Heston vector parameters, Θ = {κ, θ, σ, v0, ρ}, must be specified
in order to completely describe and use the Heston model. The next
two chapter explain how Θ is found by two different methods: cali-
bration by MSE and estimation by MLE. Those methods are two
concepts that point to the same direction, one uses Q-measure in the
sense of spot data, and the other P-measure in the sense of historical
data.

The code used in this study to implement the Gauss-Lobatto numer-
ical scheme 13 to calculate de Heston (1993) price is:

Figure 13. Gauss-Lobatto Code

4. OTC FX Option Market Convention

In general, OTC market options like the one in Colombia, quote
the option by delta rather than strike. This quotation method is
common in OTC FX option markets, where buyers asks for a delta
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(i.e two months 25%∆Call) and the salesman or trader returns a
price (i.e 17, 358%) 7, as well as the strike (i.e 3200COP ), given the
spot reference. This means that for a given maturity, spot, and rf , rd,
the market has a k that must be found, in order to make the formula
(4.0.1) equal to either 25% or 10%, depending on the case.

(4.0.1)

∆ = e−rf τN (d1)
with

d1 =
log(S/K)+(rd−rf+σ2/2)τ

σ
√
τ

The strikes can be found by a root-finding algorithm like Newton-
Raphson or bisection, nevertheless, it can also be found analytically.
Equation (4.0.2) presents the analytical solution to go from ∆ to k.

(4.0.2) K = S0 exp(−N−1(∆f )σ
√
τ + (rd − rf + σ2/2)τ)

were ∆f is the delta-forward. Given that the forward term has be-
come relevant, the next two paragraphs will explain it.

There are four types of delta conventions used in the FX market,
and the delta-forward is one of them.8 In equity markets, the delta,
∆, gives the amount of underlying the seller of the option must buy to
hedge. In FX markets, that type of delta is called delta-spot, ∆S, and it
is equivalent to buying ∆S times foreign units of the option’s notional.
The delta-forward, ∆f , is not only the derivative of the BSM option
price with respect to the forward FX rate 9, ∂CBSM

∂f(t,T )
= ∆f = N (d1),

but also the number of forward contracts that the seller of the option
needs to delta-hedge. See Beier and Renner (2010) [BR10] for a com-
plete description of the standard FX market conventions worth reading.

Usually, traders use forward contracts to hedge options, and since
the market prices in delta forward convention, the option hedge can
be achieved much easier thanks to the quotations. For a better under-
standing, an example will be given: a trader sells a COP-USD option
with maturity in two weeks for a given spot reference with a ∆25 and a
corresponding strike of 3200 COP. Once sold, the trader must hedge the

7The FX prices are often in terms of volatility or pips, not in currencies like COP
or USD.

8Recall that delta, ∆ measures the rate of change of the price with respect to
the underlying, ∆ = ∂C/∂S where C stands for call price under BSM

9Express the BSM formula for FX market as C = erdτ [f(t, T )N (d1)−KN (d2)]

were d1 = ln (f(t,T )/k)+(σ2/2)τ
σ
√
τ

, d2 = d1 − σ
√
τ and f(t, T ) = Ste

rd−rf τ .
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option. He needs to make the replicating portfolio or get in a forward
contract with the same maturity and strike of the option. The chosen
hedge is the forward contract, since the market already possesses the
forward with the needed characteristic.

To summarize delta conventions, they express the strikes in terms
of a BSM greek: delta can refer to spot or forward, amongst others,
were spot means the delta hedge must be made in the spot market,
and forward in the forward one. ATM convention will be presented in
the next paragraph.

The ATM-forward means that the strike is not equal to the spot,
instead it is equal to the forward for the given maturity. This implies
that by the put-call parity, Call−Put = erdτ (F (t, T )−K), this is the
strike at which the price of the call and put are the same. There is also
a put call parity for deltas: ∆C −∆P = 1, that will be helpful since it
means that 10∆ Put is equal to 90∆ Call and 25∆ Put to 75∆ Call.
This is useful because in the Colombian OTC FX option market, the
most traded deltas are 10∆ Put, 25∆ Put, ATM , 25∆ Call, 10∆ Call
and they can all be expressed in terms of ∆C thanks to the put-call
parity’s presented. For each delta, one can find 1W , 1M , 2M , 3M ,
6M , 9M , and 1Y as maturities.

5. Estimation: Maximum Likelihood

This study uses the Atiya and Wall (2009) analytic approximation
for the likelihood function of the Heston model. Recall that the Heston
model does not define the volatility as a function of past asset obser-
vations, instead, it defines it as a latent variable state in a stochastic
process.

Because the underlaying distribution is not needed to price in the
Heston model, it is not defined in the specifications, and therefore the
classical construction of the likelihood function can not be achieved.

Atiya and Wall (2009) suppose that the transition probability density
for the joint log-underlying price/variance process from t to t + 1 is
bivariate normal, were N denotes the normal density of meanµt+1 and
covariance matrix Σt+1. The following equation illustrates the supposed
bivariate normal distribution:
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(5.0.1) p(St+1, vt+1|St, vt) = N (µµµt+1,ΣΣΣt+1)

To check the entire specifications of µµµt+1 and ΣΣΣt+1 see Atiya and Wall
(2009).

Atiya and Wall (2009) defined the problem of estimating the volatil-
ity as a ”filterinig problem” and formulated it as that of obtaining the
likelihood of the volatility given the past likelihood observations. In
other words, the variance likelihood must be approximated from the
underlying one. The likelihood at time t+ 1 is:

(5.0.2) Lt+1(vt+1) ∝ dt (abt)
−1/4 e−2

√
abtLt(vt)

the equation (5.0.2) is only approximate but it is valid because the
approximation error is small. This is due because the time step is short.
That implies that the gap between the constand function and the con-
tinues one are small. Please see Atiya and Wall (2009) for more details.

Once the likelihood is defined, calculating the log-likelihood is trivial.
The above equation uses the following quantities:

(5.0.3)

a =
(κ

′
)2 + ρσκ

′
dt+ σ2(dt)2/4

2σ2(1− ρ2)dt

bt =
(vt+1 − αdt)2 − 2ρσ(vt+1 − αdt)(∆xt+1 − µdt) + σ2(∆xt+1 − µdt)2

2σ2(1− ρ2)dt

dt =
1

D
exp

(
(2κ

′
+ ρσdt)(vt+1 − αdt)− (2ρσκ

′
+ σ2dt)(∆xt+1 − µdt)

2σ2(1− ρ2)dt

)
with κ

′
= 1 − κdt, α = κθ, D = 2πσ

√
1− ρ2dt, initial values10

L0(v0) = e−v0 , the drift µ = rd− rf , and the log-underlying increments
∆xt+1 = xt+1 − xt.

Atiya and Wall (2009) proposed a value for the time increment of
dt = 1/252 for daily data.

Note that bt, dt and also Lt+1(vt+1) depend on vt, and therefore, to
compute the likelihood, vt must be calculated first. Atiya and Wall
(2009) notice that vt =

√
bt/a and invert it in order to get:

10Here v0 is the initial variance parameter.
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(5.0.4) vt+1 =
√
B2 − C −B

where

B = −αdt− ρσ(∆xt+1 − µdt),
C = (αdt)2 + 2ρσαdt(∆xt+1 − µdt) + σ2(∆xt+1 − µdt)2 − 2v2

t aσ
2(a− ρ62)dt.

To implement the estimation one must construct the likelihood using
the following steps. First, calculate the quantities that do not change in
the likelihood construction such as α, a, D and the initial value L(v0).
Second, calculate ∆xt+1 in order to find B and C, which are needed
to obtain vt+1. Third, Atiya and Wall (2009) state, ”it is imperative
to combine the exponent in dt and the exponent −2

√
abt before expo-

nentiating”. Doing this will avoid numerical errors. The reason is that
there are some exponets that are large and almost of eaqual magnitude
but with opposite sign. Fourth, once dt and e−2

√
abt are computed as

one, the remaining terms in (5.0.2) should be multiplied. Finally, a
for-loop from step 2 until 4 for t = 0 to T − 1 must be made to obtain
the likelihood. Computing the log-likelhood is straightforward once the
above steps are understood.

The code used in this study to implement the Likelihood Atiya and
Wall (2009) estimation is 14.

It is worth mentioning that this study define v0 as a parameter and
do not uses a grid to define it.

The parameter found using the proposed data, initial values and
MLE estimation method lead to: 15

6. Calibration: Non-Linear Least Square/ Mean Square
Error

Calibration is a method, where a few parameters from the model are
tweaked until they match with their counterpart market values, so that
the model may fit with the market data. This is done by minimizing
the square distance between the model and market prices, which is
known as MSE. One can also minimize the model’s implied volatil-
ity with the market one, as long as they both have the same dimensions.

This method calibrates the Heston vector parameter Θ = {κ, θ, σ, v0, ρ}
by defining a function that minimize the square distance between the
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Figure 14. Likelihood AW Code
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Figure 15. MLE Estimator

spot data and the model one. The minimizing parameters found are
the ones used. This implies that the market and the Heston prices are
as similar as can be in square error. As explained before, the calibra-
tion method finds the parameters under the risk-neutral measure, Q.

The function can be defined in one of two ways: as MSE or as
IVMSE. The first, Mean Square Error or MSE, is defined as:

(6.0.1)
1

N

∑
t,k(∆)

wt,k(∆)(C
mkt
t,k(∆) − CH

t,k(∆))
2

This function minimizes the square error between the market and
Heston prices, where the subindex refers to all the possible combina-
tions of the Colombian liquidity points: seven maturities and the five
strikes (in terms of 10 and 25 deltas).

To apply the MSE function, one must retrieve the prices from the
market data which are in terms of delta-forward and an ATM-forward.
The last two terms are quoted normally in OTC (over-the-counter) FX
option markets and they must be understood somehow in order to re-
trieve the prices.

In brief, to apply the MSE function with the Colombian market
data: deltas11 the market implied volatility expressed in combination
of 90∆ Call, 75∆ Call, ATM , 25∆ Call, 10∆ Call, and maturities
1W , 1M , 2M , 3M , 6M , 9M , 1Y , must be used with equation (4.0.2)

11 The ∆Put were changed for ∆Call
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to find the respective strikes for the given deltas: MktIV–> Stike

followed by this apply BSM pricing formula to retrieve the prices
of the european vanilla call for all the combination of maturities and
deltas: Stike–> BSM Price. This means that one part of (6.0.1) is
know available to use : Cmkt

t,k(∆)

In addition,CH
t,k(∆))

2 must be calculated so equation (4.0.2) can be
used. For calibration purpuse this study calculate the Heston price by
Heston (1993) with Gauss Laguerre.

The main disadvantage of the MSE is that short maturities, deep
OTM with little value, do not contribute enough to the sum in (6.0.1).
Hence, the optimization will tend to fits better ITM options with longer
maturities. The weights used in this study for the MSE function are
equal for all data. In order to solve the mentioned problem the end
user can change the weights by assigning a relative big weight to shorter
maturities deep OTM.

The MSE function can also be defined with the implied volatility
of the market. The Implied Volatility Mean Square Error, IVMSE, is
the second way of defining the function.

(6.0.2)
1

N

∑
t,k(∆)

wt,k(∆)(IV
mkt
t,k(∆) − IV H

t,k(∆))
2

The IVMSE finds the parameter set, so that the implied volatilities
of the model are as close as possible to those of the market. Implement-
ing this function to calibrate the Heston model was done by following
the following steps: express the deltas in terms of strikes for all matu-
rities, compute the Heston prices with the given strikes and maturities,
use a root-finding algorithm to find the BSM volatility that equal the
Heston price with the market price, and finally, add up the square dif-
ferences.

The main disadvantage of IVMSE is the need of a root-finding
algorithm which is numerically intensive. One remedy is to use the
approximation of the implied volatility that the Vol. of Vol. expan-
sion series given by Lewis (2000), (A.3.4b). Another solution is to
approximate the IVMSE by the function given in Christoffersen et
al. (2009). See [CHJ09]. The parameter set estimated from the last
mentioned method minimize the following function:
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(6.0.3)
1

N

∑
t,k(∆)

(IV mkt
t,k(∆) − IV H

t,k(∆))
2

V ega2
t,k(∆)

were V ega2
t,k(∆) = S0N (d1)

√
τ is the BSM price equation sensitiv-

ity with respect to the implied volatility evaluated at the maturity and
strikes. This function offers a reduced computational time, however, it
is done at the expense of a loss of accuracy. Christoffersen et al. (2009)
states that the same function used to calculate the parameters must
be used to evaluate the model fit.

The code used in this study to implement the Non-Linear Least
Square calibration 16 is:

There are considerable philosophical discrepancies between calibra-
tion and estimation. Quants may argue that under the risk-neutral
distribution Q, the prices are arbitrage-free, but under P − measure
they are not. Econometricians may stand for a more robust method to
find the parameters set. They may argue that historical prices carry in-
formation about the expected value of the price itself and therefore the
parameters are arbitrage-free. Nevertheless, there is a similarity in ap-
plying any of the methodologies, both algorithms may find the zeros in
the functions, maximize or minimize in order to find the parameter set.

7. An Accurate Implementation

This study calculates the Heston price with two equivalent pricing
approaches: (i) Heston (1993) and (ii) Consolidating the integrals

Because the optimization method used in this study depends on the
Strike rather than Delta, one must find the Strike for the given Deltas.
Furthermore, one can not assume there is a linear relationship between
the Delta and the Strike even though a one to one or injective function
must exist between them. In other words, a delta can only have one
strike and viceversa, and that is a necessary and sufficient condition to
proceed. The following graph shows the relationship.17

In order to implement the Heston model, the parameter set must be
specified first. This study uses the Matlab function fmincon to min-
imize the NLLS and MLE. These optimization functions are stable
and is highly accepted in different disciplines. The constraints used
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Figure 16. Non-Linear Least Square Code
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Figure 17. Delta to Strike and Strike to Delta

are κ > 0, θ > 0, σ > 0, v0 > 0, ρ ∈ [−1, 1], starting values
κ = 8, θ = 0.04, σ = 0.3, V0 = 0.05, ρ = 0.8 and some reason-
able lower and upper boundaries. Moreover, due to the optimization
method used, one must define an upper boundary for all parameters.
The code snippet illustrated in figure 18 shows the initial values, and
the lower and upper boundaries used in this study.

it is worth mentioning that σ and V0 are the volatility of volatility
and the initial value of the volatility of volatility.

It is worth mention that initial values were hardly found. The Colom-
bian market requires a positive ρ and the goal was achieved by applying
a try and failure method in a neighborhood defined by the lower and
upper bound.
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Figure 18. Initaial values, lower and upper bound

As with any optimization, it is important that the starting and true
values do not lie too far from each other12. To achive that, one must be
careful using empirical literature to define them because almost all of
the reliable studies use index or stock data. For FX emerging markets
data such as USD-COP, the ρ must be positive to ensure the mar-
ket behavior: If the risk increases the investors will find shelter in the
strong pair leading to price increases. In other words, the literature
may not be helpful in defining the starting values. In order to define
them one must focus on Fellers condition, 2κ∗θ > σ2, to ensure that σ
is allways positive. In the one week parameter set the condition is not
met due to the Stochastic model’s well known limitation. Zhu (2009)
[Zhu09] calibrates V0 to the ATM implied volatility in the FX market,
and suggest setting κ large enough so that Fellers condition is fulfilled.

In the FX literature the emerging market is not as popular as de-
sired, because of the liquidity in the market. This implies that finding
initial values to used defining the parameter set is one of the paper
contributions. The author remark in the dificult to find initial values
that lies to a positive correlation because parameter set was estimate
for each maturity. This implies that the values used are stable for the
Colombian FX market.

After the problem of the initial values parameter is solved, one can
proceed to estimate the parameters used to find the Heston prices.
This study estimates a set of parameters for each maturity due to the
recomendation of [RH13]. The main difference in each estimation is
that the farther the maturity, the more data is used to estimate the set
parameter. For example, in the estimation in the one week parameter
set, only data from the previous week is considered, while for the one
month parameter set, only data from the previous month is consid-
ered, and so on. This is significantly important due to the fact that

12This is a Ansatz: Suppose this is true so that one can proceed.
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Figure 19. Calibration snippets code

even though the same data may be used on multiple calculations, the
amount of data used varies from calculation to calculation. The same
parameter accross every maturity must not lie too far form each other.
The Matlab snippet of code used to calculate the parameters is shown
in figure 19

The chosen non-linear least square function wasMSE because [RH13]
suggests to use it. Once the parameters are found by the chosen method
one can proceed. It is worth mentioning that for the optimization
method to work, one must define a function to find the price of the
Heston model. In other words, the optimization method uses a pre-
selected Heston pricing equation, and the resulting parameters set will
be used to find the most accurate Heston price method. So the same
variable first will be endogenous and later it becomes exogenous. This
can be misleading, however, one may think that the pre-selected pric-
ing method can be skewed, but that is never the case. No matter what
pre-selected pricing method the code uses, it is never the most accurate.

Once the estimation problem is overcome, one should find, in one
hand, the more accurate method and, in the other, the computation-
ally faster scheme, and combine both results to find the answer this



32 JAVIER LÁZARO

Figure 20. MLE Vs. NLLE

study is looking for: a scheme that lasts the least amount of time pos-
sible and a pricing method that shows as small an error as possible. In
order to achieve this goal, a Ceteris Paribus analysis will take place,
first finding the computationally Faster Scheme, and then the most ac-
curate method.

In the next chapter the problem of the computationally faster schem
will take place.

8. Computationally Faster Scheme

In order to make the process of finding the computationally faster
solution, all the possible combinations of the pricing approach that
require to solve an integral with all the numerical schemes were com-
puted one hundred times. In other words, the two integrals of Heston
(1993) where calculated with the 7 numerical schemes. After the code
calculate the Heston (1993) price by 7 diferent ways, one must know
which of those 7 ways is the best. Understand the best as the scheme
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that lasts the least amount of time possible and show the small error as
possible. Using the Ceteris Paribus analysis the problem become two:
(i) the accurest method and (ii) the fastes one.

To solve the problem of the fastest numerical scheme one must mea-
sure the time required to run the code. This study uses the Matlab
function Timeit. This function calls the specified function multiple
times, and returns the median of the measurements to form a reason-
ably robust time estimate. It also considers first-time costs. The Mat-
lab function cputime was discarded because it could be misleading. For
further details on measure performance se http://www.mathworks.com/

This study uses more than one repetition to make more robust the
analysis because if the repetition are not enough, the conclusion of the
study will be difficult to accept by the reader. To solve this problem,
for each pricing method the code calculates an array of:

(repetition, Strike,Maturity, IntegrationScheme)

were: repetition=100, Strike=ATM, Maturity=[1W,2W,3W,1M,6M,9M,1Y],
Integration Scheme=(i)Mid-Point (ii) Trapezoidal rule, (iii) Simpson’s
rule, (iv) Simpson’s 3/8 rule, (v) Gauss-Laguerre, (vi) Gauss-Legendre
and (vii) Gauss-Lobato. In other word the array will have dimention:

(100, 1, 7, 7)

Figure 29 shows the array for a combination of a pricing aproach and
scheme. There are 49 combinations of pricing methods and numerical
schemes. For example:

(rep = 1, Strike = ATM,Maturit = 1W, IntegrationScheme = Mid−Point)

(rep = 2, Strike = ATM,Maturit = 1W, IntegrationScheme = Mid−Point)
(rep = 3, Strike = ATM,Maturit = 1W, IntegrationScheme = Mid−Point)

.

.

.

(rep = 100, Strike = ATM,Maturit = 1W, IntegrationScheme = Mid−Point)
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is one combination, of Stike, Maturity and the integration scheme
and the code sees it as a matrix. Particulary, all the 49 combination
the code sees it as an array. The code uses nested loops to calculate all
the combination. ie. First make the 100 rep, of ATM strike and 1W
marturity, then its go to 100 rep, ATM strike and 1M marturity. After
that its go to 100 rep of ATM strike and maturity of 2M, so on, until
the maturity of 1Y. See Figure 29 and imagine the Array of:

(repetition, Strike,Maturit)

Now think that in that array lies data that use only mid-point nu-
merical scheme to find those 700 price: 7 maturities, and 100 rep for
each

The study calculate the 29 array to all the numerical scheme. That
mean that will be calculated 7 times. Imagine 30 as the form the code
calculate 100 rep, with the ATM strike, accross all the maturitis, and
solving the model integral with all the numerical shcheme this study
analice. It is importand that the reader remeber that the integrand
change when the parameter of the model change. In this study the
parametes change every time the maturity change due to the fack that
we calculate a fiderent set of parameters to each maturity, and that lies
in importand change in the integrand when the maturity change.

All of the above leads to an array dimension problem. To solve this,
one must calculate the average smile time for each maturity and for all
the posible combinations of pricing methods and numerical schemes to
get an array of dimention

(repetition = 100, Strike = 1,Maturity = 7, IntegrationScheme = 2) = (100, 1, 7, 2)

See Figure 21 and imagine the array.
Once the code calcuates the mentioned array one can reduce the di-

mention to see the computationally faster scheme. Rember thar for
eache calculation of price the code save the time it take to calculate
that price. The next challenge is to find another array that reflects the
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Figure 21. Tiempo ATM

most accurate pricing method.

9. Accurate method

It may be assumed that the trapezoidal rule is the most accurate
pricing approach since a curved line can be approximated by joining
straight lines. For example, a circle can be defined as a polygon of infi-
nite sides. Therefore, one can accurately calculate the Heston integral
by applying the trapezoidal rule with the lower boundary as close as
possible to zero and an upper limit grater than the point where the
integral tends to zero. For the lower limit the study uses 1e-20000, an
upper limit equal to 300 and divide that space in 10.000.000. The Fig-
ure 22 , 23 ,24 and 25 show the integrals of Heston 1993 for maturity
of 1 week and 1 year using MSE and NLLS

All the integrals were plotted to visually determine the point where
the integral tends to zero, which resulted in the conclusion of using 300
as the upper limit. This does not mean that the integrals in the Colom-
bian market decay near that number. However, it can be ensured that
the point of decay is less than the chosen upper limit.

In order to approximate a curved line that can be steep at the origin
but highly oscillatory, the trapezoidal rule must divide the integration
interval into a very large number of parts. This study divides the cho-
sen integration domain [a, b] in 10 million parts. The drawback with
this implementation is the extremely high computational time it can
take to process this numerical method. The benchmark prices for all
the maturities and deltas have at least 41 decimal points, see figure 26,
and take 1.5 hours to calculate each price.

Once the bechmark price has been determined, the MSE between
the benchmark and all the posible combinations of price methods and
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Figure 22. 1W Benchmark Integral using MLE parameters

schemes must be calculated, in order to finally compute the average of
a given MSE price method across maturities. At the end one will have
an MSE 7x7 matrix. See 27.

10. Joining the Average Time with the MSE

For each price method, a Time versus MSE plot is drawn after each of
the axis variables are calculated. Based on these plots, one can proceed
to a more detailed analysis by dividing each plot into four regions. An
example of how this division should take place is shown in Figure 28.
From the regions in the graph, the following conclusions can be derived:

• Region one is the goal behind this study, aiming at finding the
most perfect balance between MSE and computational time for
each pricing method.
• Region two and three vary in importance based on what the

code user is looking for. Where region two would appeal to
those who prefer to sacrifice more time in exchange for a more



AN ACCURATE HESTON IMPLEMENTATION 37

Figure 23. 1W Benchmark Integral using NLLS parameters

accurate result, while region three would favor those with less
time to spend.
• Region four reflects the most undesirable ways to calculate the

Heston price.

In an ideal scenario, there would be six graphs, one for each pricing
method. This would allow for the creation of a final graph displaying
only the top result from each pricing method. With this last graph,
the best pricing method and numerical scheme would be selected.

It is worth mentioning that if any of the numerical calculations of
the price, regardless of numerical schemes and price methods used, lead
to a negative value, the price method will not be taken into account.
The reason behind this lies in the fact that if a single price is nega-
tive, there is a significant probability that other calculations using the
same method can yield more undesireable results. This does not imply
that if all the results are possitive, other calculations using that same
pricing method will not be negative, but the chances of calculating a
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Figure 24. 1Y Benchmark Integral using NLLS parameters

negative value are far lower. Since this study’s aim is based on numer-
ical empirical evidence rather than a mathematical demostration, the
4.901 results obtained from each pricing method are used to support
the claims previously made in the paragraph.

11. Conclusions

All the pricing model where calculated at least 5 times, that implies
that the study calculates . In all of them all the calculated prices
of Heston(1993) and consolidating the Heston integral were positive.
That is a positive result due to the amount of time the price of the
stochastic model was compute.

The model that least the last were consolidating the Heston integral
because it does calculate one integral. In the other hand, the numerical
method that have the smallest MSE is a draw between G-Legendre
and G-Laguerre because its closeness is less than e-5. The remaining
quadrature behaved the same way or with more error than conventional
methods.
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Figure 25. 1Y Benchmark Integral using NLLS parameters

Figure 26. Benchmark ATM Price using MLE and
NLLS parameters
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Figure 27. Error Matrix

Figure 28. MSE Vs Time

The author recommends doing the calculations with Gauss Laguen-
dre because it is much easier to implement and does not have to make
a conversions of the limits of the integral.

In conclusion it is recommended, for the Colombian market, with
USD-COP data to calculate prices with Consolidating the Integral and
GL.

Appendix A. Other Heston(1993) equivalent pricing
methods

This section present other equivalent pricing to Heston (1993)

A.1. Carr and Madan (1999). This pricing method incorporates a
damping factor, α, to price the option and use a Fast Fourier Transform
(hereafter FFT) to reduce the computational time. Even though the
computational time is reduced, this study does not use the FFT as a
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Figure 29. Tiempo ATM

numerical scheme or option pricing method since the cost limitation is
to high in the sense of loss of accuracy and handling. It entails a trade-
off between the grid sizes, consequently, one can not willing chose the
integration grid. This restriction is due to the constrain λη = 2π

N
that

entails the relationship between the integration grid and the log-strike
grid. Other approaches like the Fractional FFT applied by Chourdakis
(2004) [Cho04] tries to solve the limitations of FFR by relaxing the
restrictive constraint.

Carr and Madan (1999) uses a Fourier transform approach to op-
tion pricing. The advantage of their method is the use of only one
integral that decays faster than Heston (1993), in consequence the
computational time is reduce. See Lord and Kahl (2007) [LK07] for
more advantages of the approach. Carr-Madan shows that the ana-
lytical solution to price a European call can be obtain once the CF is
known. This method notices that discounting the present value of the
payoff call, C(x), is not integrable L1, where x = ln k, and therefore
the following modified call price, c(x), is proposed:
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(A.1.1) c(x) = eαxC(x)

where eαx is the damping factor and is applied on C(x) to make the
call price integrable L1 and therefore the Fourier transform, ĉ(x), for
c(x) can be found.

(A.1.2) ĉ(x) =
e−rdτϕ(v − (α + 1)i)

α2 + α− v2 + iv(2α + 1)

where ϕ is f2(φ). To get the call price the inverse Fourier transform
must be used to recover c(x) and remove the damping factor to restore
the call price, C(x).

(A.1.3) C(x) =
e−αx

π

∫ ∞
0

Re
[
eivxĉ(v)

]
dv

The main disadvantage of this approach is having to appropriately
chose the damping factor α since accuracy will be lost if the parameter
is distant from the real one. This study uses Lee (2004a) [L+04] to
find a range of admissible values for α and implements the Lord and
Kahl (2007) method to find the optimal α∗. To implement Carr-Madan
price, one must replaced the spot price S by Se−rf τ , see Whaley (2006)
[Wha06] for justification.

This study uses the following sniped code 32 to calculate the integral

A.2. Lewis (2000) Fundamental Transform. This approach re-

quires that the fundamental transform (hereafter FT), Ĥ(k, v, τ), and
the generalized Fourier transform of the option payoff, be available.
Lewis 2000 [L+00] says: ”The FT is determined by the volatility pro-
cess and not by the particulars of any option contract”, and defines
the FT as an analytic characteristic function with all its properties.
This means that the FT is modeled without a contract dependency
and that the approach will only work with the Heston FT and not its
CF. Through Lewis’ book, some steps to follow for option pricing13 are
presented. Before these steps may be followed, one must obtain the
generalized Fourier transform of the option payoff, which is easier to
obtain than the option price itself, and the fundamental transform of
the Heston model. It is worth mentioning that the fundamental trans-
form of the Heston model is homologous to the CF.

13See page 39 of Lewis (2000) book
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The generalized Fourier transform, unlike the regular Fourier trans-
form, allows some arguments to be complex. The generalized Fourier
transform at maturity, f̂(k, T ) is call the payoff transform

(A.2.1) f̂(k, T ) = − Kik+1

k2 − ik
where ki > 1 for a call option. The FT of the Heston model is not

straightforward, see Lewis (2000) for details of the derivation

(A.2.2)

Ĥ(k, v, τ) = exp(Ct +Dtv)

Ct = κ̃θ̃

[
κ̃+ d

2
t− ln

(
1− gedt

1− g

)]
Dt =

κ̃+ d

2

(
1− edt

1− gedt

)
where κ̃ = 2(κ+ikρσ)

σ2 , θ̃ = κθ
κ+ikρσ

, d =
√
κ̃+ 4c̃, c̃ = (k2−ik)

σ2 , g = κ̃+d
κ̃−d .

Note that the FT, Ĥ(k, v, τ) (A.2.2) is equal to the Heston CF (2.1.6)
with the notation Ct and Dt denoting Cj(τ, φ) and Dj(τ, φ). Once
the payoff (A.2.1) and the FT (A.2.2) are known, the Lewis steps are
straightforward: (i) multiply the fundamental transform (A.2.2), the
payoff transform (A.2.1) and the expression exp([−rd − ik(rd − rf )]τ);
(ii) pass the result trough the generalized inverse Fourier transform
(A.2.3)

(A.2.3) f(x, t) =
1

2π

∫ iki+∞

iki−∞
eikxf̂(k, t) dk

where x = lnSt. (iii) evaluate the integral over the correct strips of

regularity, for which the FT, Ĥ(k, v, τ), and payoff, f̂(x, T ) would be:

(A.2.4)
Ĥ(k, v, τ) :=

−κ̃+ d

2
< ki <

−κ̃− d
2

f̂(x, T ) := 1 < ki

Hence, the call price, C1(K), is:

(A.2.5) C1(K) = −Ke
−rdτ

π

∫ ∞
0

Re

[
eikX

1

k2 − ik
Ĥ(k, v, τ)

]
dk

where X = ln(S/K) + (rd − rf ) and ki > 1.
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Lewis (2000) establishes another way to compute the call price based
on put-call parity and a covered call, for which the payoff ismin(ST , K).

The respective covered call payoff transform is f̂(k, T ) = Kik+1 / (k2−
ik) and the FT is (A.2.2). Upon completion of the mentioned steps14

for the option pricing with the covered call, one can get:

(A.2.6)

C2(K) = Ste
−rf τ − Ke−rdτ

π

∫ ∞
0

Re

[
eikX

1

k2 − ik
Ĥ(k, v, τ)

]
dk

Note that the values of C1 and C2 are the same, even though the
expressions are virtually identical, the different strips make the value
of the integrals distinct but operating with the remaining terms makes
the prices equal.

A.3. Lewis (2000) Volatility of Volatility Series Expansion.
Pricing with the Heston model by the Vol. of Vol. expansion is compu-
tationally faster because the approach does not solve an integral, like
the name says, the price is obtained by a series of sums. As a matter of
fact, the expansion derived its name from the powers of the volatility of
volatility parameter, σ, from which the series are expressed in. There
are two expansions, one for the price and one for the implied volatility,
known as Series I and II respectively.

Series I is based on the BSM price

(A.3.1) CBS(S0, v̄ T ) = S0e
−rfTφ(d1)−Ke−rdTφ(d2)

where d1 = (log(S0/K) + (rd − rf + v̄2/2)T )/(
√
v̄T ) and d2 = d1 −√

v̄T . The expression, v̄, is the expected average variance over the
lifetime of the option, (0, T ). It is defined as:

(A.3.2)

v̄ = E

[
1

T

∫ T

0

vt dt

∣∣∣∣ v0

]
=

1

T

∫ T

0

E[vt|v0] dt

=
1

T

∫ T

0

vt[θ + (v0 − θ)e−κT ] dt = (v0 − θ)(
1− e−κT

κT
) + θ

Series I also uses the BSM Vega evaluated at the expected aver-
age variance, v̄. Note the importance of, v̄, in the derivation of this
approach.

14The strip for step 3 is ki = 1/2
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(A.3.3) Cv(S0, v̄, T ) =
∂CBSM
∂v

∣∣∣∣
v=v̄

=

√
T

8πv̄
S0e

−rfT exp(−1

2
d2

1)

As mentioned, the first series calculates the Heston price directly,
meanwhile the second one provides the implied variance that serves as
input in the BSM pricing formula to compute the Heston price. Series
I is (A.3.4a) while Series II is (A.3.4b).

(A.3.4a)

CI(S0, v0, T ) ≈ CBS(S0, v̄0, T ) + σ
J1

T
R1,1Cv(S0, v0, T ) +

σ Cv(S0, v0, T )

[
J3R

2,0

T 2
+
J4R

1,2

T
+

(J1)2R2,2

2T 2

]
(A.3.4b)
CII(S0, v0, T ) = CBS(S0, vimp, T )

vimp ≈ v̄ +
J1R

1,1

T
+

σ2

[
J3R

2,0

T 2
+
J4R

1,2

T
+

(J1)2

2T 2
(R2,2 −R2,0(R1,1)2)

]
Both series depend on the expected average variance, v̄, as well as

in the J1,3,4 and R equations. Lewis (2000) explains that J2 equation
vanishes since the drift is linear. Each Js equation presented here is
a solution of a respective integral with φ(1/2). The interested reader
may check the integrals in Lewis 2000 for further details.

(A.3.5)

J1(v0, T ) =
ρ

κ

[
θT + (1− e−kT )(

v0

k
− 2θ

k
)− e−kT (v0 − θ)T

]
J3(v0, T ) =

θ

2κ2

[
T +

1

2κ
(1− e−2κT )− 2

κ
(1− e−kT )

]
+

(v0 − θ)
2κ2

[
1

k
(1− e−2kT )− 2Te−kT

]
J4(v0, T ) =

ρ2θ

κ3

[
T (1 + e−κT )− 2

κ
(1− e−κT )

]
− ρ2

2κ2
T 2e−κT (v0 − θ) +

ρ2(v0 − θ)
κ3

[
1

κ
(1− e−κT )− Te−κT

]
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Finally, the R equations are presented. They are BSM ratios used
to compute the Heston price.

(A.3.6)

R1,1 =

[
1

2
−W

]
, R1,2 =

[
W 2 −W − 4− Z

4Z

]
R2,0 = T

[
W 2

2
− 1

2Z
− 1

8

]
R2,2 = T

[
W 4

2
− W 3

2
− 3X2

Z3
+
X(12 + Z)

8Z2
+

48− Z2

32Z2

]
where W = X/Z, X = log(S0/K) + (rd − rf )T, Z = v̄T .
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Figure 30. Tiempo ATM
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Figure 31. Tiempo ATM
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Figure 32. Error Matrix
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