UNIVERSIDAD DEL ROSARIO - FACULTAD DE ECONOMÍA Economía Matemática 2017-II - Parcial 1

Andrés Felipe Cárdenas T. Juan Carlos Zambrano J.

Septiembre 14 de 2017

Cada punto tiene un valor de 25 pts, para un total de 100 pts.

Algunas definiciones:

- Conjunto abierto: Un conjunto A es abierto si $\forall x \in A$ existe $\epsilon > 0$ tal que $B_{\epsilon}(x) \subset A$. Un punto $x \in A$ es interior si $\exists \epsilon > 0$ tal que $B_{\epsilon}(x) \subset A$.
- Conjunto cerrado: Un conjunto B es cerrado si B^c es abierto.
- Puntos de acumulación: Un punto x es un punto de acumulación de A si y solo si $\forall \epsilon > 0$ $B_{\epsilon}(x)^* \cap A \neq \Phi$, donde $B_{\epsilon}(x)^*$ es la bola agujerada. El conjunto A' es el conjunto de puntos de acumulación de A.
- La adherencia de un conjunto A es: $\bar{A} = A' \cup A$
- 1. Sea el conjunto $X=\{(x,y)\in\mathbb{R}^2\mid x>0\quad y>0\}$ y la función $f(x,y)=x^\alpha y^{\frac{1}{2}},$ donde $\alpha>0.$
 - a) ¿Para qué valores de α es f una función cóncava en X?
 - b) ¿Para qué valores de α es f una función cónvexa en X?
- 2. Sean los conjuntos

$$A = \left\{ x \in \mathbb{R} \mid x = \frac{3n-1}{2n} \quad n \in \mathbb{N} \right\}$$
$$B = \left\{ x \in \mathbb{R} \mid x = \frac{n^2 + 2}{n^2} \quad n \in \mathbb{N} \right\}$$

1

- a) iA y B son cerrados? iSon abiertos?
- b) Calcular $A', \bar{A}, B', \bar{B}, \overline{A \cup B} y (A \cup B)'$.
- c) Determine si $A \cup B$ es un conjunto cerrado.

¡Justifica todas las respuestas!

- 3. Sea el ingreso total en una firma $15q_1 + 18q_2$, el cual esta sujeto a un costo total de $2q_1^2 + 2q_1q_2 + 3q_2^2$. Donde q_1 y q_2 son los niveles de producción de cierto tipo de productos en la firma.
 - a) Determine el nivel de producción que maximiza | minimiza el beneficio de la firma.
 - b) Dado que el costo viene dado por $2q_1^2 + 2q_1q_2 + aq_2^2$. ¿Qué requisito debe cumplir a para que exista un beneficio máximo?
- 4. a) Encuentre el máximo y el mínimo de $f(x,y) = x^2 y^2$ s.a $x^2 + y^2 = 1$ usando el método de Lagrange.
 - b) Usando la sustitución $y^2=1-x^2$ resuelva el mismo problema como una sola variable sin reestricciones.
 - ¿ Obtienes los mismos resultados? ¿Por qué si o por qué no?