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Abstract 

Background  

Triatomines are responsible for the most common mode of transmission of Trypanosoma cruzi, the 

etiologic agent of Chagas disease. Although, Triatoma and Rhodnius are the vector genera most 

studied, other triatomines such as Panstrongylus can also contribute to T. cruzi transmission creating 

new epidemiological scenarios that involve domiciliation. Panstrongylus has at least twelve reported 

species but there is limited information about their intraspecific diversity and patterns of 

diversification. Here, we began to fill this gap, studying intraspecific variation in Colombian 

populations of P. geniculatus. 

Methodology/Principal finding  

We examined the pattern of diversification as well as the genetic diversity of P. geniculatus in 

Colombia using mitochondrial and ribosomal data. We calculated genetic summary statistics within 

and among P. geniculatus populations. We also estimated genetic divergence of this species from 

other species in the genus (P. lignarius and P. megistus), and with these samples, we obtained ML 

and BI topologies as well as haplotype networks. We also dated the P. geniculatus lineages. The total 

evidence tree recovered four clades within P. geniculatus that are consistent with genetic structure by 

geography with no effect of the Andes orogeny or isolation by distance. We also report the first case 

of heteroplasmy in Panstrongylus samples. These multiple haplotype in the sequences did not show 

major phylogenetic incongruences. 

Conclusions/Significance 
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We found considerable divergence among P. geniculatus Colombian populations consistent with 

geography. This pattern is not linked to past geological events such as the Andean uplift nor is related 

to isolation by distance. Other factors including anthropogenic and eco-epidemiological effects await 

to be explored to explain the existence of P. geniculatus recent geographical lineages. Broadening 

the knowledge of P. geniculatus is necessary for the accurate development of effective strategies for 

vector control of Chagas disease. 

Author summary 

We present the first approximation of genetic diversity, phylogenetic relationships and population 

structure of P. geniculatus in Colombia. We compiled an extensive sampling to construct a phylogeny 

and estimate the genetic structure of the populations found. The main four clades showed a 

remarkably recent divergence time suggesting that geography changes are not the main factor shaping 

the genetic structure of P. geniculatus. We discuss several epidemiological consequences for the 

diversification of this vector and its importance for vector control programs. 

Introduction 

Chagas disease affects about six million people in Latin America and is caused by the parasite 

Trypanosoma cruzi, which is transmitted mainly by insects of the subfamily Triatominae (Hemiptera: 

Reduviidae) (1). The subfamily Triatominae is composed by 5 tribes, 15 genera and 149 described 

species (2) and only few genera are involved in the transmission of T. cruzi (3,4). In particular, the 

genera Triatoma, Rhodnius and Panstrongylus are the main vectors that transmit the parasite to 

humans due to their capacity of domiciliation (1,5). After Triatoma and Rhodnius, Panstrongylus is 

the genus with more species (currently 13), some of which appear to be involved in a domiciliation 

process (where at least three development life stages can be found in the domicile) (4). However, 

studies on T. cruzi transmission and control strategies have focused mainly in Rhodnius and Triatoma, 

and secondary vectors such as Panstrongylus remains unstudied. The species relationships, genetic 
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diversity and evolutionary trends are also understudied for this genus in contrast to what is known for 

Rhodnius and Triatoma. 

Within Panstrongylus, the specie P. geniculatus is known to have domiciliated. The incursion of this 

species in the domicile is relevant due to the irruption of T. cruzi sylvatic strains that are more virulent 

compared to the domestic strains (10,12). This changes in vector behavior creates new transmission 

dynamics of T. cruzi and emerging challenges for the control of Chagas disease (2,4,6). 

P. geniculatus occurs in 18 countries of Latin America, from Mexico to Argentina, where it has the 

widest range of habitats, including dry, humid, rainy forest and savannah (4). P. geniculatus is one of 

the primary incriminated vectors of oral Chagas Disease outbreaks in Colombia and Venezuela (7–

9) with reports of higher parasitemia compared to other infection routes (2,7,10). Specifically, in 

Colombia, the domiciliation process of P. geniculatus was mainly associated with light attraction 

(11). Since P. geniculatus occurs in 25 departments of Colombia (13), the domiciliation process 

represents an increase of risk of new Chagas disease cases. Previous studies indicated that the 

infection rate of P. geniculatus with T. cruzi was higher than 80% (14) and that in seven Colombia 

departments, this species had the highest frequency of infection with T. cruzi (1).  

Besides the epidemiological importance of this species, its current classification is difficult and based 

exclusively on morphological characters (4). Also, morphometric analyses have revealed high 

morphological variability within P. geniculatus (4,15–17). Despite the advances in molecular 

methods, few studies have used DNA markers to understand the species relationships in 

Panstrongylus and the phylogenetic status of this genus in the Triatominae subfamily. Previously, 

studies have shown incongruence in the phylogeny of the species suggesting polyphyly (18) and 

paraphyly (19). Furthermore, as far as we know, there is no information about diversity levels and 

divergence events in each species. Herein, we began to address this lack of information using 

molecular data to document P. geniculatus genetic variability and diversification in Colombia. Our 

results broaden the knowledge of this vector and contribute to a better understanding of the biology 

of P. geniculatus.  
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Methods 

Sampling  

A total of 128 samples corresponding to six species (103 P. geniculatus, 6 P. lignarius, 14 P. 

megistus, 2 Triatoma infestans, 2 T. pallidipennis and 1 Triatoma sp.) were used in this study. 

Panstrongylus spp. were collected in nine departments of Colombia (Casanare, Arauca, Meta, 

Santander, North Santander, Magdalena, Córdoba, Boyacá and Amazon) and in Venezuela (Caracas). 

The remaining samples were collected in Brazil and Bolivia (Table S1, Fig 1). We sampled insects 

in three different ecotopes: sylvatic (25m away from any residence), domestic (inside houses) and in 

the peridomestic ecotope (10m away from any residence). Insect capture in the sylvatic ecotope was 

performed using two techniques: manual search and modified Noireau baited chicken traps located 

in palms. Insects in the domestic ecotopes were collected by hand picking. Insects were identified 

using standard taxonomic keys (20) and stored individually in plastic containers with 100% ethanol. 

Upon arrival to the microbiology laboratory at Universidad del Rosario, these containers were stored 

at -20ºC until processing.   

Figure 1. Map showing the location of the samples included in this study. The size of the circle is not 

representative of the number of individuals collected at each location. 

DNA extraction, amplification and sequencing 

DNA was extracted from the whole body (63 samples) and from the head, leg and thorax (68 samples) 

using the DNeasy® Blood & Tissue kit  (Qiagen) (21) but doubling the amount of Buffer ATL, 

proteinase K, Buffer AL and ethanol. In addition, the final elution step was performed with only 150 

µL of Buffer AE. The concentration and quality of DNA was measured at 260/280 and 230/260nm 

using a Nanodrop 1000 spectrophotometer. The quality of the DNA was also verified in 2% agarose 

gels.  



5 
 

We used five sets of primers to amplify ribosomal (rDNA) and mitochondrial gene fragments (Table 

1). We amplified 823 bp of 18s (19) and 696 bp of 28s (22) and for the mitochondrial loci, we 

amplified 630 bp of NADH dehydrogenase subunit 4 - ND4 (23), 552 bp of Cytochrome b - Cytb (19) 

and 508 bp of 16s (19). PCR reactions for all gene fragments markers were conducted in a final 

volume of 12.5 µl using 1.5µl of DNA template, 6.25µl of GoTaq Green Master Mix (2x), 1.25 µl 

(10 µM) of each primer and 2.25 µl of Nuclease Free Water. The fragments were amplified with 

previously reported thermal cycling conditions (see references in Table 1). For all loci, we visualized 

2 µL of the PCR product in a 1.5% agarose gel stained with SYBR® Safe DNA Gel Stain to verify 

the success of the PCR. Samples that showed a solid band of the expect size were purified with 

ExoSAP-IT and then sequenced by Sanger sequencing (both strands) in MACROGEN (Seoul, South 

Korea) using a ABI3100 machine. The output sequences were read and assembled to contigs with 

Geneious 11.0.5 (24). After base calling and editing, we used the same program to obtain a consensus 

sequence per sample. We also used a plug-in of Geneious to construct Muscle alignments for each 

locus (25). The resulting alignments were manually inspected for misalignments and ambiguities. In 

cases where heterozygosity/heteroplasmy was present, different haplotypes for each locus were 

inferred with the PHASE algorithm implemented in DnaSP v5.10 (26) with 1000 iterations per 

simulation.    

Table 1. Primers for mitochondrial and ribosomal gene fragments.  

Gene fragment  Primers Region amplified (pb) 

ͣ NADH dehydrogenase 

subunit 4 -ND4 (23) 

Primers Forward: TCAACATGAGCCCTTGGAAG 630 

Primers Reverse: ATTCGTTGTCATGGTAATG 

ͣ Cytochrome b - Cytb (19) 

Primers Forward: GGACG(AT)GG(AT)ATTTATTATGGATC 522 

Primers Reverse: ATTACTCCTCCTAGYTTATTAGGAATT 

ͣ16s (19) 

Primers Forward: CGCCTGTTTATCAAAAACAT 508 

Primers Reverse: CTCCGGTTTGAACTCAGATCA 
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ᵇ18s (19) 

Primers Forward: AAATTACCCACTCCCGGCA 823 

Primers Reverse: TGGTGUGGTTTCCCGTGTT 

ᵇ28s (22) 

Primers Forward: GCGAGTCGTGTTGCTTGATAGTGCAG 696 

Primers Reverse: TTGGTCCGTGTTTCAAGACGGG 

ͣMitochondrial marker; ᵇribosomal (rDNA) markers 

 

Tree estimation and dating 

We determined the best-fit nucleotide substitution model for each locus using the Bayesian 

Information Criterion (BIC) (27) in IQ-Tree (28). Phylogenetic reconstruction was performed with 

maximum likelihood (ML) in the same program (28), and using Triatoma spp. as outgroups. For 

ribosomal loci, we used T. infestans and T. pallidipennis as outgroups and for the mitochondrial loci, 

we used T. infestans. 

For mtDNA, the ML tree was constructed using a concatenated alignment with unlinked substitution 

model per locus. We also evaluated the ML reconstruction for each locus (Fig S1). Afterwards, 

topologies were estimated with Bayesian inference (BI) using BEAST 2.5.1 (29) only for 

mitochondrial concatenated loci since they these revealed the presence of recent lineages in P. 

geniculatus and resolved its phylogenetic relationships with other Panstrongylus species (see results).  

We performed two independent runs with 100 million generations, sampling every 1000 generations 

and discarding 10% as burn-in. We used an uncorrelated lognormal relaxed clock to estimate 

divergence times, as this clock model allows each branch of a phylogenetic tree to have its own clock 

rate; we also used a fossil calibration with an age range reported for P. hispaniolae of 20.44-13.82 

Ma (30). We analyzed the Beast output with Tracer v1.7.1 (31) to evaluate if the analysis yielded 

sufficient number of independent samples from the posterior distribution (effective sample size 

>200). To obtain the tree that best represents the posterior distribution, we used TreeAnnotator 
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v.1.10.4 (29) with a 10% of burning percentage. Afterwards, all trees (ML and BI) where visualized 

and edited using FigTree v.1.4.4 software (32). 

Population genetics 

We calculated networks per locus to visualize the haplotype diversity and clustering of the three 

Panstrongylus species (P. geniculatus, P. lignarius, and P. megistus) using algorithms of minimum 

distance in the program PopArt (33). The same program was used to build haplotype networks among 

P. geniculatus populations.   

Genetic diversity statistics were calculated for the clusters revealed by the haplotype networks: 

nucleotide diversity (π), substitution rate (θ), number of segregating sites (S) and Tajima’s D test. 

These stats were calculated with DNASP V5.10 (26). Genetic structure between species/geographical 

groups was estimated with FST (34), DXY and Da (35). The effect of isolation by distance (IBD) in the 

population structure was evaluated with a Mantel test (36) using the R package vegan (37). To do so, 

the matrix of genetic distances was estimated by linearizing FST values (38) and the pairwise 

geographic distances among localities was processed using the function distm from R package 

geosphere (39). We also performed a linear correlation between geographic distances and genetic 

distances as recommended by (40) with the entire dataset and without extreme points.   

 

Results 

Heterozygous sites and evidence of heteroplasmy 

We observed ambiguous bases in the chromatograms in multiple P. geniculatus samples and in all 

mitocondrial loci amplified (Table 2, Fig S2). In contrast, the samples of the other species of 

Panstrongylus evaluated in this study did not present heteroplasmy.   
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Table 2. Genetic marker, ID, number of nucleotide ambiguities per sequence of P. geniculatus 

Genomic marker Sequence ID W M Y R 

16s 
26-MetaPg - 1/508 - - 

122-SNSMPg 1/508 - - - 

Cytb 

31-MetaPg - - 11/550 2/550 

84-CordobaPg - - 1/550 2/550 

130-Leticiag - - 1/550 - 

ND4 

23-MetaPg - - 4/630 1/630 

29-MetaPg - - 1/630 - 

39-MetaPg - - 4/630 1/630 

42-MetaPg - - - 1/630 

45-MetaPg - - 6/630 4/630 

54-CasanarePg - - 6/630 3/630 

59-CasanarePg - - 7/630 6/630 

61-CasanarePg - - 3/630 3/630 

70-AraucaPg - 1/630 - - 

72-AraucaPg - - 2/630 1/630 

76-AraucaPg - - - 2/630 

79-AraucaPg - - 1/630 3/630 

121-SNSMPg - - 2/630 - 

Nucleotide ambiguity codes based on IUPAC designations: W = A/T; M = A/C; Y = A/C and R = 

A/G. Numbers in each cell represents the number of sites with the IUPAC code in the total length of 

the sequence for each gene.  
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Molecular phylogenetics and divergence times 

For the ML phylogeny reconstruction, the most suitable models were TIM2+F+I+G4 for Cytb, 

TN+F+R3 for ND4, HKY+F+G4 for 16s, K2P for 18s and HKY+F+I for 28s. The two ribosomal loci 

showed little phylogenetic resolution (Fig. 2). Specifically, the 28s gene fragment revealed P. 

lignarius and P. megistus as sister species, although but this node is not well supported (Fig 2) while 

the 18s showed the three species intermixed (Fig 2). Two samples of T. pallidipennis are closely 

related to Panstrongylus in both genes (Fig 2). 

Fig 2. Phylogenetic trees (top) and haplotype networks (bottom) inferred with rDNA. Numbers 

on the nodes are the bootstrap support values. Each tick on the haplotype network represents 

a mutational step. 

In contrast, mitochondrial gene fragments resulted much more informative ML and BI topologies 

were completely concordant and revealed three highly supported clades corresponded to the 

Panstrongylus species, namely P. geniculatus, P. megistus and P. lignarius (Fig 3). Within P. 

geniculatus, we recovered four clades associated, to some extent, with geography: 1) East of the 

Eastern Cordillera of the Colombian Andes clade (BS=58, PP=0.99) that include the departments 

Arauca, Casanare, Meta, Amazonas, Córdoba and some individual of Santander, Boyacá and 

Magdalena, 2) West of the Eastern Cordillera of the Colombian Andes clade (BS=100, PP=1) which 

includes the rest of Santander and Boyacá samples, 3) North of Santander clade (NSant; BS=100, 

PP=1) that only includes samples collected there and 4) Magdalena (Sierra Nevada of Santa Marta - 

SNSM) with Venezuela (SNSM-Ven; BS= 100, PP=1) includes all individuals from Venezuela and 

almost all of the samples of Magdalena except for one that was recovered in the East clade.  

Figure 3. Consensus phylogenetic tree inferred with mitochondrial DNA. Numbers in the nodes 

are the support values of bootstrap/posterior probabilities.  
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Figure 4. Consensus phylogenetic ML (left side) and BI (right side) tree inferred with 

mitochondrial DNA. Numbers on the nodes are the support values (Bootstrap for ML and 

Posterior probability for BI). Color highlighted individuals indicate where they were collected 

based on the color used for each clade. For BI, branch labels are posterior probabilities and 

node labels are estimated divergence times. Each blue bar corresponds to the 95% HDP 

interval. Tip label of the East clade correspond to the identifiers (IDs) described in Table S1. 

Population genetics 

Mitochondrial networks clustered haplotypes by species with multiple mutational steps among them 

(Fig 5). Consistently, we found high genetic differentiation between the P. geniculatus, P. lignarius 

and P. megistus (Table 4). P. geniculatus nucleotide diversity was higher in comparison with the 

other species (Table 3), suggesting an increased variability in this species, we cannot rule out a sample 

size effect. A close up of the P. geniculatus haplotype networks confirmed the geographic groups 

previously described (Fig 6) that are genetically differentiated (Table 4). However, there are some 

shared haplotypes between groups (Fig 6; Fig 4); the East group shared haplotypes with West and 

SNSM-Ven groups (Fig 6). Isolation by distance was ruled out as a causal factor contributing to the 

geographical genetic structure (Table 5, Fig 7) and even though we found significant correlation 

between geographic and genetic distances in some cases, the adjust of the lineal model is extremely 

poor and the Mantel test was non-significant. 

Figure 5. Haplotype networks for mitochondrial loci grouped by species.  Each tick on branches 

represents a mutational step. 

Figure 6. Haplotype networks for mitochondrial loci grouped by geographic location. Each tick 

on branches represents a mutational step. 

Figure 7. Isolation by distance plots for mitochondrial loci. Two tests of correlation were carried 

out: with all the data (top) and without extreme points (bottom) 



11 
 

Table 3. Genetic summary statistics for the three species used in this study and for the Eastern, 

Western, North Santander (NSant) and Magdalena-Venezuela (SNSM-Ven) groups for each 

mitochondrial locus. 

Genomic marker Population n h S π± SD D 

Cytb 

P. geniculatus 84 43 134 0.039±0.004 -0.671 

P. megistus 13 2 21 0.020±0.003 2.539 

P. lignarius 1 1 0 0 ---------- 

East 61 30 54 0.022±0.002 0.185 

NSant 2 1 0 0 --------- 

SNSM-Ven 7 3 17 0.014±0.005 0.775 

West 14 10 99 0.066±0.010 0.734 

ND4 

P. geniculatus 92 60 145 0.045±0.003 -0.26792 

P. megistus 12 7 62 0.031±0.012 -0.28969 

P. lignarius 6 2 20 0.012±0.007 -1.49247 

East 65 44 76 0.028±0.002 0.081 

NSant 4 4 3 0.003±0.001 2.012 

SNSM-Ven 12 6 23 0.013±0.003 -0.050 

West 10 7 92 0.054±0.011 0.039 

16s 

P. geniculatus 92 35 48 0.014±0.002 -0.84369 

P. megistus 14 4 4 0.003±0.001 1.05159 

P. lignarius 6 2 2 0.001±0.001 -1.13197 

East 65 18 16 0.006±0.001 -0.185 

NSant 2 1 0 0 --------- 

SNSM-Ven 7 6 1 0.007±0.001 1.381 
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West 18 11 34 0.027±0.002 1.400 

n: number of sequences; h: number of haplotypes; S: number of segregating sites; π: nucleotide 

diversity; D: Tajima’s D. None of the loci showed Tajima’s D values that departed from neutral 

expectations.  

Table 4. Measures of population structure between species and P. geniculatus geographical clusters 

for mtDNA loci. 

  Cytb ND4 16s 

Population 1  Population 2 FST DXY Da P-value FST DXY Da P-value FST DXY Da P-value 

P. geniculatus P. megitus 0.82133 0.16425 0.13489 0.00001*** 0.75562 0.15771 0.11917 0.00001*** 0.91053 0.0842 0.07667 0.00001*** 

P. geniculatus P. lignarius --------- --------- --------- --------- 0.82312 0.15882 0.13073 0.00001*** 0.91003 0.0949 0.08636 0.00001*** 

P. megitus P. lignarius --------- --------- --------- --------- 0.86254 0.15546 0.13409 0.00001*** 0.96861 0.075 0.07264 0.00001*** 

SNSM-Ven West 0.4626 0.0749 0.0347 0.0000*** 0.6406 0.0851 0.0569 0.00001*** 0.4173 0.0293 0.0122 0.00001 

SNSM-Ven NSant 0.8828 0.0614 0.0542 0.045* 0.8737 0.0609 0.0532 0.002** 0.7564 0.0150 0.0113 0.037* 

SNSM-Ven East 0.6891 0.0588 0.0405 0.00001*** 0.5503 0.0447 0.0246 0.00001*** 0.4564 0.0126 0.0057 0.00001*** 

West NSant 0.5991 0.0824 0.0493 0.028* 0.7013 0.0927 0.0650 0.006** 0.5394 0.0247 0.0081 0.005** 

West East 0.1570 0.0523 0.0082 0.00001*** 0.5379 0.0876 0.0471 0.00001*** 0.3281 0.0247 0.0081 0.00001*** 

NSant East 0.8527 0.0752 0.0641 0.001** 0.7435 0.0617 0.0459 0.00001*** 0.7129 0.0111 0.0079 0.00001*** 

Probability obtained by the Hudson Permutation test with 1000 replicates. *, 0.01<P<0.05; **, 

0.001<P<0.01; ***, P<0.001. “---------”: some statistics could not be calculated due to low number of 

haplotypes per population. 

Table 5. Isolation by distance analyses. Mantel and correlation test were performed with: all 

samples and without extreme points. 

  Entire Data Excluding extreme points 

Locus R R2 P value Mantel r P-value R R2 P-value 

16s 0.3121 0.0974 0.0046** 0.1442 0.2548 0.8107 0.6572 0.5143 

Cytb 0.1935 0.0374 0.0538 0.0672 0.3373 0.2025 0.0410 0.0616 

ND4 0.2422 0.0587 0.0294* 0.0998 0.2328 0.0813 0.0066 0.5164 

P-value: *, 0.01<P<0.05; **, 0.001<P<0.01; ***, P<0.001 
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Discussion 

Increasingly evidence suggest that some of the species of Panstrongylus should be consider as 

primary vectors for Chagas disease. Despite of this, few studies are known about the genetic diversity 

of these species. Specifically, few representatives of this genus were used to establish the 

phylogenetic relationships of the Triatominae subfamily (19,41), and a seminal study using ITS-2 

sequences from six species showed that they are polyphyletic (18). In particular, P. geniculatus has 

become relevant over the years mainly for three reasons: its geographical distribution, record of 

domiciliation and its association with oral outbreaks mainly in Colombia and Venezuela. Phenotypic 

variability in this species has been studied at the morphological level (15,16,42) and as far as we 

know, only one karyotype is known for P. geniculatus (42). Intraspecific karyotypic and 

morphological diversity observed coupled with P. geniculatus wide distribution let to these authors 

to propose that this specie must be a complex of species (42). Yet, this asseveration awaits to be tested 

at the molecular level.   

Heteroplasmy has been documented in other invertebrate organisms including T. cruzi (43,44). This 

is the first report to our knowledge of heteroplasmy in Panstrongylus. Remarkably, most examples 

of heteroplasmy come from experimental hybrids and natural hybrid zones (45) and rarely from 

natural populations as the one evaluated in this study. As shown in Table 2, all mitochondrial loci 

evaluated exhibit ambiguous bases which could lead to health problems to the organism (46). These 

problems could be associated with neurodegenerative complications (47) that may affect the 

transmission cycle. Further studies are required to test this premise. Moreover, heteroplasmy could 

cause ambiguities in the interpretation of phylogenetic, phylogeographic and population genetic data 

(48–50). In this study, even though we did find ambiguities in the sequences (Table 2, Fig S2), they 

did not reflect in phylogeny reconstruction. Some samples vary the relation found within the clade 

they belong but none of the haplotypes of the individuals with heteroplasmy were recovered in 

different clades (Fig 4).  
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We did not find genetic evidence for the existence of geographical lineages inside P. geniculatus in 

our rDNA data set (Fig 3 & 6), which can be explained by differences in coalescence times and 

effective population sizes between rDNA and mtDNA (51–53). Also, ML phylogeny reconstruction 

for the rDNA loci differed in the number of species of Panstrongylus recovered (Fig 2). Despite both 

18s and 28s are rDNA fragments, each gene has different mutation rates that could be modified by 

different selection pressure that may be modeling de divergence rate of each gene (54,55). These gene 

fragments did not resolve intraspecific relations within P. geniculatus (Fig 2). The slow substitution 

of nucleotides in these fragments amplified was not informative to elucidate the relationships of the 

populations of P. geniculatus evaluated. Within the polytomy of P. geniculatus, both markers 

recovered the samples of T. pallidipennis as part of this unresolved clade. This may be explained by 

the other species used as outgroup -T. infestans-.  

Previous molecular studies that include these species, have reported T. pallidipennis as part of the 

Phyllosoma subcomplex and T. infestans as part of the Infestans subcomplex (56–58). Phylogenetic 

reconstructions that include these species as well as other Triatominae species reveal that P. 

geniculatus is more closely related to T. pallidipennis than to T. infestans (19,59). This study also 

revealed paraphyly between Triatoma and Panstrongylus suggesting a close relationship among 

species and a possible shared ancestry (19). Closely related species of Triatoma and Panstrongylus 

shared a similar distribution and therefore Panstrongylus could have diverged from a Triatoma 

ancestor and have not completely diverged (56). These assumptions require further studies testing 

this hypothesis.  

At a broad scale, we also were able to recover in mtDNA the relationships for the Panstrongylus 

species included here. P. lignarius was sister to P. megistus, and this clade was sister to P. geniculatus 

(Fig 3 & 5). This result contrast with the previous lack of resolution obtained with ITS-2 (18). Within 

P. geniculatus, even though genetic differences are emerging between geographical populations of 

this species, their genetic divergence is low to be considered as a complex of species (Table 3 & 4). 
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Although the genetic haplotype geographical distribution of P. geniculatus is suggestive of an Andean 

orogeny effect in its diversification, as observed in other Triatominae (41,59–61), we found that P. 

geniculatus originated approximately 50 thousand years ago, which is outside of the lapse of time of 

the Andean uplift (Eastern Cordillera achieve its final elevation ~2.5 Mya during the Pliocene (62)). 

A better geographical sampling at intra and interspecific levels is needed to confirm this result. A 

similar pattern has been observed in Triatoma dimidiata another species with high variance in 

phenetic and genetic diversity (23,63–65). In this study three genetic differentiated populations from 

three eco-geographical regions were described: Sierra Nevada of Santa Marta, Inter Andean Valleys 

and Caribbean Plains (65). Genetic structure in this case was correlated with eco-epidemiological and 

morphological traits and not with geographic events (65). Although the Andes uplift seems 

unimportant in shape the P. geniculatus geographical pattern observed here, mountains can also 

promote diversification through processes like niche partitioning, altitude gradients, climate variation 

and long-distance dispersal among others (22,66–68). Additional eco-epidemiological factors 

involving vector adaptability can also be shaping divergence within populations (67,69). 

As previously described,  P. geniculatus could be considered as a eurythermal species due to its wide 

adaptability to several life zones (4). The rapid uplift of the Andes created a broad dimension of new 

ecological niches with opportunities for colonization (62).  Interestingly, shared haplotypes coupled 

with no evidence of isolation by distance among some of these regions, account for long dispersal 

gene flow (Table 5, Fig 6 and Fig 7). Thus, long-distance dispersal coupled with niche colonization 

could facilitate the admixture between P. geniculatus populations occurring at opposite sides of the 

Andes. It is possible that dispersion and gene interchange could be facilitated by incomplete lineage 

sorting since the divergence of these geographical lineages is recent. However, shared variation could 

be also caused by vehicles (e. g. passively through humans migration or through the vertebrate host) 

(70) and therefore, allowing admixture between populations. Previous studies have reported the 

domiciliation of P. geniculatus principally due to their attraction to light, and having into account that 
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this species is principally a terrestrial triatomine (71,72), we suggest that the dispersion of individuals 

from different regions may be mediated by human migration. This could be promoted by flight 

dispersion of this triatomines near human settlements. Although previous reports have documented 

that adults generally fly poorly, it  also has been suggested that fly capacity is enough to get this insect 

inside dwellings (6,69), however further studies are required to validate this premise. 

This dispersion could also be mediated by vertebrate host as previously described (73). P. geniculatus 

is commonly associated with opossums, armadillos and bats (72) but a more recent study revealed 

that this species has a wide range of feeding sources (1).  P. geniculatus was reported as one of the 

vectors with the greatest variety of feeding source with 18 hosts, which includes armadillos, 

opossums, bats, rodents, canines, rabbits and primates (74). As previously described, passive 

dispersion by human activity and carriage on animals is important over long distances migration (69). 

The incursion of P. geniculatus into human colonized territory, human agricultural activities and the 

great amount of feeding sources could be favoring the possibility of dispersion through of different 

regions of Colombia. The survival of P. geniculatus in a wide range of habitats, creates new 

ecological factors that could promote the diversification of this species (69). The broad spectrum of 

life zones coupled with the great amount of feeding sources and considering the high level of diversity 

shown (Table 3 & 4), increases the possibility of niche specialization and therefore divergence 

between populations. This is quite relevant because changes in the interaction between vector and 

host, have an impact in the dynamics of the disease (75).  

If P. geniculatus is going through a diversification process, there will be new epidemiological 

challenges to upfront for the effective control of Chagas disease. The dispersion of the species have 

a high relevance due to the incursion of T. cruzi sylvatic strains, which have been reported as more 

virulent compared to domestic strains (10,12). This species has been reported with mixed infection 

of TcI, TcIII and TcIV strains which are associated with sylvatic foci (6) and there also have been 

reports of infection with the rest of the DTUs (1). This is associated with the feeding sources. As P. 
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geniculatus invade human territories and start feeding from domestic hosts (1,74,76) (e.g. Canis lupus 

familiaris) the variability among DTUs found in this vector has increased. 

Even though, until now there is not enough evidence of complex of species within P. geniculatus, 

broadening the knowledge of the biology of this Triatominae is relevant for the development of 

effective mechanisms in the control of Chagas disease. It is important to mention the association of 

P. geniculatus with oral outbreaks (6) in different countries such as Brazil, Venezuela, Bolivia, 

Ecuador and Colombia. Oral outbreaks of Chagas disease have been associated with high rates of 

parasitemia due to ingestion of food contaminated with triatomines or their feces  (77,78). This has 

an impact on the population in the risk of becoming infected, and that the people at risk cover all the 

states of endemic areas of the disease contrary of vector transmission, to which it refers mainly to the 

regions of poverty predominates (45). The high rates of infection of this species and its high 

colonizing capacity and adaptability (79) generate an increase in the probability of transmission of 

the parasite that causes Chagas disease. This information about P. geniculatus generates useful data 

for the development of vector control strategies that have been proposed until now (7,10,12,45). Most 

of them include Triatoma dimidiata and Rhodnius prolixus as vectors, and none include P. 

geniculatus despite its epidemiological relevance (2,5,19).  

Vector control programs aim to reduce the prevalence of the vector. This requires an accurate 

identification and incrimination of suspected vector species (80) as well as understanding factors 

linked to transmission. These factors include biological diversity, population dynamics and spatial 

extent of the populations (75). Specifically, the divergence of a species with population structure can 

modify the disease transmission and therefore alter the disease dynamics (75). P. geniculatus showed 

several vector populations that could explode several host populations. This study is a preliminary 

research to elucidate the biology of P. geniculatus and therefore aid in the effective development of 

strategies that should vary with the vector implicated (75). 
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To the best of our knowledge, we conducted the first approximation to elucidate the intraspecific 

relationships within P. geniculatus using molecular data. We found four clades genetical 

differentiated with no clear association of being caused by geographic events that shaped Colombian 

demography (e.g. the uplift of the Eastern Cordillera of Colombian Andes). Further studies 

broadening the sample location used coupled with vector adaptability factors are needed to broaden 

the knowledge of the pathogen-vector interaction. This information should be taken into consideration 

for the design of vector control strategies aimed to reduce the prevalence of Chagas disease.  
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