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Abstract

This paper analyzes the measure of systemic importance ∆CoV aR
proposed by Adrian and Brunnermeier (2009, 2010) within the context of
a similar class of risk measures used in the risk management literature. In
addition, we develop a series of testing procedures, based on ∆CoV aR, to
identify and rank the systemically important institutions. We stress the
importance of statistical testing in interpreting the measure of systemic
importance. An empirical application illustrates the testing procedures,
using equity data for three European banks.

1 Introduction

The 2007-2008 financial crisis has shifted the focus from the assessment of the
resilience of individual financial institutions towards a more systemic approach.
Hence, macro-prudential supervision and regulation will play a vital role in the
new financial architecture (BIS, 2010). In particular, Basel 3 advocates finan-
cial regulation focused on limiting systemic risk. As illustrated by the crisis,
an important aspect of systemic risk, which broadly speaking is the risk of a
widespread crisis in the financial system, is the propagation of adverse shocks
to a single institution through the rest of the system. Therefore, mitigating
the risk stemming from so-called systemically important institutions, i.e., the
financial institutions whose failure generates a large adverse impact on the finan-
cial system, has been identified as an important policy item. In particular, the
Basel Committee and the Financial Stability Board are developing an integrated
approach to deal with systemically important financial institutions. Potential

∗corresponding author: carlos.castro@urosario.edu.co; Tel: +5712970200Ext.652. The
findings, recommendations, interpretations and conclusions expressed in this paper are those
of the authors and not necessarily reflect the view of the Department of Economics of the
Universidad del Rosario or the National Bank of Belgium.
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regulatory instruments that may be targeted at systemically important financial
institutions in the near future include capital and liquidity surcharges, systemic
levies, and contingent capital and/or bail-inable debt. The purpose of this type
of regulations would be to reduce the probability of failure of systemically impor-
tant institutions and to mitigate the impact of their failure if that nevertheless
occurred.

Yet, a crucial step in macro-prudential supervision and regulation aimed at
reducing the risk of systemically important institutions is to identify which in-
stitutions are in fact systemically important. In order to properly measure the
systemic importance of a financial institution, the measure must concentrate
on the institution’s potential impact on the system in the event of failure or
distress, which largely boils down to capturing the spillover or contagion effects
from the institution in question to the rest of the system. As spillover effects
operate through several channels, both direct and indirect, measuring the sys-
temic importance of financial institutions is not a straightforward task.1 One
approach taken in the literature is to infer the impact of the failure or distress
of a financial institution directly from market data, such as stock returns or
CDS spreads, rather than separately modelling the various contagion channels.
Within this group of measures, the so-called co-risk measures have attracted
considerable attention in both academic and policy research. Intuitively, co-
risk measures determine the systemic importance of a financial institution as
the increase in the risk of the financial system (or other individual financial
institutions in the system) when the institution in question encounters distress.
Perhaps the best known co-risk measure of systemic importance is ∆CoV aR
proposed by Adrian and Brunnermeier (2009, 2010), which refer to the in-
crease in system-wide risk due to the distress of a financial institution (i.e.,
the estimated value of ∆CoV aR) as the “systemic risk contribution” of that
financial institution. While ∆CoV aR has already been extensively applied and
extended both in the academic literature and by policymakers (see e.g., Fong
et al., 2009; IMF, 2009; Chan-Lau, 2010a,b; Deutsche Bundesbank, 2010; Gau-
thier, Lehar and Souissi, 2010; Jager-Ambrozewiez, 2010; Girardi and Ergun,
2011; and Rodŕıguez-Moreno and Peña, 2011), statistical testing procedures to
assess the significance of the findings and interpretations based on this co-risk
measure have not yet been developed. In particular, the current applications of
∆CoV aR do not test whether the systemic risk contribution for a given finan-
cial institution is significant, and whether the systemic risk contribution of one
financial institution is significantly larger than that of another financial insti-
tution. This is of paramount importance for drawing credible conclusions that
can be used for policymaking, however.

In this paper we fill this gap by deriving, within a linear quantile regression
framework, two hypothesis tests and their respective test statistics. In par-
ticular, we develop a test of significance of ∆CoV aR that allows determining

1This may entail several identification issues, which we discuss fully in a previous survey
paper (Castro and Ferrari, 2010). In particular, determining the systemic importance of a
financial institution requires separating spillover or contagion effects from the effects of a
systematic shock through common exposures, as well as identifying cascade or domino effects.
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whether or not a financial institution can be classified as being systemically
important on the basis of the estimated systemic risk contribution. In addi-
tion, we derive a test of dominance aimed at testing whether or not, according
to ∆CoV aR, one financial institution is more systemically important than an-
other. To this end, we analyze ∆CoV aR within the context of a similar class
of risk measures used in the risk management literature. More specifically, we
study the characteristics of the statistical process underlying ∆CoV aR as a co-
risk measure and relate the estimation and testing of the spillover effects to the
extensive literature on treatment effects. The testing procedures developed in
this literature provide a basis for the significance and dominance tests in this pa-
per. Finally, we provide a simple example that illustrates our testing procedures
and illustrates the usefulness of the tests as a tool in the process of identifying
and ranking the systemically important institutions based on ∆CoV aR.

Our paper builds on and contributes to the evolving literature on measuring
the systemic importance of financial institutions. Within this field, studies that
only use publicly available data have recently received considerable attention.2

In general, the only inputs required in these approaches are market prices for the
financial institutions in the system (e.g., stock returns or CDS spreads, which
are available at a high frequency and have a forward-looking nature) and the
financial institutions’ balance sheet information. Within this class of market
information-based measures, one can in general distinguish between measures
that assess the impact of the failure or distress of a particular institution in
terms of the likelihood of spillover effects occurring, and measures that assess
the severity of the losses associated with the failure or distress of the institution.
Applications of the former class of measures generally consider the probability
of the failure or distress of a number of institutions in the system conditional
on the failure of another institution (see e.g., Hartmann, Straetmans and de
Vries, 2005; Geluk, Haan and de Vries, 2007; Segoviano and Goodhart, 2009;
and Zhou, 2009). The second type of market information-based measures cap-
tures the severity of losses and consists of two types of methods: methods that
infer the impact of the failure or distress of a financial institution directly from
market data, without any need to quantify the overall risk in the system in
advance, and methods that first quantify the overall risk in the system using
a structural model of portfolio credit risk and then determine the contribution
of each individual institution to system-wide risk to determine systemic impor-
tance (see e.g. Elsinger, Lehar and Summer, 2006; Huang, Zhu and Zhou, 2009;
Tarashev, Borio and Tsatsaronis 2009; and Gauthier, Lehar and Souissi 2010).
While having a clear interpretation of being the losses imposed on the financial
system or other individual financial institutions in case of the failure or distress
of the financial institution in question, these measures of systemic importance
incorporate a substantial degree of model risk; small changes in the assump-
tions may alter not only the estimated level of systemic risk, but also the set
of institutions that are identified as systemically important. Methods that infer

2IMF (2009) provides an overview of some alternative approaches, which are generally
more data-demanding (such as e.g., the indicator-based approach).

3



the impact of the failure or distress of a financial institution directly from mar-
ket data, on the other hand, have the advantage of requiring little information
and using statistical methods with minimal assumptions, to obtain an estimate
of a financial institution’s potential impact on the system. Therefore, co-risk
measures, as provided by Adrian and Brunnermeier (2009, 2010), Chan-Lau
(2010a,b), Engle and Brownlees (2010), Billio et al. (2010) and White et al.
(2010), can be expected to provide a more robust assessment of the systemic
importance of financial institutions. However, while co-risk measures may pro-
vide an assessment of the systemically important institutions with only minimal
distributional assumptions and no need to first quantify overall risk, these ap-
proaches have as a drawback the difficult interpretability of the scale of the
measure of systemic importance, i.e., there seems to be no obvious answer to
the question of when the impact of a financial institution on the system (or on
another institution) is large enough for the institution to be considered as sys-
temically important. The same holds for the question of whether the difference
between one financial institution’s impact on the system and that of another
is large enough to consider the former more systemically important than the
latter. While we do not aim at resolving these questions in this paper, we pro-
vide statistical tests that are crucial in the process of identifying and ranking
the systemically important institutions based on ∆CoV aR. In particular, our
tests allow determining whether the estimated systemic risk contribution of a
financial institution significantly exceeds some threshold level, and whether the
systemic impact of one financial institution is significantly larger than that of
another. As the most recent literature on co-risk measures (Billio et al., 2010;
Engle and Brownlees, 2010; and White et al. 2010) has (to some extent) been
more inclined in deriving the statistical properties of the co-risk measure in or-
der to perform the required inference, the contribution of this paper is closer to
the most recent strand of the literature.

From a methodological point of view, we relate to the literature of inference
in the quantile regression framework (Koenker and Machado, 1999; Koenker
and Xiao, 2002; Chernozhukov and Fernandez-Val, 2005; and Chernozhukov
and Hansen, 2006). In addition, we relate to the literature on tests of stochas-
tic dominance (Linton et al., 2005). Our approach differs from the traditional
tests of stochastic dominance in two respects. First, our tests of dominance
are formulated in terms of the quantile function. Second, we are interested in
the conditional quantile function (or the response function) of the variable of
interest, rather than an unconditonal distribution or the residuals from some
estimated model. More specifically, following earlier work on inference based on
a quantile process, we develop a test based on the Kolmogorov-Smirnov statis-
tic. This approach is highly attractive since the test statistic is asymptotically
distribution-free.

The remainder of the paper is organized as follows. Section 2 presents a
review of ∆CoV aR against the background of traditional quantile-based risk
measures. Particular attention is given to the types of hypotheses regarding
the systemic importance of financial institutions one may want to test in this
framework. In Section 3 we develop the interpretation of ∆CoV aR in terms of
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the underlying quantile theory that will form the basis of our testing procedures.
In Section 4 we develop a series of testing procedures for identifying and ranking
the systemically important institutions, and Section 5 provides an empirical
application to illustrate the testing procedures. Section 6 concludes.

2 Review of ∆CoV aR

In this section we present the definition of ∆CoV aR as proposed by Adrian and
Brunnermeier (2009). In addition, we discuss how ∆CoV aR can be estimated
in a parametric quantile regression framework and which type of information
can be inferred from estimates of ∆CoV aR. As a general background, we first
provide a brief review of traditional quantile-based risk measures.

2.1 Quantile-based risk measures

The focus of risk management practice is to estimate and limit potential losses.
The most commonly used risk measures are those that focus on extreme losses
(i.e., the tail of the distribution): value-at-risk (VaR) and expected shortfall
(ES). Let X denote a random variable with probability distribution FX , ex-
pressing the losses of for example, a financial institution. Then the value-at-risk
(V aRX(τ)) is the threshold value of losses that will only be exceeded 1 − τ
percent of the time on average over some predetermined interval of time:

V aRX(τ) := inf {x ∈ R : FX(x) ≥ τ} .

Expected Shortfall is an alternative risk measure that considers additional in-
formation from the tail of the loss distribution, beyond the threshold value
considered exclusively by the VaR risk measure:3

ESX(τ) :=
1

1− τ

∫ 1

τ

V aRX(u)du.

Instead of fixing a particular confidence level τ , the idea of ES is to average
VaR over all levels, u ≥ τ , and thus obtain an average value for the tail of
the distribution of X. Such risk measures are meant to represent the overall
downside risk of the institution.

Figure 1 illustrates the notion of VaR and ES. The figure shows the proba-
bility density, FX , of a hypothetical loss distribution of a financial institution.
In addition the figure contains a series of vertical lines indicating the mean loss
(E(X)), the V aRX(0.95) and the ESX(0.95). Since E(X) = −2.5 < 0, the
financial institution on average expects to make a profit (negative losses imply
gains).

The loss distribution is also asymmetric (skewed to the left). Therefore, even
though the institution on average makes a profit, it can expect to lose much
more (≈ −10) than what it can potentially gain (≈ 7.5 ). The V aRX(0.95) is

3Expected shortfall is also known as conditional VaR or expected tail loss.
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Figure 1: Value-at-risk and expected shortfall.

approximately 2.5, indicating that there is a 5% probability that the institution
loses at least this amount for a given time horizon. The ESX(0.95), which
considers additional information from the tail of the loss distribution, beyond
the threshold value considered exclusively by the VaR risk measure (the shaded
area), is approximately 5.5 in Figure 1.

The VaR risk measure is equivalent to the more general concept of the quan-
tile function, which for a random variable X with probability distribution FX ,
is defined as follows:

Definition 2.1 For τ ∈ (0, 1) the τ -quantile function of distribution FX is
given by:

QX(τ) := inf {x ∈ R : FX(x) ≥ τ} .

Since the definition of the quantile function QX(τ) is equivalent to that of
V aRX(τ), VaR is a quantile-based measures of risk. In Section 3, we discuss
some interesting properties of quantile functions, which do not only hold for the
risk measure VaR, but also for some risk measures based on VaR, such as ES.
As we will show in Section 3, this is also the case for ∆CoV aR. In particular,
we will show that ∆CoV aR is also a quantile function; this property of the
measure will play an important role in deriving our testing procedures.

2.2 The co-risk measure ∆CoV aR

Intuitively, co-risk measures determine the systemic importance of a financial
institution as the increase in the risk of the financial system when the institu-
tion in question encounters distress. Co-risk measures of systemic importance
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generally infer the impact of the failure or distress of a financial institution di-
rectly from market data, such as stock returns or CDS spreads, without relying
on a structural credit risk model to first quantify total risk in the system. The
advantage of these approaches is therefore that they require little information
and make use of statistical methods with minimal assumptions, to obtain an
estimate of a financial institution’s potential impact on the system. Perhaps
the best known co-risk measure of systemic importance is ∆CoV aR proposed
by Adrian and Brunnermeier (2009, 2010).

2.2.1 Definition

The calculation of ∆CoV aR makes use of the risk measure VaR. In Adrian
and Brunnermeier (2009), ∆CoV aR, is a composition of the conditional and
the unconditional VaR of the financial system. First, the (unconditional) VaR
from the distribution of, for instance, stock returns for an index of financial
institutions (the financial system) Xindex is computed.4 This represents a VaR
for the financial system:

P (Xindex ≤ V aRXindex(τ)) = τ.

Second, the conditional VaR (CoVaR) is computed as the VaR for the dis-
tribution of the stock returns of the index of financial institutions, conditional
on the stock return of the financial institution i in question Xi being at its
VaR-level (in distress):

P (Xindex ≤ CoV aRXindex|i(τX )(τ) | Xi = V aRXi(τX)) = τ,

where τX is the confidence level at which the individual institution’s return
Xi is evaluated; this may equal the confidence level τ at which the system’s
return Xindex is evaluated, but this is not necessarily the case. Without loss
of generality and to simplify notation, from now on we consider the case where
τ = τX and suppress it from the CoVaR notation, unless otherwise stated.

The difference between CoVaR and the unconditional VaR of the system is
called ∆CoV aR, which is the eventual measure of systemic importance:5

∆CoV aRindex|i(τ) = CoV aRXindex|i(τ)− V aRXindex(τ). (1)

Adrian and Brunnermeier (2009, 2010) refer to this measure as the “systemic
contibution” of financial institution i. Intuitively, it measures the increase in the
risk of the financial system when the institution in question encounters distress.

4We in fact define our variables of interest as the negative of stock returns, so that the
results can be interpreted in terms of losses.

5In a revised version of the paper Adrian and Brunnermeier (2010) define ∆CoV aR
as the difference two conditional distributions evaluated at different points in the design
space. Under this setup, the measure of systemic risk contribution is ∆CoV aRindex|i(τ) =
CoV aR

Xindex|i(τ1) (τ) − CoV aR
Xindex|i(τ0) (τ), where CoV aRXindex|i(τx) (τ) denotes the

VaR of the system conditional on the financial institution’s return Xi being evaluated at
its τx−th quantile, and τ1 > τ0 = 0.5 (e.g., τ1 = 0.99).

7



2.2.2 Estimation

The estimation of the co-risk measure ∆CoV aR can be accomplished in several
ways. In their application of the measure, Adrian and Brunnermeier (2009,
2010) use a parametric approach based on quantile regression (QR). This para-
metric approach, which is followed in most of the applications of ∆CoV aR, is
embedded in the extensively developed linear location scale-model (Koenker,
2005). In this linear location-scale framework, the dependent variable, which
in our application of ∆CoV aR is the stock returns for the index of financial
institutions Xindex, follows some factor structure

Xindex
t = Ktδ + (Ktγ)εt, (2)

where Kt is a k-dimensional vector of factors and t = 1 . . . T denotes time.
The factors influencing the financial index variable in the context of ∆CoV aR
typically include the stock return Xi

t for a financial institution i of interest, a
constant term and possibly a set of common variables.6 The error term εt is
assumed to be i.i.d with zero mean and unit variance, and is independent of
Kt so that E[εt | Kt] = 0. The market variable is generated by a stochastic
process within the location-scale family of distributions, implying that condi-
tional expectation and volatility of the random variable Xindex

t depends on the
k-dimensional vector of factors, Kt. Since expression (2) represents the condi-
tional distribution function for Xindex

t , it can analogously be written in terms
of a quantile function representation:

QXindex|K(τ) = Ktδ + (Ktγ)Qε(τ)

= Ktβ(τ), (3)

where β(τ) = δ + γQε(τ). Note that in this model the quantile varying co-
efficients are identical up to a affine transformation. While τ ∈ (0, 1), we are
typically interested in values of τ close to 1, since ∆CoV aR is a risk measure.
The previous quantile function can be estimated via the quantile regression (see
Koenker, 2005):

β(τ) = argminβ(τ)

∑
t

ρτ (X
index
t −Ktβ(τ)),

where ρτ (u) = u(τ − I(u < 0)).
In this QR-framework, the increase in system-wide risk due to the distress

of financial institution i, ∆CoV aRindex|i(τ), can be obtained as follows. First,
equation (2) is estimated with the stock return of financial institution i excluded
from the explanatory variables, i.e., with only a constant term and possibly a
set of common variables included in Kt. The fitted value of this regression will
result in the unconditional VaR of the financial system returns V aRXindex(τ).
Secondly, equation (2) is estimated with the stock return Xi

t of financial insti-
tution i included (in addition to a constant term and possibly a set of common

6Note that this model also nest the pure location shift model when γKt = 1.
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variables) in the explanatory variables Kt. The fitted value of this regression,
with Xi

t evaluated a distressed level, say V aRXi(τ), results in the VaR of the
financial system returns conditional on financial institution i being in distress,
CoV aRXindex|i(τ). From the definition of ∆CoV aRindex|i(τ) in expression (1),
it follows that the systemic risk contribution of financial institution i is obtained
by taking the difference between the estimated values for CoV aRXindex|i(τ) and
V aRXindex(τ).

2.2.3 Inference

Since ∆CoV aR is a co-risk measure and therefore serves as proxy for the poten-
tial impact that the failure or distress of a given financial institution may have
on the financial system as a whole, it can be considered to be a useful measure for
identifying and ranking systemically important financial institutions. On the ba-
sis of the ∆CoV aR methodology, systemically important financial institutions
can be identified as those institutions for which ∆CoV aRindex|i(τ) exceeds a
given threshold level. In addition, financial institutions can be ranked in terms
of systemic importance on the basis of a ranking of their ∆CoV aRindex|i(τ);
institutions with a larger ∆CoV aRindex|i(τ) can be considered to be more sys-
temically important. Such a ranking of financial institutions according to their
systemic importance may be useful when policy instruments aimed at reducing
the risk imposed on the system by financial institutions are levied in a differenti-
ated way, with the instrument being more strict or binding for more systemically
important institutions.

While this type of identifications and rankings of systemic importance have
been provided in several applications (and extensions) of ∆CoV aR (see e.g.,
Fong et al., 2009; IMF, 2009; Chan-Lau, 2010a,b; Deutsche Bundesbank, 2010;
Gauthier, Lehar and Souissi, 2010; Jager-Ambrozewiez, 2010; Girardi and Er-
gun, 2011; and Rodŕıguez-Moreno and Peña, 2011), the statistical significance of
the results and interpretations based on ∆CoV aR exceeding a certain threshold
or ∆CoV aR of one financial institution being larger than that of another has
not been considered yet. This is of paramount importance for drawing credi-
ble conclusions that can be used for policymaking, however. We fill this gap
by proposing tests for two types of hypotheses and the relevant test statistics,
which we refer to as a test of significance and a test of dominance:

Significance As mentioned above, systemically important financial insti-
tutions can be identified as those institutions for which ∆CoV aRindex|i(τ) ex-
ceeds a given threshold level. Without loss of generality, we set this threshold
level equal to zero in the development of our hypothesis test. Hence, a hypoth-
esis test for the identification of a systemically significant institution will have
the following null hypothesis:

H0 : ∆CoV aRindex|i(τ) = 0, (4)

for a given τ ∈ (0, 1) or, more specifically, on a given subset of T ⊂ (0, 1). This
implies that under the null hypothesis there is no statistical difference between
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the empirical conditional VaR of the financial system’s returns, CoV aRXindex|i(τ),
and the unconditional VaR of the financial system’s returns, V aRXindex(τ).
Therefore, any change in the financial institution’s individual stock return does
not have a significant effect on the index for financial institutions at the given
quantile τ .

Dominance In order to establish some form of ranking across the in-
stitutions according to their systemic importance, the magnitude of the esti-
mated ∆CoV aR could be compared for different pairs of financial institutions
i and j. Since the unconditional VaR of the system, V aRXindex(τ), appears in
both ∆CoV aRindex|i(τ) and ∆CoV aRindex|j(τ), this boils down to comparing
CoV aRXindex|i(τ) and CoV aRXindex|j (τ). Therefore, a hypothesis test to test
whether financial institution i is statistically more systemically important than
institition j will have the following null hypothesis:

H0 : CoV aRXindex|i(τ) > CoV aRXindex|j (τ), (5)

for a given τ ∈ (0, 1) or, more specifically, on a given subset of T ⊂ (0, 1). As
we will show in the next section, this test is equivalent to a test of stochas-
tic dominance between two conditional distributions (or equivalently, quantile
functions); we therefore refer to this hypothesis test as a test of dominance.

3 Underlying quantile theory

Before presenting our testing procedures for the abovementioned types of hy-
potheses, we develop in this section the interpretation of ∆CoV aR in terms
of the underlying quantile theory that will form the basis of the testing pro-
cedures. In particular, we discuss the property that ∆CoV aR is a quantile
function, which plays an important role in deriving our testing procedures. Sec-
ond, we relate ∆CoV aR to the well-known concept of quantile treatment effects.
Inference procedures developed in the quantile treatment literature will serve as
a basis for the testing procedures that we will develop for ∆CoV aR in the next
section.

3.1 Quantile functions

In this subsection, we show that ∆CoV aR, being the difference between a con-
ditional and an unconditional quantile function, is a quantile function.

3.1.1 Properties of quantile functions

As explained in the previous section, ∆CoV aR is based on the quantile-based
risk measure VaR, which is equivalent to the more general concept of the quantile

10



function. There are some interesting properties of quantile functions that play
an important role in deriving our testing procedures7:

Theorem 3.1 (Properties of the quantile function) Let a0, a1 ∈ R, a1 > 0.
Then for w, τ ∈ [0, 1]

1. QX(τ) is a left continuous and non-decreasing function of τ .

2. −QX(1− τ) = QX(τ), when F (X) is symmetric.

3. If QX(τ) and QX′(τ) are quantile functions then QX(τ) +QX′(τ) is also
a quantile function.

4. If QX(τ) and QX′(τ) are quantile functions and non-negative then QX(q)∗
QX′(τ) is also a quantile function.

5. If QX(τ) and QX′(τ) are quantile functions then wQX(τ)+(1−w)QX′(τ)
is also a quantile function.

6. The quantile function for 1
X is 1

QX(1−τ) .

7. If Y = a0 + a1X, then QY (τ) = a0 + a1QX(τ).

Property 1. defines the quantile function (note that the quantile function is
the inverse of the distribution function: QX = F−1

X ), 2. implies the reflection
principle, 3. and 4. indicate that quantile functions are closed under addition
and multiplication, 5. implies there is some intermediate value, 6. is the re-
ciprocal and 7. indicates scale and location equivariance. With respect to the
last point, quantile functions enjoy another equivariance property, one much
stronger than the one presented under point 7. This additional property may
be denoted as equivariance to monotone transformations and has important
consequences for conditional quantiles:

Theorem 3.2 Let g(x) denote a left continuous and non-decreasing function,
then the quantile functions of g(X) is,

Qg(X)(τ) = g(QX(τ)).

The quantiles of the transformed random variable g(X) are simply the trans-
formed quantiles of the original random variable X.

Corollary 3.3 For a pair of random variables (X,Y ), the conditional quantile
representation is,

QY |X=x(τ) = QY (s),

where s = QFY |X=x
(τ), naturally s ∈ [0, 1]. To compute s note that,

τ = FFY |X=x
(s) = P [FY ≤ s | X = x]

= P [Y ≤ QY (s) | X = x] = FY |X=x(QY (s)).

7For a detailed discussion of the properties of quantile functions and proofs, see Parzen
(1979, 2004).
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3.1.2 ∆CoV aR as a quantile function

Given that ∆CoV aR is a composition of a conditional VaR and an unconditional
VaR, it can also be expressed as the difference between a conditional and an
unconditional quantile function:

∆CoV aRindex|i(τ) = QXindex|Xi(τ)−QXindex(τ).

As presented in the previous section, we use a linear function to represent the
relationship between the random variables (Xindex, Xi). Assuming without
loss of generality that in the remainder of the paper K only includes Xi and a
constant term, the conditional quantile function for the response variableXindex

given Xi can be defined as:8

QXindex|Xi(τ) = CoV aRXindex|i(τ)

= β0(τ) +Xiβ1(τ) (6)

The empirical counterpart of the conditional quantile function or the ex-
pected value of the quantile response function (see Appendix A) is defined as:

Q̂Xindex|Xi(τ) = β̂0(τ) +Xiβ̂1(τ), (7)

where β̂0(τ) and β̂1(τ) describe the quantile regression process.
Similarly, the unconditional quantile function and its empirical counterpart

can be defined as:

QXindex(τ) = V aRXindex(τ)

= βu
0 (τ) (8)

and
Q̂Xindex(τ) = β̂u

0 (τ). (9)

Finally, we show that ∆CoV aRindex|i(τ) is a quantile function as well. This
property plays an important role in deriving our testing procedures.

Theorem 3.4 Let (Xindex, Xi) denote a pair of random variables with support
on R, with conditional and unconditional probability distributions FXindex|Xi ,

FXindex , respectively. Then for a given τ ∈ [0, 1], ∆CoV aRindex|i(τ) is a quan-
tile function.

Proof
The proof for the case where FXindex|Xi and FXindex are symmetric distributions
is trivial. In particular, using the reflection property of quantile functions

∆CoV aRindex|i(τ) = QXindex|Xi(τ)−QXindex(τ)

= QXindex|Xi(τ) +QXindex(1− τ).

8Without loss of generality, in the remainder of the paper we drop the common variables
Zt from the vector of explanatory variables Kt.
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Since quantile functions are closed under addition, the equation implies that
∆CoV aRindex|i(τ) is a quantile function.

However, for our purpose the case of symmetric distribution functions FXindex|Xi

and FXindex is not the interesting case, since loss distributions are generally not
symmetric (see Figure 1). For the case where both FXindex|Xi and FXindex are
not symmetric, we appeal directly to the properties of a quantile function.
First, we know that the quantile function is closed under any monotone trans-
formation. Therefore, for any linear location-scale model, which represents ex-
clusively a monotone transformation, the resulting conditional function will still
be a non-decreasing function of τ in 0 ≤ τ ≤ 1.9 Second, and perhaps more
important, we must guarantee that the difference between the conditional quan-
tile function and the unconditional quantile function is also a quantile function.
However, even in relevant extreme case where Xindex is orthogonal to Xi, and
therefore ∆CoV aRindex|i(τ) = 0 ∀ τ we still have a non-decreasing function of
τ in 0 ≤ τ ≤ 1.10

3.2 Quantile treatment effects

In this subsection we relate ∆CoV aR to the well-known concept of quantile
treatment effeccts.11 In particular, ∆CoV aR can be interpreted as a two-sample
quantile treatment effect where the unconditional distribution represents the
control group and the conditional distribution reflects the treatment group. In
Section 4 we will show how this interpretation can be exploited to derive proper
statistical inference for the systemic risk contribution measure ∆CoV aR.

3.2.1 Two-sample treatment effects

The general model for two-sample treatment effects considers that the responses
for the treatment and control group follow a given distribution G and F , re-
spectively. In order to determine if the treatment is unambiguously beneficial
then we must test whether G is stochastically larger than F . However, there
are situations where the treatment might be beneficial for some individual and
neutral or detrimental to others (crossing across the distribution functions).
In this two-sample case the quantile treatment effect is given by the following
expression:

ϱ(τ) = G−1(τ)− F−1(τ),

where G−1 and F−1 are the quantile functions of distributions G and F ,
respectively. Note that we can recover the mean treatment effect by simply

9This is often the case when the conditional distribution represents a stressed version
(stressed by the conditioning variable) of the unconditional distribution.

10The same argument holds for the second definition of ∆CoV aR, the main difference
involves the composition of two conditional quantile functions rather than the conditional and
the unconditional quantile functions as stated in Theorem 3.1.

11The following section takes important elements from section 2.1 of Koenker (2005) on
quantile treatment effects.
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integrating the quantile treatment effect over τ ,

ϱ̄ =

∫ 1

0

G−1(u)du−
∫ 1

0

F−1(u)du = µ(G)− µ(F ),

where µ(G) and µ(F ) are the mean of distributions G and F , respectively. Fig-
ure 2 presents a simple location-scale example, that illustrates the distribution,
density and quantile function of hypothetical losses in the financial system. The
probability distribution of system-wide losses is plotted as the solid line in the
figure. Similarly, it is possible to obtain a probability distribution of the stock
return of the system, conditional on a given financial institution being in distress
(the dashed line). Therefore, the impact of the failure or distress of the finan-
cial institution on the system, i.e., its systemic importance, could be obtained
from the difference in the VaR for the conditional and the unconditional loss
distribution. Note that at the median (τ = 0.5) there is a positive treatment
effect (ϱ(τ) > 0) that becomes larger as we move upward into the right tail of
the distribution; but in the left tail the treatment is detrimental (ϱ(τ) < 0).
That is, while the distress of the financial institution in question increases the
system-wide losses for higher levels of the confidence level τ , the opposite is
true for lower values of τ . Note that, under some conditions, the quantile treat-
ment effect can be interpreted as a quantile function: ϱ(τ) is a left continuous
and non-decreasing function of τ . However, this is not necessarily the case, if
the treatment alters the skewness of the distribution from highly left-skewed to
highly right-skewed, then this results in a U-shaped quantile treatment effect
that cannot be considered as a quantile function.

A natural non-parametric estimator of the treatment effect is:

ϱ̂(τ) = Ĝ−1
n (τ)− F̂−1

m (τ),

where Ĝn and F̂m denote the empirical distribution functions of the treatment
and control observations, based on n and m observations, respectively. The
direct derivation of the empirical distribution for the quantile treatment effect
captures all the differences across the treatment and control distributions. In a
parametric approach (quantile regression) the treatment effect is entirely deter-
mined by the effect over the location and scale parameters of the distribution of
interest. For example, in the binary treatment problem the quantile treatment
effect can be estimated from the following QR equation:

Q̂Y |Di=1(τ) = α̂(τ) + ϱ̂(τ)Di

= α̂(τ) + ϱ̂(τ)

= Ĝ−1
n (τ),

where Y is the response variable and Di = 1 is the treatment indicator. Note
that when Di = 0, Q̂Y |Di=0(τ) = α̂(τ) = F̂−1

m (τ) refers to the control group.
In this context the most common types of hypothesis tests that are consid-

ered in the literature on quantile treatment effects are the following:
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Figure 2: Quantile treatment effect
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1. Hypothesis of no effect: ϱ(τ) = 0 for all τ ∈ (0, 1).

2. Constant effect hypothesis: ϱ(τ) = ϱ for all τ ∈ (0, 1).

3. Dominance hypothesis: H0 : ϱ(τ) ≥ 0 for all τ ∈ (0, 1) versus Ha : ϱ(τ) <
0 for some τ ∈ (0, 1).

3.2.2 ∆CoV aR as a quantile treatment effect

Using the relationships between quantile and distribution functions, the defini-
tion of ∆CoV aR for a given level of τ can be formulated as follows:

̂∆CoV aR
index|i

(τ) = Q̂Xindex|Xi(τ)− Q̂Xindex(τ)

= F̂−1
Xindex|Xi(τ)− F̂−1

Xindex(τ), (10)

where F̂Xindex|Xi and F̂Xindex denote the empirical conditional and uncondi-
tional distributions functions obtained from the stock market returns for the
index of financial institutions and the individual financial institution i, re-
spectively. From this formulation, we can easily see the equivalence between
∆CoV aR and two-sample treatment effects. In particular, F̂−1

Xindex|Xi(τ) =

Ĝ−1
n (τ) and F̂−1

Xindex(τ) = F̂−1
m (τ).

As a consequence, we can relate our hypothesis tests, as formulated in Sec-
tion 2.2.3, to the hypothesis tests 1.-3. considered in the literature on quantile
treatment effects. In particular, the hypothesis of significance given by equa-
tion (4) relates to hypothesis test 1. (hypothesis of no effect) of the quantile
treatment effects literature:

H0 : ∆CoV aRindex|i(τ) = 0,

for a given τ ∈ (0, 1) or, more specifically, on a given subset of T ⊂ (0, 1).
The hypothesis of dominance in equation (5) is similar to hypothesis test 3.
(dominance hypothesis) of the quantile effects literature:

H0 : CoV aRXindex|i(τ) > CoV aRXindex|j (τ),

for a given τ ∈ (0, 1) or, more specifically, on a given subset of T ⊂ (0, 1).
As indicated, in the case of ∆CoV aR we are not interested in the entire

domain of τ ∈ (0, 1), like in hypotheses 1.-3. in the quantile treatment effects
literature, but rather in a particular quantile (τ = 0.95, τ = 0.99) or on a
given subset T ⊂ (0, 1).12 Since our interest is mainly a downside risk measure
this subset will generally be defined as T := (0.90, 0.99), the lower tail of the
conditional distribution of the random variable of interest (losses, returns). In
the next section, we will use the inference procedures developed in the quan-
tile treatment literature for testing hypotheses 1.-3. as a basis for the testing

12This is an important difference with respect to the standard statistical test for stochastic
dominance.
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procedures that we develop for the two abovementioned hypothesis tests in the
context of ∆CoV aR. In particular, the tests that we develop are based on
testing the difference between a conditional and an unconditional distribution
or quantile function (significance) and whether one of two conditional distri-
butions or quantile functions stochastically dominates the other (dominance),
respectively, in the domain of interest for τ .

4 Testing for the systemic importance of a fi-
nancial institution

Testing procedures for the hypothesis of significance and dominance are entirely
determined by the underlying statistical model. In a parametric approach the
differences between the conditional and unconditional distribution for the sys-
tem or institution’s losses will be entirely determined by the location and scale
parameters or linear functions of such parameters. In other words, the statistics
used in the hypothesis test are linear function of the location and scale param-
eters. In the next subsections we derive two test of significance and one test for
dominance.

4.1 A simple test of significance for ∆CoV aR

In the location-scale family of distributions (e.g. normal, student-t, uniform,
among others) the quantile function can be derived analytically. Recall that
since VaR, ES and CoVaR are themselves quantile functions this implies that
they have a simple analytical form (Jargen-Ambrozewicz, 2010).13 Let X0 de-
note a standardized centered random variable from the location-scale family
with probability distribution FX0

, then the quantile function of such random
variable is given by QX0(τ) = F−1

X0
. From the properties of the quantile func-

tion (Theorem 3.1), for any random variable from the location-scale family,
X ∼ (µx, σx), the quantiles for such random variable is given by QX(τ) =
µx + σxQX0(τ). In other words, the unconditional quantile is a linear function
of QX0 (τ). In general, we denote the conditional quantile functional or the
quantile response function for a given linear relationship between the pair of
random variables (X,Y ) by QY |X=x(τ) = Xβ(τ).14

As mentioned in Section 2.2.2, estimation of ∆CoV aR can be accomplished
using various methods. Let the stock return of the index of financial institu-
tions Xindex ∼ (µindex, σindex) denote a random variable having a probability

13In other families of distribution it is also possible to obtain expression for VaR and ES. An
example is the family of alpha-stable distributions (Stoyanov et al. 2006). The alpha-stable
family is an important set of distributions for modeling financial variables since it provides
a flexible environment for replicating the stylized facts of the probability distributions for
financial variables (e.g. asymmetry and heavy tails).

14See appendix A for the details.
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distribution function from the location scale family, and the stock return of fi-
nancial institution of interest, Xi, the single covariate in addition to a constant
term. An estimate of CoV aRXindex|i(τ) can then be obtained from the following
quantile regression:

QXindex|Xi(τ) = β0(τ) +Xiβ1(τ),

where β0(τ), β1(τ) are the unknown parameters of the quantile regression. An
expression for ∆CoV aRindex|i(τ) can be derived as follows,

∆CoV aRindex|i(τ) = β0(τ) +Xiβ1(τ)−QXindex(τ)

= [β0(τ)− µindex] +
[
Xiβ1(τ)− σindexQX0(τ)

]
,

where ∆CoV aRindex|i(τ) reflects the difference between the conditional and
the unconditional quantile functions of the random variable Xindex. In the
next paragraph, we provide a result indicating that the hypothesis test on the
significance of the ∆CoV aR is equivalent to testing the a similar hypothesis
with respect to the parameter β1(τ) of the quantile regression. A similar result
is found in Chernozhukov and Umantsev (2001) in the context of testing wether
the (unconditional) VaR model is statistically different from the conditional
VaR model.

Theorem 4.1 Testing the hypothesis H0 := β1(τ) = 0 is equivalent to testing
the hypothesis H0 := ∆CoV aRXindex|i(τ) = 0, for a given τ.

Proof
If β1(τ) = 0 then,

∆CoV aRindex|i(τ) = β0(τ)− µindex − σindexQX0(τ)

= β0(τ)−QXindex(τ),

for ∆CoV aRindex|i(τ) = 0, β0(τ) must be equal to the unconditional quantile
function of Xindex (also known as the V aRindex(τ)). Therefore if β1(τ) = 0
this necessarily implies that there is no difference between the conditional and
unconditional quantile function of the random variable Xindex and hence by
definition ∆CoV aRindex|i(τ) = 0.15 �

The respective statistic for such a test is obtained directly from the asymp-
totic distribution of the quantile regression estimator (Koenker, 2005):

√
T (β̂(τ)− β(τ)) ∼ N(0, V )

15In Adrian and Brunnermeier (2010), ∆CoV aR is defined as follows:

∆CoV aRXindex|i (τ) = β1(τ)(X
i(τ1)−Xi(τ0)) (11)

where τ1 > τ0 = 0.5. Under this setup it is trivial to see that if β̂(τ) = 0 then
∆CoV aRindex|i(τ) = 0 for some τ . Therefore, within the location scale family of models
testing for the significance of ∆CoV aRindex|i(τ) is equivalent to testing for the significance
of β1(τ) = 0.
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where the covariance matrix V = τ(1−τ)D(τ)−1ΩD(τ)−1 with Ω = T−1
∑T

t=1(x
i
t)(x

i
t)

′

andD(τ) = T−1
∑T

t=1(xt)(x
i
t)

′ft(ξt(τ)).
16 The term Ω is introduced so as to ac-

count for the presence of autocorrelation in a non-iid setting. The term ft(ξt(τ))
denotes the conditional density of the response Xindex evaluated at the τ -th
conditional quantile. In the iid case the ft’s are identical and the expression is
simpler (Koenker, 2005).17

4.2 Test for significance and dominance using the quantile
response function

In this subsection we derive two new tests for significance and dominance in
the linear quantile regression framework. We first introduce the general linear
testing framework in quantile regressions. In particular, we present the elements
that highlight the distribution of a linear functional of β(τ), and discuss that the
distribution derived from the general linear hypothesis test, critically depends
on the function r(τ). Next, we derive specific testing procedures for testing the
specific hypotheses in the context of ∆CoV aR.

4.2.1 General linear testing framework

Consider for a given quantile τ a two-sided test of hypothesis for the general
linear hypothesis test:

H0 : Rβ(τ) = r(τ), τ ∈ T (12)

Where β(τ) is p dimensional and q is the rank of matrix R, (q ≤ p). The
distribution under the null of the Wald statistic or process will depend on the
characteristics of the function r(τ). If r(τ) = r ∀τ , then the test statistic is:

WT = T (Rβ̂(τ)− r)′(RV R′)−1(Rβ̂(τ)− r) (13)

where V = τ(1 − τ)D(τ)−1ΩD(τ)−1. For a single given τ , the statistic WT is
asymptotically χ2

q under H0.
If r(τ) is a process indexed by τ , then under the null hypothesis we have the
following Wald process:

vn(τ) =
√
nφ0(τ)(RV R′)−1/2(Rβ̂(τ)− r(τ)) (14)

where φ0(τ) = f0(F
−1
0 (τ)). This process converges weakly to a q-dimensional

Brownian Bridge. For a sequence of local alternatives defined for the hypothesis
test

Hn : Rβ(τ)− r(τ) =
ζ(τ)√

n
, τ ∈ T (15)

the statistic

Bn(τ) =
|| vn(τ) ||√
τ(1− τ)

, (16)

16See appendix B for the details.
17In appendix B we include a short introduction on statistical inference for β̂(τ). Further-

more, we use these results in deriving the distribution of the quantile response function.
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behaves asymptotically like a non-central Bessel process with non-centrality
parameter,

η(τ) =
ζ ′(RV R′)−1ζ

τ(1− τ)
(17)

(see Koenker and Machado, 1999). The Critical values, that we will use in the
sequel and that are given for the supremum of the simpler (central) Bessel pro-
cess of order q, supB2

q(τ), have been tabulated by DeLong (1981) and Andrews
(1993, 2003) by simulation methods, and more recently by exact methods by
Estrella (2003) and Anatolyev and Kosenok (2011).

4.2.2 A test of significance

We need to explicitly derive a two-sample and two-sided test that will allow
defining a test of significance for the following null hypothesis:

H0 : ∆CoV aRindex|i(τ) = 0.

Furthermore, recall that ∆CoV aR can be interpreted as the difference between
an conditional and a unconditional quantile function, which are themselves a
linear functional of β(τ),

Q̂Xindex|Xi(τ) = Xβ̂(τ)

= β̂0(τ) +Xiβ̂1(τ) (18)

For such test, we define R under the null ((12)) as some lower dimensional
form of the design matrix (for example evaluated at the centroid R = X̄ or a
particular quantile R=X(τ)). In addition, once we start considering a test for
dominance across a set of quantile response functions, we require a different
statistic and in particular a one-sided test of hypothesis. One possible approach
is to consider an inequality constrained version of the Wald test (see Gourieroux
et al. 1982, Wolok 1989). Under the null hypothesis, the statistic proposed by
these authors is distributed as a mixture of χ2 distributions. However, we do not
follow this approach rather we look for a test based on the Kolmogorov-Smirnov
(KS) type statistic. KS type test are highly attractive since they are asymp-
totically distribution free.18 The KS test provides a natural way to measure
the discrepancy between distributions (Abadie, 2002). Furthermore, variants of
the two-sample KS test have been widely used for inference based on a quantile
process, such as those considered in section 3.2.1. However, it is not a straight
forward task to guarantee that the statistic is still distribution free, since we are
dealing with a conditional (parametric) distribution.
In order to perform inference on the quantile response function we consider the
first part of expression (40) in Theorem 2 as a parametric empirical process19

Vn(τ) =
√
n(Q̂Y(τ | X)−QY(τ | X)) (19)

18In distribution free type test we can tabulate the distribution under the null, of the
statistic, without specifying the underlying distribution of the data. The distribution free
property, of a statistic, is a key property of many non-parametric procedures.

19See appendix B for the details.
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where the quantile response function contains the parameter(s) β̂(τ). The KS
statistic would be:

Kn = sup
τ∈T

|| Vn(τ) || . (20)

The existence of the unknown parameter(s) β(τ) is problematic because under
the null hypothesis (of say a one-sample goodness-of-fit test) the statistic does
not have the desired KS distribution.20. Fortunately, Koenker and Xiao (2002)
offer a solution to such problem in the context of quantile regression and in
particular, for the linear location scale model (Koenker , 2005)21:

yi = x′
iδ + (x′

iγ))ui (21)

where ui ∼ i.i.d F0. Under this specification the corresponding parameter of
interest, β(τ), of the quantile response function, is a vector function β(τ) = δ+
γF−1

0 (τ) (a vector function with p components). Therefore, the quantile varying
coefficients are identical up to a affine transformation. A test of hypothesis for
the general linear hypothesis test has the following statistic:

v̂n(τ) =
√
nφ0(τ)(RV R′)−1/2(Rβ̂(τ)− r̂(τ)) (22)

where φ0(τ) = f0(F
−1
0 (τ)). This process is asymptotically Gaussian but the in-

troduction of r disrupts (introduces a drift component) the asymptotic distribution-
free character of the limiting theory. Therefore, some martingale transformation
is required to eliminate the drift component (Khmaldze, 1981). In practice this
requires replacing v̂n(τ) by the residual process obtained by a continuous time
recursive least-square regression of v̂n(τ) on the score function defining the esti-
mator r̂. After transformation ṽn = Qg v̂n ⇒ w0 we obtain a standard Brownian
motion, with p − 1 independent coordinates (p stands for the discretization of
the quantile τ). Test based on the KS type statistic Kn = supτ∈T || ṽn(τ) ||,
have easily simulated critical values (Andrews, 1993). As suggested in (Koenker
, 2005) in some situations it is desirable to restrict the interval of estimation
to a closed subinterval [τ0, τ1] of (0, 1). This can easily be accommodated by
considering the renormalized statistic

Kn = sup
τ∈[τ0,τ1]

|| ṽn(τ)− ṽn(τ0) || /
√
τ1 − τ0 (23)

This test statistic will allow us to determine if the conditional and the un-
conditional quantile functions (or between two conditional quantile functions)
that make up ∆CoV aR are statistically different from each other. If not then
∆CoV aR is not statistically different than zero and hence the such financial
institution according to this measure is not systemically important.

In order to test for dominance, in addition to the two-sample test we require
a one sided test for the general linear hypothesis. Such test will give us the

20This is known in the literature as the Durbin problem.
21Recall from section 2.2.2, the linear location scale model: the class of models that are of

interest for the ∆CoVaR measure.
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opportunity to test the following null hypothesis,

H0 : CoV aRXindex|Xj=xj

(τ) > CoV aRXindex|Xi=xi

(τ),

In the two sample case a test for stochastic dominance (first order) of the quan-
tile response function under two continuous treatment effects (different covari-
ates) can be implemented using the two sample one-sided, positive part KS
statistic. Let X1, . . . , Xn denote a randomly treated sample with empirical dis-
tribution function G(x) and Z1, . . . , Zn denote another randomly treated sample
with empirical distribution function F (z). We are interested in testing whether
one treatment stochastically dominates the other. For example the hypothesis
test is as follows H0 : G−1(τ) > F−1(τ) ∀τ ∈ (0, 1). Therefore the null hipoth-
esis of such test states that sample X stochastically dominates sample Z. The
variant of the KS type test is such that the test is formulated in terms of the
empirical quantile function, rather than the empirical distribution function. In
a simple unconditional case the test statistic is:

Jn = sup
τ∈T

(G−1
n (τ)− F−1

n (τ)) (24)

Generality, T is considered as a closed subinterval of (0, 1), typically [ϵ, 1 − ϵ],
for some ϵ ∈ (0, 1/2). Our approach differs from the previous one, since we
consider a conditional distribution, rather than an unconditional distribution
and in particular the the quantile response function of a linear model.

Suppose we have two different (at least one column is different) design ma-
trices X and Z. This setup includes the case where we have two different
continuous treatment effects applied to the same population Y , as well as a
set of common control variables, all within the framework of a linear model
that relates Y with the X and Z covariates. The respective empirical quantile
response functions are a follows:

Q̂Y(τ | X) = Xβ̂x
n(τ) (25)

and
Q̂Y(τ | X) = Zβ̂z

n(τ) (26)

Without loss of generality, we consider equal amount of observations n through
out the design space. Therefore, we have the following parametric empirical
process:

Wn(τ) =
√
n(Q̂Y(τ | X)− Q̂Y(τ | Z)) (27)

=
√
n(X̃β̂x

n(τ)− Z̃β̂z
n(τ)) (28)

Where X̃ and Z̃ implies the quantile response function is evaluated at any
point of the design space. This point can be the centroid (X̄, Z̄) or an extreme
quantile of interest.
Following, Koenker and Xiao (2005) both of the underlying quantile response
functions come from the following linear location scale models.

yi = Xiδ
x + (Xiγ

x)ui (29)
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yi = Ziδ
z + (Ziγ

z)ui (30)

therefore, as seen before, βx(τ) = δx + γxF−1
0 (τ) and βz(τ) = δz + γzF−1

0 (τ).
Form Theorem 1 in Koenker and Xiao (2005) we can derive a statistic for the two
sample one-sided, test of hypothesis, embedded in the general linear hypothesis
frameset.

ŵn(τ) =
√
nΨ0(τ)(RV −1R′)−1/2(Rβ̂(τ)− r̂(τ)) (31)

where Ψ0 denotes the difference between the scalar sparcity function of both
models. Under the null hypothesis R = [X̃,−Z̃], β(τ) = [βx(τ), βz(τ)]′, and
r(τ) = 0.

ŵn(τ) =
√
nΨ0(τ)(RV −1R′)−1/2(Rβ̂(τ)) (32)

where the KS type one-sided statistic is Kn = supτ∈T (ŵn(τ)). A two-sided ver-
sion of the KS type statistic can also be derived Kn = supτ∈T | ŵn(τ) | however,
this would only be indicative of the statistical difference between the two em-
pirical quantile functions but not of any sort of dominance that could possible
arise between the conditional distributions. Since r(τ) = 0 the test statistic is
still distribution free, therefore there is no need to perform the martingale trans-
form. Koenker and Machado (1999) show that the nuisance parameters existing
in Ψ0 and V can be replaced by consistent estimates without jeopardizing the
distribution-free character of the test. Furthermore, as in Andrews(1999) the
critical values for the statistic, supτ∈T (ŵn(τ)) are based on the asymptotic null
distribution of supτ∈T (Qp(τ)). Where supτ∈T (Qp(τ)) represents the process to
which the statistic converges in distribution.22. By definition the critical values
cα satisfies P (supτ∈T (Qp(τ)) > cα) = α. Most of the tables associated to the
critical values depend on a subset of T , [τ0, τ1], such that the distribution of
the critical values of supτ∈[τ0,τ1](Qp(τ)) depend on τ0 and τ1 only through the

parameter λ = τ1(1−τ0)
τ0(1−τ1)

. Instead of using the simulated critical values derived by

Andrews (1993) we use the exact asymtotic p-values obtained from Anatolyev
and Kosenok (2011).23

As mentioned by Koenker (2005) the importance of the previous results are that
they provide partial orderings of the conditional distributions under stochastic
dominance, which is precisely our object of interest.

5 Empirical application

To illustrate the tests described in the previous sections we consider a sample of
three European banks, denote them as bank A, B and C (Table 1). The market
information that we use to characterize the institutions and the system are the

22See Theorem 3 in Andrews (1993)
23We thank, Anatolyev and Kosenok (2011) for providing the source code in GAUSS of

their methodology.
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daily stock returns (1986-2010) of each institution and the returns on the index
on financials.24

Table 1: Size and ∆CoV aR of three European banks

Bank Assets (millions) Quantile Regression Results ∆CoV aR

A e1, 571, 768 Xindex|A(0.99) = 0.026 + 0.526XA(0.99) 1.38
B e102, 185 Xindex|B(0.99) = 0.042 + 0.231XB(0.99) 1.18
C e10, 047 Xindex|C(0.99) = 0.037 + 0.028XC(0.99) 0.03

Each bank that we consider is approximately ten times bigger than the other.
Table 1 also reports the quantile regression results as well as the ∆CoV aR mea-
sure based on Adrian and Brunnermeier (2009)’s approach as an indicator of
systemic importance. We find that the systemic risk contribution ∆CoV aR is
largest for bank A, and smallest for bank C. However, two natural question come
to mind. The first is whether the systemic risk contributions obtained for the
three banks are large enough to consider the banks as systemically important.
A common form of identifying the systemically important banks is to estab-
lish an arbitrary threshold above which the measure indicates the institution is
systemically significant; without loss of generality, we set this level at zero. A
second question is whether institution A is truly more systemically significant
than institution B, and B is truly more systemically important than institution
C, as indicated by the estimated values of ∆CoV aR in Table 1. These are
precisely the two types of questions we aim to answer.

In testing for significance we look at two types of tests. The first is a simple
test based on the slope coefficient of the regression quantile as developed in
Section 4.1. The second test is based on the two-sided version of the KS statistic
developed in Section 4.2; this test will allow us to determine if the conditional
and the unconditional quantile functions that make up ∆CoV aR are statistically
different from each other. If not, then ∆CoV aR is not statistically different
from zero and hence, such financial institution is not systemically important
according to ∆CoV aR.

Both test indicate that the measure of systemic importance is significant for
bank A and B. On the other hand, the measure is not significant for bank C.
Figures 3 and 4 confirm the findings. In both figures, the left side panel il-
lustrates the conditional and unconditional quantile functions at the extremum
quantiles and the right side panel is a plot of the respective densities. Note
that the densities are the typical illustration found in most articles to illustrate
∆CoV aR (recall figure 2). Figure 3 illustrates the important difference between
the conditional and unconditional quantile functions of bank A. In contrast, Fig-
ure 4 shows no significant difference between the conditional and unconditional

24We switch the sign of return in order to recover the interpretation of positive losses, in
particular when we are analysing any graph. This obviously changes the sign of the ∆CoV aR
measure.
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Table 2: Test of significance for three European banks

Bank ∆CoV aR H0 : β(0.99) = 0 H0 : ∆CoV aR(0.99) = 0
A 1.38 0.000 0.000
B 1.18 0.039 0.000
C 0.03 0.782 0.424

The second column is the value of the ∆CoV aR measure. The third and fourth column are

the p-values of the statistic. The quantile response function-based test in the fourth column

is evaluated at the extreme quantiles [τ0, τ1] = [0.90, 0.99].

quantile function for bank C. It is important to recall that in the conditional
functions that will be presented in the figures, the data from each bank (A, B,
C) represent the conditioning variable in the quantile regression.

In testing for dominance we perform the test based on the one-sided version
of the KS statistic as outlined in Section 4.2. The test will allow us to deter-
mine if the conditional quantile function of bank A stochastically dominates the
conditional quantile function of bank B, for a given subset T ⊂ (0, 1) defined
as [τ0, τ1]. A sequence of such stochastic dominance test, on the pairs of banks,
will give a partial ordering on the systemic importance of the set of banks A,
B, and C, that follow from the CoV aR measure.

Table 3: Test of dominance for three European banks

Banks ∆CoV aR [τ0, τ1] = [0.90, 0.99] [τ0, τ1] = [0.10, 0.99]
AB 1.38 0.000 0.913
AC 1.18 0.000 0.874
BC 0.03 0.000 0.482

The second column is the value of the ∆CoV aR measure. The third and fourth column are

the p-values of the statistic.

The results indicate that by looking at the extremum quantiles [τ0, τ1] =
[0.90, 0.99], we reject the null hypothesis of strict stochastic dominance, hence
we are not able to establish a partial ordering. However, if we extend the subset
of quantile on which we evaluate the statistic to [τ0, τ1] = [0.10, 0.99], we are
able to accept the null hypothesis. Hence, we can determine that the following
ordering, A ≻ B ≻ C, for that set of quantiles. Furthermore, we find that the
largest value of the statistic (the point at which we are able to accept the null
hypothesis) is reached at the following quantiles 0.475, 0.43, 0.607 for the bank
pairs AB, AC and BC, respectively.

Figures 5 and 6 are in line with the findings, because they indicate that the
largest deviations in the quantile functions are not in the extremum quantiles,
but rather around the center of the distributions, whereas in the extreme right
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tail we barely notice a difference between the conditional and unconditional
distribution. These results indicate that perhaps the linear relationship, between
the variables of interest (Xindex, Xi) that is at the core of the CoVaR measure,
is too restrictive. The affine transformation that characterizes the construction
of the conditional distribution of the variable (Xindex), is heavily stressed, by
construction, at the center of the distribution rather than at the extreme.
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Figure 3: Conditional vs unconditional quantile and density functions for bank
A.
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Figure 4: Conditional vs unconditional quantile and density functions for bank
C.
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Figure 5: Conditional quantile and density functions of Bank A vs Bank B.
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Figure 6: Conditional quantile and density functions of Bank A vs Bank C.
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6 Conclusions

In response to the 2007-2008 financial crisis, the Basel Committee and the Fi-
nancial Stability Board are developing an integrated approach to deal with sys-
temically important financial institutions. Potential regulatory instruments that
may be targeted at systemically important financial institution in the near fu-
ture include capital and liquidity surcharges, systemic levies, and contingent
capital and/or bail-inable debt. However, in order for such endeavors to be op-
erational supervisors and Central Banks have to come up with methodologies to
properly identify those systemically important financial institutions. Currently
there are many competing methodologies that have been proposed to asses the
systemic importance of financial institutions.

In this paper we take one of such proposed methodologies that has already
been extensively applied, namely ∆CoV aR proposed by Adrian and Brunner-
meier (2009, 2010). ∆CoV aR is an interesting tool for measuring systemic
importance through market information (equity returns, CDS spreads), as it al-
lows estimating the institution’s potential impact on the system in the event of
failure or distress. Our view is, however, that statistical testing on the estimated
systemic risk contributions is required before interpreting the results. We ex-
ploit the analogies of ∆CoV aR with quantile-based measures and, in particular,
inference procedures for quantile treatment effects, in order to derive, within a
linear quantile regression framework, a series of testing procedures that will help
in identifying and ranking the systemically important financial institutions.

First, we derive a test of significance of the ∆CoV aR measure that allows to
determine whether or not a financial institution can be identified as systemically
important. Second, we derive a test of dominance that may be a useful tool for
testing whether one financial institution is more systemically important than
another, according to ∆CoV aR. We illustrate the possible use for the tests using
equity data for three European banks. We find that the tests provide a proper
interpretation of the ∆CoV aR measure proposed by Adrian and Brunnermeier
(2009, 2010). On the one hand, the significant test indicates for which banks
the estimated systemic risk contribution is statistically significant. On the other
hand, the dominance test gives a ranking of the institution according systemic
importance indicated by the measure. However, this ranking is not perfect:
whether or not we can reject the null hypothesis of stochastic dominance depends
at which range of quantiles we evaluate the distributions. In addition, since the
test is pairwise, there is nothing that guarantees that transitivity will hold across
the tested sample (as it does in the example).

That is, while the testing procedures developed in this paper entail a first
step in the right direction, further work is required in order to (i) determine the
power of the test; and (ii) to adjust the asymptotics for some of the extremal
regression quantiles that are used in such quantile based measures (see Cher-
nozhukov, 1999; Chernozhukov and Umantsev, 2001). A medium term goal of
this research agenda is to develop proper stochastic dominance test at the ex-
tremum for a general class of conditional and unconditional quantile functions.
Such type of test are of interest for a much needed inferential-based analysis
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that will hopefully allow to statistically compare loss distributions in risk man-
agement.
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7 Appendix A

Let Y = (Y1, . . . , Yn) denote a vector of independent random variables and a

design matrix X of size n × p. Denote β̂(τ) as the quantile regression process,
such that:

β̂n(τ) = argminβ∈Rp

n∑
i=1

ρτ (yi − xiβ) (33)

where ρτ (u) = u(τ − I(u < 0)) and τ ∈ (0, 1) (Koenker, 2005).
The conditional quantile function for the response variable Y given X can be
defined as

QY(τ | X) = Xβn(τ) (34)

Some importante equivariance properties, with respect to scale, location and
reparametrization of the design matrix, for the conditional quantile function
can be found in Theorem 2.3 of Basset and Koenker (1982).
The empirical counterpart of the conditional quantile function or the expected
value of such response function is defined as:

Q̂Y(τ | X) = Xβ̂n(τ) (35)

Note that like a quantile treatment effect, the empirical conditional quantile
function will not necessarily satisfy the fundamental monotonicity requirement
of a quantile function (i.e. that the function is non decreasing in τ). The
estimated conditional quantile function is subject to possible quantile crossings.
As pointed out in Theorem 2.5 of Koenker (2005) these crossings are generally
confined to the outlaying regions of the design space Therefore in the centroid
of the design space X̄ the estimated conditional quantile function

Q̂Y(τ | X̄) = X̄β̂n(τ) (36)

is more likely to remain monotone in τ . Hence also the expectation of the
response function evaluated a the centroid of the design space is monotone with
respect to τ .

8 Appendix B

For a general form of the linear quantile regression model, the independent
random variables Y1, . . . , Yn will have distribution functions F1, . . . , Fn, respec-
tively. The conditional distribution functions will be denoted as follows:

QYi(τ | xi) = F−1
Yi

(τ | xi) ≡ ξi(τ) (37)

We state Theorem 4.1 of Koenker (2005), in order to derive the distribution of

the β̂n(τ) and in the sequel the distribution of the quantile response function
or conditional quantile function, for a given value of τ . Before restating the
theorem we need a series or regularity conditions:
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• Condition 1: The distribution functions Fi are absolutely continuos,
with continuous densities fi(ξ) uniformly bounded away from 0 and ∞ at
the points ξi(τ).

• Condition 2: There exist positive define matrices Q and D(τ) such that:

1. limn→∞
1
n

∑n
i=1 xix

′
i = Ω.

2. limn→∞
1
n

∑n
i=1 fi(ξi(τ))xix

′
i = D(τ).

3. maxi=1,...,n
||xi||√

n
→ 0.

Theorem 1: Under conditions 1 and 2

√
n(β̂n(τ)− β(τ)) ∼ N(0, τ(1− τ)D−1ΩD−1) (38)

In the i.i.d. error model:

√
n(β̂n(τ)− β(τ)) ∼ N(0, ωΩ−1) (39)

where ω = τ(1−τ)
f2(ξi(τ))

.

Theorem 2: From Theorem 1 and let us define some continuous mapping
g(θ(τ)) = Xβ(τ), where this mapping defines the quantile response function,
evaluated at some point in the design space.

√
n(Q̂Y(τ | X)−QY(τ | X)) ∼ N(0, τ(1− τ)XD−1ΩD−1X′) (40)

Proof:
Direct application of the Delta Method such that:

√
n(Xβ̂n(τ)−Xβ(τ)) ∼ N(0, τ(1− τ)XD−1ΩD−1X′). (41)

Hence Q̂Y(τ | X) is weakly consistent for QY(τ | X)25.
Theorem 2 serves as a first step toward introducing additional inference prob-
lems, based on the quantile response function, beyond what is known as the
fundamental problem, in quantile inference, that involves testing for the equal-
ity of the slope parameters accross quantiles26.

25A stronger form of consistency of the conditional quantile function requires more stringent
regularity conditionals and it is explored in Basset and Koenker (1982)

26Such hypothesis test is also known as the constant effect hypothesis, see Chernozhukov
and Fernandez-Val (2005)

37


	Portada.pdf
	Measuring and Testing for Systemically important Financial Institutions (2011).pdf

