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Abstract

We propose a one-good model where technological change is factor saving and

costly. We consider a production function with two reproducible factors: phys-

ical capital and human capital, and one not reproducible factor. The main pre-

dictions of the model are the following: (a) The elasticity of output with respect

to the reproducible factors depends on the factor abundance of the economies.

(b) The income share of reproducible factors increases with the stage of develop-

ment. (c) Depending on the initial conditions, in some economies the production

function converges to AK, while in other economies long-run growth is zero. (d)

The share of human factors (raw labor and human capital) converges to a pos-

itive number lower than one. Along the transition it may decrease, increase or

remain constant.

Journal of Economic Literature classi�cation: 011, 031, 033.

Keywords: endogenous growth, human capital, factor using and factor saving

innovations, factor income shares.



1 Introduction

The works by Cobb and Douglas (1928) and Kaldor (1961) created a para-

digm for macroeconomics. The idea that labor income share does not decrease

or increase with time or with the stage of development have had important

implications in macroeconomics and growth theory. Considering an aggregate

production function, if factor income shares are constant and the price of each

factor is determined by its marginal productivity then the elasticity of output

with respect to each factor is also constant. In other words the constancy of

factor shares implies that the Cobb-Douglas is a good approximation for the

aggregate production function.

Subscribing to this paradigm, almost all of the literature on economic growth

accounting assumes that the elasticity of output with respect to capital (and

labor) is constant (see Easterly and Levine, 2002; Young, 1994 and Solow, 1957,

among others). However, economic growth models of biased innovations predict

a positive correlation between capital abundance and capital income share1 . In-

deed, if factor prices are determined by marginal productivity of factors then

labor saving innovations reduce the income share of workers and increase the

capital income share. In more general terms, the income share of not repro-

ducible factors decreases with the stage of development while the income share

of reproducible factors increases. Therefore, the theoretical argument described

above implies that the income share of capital should be positively correlated

1Studies of factor saving innovations and economic growth have constantly grown in num-
ber. Some examples are Zeira (1998), Peretto and Seater (2006) and Zuleta (2007), among
others.
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with the stage of development.2

We propose a model of factor saving innovations to explain the absence of a

secular trend in labor shares. We consider a model with two reproducible factors:

human capital (H) and physical capital (K) and one not reproducible factor (L).

Assuming that any technology can be obtained paying a cost, capital abundant

economies have more incentives to adopt capital intensive technologies. In the

same way, in countries where the capital intensity of the technology is higher

agents have more incentives to save. This produces a virtuous circle driving

capital abundant economies to long run growth.

We consider a one good economy and assume a set of Cobb-Douglas pro-

duction functions of the form Y = AK�H�L1���� . Thus we can rewrite the

production function de�ning y as output per unit of not reproducible factor,

y =
Y

L
= Ak�h�

L can be understood as a combination of not reproducible factors, i.e., raw

labor and land. Therefore an increase in � (�) is physical capital-using (human

capital-using) , labor saving and land saving technological change.

The main results of the model are the following: (i) The elasticity of output

with respect to reproducible factors depends on the factor abundance of the

economies. (ii) The income share of reproducible factors increases with the stage

2There are two other theoretical reasons why the elasticity of output with respect to repro-
ducible factors, namely, physical capital and human capital, should be positively correlated
with the stage of development: the Hecksher-Ohlin theory of International Trade and the
theory of International Capital Flows .
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of development. (iii) Depending on the initial conditions, in some economies the

production function converges to AK while in other economies long-run growth

is zero. (iv) The income share of reproducible factors converges to a positive

number lower than one and along the transition it may decrease, increase or

remain constant.

Three pieces of empirical evidence motivate our work:

1. In the �eld of empirical economic growth, Durlauf and Johnson (1995)

and Du¤y and Papageorgiou (2000) �nd that as economies grow their

technologies become more intensive in reproducible factors, that is, the

elasticity of output with respect to reproducible factors is higher in rich

economies.

2. With regard to the behavior of factor income shares, we know that: (i)

In developed countries the share of agriculture in total output is usually

smaller than it is in developing countries. By the same token, the share

of agriculture in total output is reduced as economies grow. Since land

is a major input in agriculture but not in other sectors these facts sug-

gest that land income share may decrease with the stage of development.

Consistently, from 1870 to 1990 in the United States the share of land

in Net National Product has been continuously reduced (see Rhee, 1991

and Hansen and Prescott, 2002). (ii) Over the past 60 years, the US rela-

tive supply of skilled work has increased rapidly. However, there has not

been a downward trend for the returns to college education. On the con-

trary, over this period, the college premium has increased (see Krueger,
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1999; Krusell et.al., 2000 and Acemoglu 2002). Moreover, according to

Gottshalk (1997), real wages of unskilled labor signi�cantly fell during

the past few decades (iii) In addition, it has been argued that labor in-

come share does not decrease or increase with development (Gollin, 2002).

However, the standard measure of labor income share includes skilled and

unskilled labor income share, that is, it includes human capital. In the

same way, the standard measure of capital income share includes land in-

come share. Therefore, it seems that the income share of not reproducible

factors (land and unskilled labor) has decreased, while the income share

of reproducible factors has increased during the 20th century.

3. Blanchard (1998) notes that since the early 80�s a dramatic decrease in

labor income share has occurred in Europe (5 to 10 percentage points of

GDP) and suggests that this decline could be explained by non-neutral

changes in technology.

There are several models of biased technological change where labor share

are relatively constant.3 Boldrin and Levin (2002) build a model where the pro-

duction function is Leontief so, factor prices are determined by opportunity cost

and not by marginal productivity. Zuleta and Young (2006) and Zeira (2006)

consider models with two �nal goods and assume that labor saving innovation

can only be implemented in the capital intensive sector. In this setting, the

e¤ect of labor saving innovations is compensated in the aggregate with the in-

3Kennedy (1964), Samuelson (1965) and Drandakis and Phelps (1966) are pioneers in this
literature.
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crease in the share of the labor intensive sector. 4 To the best of our knowledge

this is the �rst model where physical capital using innovations are accompanied

with human capital using innovations in such a way that the labor income share

does not present a clear decreasing trend.

In then next section we present the model. Then we conclude in the last

section.

2 The Model

2.1 The cost of changing technology

We assume that there are di¤erent qualities of physical and human capital:

Any type of physical capital embodies a technology (�, �:) Capital types that

embody more capital intensive technologies are more costly. In particular, we

assume that for 1 unit of output devoted to build capital goods of type �; � the

number of capital goods is given by K�;� = 1+ [ln(	� � �)] �+ [ln(	� � �)] �

where � is a measure for scale, 	� and 	� are technological parameters such

that 	� � 1 and 	� � 1:We also assume that each plant can only operate with

one technology so, only one type of capital is used at a time and we can drop

the subindex �; �:

For simplicity, we choose not reproducible factors as a measure of scale, so if

4While this paper examines the dynamics of labor share in response to technical change,
various theoretical and empirical research has explored the non-technical determinants of labor
share, e.g., Gomme and Greenwood (1995) and Boldrin and Horvath (1995) (unemployment
insurance/labor contracts); Blanchard (1997), Blanchard and Wolfers (2000), Bentolila and
Saint-Paul (2003) and Kessing (2003) (labor adjustment costs and bargaining power); Bertola
(1993) (�scal policy); and Ambler and Cardia (1998) (monopolistic competition).
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Li is the amount of not reproducible factors used by the �rm i then for 1 unit of

output devoted to build capital goods of type �; � the stock of capital is given

by5 ,

Ki = 1 + Li [ln(	� � �i)] + Li [ln(	� � �i)]

Following Barro and Sala-i-Martin (1995) we also assume that physical and

human capital are produced with the same technology.6 Therefore, the total

amount of assets of the �rm ai can be written as

ai = Ki +Hi � Li [ln(	� � �)]� Li [ln(	� � �)] (1)

De�ning aK;i = Ki � Li [ln(	� � �i)] and aH;i = Hi � Li [ln(	� � �i)] the

output produced by a �rm i usingK units of capital of type �i; �i can be written

as

Yi = A(aK + [ln(	� � �i)]Li)�i(aH + [ln(	� � �i)]Li)�iL
1��i��i
i (2)

In other words, we assume that the production technology in each period

is chosen from a time invariant set of technologies where a more superior tech-

nology also entails larger costs on acquiring capital. We are aware of the fact

that new things are invented each year and many of the technologies we use

nowadays were recently created. However, the aim of the paper is not to ex-

5This function is chosen because of its tractability and the main results of the model do
not depend on such an assumption. See Zeira (2005) or Peretto and Seater (2006) for di¤erent
costs functions.

6This simplifying assumption does not a¤ect the results of the model.
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plain the process of creation of new technologies but to explain (i) why some

societies adopt capital intensive techniques of production while others use labor

intensive technologies and (ii) what are the e¤ects of these di¤erences in terms

of functional distribution of income and economic growth.7

Markets are competitive so �rms choose the technology in order to maximize

output,

max
�i;�i

Yi s:t �i � �0 and �i � �0:

As a result, in the interior solution, the technology is given by (complete deriva-

tion in the Appendix 4.1),

�i = 	�

Ki

Li
ln
�
Ki

Li

�
1 + Ki

Li
ln
�
Ki

Li

� and �i = 	�

Hi

Li
ln
�
Hi

Li

�
1 + Hi

Li
ln
�
Hi

Li

�
Note that, holding the rest constant, any increase in the size of the �rm a¤ects

Ki; Hi and Li in the same proportions, so the equilibrium levels of � and � are

independent of the size of the �rm. If all �rms use the same technology and face

the same market prices then for any pair of �rms i and j; Ki

Li
= Ki

Lj
= K

L ; where

K
L is capital per unit of not reproducible factors. Similarly, for any pair of �rms

i and j; Hi

Li
=

Hj

Lj
= H

L ; where
H
L is human capital per unit of not reproducible

factors.

7An extension of the model where technologies are created with a probability p(�s) such
that 0 � � � 1 and p0(�s) > 0 would deliver the same predictions of the model we are
presenting.
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Therefore, the equilibrium technology (common for every �rm) is given by,

�t = max

�
�0;	�

kt ln kt
kt ln kt + 1

�
and �t = max

�
�0;	�

ht lnht
ht lnht + 1

�

Note that under this setting the decentralized solution is not optimal. In-

deed, if the production function is Cobb-Douglas and markets are competitive

then the wage is given by w = (1��)Ak�: Therefore, if make zero pro�ts, then

the interest rate must be lower than the marginal productivity of assets r < @Y
@a

because �rms must pay for the technology. This fact may have interesting im-

plications for optimal taxation. However, we want to focus on the e¤ects that

factor saving innovations have on the behavior of factors shares and the simplest

way to present this idea is solving the planner problem.

2.2 The dynamic problem.

For the dynamic problem we assume constant population, homogenous agents,

in�nite horizon and logarithmic utility function.

To obtain the dynamic restrictions of the problem we di¤erentiate equation

1,

_aK + _aH = _a = _k + _h+
_�

	� � �
+

_�

	� � �
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Therefore, the restrictions can be expressed in the following way:

_kt = ut

�
Ak�tt h

�t
t � ct

�
(3)

_ht = at

�
Ak�tt h

�t
t � ct

�
(4)

_�t = bt (	� � �t)
�
Ak�tt h

�t
t � ct

�
(5)

_�t = zt (	� � �t)
�
Ak�tt h

�t
t � ct

�
(6)

where ut is the share of savings devoted to increase the stock of physical

capital, at is the share of savings devoted to increase human capital, bt is the

share of savings devoted to human capital using technological changes; zt is

the share of savings devoted to physical capital using technologies changes and

ut + at + bt + zt = 1:

The planner problem is the standard one: maximize the present discounted

utility of the representative agent subject to the restrictions,

Max

Z
log cte

��tdt

s:t: (3), (4), (5), (6)

�t � �0

�t � �0 (7)
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and the transversality conditions are

lim
t!1

e��t

ct
kt = 0

lim
t!1

e��t

ct
ht = 0

where �0 and �0 are the initial technologies.

From the �rst order conditions it follows that for the interior solution,

_ct
ct
= �tAk

�t�1
t h

�t
t � � = �tAk�tt h

�t�1
t � � (8)

and

�t = max

�
�0;	�

kt ln kt
kt ln kt + 1

�
(9)

�t = max

�
�0;	�

ht lnht
ht lnht + 1

�
(10)

From equation 8 it follows that, in the interior solution,

kt
ht
=
�t
�t

(11)

Therefore, the production function can be rewritten as A(�t�t )
�tk

�t+�t
t and

the optimal consumption growth rate is

_ct
ct
= (�t)

1��t (�t)
�tAk

�t+�t�1
t � � (12)
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Equation 12 is the consumption growth rate of any model where physical

and human capital are produced with the same technology (see Barro and Sala-

i-Martin, 1995). However, in our setting � and � are variables not parameters,

and grow with the economy. For this reason the consumption growth rate

may not decrease as the economy accumulates assets. Indeed, the growth rate

of consumption is increasing whenever k � 1 (the proof is presented in the

Appendix 4.3).

From equations 9, 10 and 11, in the interior solution the variables h, � and

� can be expressed as functions of k

ht = h(kt); �t = �(kt); �t = �(kt) where h
0(kt) � 0; �0(kt) � 0 and �0(kt) �

0:

Therefore, we can de�ne kmin as follows:

De�nition 1 kmin is the capital per unit of not reproducible factors such that

the optimal consumption growth rate is zero, that is,

(�(kmin))
1��(kmin) (�(kmin))

�(kmin)k�(kmin)+�(kmin)�1 = �
A :

Now, given that the growth rate of consumption is increasing whenever k � 1

and h0(kt) � 0; �0(kt) � 0 and �0(kt) � 0; from de�nition 1 it follows that:

1. If k > kmin then the optimal consumption growth rate is positive.

2. If k < kmin then the optimal consumption growth rate is negative.

Therefore, for economies where reproducible factors are relatively scarce it

can be optimal to consume the entire output. On the other hand, if the share
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of reproducible factors is high then consumption growth rate is positive. As

we show below, two candidates for optimal path may arise: one with a small

amount of reproducible factors in the long-run and another with an in�nite

amount of reproducible factors.

2.3 Long run

There are two basic types of long-run equilibria that the model can support.

First, there is a neoclassical steady-state where � = �0; � = �0 and
_c
c =

_k
k =

_h
h = 0: The second one is a Balanced Growth Path (BGP) where �+� = 1 and

_c
c =

_k
k =

_h
h = 0:

2.3.1 Steady State

Consider an initial technology �0; �0 such that

(�0)
1��0 (�0)

�0 <
�

A
and (�0)

�0 (�0)
1��0 <

�

A

In this case, the steady state physical and human capital per unit of not

reproducible factors are

k� =

 
(�0)

1��0 (�0)
�0A

�

! 1
1��0��0

h� =

�
(�0)

�0 (�0)
1��0A

�

� 1
1��0��0

Note that k� < 1 and h� < 1. Therefore, from equations 9 and 10 it follows that
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if k � k� and h � h� then � = �0 and � = �0: Therefore, economies that are

abundant in not reproduclible factors are likely to converge to a steady state.

2.3.2 Balanced Growth Path

From equations 9, 10 and 12 it follows that,

lim
k!1

_ct
ct
= (	�)

1�	� (	�)
	�Ak

	�+	��1
t � � (13)

Form equations 9 and 13 it follows that:

1. If 	�+	� � 1 and (	�)1�	� (	�)
	�A < 2� then the problem has a �nite

value solution (proof in the Appendix 4.4)

2. If	�+	� � 1 and (	�)1�	� (	�)
	� > �

A then capital abundant economies,

that is economies where k > kmin, converge to a BGP (proof in the Ap-

pendix 4.5).

From results 1 and 2 it follows that if 	�+	� = 1 then the dynamic problem

can be solved and capital abundant economies converge to a Balanced Growth

Path while poor economies converge to a steady state.

Now, in the Balanced Growth Path the growth rate of human and physical

capital must be the same,
_kt
kt
=

_ht
ht
; so

ut

 �
�

�

��
Ak

�t+�t�1
t � ct

kt

!
= at

 �
�

�

���1
Ak

�t+�t�1
t � ct

kt

�

�

!
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and

ut
at
=
�

�

Using the First Order Conditions we �nd that lim
k!1

bt = lim
h!1

zt = 0; so

lim
k!1

(at + ut) = 1 (proof is in the Appendix 4.2) so,

lim
k!1

ut = 	� and lim
h!1

at = 	�

Therefore, in the Balanced Growth Path,

� c
k

��
= lim

k!1

c

k
=

�

	�
(14)� c

h

��
= lim

h!1

c

h
=

�

	�
(15)

Note that equations 14 and 15 imply that lim
k!1

c
h+k = �: Therefore in the

BGP the ratio consumption assets is equal to the discount rate as derived in

several endogenous growth models.

2.3.3 Transition

We already showed that depending on the parameters 	�;	� ; A and � there

can be long run growth. Similarly, depending on the initial conditions some

economies can be trapped in a steady state. In this section assume 	�+	� = 1

and characterize the behavior of some of the main variables along the transition

and identify the conditions under which an economy converges to a steady state
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and the conditions under which it converges to a Balanced Growth Path.

Using equations 3 and 12 we can characterize the behavior of the consump-

tion capital ratio c
k ,

_ct
ct
�
_kt
kt
= (�t)

1��t (�t)
�tAk

�t+�t�1
t � �� ut

�
Ak

�t+�t�1
t � ct

kt

�
(16)

From equation 16 it follows that
_kt
kt
� _ct

ct
. To see why suppose that _ct

ct
>

_kt
kt
: If this is the case then ct

kt
> �

ut
+ A

�
1� (�t)

1��t (�t)
�t

ut

�
so ct

kt
>
�
c
k

��
:

But note that A
�
1� (�t)1��t (�t)�t

�
decreases and ut grows as the economy

accumulates capital, so �
ut
+ A

�
1� (�t)

1��t (�t)
�t

ut

�
decreases as the economy

grows. Therefore, if _ct
ct
>

_kt
kt
then _ct

ct
� _kt

kt
grows with time and the economy

cannot converge to a BGP. Moreover, if _ct
ct
>

_kt
kt
then ct

kt
converges to in�nity

which is not feasible.

Proposition 2 De�ne ~k =
�

�
	�
kmin

1
(�0)

1��0 (�0)
�0

� 1
�0+�0 , if k0 < ~k and k0 <

kmin then the economy converges optimally to a steady sate.

Proof. Suppose not, that is, there exists a k0 such that k0 < ~k; k0 < kmin and

the economy presents long-run growth.

1. In order to have capital accumulation or technological change consump-

tion must satisfy c0 < Y0:

2. In the interior solution, the consumption-capital ratio decreases as the

stock of capital grows and converges to �
	�

as capital goes to in�nity. Moreover

as long as k < km the growth rate of consumption is negative. Therefore, for

any t such that kt � km it must be true that ct < c0:
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3. Since the consumption-capital ratio decreases with time and converges to

� in the long-run then in the optimal path ct >
�
	�
kt for any t <1:

From 2 and 3 it follows that given k0; if there is an optimal path with long-

run growth then c0 >
�
	�
kmin:

From 1, 2 and 3 it follows that output at period zero must be higher than

�
	�
kmin; namely,

(�0)
1��0 (�0)

�0Ak
�0+�0
0 > �

	�
kmin so

k0 >

 
�

	�
kmin

1

(�0)
1��0 (�0)

�0

! 1
�0+�0

which contradicts k0 < ~k

Proposition 3 If k0 > km then the economy presents long-run growth.

The proof is straightforward. When k > km the marginal productivity of

savings is higher than the discount rate. Therefore, savings are used to increase

K; H; � and � and the consumption growth rate is positive.

2.4 The Behavior of Factor Shares

In the previous sections we describe the main results of the model and charac-

terize the long run equilibrium. We �nd that the share of reproducible factors

depends on the relative abundance of the factors. In this section we explore

the possible equilibrium paths of the labor income share. As we stated before,

the standard measure of labor income includes raw labor income and human

capital income and the standard measure of capital income includes physical
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capital income and land income. In order to describe the behavior of the stan-

dard measures of factor shares we need to rewrite the production function in

the following way

Y = AK�H�N
 l1�����


where N is land, l is raw labor, 
 is land income share, 1��� � � 
 is raw

labor income share and N
 l1�����
 = L1���� : Therefore, the share of human

factors is 1� 
 � � and the share of non human factors is 
 + �:

From section 2 we obtain the growth rates of � and �: Di¤erentiating equa-

tions 9 and 10 we �nd

_�t
�t

= (	� � �t)
�
1 + ln kt
ln kt

� _kt
kt

(17)

_�t
�t

= (	� � �t)
1 + lnht
ht lnht + 1

_ht
ht

(18)

Therefore, as long as the economy accumulates assets the share of physical

and human capital in the production function (� and �) grows. This implies

that along the transition the economy undertakes technological changes that are

human capital using, physical capital using, raw labor saving and land saving.

Under these conditions the share of human factors (1�
��) remains constant

if labor saving innovations are always human capital using and land saving

innovations are always physical capital using, that is, _
 = � _�:

In real life, innovations can be physical capital using and raw labor saving

or human capital using and land saving. Indeed, human factors shares move

up and down (see Bentolila and Saint Paul, 2003 or Young, 2005) However, in
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the long run technologies are likely to become more intensive in reproducible

factors.

In our model, as long as 	� > 0 and 	� > 0 in the long run both labor

income share and capital income share converge to a positive number. The

behavior of these shares along the transition depends on the parameters 	� and

	� and on the e¤ects that innovations have on the share of land 
: In any case,

this model is consistent with the empirical evidence regarding the behavior of

factor shares.

3 Conclusions

We present a one good model of economic growth with two reproducible factors

where technological change is factor saving and factor shares are determined

by technology. Assuming that technologies can be changed paying a cost we

�nd that agents in capital abundant economies are more likely to adopt capital

intensive technologies than agents in poor economies. As a result, the elasticity

of output with respect to reproducible factors depends on the relative abundance

factors. We also show that capital abundance stimulates innovations that save

not reproducible factors and that savings are higher in economies where the

technology is more capital intensive For this reason, rich economies may achieve

long-run growth while poor economies may converge to a steady state.

Since factor prices are given by marginal productivity, as economies grow,

the income share of the reproducible factor grows while the income share of not
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reproducible factors decreases. This prediction is consistent with the old result

of constant labor income share. Indeed, human capital accumulation stimulates

human capital-using innovations and increases human capital income share. The

increase in human capital income share can counterweight the reduction in raw

labor income share in such a way that total labor income share (including re-

muneration for human capital) remain constant. The same logic can be applied

to land and physical capital.
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4 Appendix

4.1 Choosing Factor Shares

max
�i;�i

Yi s.t. �i � �0 and �i � �0

F.O.C.

@Yi
@�i

= � �i
	� � �i

A(Ki)
�i�1(Hi)

�iL
1��i��i
i +A(Ki)

�i(Hi)
�iL

1��i��i
i ln ki + �� = 0

@Yi
@�i

= � �i
	� � �i

A(Ki)
�i(Hi)

�i�1L
1��i��i
i +A(Ki)

�i(Hi)
�iL

1��i��i
i lnhi + �� = 0

Therefore, the equilibrium technology (common for every �rm) is given by,

�t = max

�
�0;	�

kt ln kt
kt ln kt + 1

�
and �t = max

�
�0;	�

ht lnht
ht lnht + 1

�

4.2 Savings and assets

Di¤erentiating equations 9, 10 and 11

_�t = 	�
1 + ln kt

(kt ln kt + 1)2
_kt (19)

_�t = 	�
ht lnht

(ht lnht + 1)2
_ht (20)

_kt
kt
�
_ht
ht

=
_�t
�t
�
_�t
�t

(21)

Combining equations 19, 20 and 21 with 3, 4, 5 and 6
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zt =
	�

(1� �t)
1 + ln kt

(kt ln kt + 1)2
ut (22)

bt =
	�

(1� �t)
1 + lnht
ht lnht + 1

at (23)

ut
kt
� at
ht

=
zt
�t
(1� �t)�

bt
�t
(1� �t) (24)

Combining equations 22 and 9 zt = 	�

1+kt ln kt(1�	�)
1+ln kt

(kt ln kt+1)2
ut: Therefore,

lim
k!1

zt = 0:

Similarly, combining equations 23 and 10 bt =
	�

1+ht lnht(1�	�)
1+lnht

(ht lnht+1)2
at:

Therefore, lim
h!1

bt = 0:

Therefore, from equation 24 it follows that in the long run ut
kt
= at

ht
.

Finally, htkt =
�t
�t
: so

lim
k!1

ut = 	� and lim
h!1

at = 	�

4.3 The growth rate of consumption increases as the amount

of reproducible factors grow.

De�ne r = (�t)
1��t (�t)

�tAk
�t+�t�1
t

log r = (1� �) log (�) + � log(�) + log(A) + (�+ � � 1) log k
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combining with equation 11 and rearranging,

log r = log (�) + � log(h) + log(A) + (�� 1) log k

Di¤erentiating,

_r

r
=
_�

�
+ �

_h

h
+ _� log(h) + _� log k � (1� �)

_k

k

Combining with equation 17 and rearranging,

_r

r
=

�
	�
(1 + ln k)k

k ln k + 1

�
1

�
+ ln k

�
� 1
�
(1� �)

_k

k
+ �

_h

h
+ _� log(ht)

Combining with equation 11 and rearanging,

_r

r
=

�
1 + � ln k (1 + ln k)

ln k

�
(1� �)

_k

k
+ �

_h

h
+ _� log(ht)

Therefore, if k > 1 and
_k
k > 0 then

_r
r > 0:

4.4 If 	�+	� � 1 and (	�)1�	� (	�)	�A < 2� then the prob-

lem has a �nite-value solution.

The maximized Hamiltonian is given by H0(at; �t) = u(c
�
t )e

��t + �t (Yt � c�t ) :

Therefore, we have to prove that lim
t!1

u(c�t )e
��t = 0 To simplify notation we

drop the index *.

Note that lim
t!1

u(ct) =1 and lim
t!1

e��t = 0; so in order to �nd the limit we

25



di¤erentiate the expression u(ct)e��t:
U 0(ct)
U(ct)

_ct � �

Recall that the log utility function is a special case of the more general

function CRRA, c
1��

1�� : Indeed, lim�!1

c1��

1�� = log c
8 , so

U 0(ct)
U(ct)

_ct � � = 1
�
_ct
ct
� �

Now, we use the log utility function, so � = 1 and U 0(ct)
U(ct)

_ct � � = _ct
ct
� �:

From equation 8 _ct
ct
= (�t)

1��t (�t)
�tAk

�t+�t�1
t � �

U 0(ct)

U(ct)
_ct � � = (�t)1��t (�t)�tAk

�t+�t�1
t � 2�

and if 	� +	� � 1 and (	�)1�	� (	�)
	�A < 2� then

lim
k!1

�
U 0(ct)

U(ct)
_ct � �

�
� (	�)1�	� (	�)

	�A� 2�

Therefore, if (	�)
1�	� (	�)

	�A < 2� then lim
t!1

�
U 0(ct)
U(ct)

_ct � �
�
< 0 and

lim
t!1

u(ct)e
��t = 0.

4.5 If 	� + 	� � 1 and (	�)
1�	� (	�)

	� > �
A
then capital

abundant economies converge to a BGP.

De�ne the function f(k) = A (�(k))1��(k) (�(k))�(k)k�(k)+�(k)�1 � �

1. If k > 1 then f(k) is strictly increasing in k:

2. If 	� + 	� � 1 then lim
k!1

f(k) = (	�)
1�	� (	�)

	�A � �: Therefore, if

8To show that the utility function converges to the logarithmic function as � ! 1 we make
use of L�Hospital�s rule. As � ! 1, both the numerator and denominator of the function
approach zero. We di¤erentiate both the numerator and the denominator with respect to �
and then take the limit of the derivatives�ratio as � ! 1.
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(	�)
1�	� (	�)

	� > �
A then lim

k!1
f(k) > 0:

From 1 and 2, there exists a ~k such that f(k) > 0 for any k > ~k .

Suppose not, then for any k there exists a �nite numberM such thatM > k

and f(M) � 0:

f(k) is strictly increasing in k; so f(M) > f(k): Therefore, for any k; f(k) �

0 and sup f(k) � 0:

Finally, lim
k!1

f(k) = sup f(k); so lim
k!1

f(k) � 0 which contradicts lim
k!1

f(k) >

0:
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