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SUMMARY 

Aging is defined as the reduction in the physiological and adaptive capabilities of organisms with 
the passage of time.  There is increased susceptibility to cardiovascular and neurodegenerative 
diseases, cancer and diabetes, among others (1). Aging is a complex biological process which 
occurs in almost all organisms and is associated with a progressively diminishing capacity for 
homeostasis and physiological functions.   
The causes associated with the appearance of aging are not fully known. Multiple lines of 
evidence suggest that the accumulation of DNA damage could be the central event on which 
other factors related to the aging process coalesce (2). One of the links most clearly connecting 
DNA damage to aging are the progeroid syndromes caused by a deficiency of DNA transcription-
coupled nucleotide excision repair (TCR-NER) subpathway (3). TCR-NER is activated in 
response to RNA polymerase II-blocking during transcription.  
Surprisingly, there is a parallel between the transcriptional response of progeroid mice and mice 
on a dietary restriction (DR) regimen (an intervention that extend the lifespan). DR even for short 
periods of time, has increased resistance to different forms of acute stress (4) such as ischemia-
reperfusion injury, a characteristic lesion of transplants or vaso-occlusive disease (5). 
Corroborating that TCR-NER deficiency induces activation of similar protective mechanisms, Csb-
/- and Csa-/- mice are less susceptible to renal ischemia-reperfusion injury (6).  
The parallel between the transcriptomic and metabolic responses of animals at two life 
expectancy extremes, in addition to the shared increase in resistance to ischemia-reperfusion 
injury, has been explained by the existence of a programmed survival response.  This response 
would be activated by low-intensity stress, promoting the mobilization of the organism´s resources 
towards protection and inhibiting growth-related processes (7). The survival response has not 
been completely characterized; its activation or protection mechanisms are not clearly known, nor 
what type of interventions would prompt it, how the response would vary with respect to the 
organism´s lifespan, and whether or not different types of low-intensity stress would produce 
greater activation.   
This thesis addresses several questions related with the survival response, the mechanism of 
neurodegeneration and normal aging using mainly analysis of transcriptomic data.   
First, it was established that old mice are able to activate an incomplete survival response after 
three days of DR, second, a common mechanism of activation of the protective response was 
described. Third, a connection between the accumulation of DNA damage and neurodegeneration 
was provided. Finally to have a complete vision of the process of aging, an integrative 
methodology of analysis was used over brain human transcriptomic data, the result was the 
identification of an opposite activation of astrocytes in the human aged prefrontal cortex. 
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1. GENERAL INTRODUCTION 

Aging is defined as the reduction in the physiological and adaptive capabilities of organisms with 
the passage of time.  There is increased susceptibility to cardiovascular and neurodegenerative 
diseases, cancer and diabetes, among others (1).  With the progressive aging of the population 
due to decreased birth rates and increased life expectancy, it has become one of the most 
important public health problems (8).  Therefore, healthcare systems must include programs to 
improve the quality of life of this sector of the population, and these programs must address 
prevention, early diagnosis of several diseases and treatment of chronic diseases, with the 
resulting increase in healthcare system costs.  
One of the challenges of today´s medicine is understanding the molecular mechanisms of aging 
in order to be able to identify biomarkers of biological age, the diagnostic predictors and state of 
typical aging-associated diseases, and, finally, strategies for modulating the aging process.   
Aging is a complex biological process which occurs in almost all organisms and is associated 
with a progressive diminishing capacity for homeostasis and physiological functions.  It is 
characterized by a progressive accumulation of damage in various cellular and subcellular 
systems. On the cellular level, there is an accumulation of senescent cells, a decrease in stem 
cells, a decreased capacity to respond to injury, changes in morphology and functional 
deterioration.  The disrupted subcellular processes include telomere shortening, epigenetic 
modifications, loss of proteostasis, mitochondrial dysfunction, poor cellular communication and 
genomic instability (9).  
The causes associated with the appearance of aging are not fully known.  However, there are 
various theories that explain the development of some of the previously mentioned disruptions.   
The most widely accepted hypotheses are:  
Crosslinking/glycation: With age, macromolecules such as DNA and proteins form cross 
linkages with each other and with glucose.  These cross linkages decrease molecular function 
and elasticity, and also inhibit protease activity.  Therefore, these damaged molecules 
accumulate in the tissues and cause characteristic aging problems such as cardiomegaly and 
brain function deterioration (10).  
Oxidative damage:  The free radicals which escape from the neutralization systems may 
damage DNA, proteins, lipids and mitochondria. This type of damage is known as oxidative 
damage and causes accumulation of abnormal molecules which disrupt the synthesis of DNA, 
RNA and proteins.  In addition, it interferes with cellular communication and energy production, 
generally altering normal cell function (11).   
Replicative senescence: Cellular senescence consists of cessation of cellular division.  Cells 
have a limited capacity for reproduction through mitosis; each time a cell divides, it loses a small 
part of its telomeres.  When the telomeres reach a critical level of shortening, the cell cannot 
replicate its genome any more, and stops dividing.  The activation of oncogenes, oxidative 
stress and DNA damage also induce cellular senescence.  This process has been associated 
with aging-associated diseases such as fatty liver, diabetes and tumor genesis (12).   
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Accumulation of DNA damage: DNA is susceptible to injury due to various factors such as 
oxidative stress, replication errors, toxins or radiation.  Most of the damage is eliminated by the 
DNA repair systems; the fraction of the damage that is not repaired accumulates, and may 
eventually cause the cells to malfunction (2).   
Multiple lines of evidence suggest that the accumulation of DNA damage could be the central 
event on which other factors related to the aging process coalesce  (2). One of the links most 
clearly connecting DNA damage to aging is the progeroid syndromes.  These are monogenic 
diseases characterized by premature aging and may or may not be associated with an 
increased incidence of cancer.  The connection between the accumulation of DNA damage and 
aging lies in the fact that one group of these progeroid syndromes is caused by a mutation in 
the genes which code for proteins from the DNA transcription-coupled nucleotide excision repair 
(TCR-NER ) subpathway (3).  
The NER pathway is activated in response to a wide range of types of damage which cause a 
distortion in the helical DNA structure.  This repair mechanism is divided in two subpathways: 
global genome repair (GG-NER) and transcription-coupled repair (TCR-NER ).  These 
subpathways differ in their initial DNA damage recognition mechanisms.  GG-NER recognizes 
damage anywhere in the genome through the protein dimer XPC-hHR23B (13).  TCR-NER is 
activated in response to RNA polymerase II blocking during transcription; therefore, it identifies 
damage in transcriptionally active genes.  The CSB and CSA proteins are responsible for 
identifying this damage.  The next steps in DNA damage repair are similar for both 
subpathways.  The transcription factor TFIIH, which contains two helicases with opposite 
polarities (XPB and XPD), is recruited in the damaged region, along with the XPG 
endonuclease.  These proteins unroll the DNA around the injury.  Subsequently, the XPA 
protein attaches to the lesion site, probably to allow other repair proteins to be recruited and to 
ensure that the damage is correctly eliminated. Then, the endonuclease dimer ERCC1/XPF cuts 
the region flanking the damage, the damaged section is removed, and the resulting gap is filled 
by template-dependent polymerization (14).   
In humans and mouse models with GG-NER deficiency, such as occurs in xeroderma 
pigmentosum (XP), the inability to repair DNA damage is related to a greater predisposition to 
cancer. Meanwhile, in TCR-NER  repair subpathway defects, such as trichothiodystrophy (TTD), 
Cockayne syndrome (CS) and XFE progeroid syndrome, there is a dominant phenotype of 
premature aging without a predisposition to cancer (2). This collection of syndromes evidences 
the existence of a connection between the accumulation of DNA damage and aging.   
Knockout mice with mutations identified in humans with these diseases have been 
characterized with regard to the progeroid phenotype. Several studies have found that mouse 
models recreate normal aging very accurately, except at a greater speed.  The TTD mouse, with 
an Xpd gene mutation similar to that found in a TTD patient, develops bone fragility and 
premature loss of stem cells (15).  Cockayne syndrome group A  (Csa -/-) and Cockayne 
syndrome group B  (Csb m/m) mutant mice have a greater sensitivity to UV radiation, 
accelerated loss of photoreceptors, decreased body weight and moderate neurological 
abnormalities (16, 17), similar to a moderate CS phenotype in humans.  Mice with double 
mutations in CSB and XPA (Csbm/m;Xpa-/-) develop a more severe phenotype, with decreased 
postnatal growth, progressive kyphosis, ataxia, retinal degeneration, motor dysfunction and 
premature death (18). Mice with loss of Ercc1 (Ercc1-/-) expression have a phenotype very 
similar to that of people with XFE syndrome, with pre and postnatal growth retardation, skin, 
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liver and bone marrow abnormalities, and a life expectancy of only four weeks (19). The 
compound homozygous Ercc1 -/Δ mouse with a null mutation in one Ercc1 allele and a deletion 
causing the loss of seven amino acids on the carboxyl terminal end of the other allele, has a 
less severe phenotype compared to that of Ercc1-/-. This phenotype is characterized by 
accelerated hearing and vision loss, motor neuron degeneration, liver and kidney abnormalities 
with cytoplasmic invaginations and polyploid cells, lack of subcutaneous fat and a decreased life 
expectancy (20-22).   
The combination of these results leads to the conclusion that the typical progeroid phenotype of 
this type of syndromes is related to the decreased capacity to repair DNA damage in 
transcriptionally active genes.  In addition, the fact that the most severe phenotypes are related 
to greater TCR-NER deficiencies indicates that the accumulation of mutations is responsible for 
progeria.  This evidence is compatible with the possibility of natural aging being caused by the 
slow and progressive accumulation of DNA mutations, mainly those that affect transcriptionally 
active genes.    
Transcriptomics is very useful for studying complex phenotypes such as normal aging and 
progeria, since it allows the identification of molecular processes associated with the trait of 
interest through hypothesis-free studies.  A comparison of the liver transcriptome of TCR-NER  
deficient mice and that of wild mice with natural aging shows important parallels.  The liver 
transcriptome of 15 day old Csbm/m;Xpa-/- and Ercc1-/- mice and 16 week old Ercc1-/ Δ  mice 
along with aged 96 and 130 week old wild mice shows suppression of the genes for oxidative 
metabolism, cellular growth and energy reserve homeostasis (7, 18, 19).   
These same analyses also showed that, in mice with a progeroid phenotype, the suppression of 
growth hormone/insulin-like growth factor 1 (GH/IGF-1) pathway genes leads to systemic 
suppression of the somatotropic axis.  There is also an increased antioxidant response (7, 19, 
23).  Surprisingly, these changes are similar to those found in mice that have an increased life 
expectancy due to either dietary restriction (DR) or specific genotypes which suppress the 
GH/IGF-1 pathway (7).  The proposed explanation of this parallel between two extremes of 
longevity is that both groups are exposed to continuous levels of stress, and they increase their 
somatic protection mechanisms in response.  In progeroid mice, the activator of these 
mechanisms would be genotoxic stress, while in mice subjected to DR the stressor would be the 
scant availability of food.  
Mice on a DR regimen, even for short periods of time, have increased resistance to different 
forms of acute stress (4) such as ischemia-reperfusion injury, a characteristic lesion of 
transplants or vaso-occlusive disease (5).  This protection is correlated with improved sensitivity 
to insulin, increased expression of genes related to the antioxidant response and decreased 
expression of inflammatory and IGF-1 signaling markers. Corroborating that TCR-NER 
deficiency induces activation of similar protective mechanisms, Csb-/- and Csa-/- mice are less 
susceptible to renal ischemia-reperfusion injury (6).  
The parallel between the transcriptomic and metabolic responses of animals at two life 
expectancy extremes, in addition to the shared increase in resistance to ischemia-reperfusion 
injury has been explained by the existence of a programmed survival response.  This response 
would be activated by low intensity stress, promoting the mobilization of the organism´s 
resources towards protection and inhibiting growth-related processes (7).  The survival 
response has not been completely characterized; its activation or protection mechanisms are 



12  

not clearly known, nor what type of interventions would prompt it, how the response would vary 
with respect to the organism´s time of life, and whether or not different types of low intensity 
stress would produce greater activation.   
The first part of this thesis addresses several of these questions through transcriptomics 
(chapter 1).  Wild mice from different age groups subjected to various types of diet restriction 
were used as study models.  The level of protection conferred on each of the experimental 
groups was determined, and finally, the transcriptomic response was characterized in order to 
identify molecular mechanisms associated with a greater resistance to stress.   
On another note, the central nervous system (CNS) is significantly affected by the aging 
process; signs of this are the normal cognitive deterioration associated with age and the greater 
incidence in elderly people of neurodegenerative diseases (ND) such as Alzheimer´s and 
Parkinson´s disease.  Thus, it is not surprising that both people with progeroid syndromes due 
to TCR-NER deficiency as well as mouse models with these syndromes should have 
phenotypes related to the premature loss of CNS function.   
Traditionally, the consequences of defects in DNA damage repair have been studied in 
proliferating cells, and therefore the function of DNA repair in nervous tissue is relatively poorly 
understood (24).  Reports on this subject mainly show associations between DNA damage and 
neurodegeneration.  The role of the accumulation of DNA damage, and whether or not it is a 
definitive cause of neural dysfunction or death, is unknown (25).  Due to the fact that 
homozygous mutations in TCR-NER  genes produce a very severe phenotype, it is difficult to 
differentiate whether the CNS involvement depends directly on the accumulation of damage or if 
it is caused by systemic disruptions (26).  In response to this, conditional mice which express 
the mutation in specific regions of the CNS have been studied.  This type of studies has 
evidenced that rats with Ercc1-/Δ mutations restricted to the frontal cortex present age-
dependent decreased neuronal plasticity and progressive neuronal disease compatible with a 
neurodegenerative process (27).  These results confirm the importance of TCR-NER in normal 
CNS functioning.  An implicit limitation in this type of model is that the accumulation of DNA 
damage occurs in an accelerated fashion, contrary to what is hypothesized for 
neurodegenerative diseases where decades of slow, progressive DNA damage accumulation 
are needed for the phenotype to be expressed.  Likewise, at least in the initial stages of the 
diseases, the neuronal damage is confined to distinctive brain areas, and even to specific types 
of neurons (28-30).   It is therefore necessary to investigate if the susceptibility of different 
encephalic zones may be related to TCR-NER levels, and if a slower, more progressive 
accumulation of DNA damage may also trigger neurodegenerative diseases.  
Chapter 2 of this thesis studies these questions from a gene expression perspective.  
Parkinson´s disease (PD) was used as a neurodegenerative disorder model, and micro arrays 
and next-generation sequencing were used as transcriptomic tools.  First, the levels of TCR-
NER gene expression were explored in different brain regions of healthy people.  Then, the 
substantia nigra of mice with marginal TCR-NER deficiency was characterized on the molecular 
level in order to make a parallel between the animal model and individuals with PD.  
Finally, to have a complete vision of the process of aging, it is necessary to study it under 
normal conditions.  Once again, transcriptomics is an ideal tool for this, as it identifies in a non-
biased way which processes are the most relevant in the presentation of the phenotype of 
interest.  However, this approach is not without limitations, such as the difficulty in obtaining 
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biological samples, if what is being studied is CNS aging in humans.  One solution for this is to 
combine several small studies, thereby increasing statistical power and obtaining more robust 
lists of differentially expressed genes.  The meta-analysis methods work very well for this 
purpose.  Thus, the conclusion of this thesis consisted in combining several independent 
studies which identify levels of expression in the prefrontal cortex (PFC) of people from different 
age groups.  The prefrontal cortex was chosen since it is one of the brain regions most 
susceptible to changes in the aging process.  
Chapter 3 of this thesis reports the results of the combination of four studies on human PFC 
transcriptomic, emphasizing the role of astrocytes in successful aging.    
 
1.2 OBJECTIVES 

 
1.2.1 GENERAL  
To identify transcriptomic responses related to normal, healthy and accelerated aging 
 
1.2.2 SPECIFIC 
To describe the transcriptomic response of aged mice to fasting as a model of protection against 
acute stress  To identify common pathways activated by different dietary and protective interventions against 
acute stress  
To evaluate parallels and divergences among a model of mild deficient in TC-NER with molecular signatures of Parkinson´s disease  
To describe the transcriptomic modifications in aged human prefrontal cortex  
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2. Chapter 1 
Transcriptomic characterization of the protective survival response to high intensity 

acute stress 
2.1 Introduction 
Dietary restriction (DR) entails reducing the ingestion of a particular nutrient, without causing 
malnutrition.  Dietary restriction protocols with regard to calorie ingestion, known as calorie 
restriction (CR), reduce dietary calories by 20-40%.  With these levels of restriction, an 
extended life expectancy and a decreased appearance of age-related chronic diseases can be 
seen in a wide variety of species such as yeast, Drosophila, C. elegans, fish, mice, rats and 
primates (31).  Although the mechanisms by which DR has a positive effect on longevity are not 
completely understood, there are several known pathways which are modulated by the 
nutritional intervention (32).  Experimental models subjected to DR have modifications in the 
pathways regulated by the target of rapamycin (TOR), AMP kinase, sirtuins and the IGF-1 
pathway (33).  
One of the positive effects of DR, and which is probably related to the increased longevity, is an 
increased resistance to different stressors.  This may be mediated by an overexpression of 
antioxidant response and cellular repair genes and DNA and by suppression of inflammatory 
pathways (34).  In a clinical context, DR has been found to protect against acute stressors such 
as chemotherapy (35), acetaminophen poisoning (36) and oxidative stress induced by ischemia-
reperfusion injury (IRI) (37).  
Ischemia-reperfusion injury is caused by a temporary loss of blood flow with subsequent tissue 
perfusion.  Multiple causes of tissue injury secondary to IR have been described, including the 
production of reactive oxygen species (ROS), inflammatory cell infiltration and impaired calcium 
homeostasis (38).  
In the context of transplant surgery, IR is a significant cause of acute morbidity.  In kidney 
transplants, blood flow is suspended after extracting the donor kidney; this is the ischemic 
phase which produces hypoxia, nutrient deprivation and the accumulation of metabolic products 
(39, 40). Once the kidney is implanted in the recipient, blood circulation is reestablished: the 
reperfusion phase.  The arrival of oxygenated blood to a tissue subjected to ischemic stress 
increases the production of ROS, induces apoptosis and promotes the activation of the 
inflammatory response, producing increased tissue injury (41) with possible acute renal failure 
(PMID: 22045571), primary dysfunction (PMID: 12631369) and acute or chronic rejection (42). 
Preventing or reducing renal IR would improve the results of kidney and other transplants in 
general.  Unfortunately, there is no effective intervention for this.  
Due to the ever-increasing number of kidney transplant recipients and the low availability of 
kidney donors, increasingly older donors are being accepted in clinical practice, with a greater 
incidence of morbidities such as diabetes and obesity which make them more susceptible to IR .  
This leads to the need to develop interventions to improve the success rate of this type of 
transplants.     
The Erasmus Medical Center experimental surgery group found that subjecting young 10-14 
week old mice to a 30% CR protocol for two to four weeks was enough to improve survival and 
kidney function following IR.  They also found that a three day fast induced the same level of 
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protection.  In animals subjected to either of the two previously mentioned regimens, there was 
improved sensitivity to insulin, an increase in antioxidant defense markers and a decrease in 
inflammatory and IGF-1 signaling markers. The kidney transcriptome of these same mice 
showed enrichment in genes found in long-term CR, indicating that brief periods of CR or fasting 
are enough to activate the protective response (5). In order to determine the impact that this 
type of interventions could have on human health, the study must be extended to old and obese 
mice, which better represent the characteristics of the group of potential transplant donors and 
recipients.  In the first part of this study, young and old mice were subjected to a three day fast.  
The level of protection of both groups was characterized, and the transcriptomic responses of 
both were determined.  
In order for the protective phenotype against IR to be induced in humans, with the aim of 
improving organ transplantation results, alternative mechanisms to induce resistance to stress 
must be identified.  A four-week CR protocol is difficult to adhere to, and fasting, even for short 
periods of time, may be counterproductive in post-transplant surgery recovery (37).  In the 
second part of this research, the role of restriction of various macronutrients in the induction of 
protection against IR was studied. To do this, young mice were subjected to different diets 
restricting proteins, carbohydrates and fats.  Once again, the level of protection of each of the 
experimental groups was characterized, and their transcriptomic responses were determined.   
The aims of this research were the identification of transcriptomic response related to the protection against IRI in old mice and after different dietary modifications. To do that was 
necessary to establish the experimental models, to characterize the effect of the stress protection and generate the samples to quantify the global gene-level expression. A team of 
researchers of the Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, under the direction of Professor Ron de Bruin, developed all the processes oriented to answer the questions in this research. In 
order to increase the understanding of the transcriptomic analysis, and the implications of them, I provided in this report a short description of methods and results performed in parallel with the 
transcriptomic analysis. An integrate compendium of the methods and results described in this chapter are already published (43, 44).  
This chapter is a result of the adaptation of two publications related to this thesis:  PMID: 24959849 
PMID: 28102354  2.2 Methods 
 2.2.1. Mouse models 
 2.2.1.1. Aged mice: All aged mice were bred, raised and kept under identical standard 
laboratory conditions as described (PMID: 22953029). They were wild type FVB-C57BL/6J F1-
hybrid mice, with an average age of 72 and 74 weeks and average weight of 47.3 grams, . Animals were allowed free access to water and food unless noted otherwise. 
 2.2.1.2. Young mice: C57BL/6 male mice, 10–12 weeks old (20–25 grams), were obtained from 
Harlan, the Netherlands. Animals were housed under standard conditions. All mice had ad 
libitum (AL) food and water except where specific dietary restriction protocols were applied.  All experiments were performed with the approval of the Animal Experiments Committee of the 
Erasmus University Medical Center, Rotterdam, the Netherlands under the Dutch National 
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Experiments on Animals Act and according to the ARRIVE Guidelines, Animal Research: Reporting of In Vivo Experiments (45). 
 2.2.2. Dietary interventions: 
 2.2.1. Control diet:  
Three different control diet were used, they differed in the protein source. One diet consisted of 
crude protein and it was called “SDS”, other control diet consisted diet of lactic casein protein 
and it was called “Control” diet. Finally, a third control diet consisted of AIN93G synthetic pellets. 
The reason of the two first different control diets was the availability of the specific control diet in 
the moment that experiments were performed. Diet AIN93G was used in order to avoid the 
generation of bladder stones in Ercc1∆/− mice . “SDS” diet was used in the evaluation of renal 
protection after 3 days of fasting in old mice. “Control” diet were used in the evaluation of the 
response of different type of dietary restrictions protocols.  
2.2.2. Long-term dietary interventions:   
At the start of the dietary intervention period, all mice were transferred to clean cages at 
4:00 pm. Mice were randomly divided into a group with 30%DR (n = 5) or AL access to a 
carbohydrate-free (CHO-free) diet (n = 6) or a fat-free diet (n = 6) for 14 days, or a protein-free 
diet (n = 6) for 10 days. Mice in the control group for DR had AL access to the control SDS chow 
(n = 10), the control group for CHO-free and fat-free had AL access to the Control diet (n = 12). 
The effect of food intake was measured using pair-fed (PFed) control groups. Pair-feeding of 
each group was accomplished by giving the PFed groups the identical iso-caloric amount of the 
control diet as the mice on the experimental diet had consumed the day before. The CHO-free, 
fat-free and protein-free diets were PFed in this manner (n = 6/group). Mice with 30%DR were 
given 70% of the normal daily intake of mice on the control diet, which was administered once 
daily at 4:00 pm.  
2.2.3. Short-term dietary intervention:  
The same procedure was followed as for the long-term experiment. Mice were randomly divided 
into groups with AL access to control diet (n = 4), a protein-free diet (n = 6 per group) for three 
days or 30%DR for three days (n = 6), or into groups with AL access to SDS chow or fasting for 
three days (n = 5 per group). 
2.2.3. Surgical procedure oriented to induce renal IRI: 
Mice were anaesthetized by isoflurane inhalation. A midline abdominal incision was performed 
and the renal artery and vein of both kidneys were exposed. The pedicles of both kidneys were 
occluded for 37 minutes in males or 60 minutes in females, it was because female are more 
resistant to IRI. Purple discoloration of the kidneys confirmed ischemia macroscopically. After 
removal of the clamps, reperfusion was confirmed when the kidney color turned back to normal. 
The incision was closed in two layers. The mice used for microarray analysis did not undergo 
renal IRI, instead were sacrificed right after the dietary intervention. 
2.2.4. Characterization of the renal phenotype after IRI: 
The animals were followed up to 28 days postoperatively unless they died or were sacrificed as 
a result of morbidity (ruffled fur, decreased mobility, cold to the touch, excessive weight loss. 
During follow-up, they were inspected at least daily. At day 28, all remaining animals were 
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euthanized after which the abdominal cavity was opened for inspection of the kidneys. Serum 
urea and creatinine levels were measured using the QuantiChrom assay kits (DIUR-500 and 
DICt-500, Gentaur Europe, Brussels, Belgium). For assessment of the kidney function, the one-
way ANOVA was used including the Bonferroni test for multiple comparisons. Means were 
compared using either the non-parametric Mann-Whitney U test or the independent t-test for 
parametric data. The survival curves were compared using the Log-rank (Mantel-Cox) test and 
visualized by the Kaplan-Meier curve. 
 
Methods implemented by the author of this thesis 
2.2.5. Transcriptomic analysis 
It is a report of transcriptomic analysis of several experimental groups, with different 
interventions, ages, genotypes and organs. Table 1 summarize the samples used in this 
research to facilitate the tracking of the analysis. 

    
A.       

Dietary Intervention Strain Genotype Age 
(weeks) 

Number 
of arrays 

Duration 
(days) 

Organ 
measured 

Control SDS AL FVB-C57BL/6J wt 72-74 5 3 Kidney 
3-day fasting FVB-C57BL/6J wt 72-74 5 3 Kidney 
Control SDS AL FVB-C57BL/6J wt 12-14 5 3 Kidney 
3-day fasting FVB-C57BL/6J wt 12-14 5 3 Kidney 
       
B.       

Dietary Intervention Strain Genotype Age 
(weeks) 

Number 
of arrays 

Duration 
(days) 

Organ 
measured 

Control SDS (control 2-week 30% DR) C57BL/6 wt 10 -12 4 14 Kidney 
2-week 30% DR C57BL/6 wt 10 -12 5 14 Kidney 
Control SDS (control 3-day fasting) C57BL/6 wt 10 -12 5 3 Kidney 
3-day fasting C57BL/6 wt 10 -12 4 3 Kidney 
Control  C57BL/6 wt 10 -12 5 3 Kidney 
Protein-free C57BL/6 wt 10 -12 5 3 Kidney 
Fat-free C57BL/6 wt 10 -12 4 3 Kidney 
Carbohydrate-free C57BL/6 wt 10 -12 5 3 Kidney 
       Table 1. Overview of gene transcription experiments. A. Samples used to identify the changes 

in the transcriptome of old mice after 3 days fasting. B. Experimental groups used to identify 
transcriptomic modifications associated to several dietary interventions. All the transcriptomic 
experiments were performed on male mice. 
2.2.5.1. Total RNA extraction: Total RNA was extracted using QIAzol lysis Reagent and 
miRNAeasy Mini Kits (QIAGEN, Hilden, Germany), following Qiagen protocol. Addition of wash 
buffers RPE and RWT (QIAGEN) was done mechanically by using the QIAcube (QIAGEN, 
Hilden, Germany) via the miRNAeasy program. Isolated RNA was and stored at −80 °C. The 
concentration of RNA was measured by Nanodrop (Thermo Fisher Scientific™, Breda, the 
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Netherlands) and RNA quality was assessed using the 2100 Bio-Analyzer (Agilent 
Technologies, Amstelveen, the Netherlands) according to manufacturer’s instructions. The RNA 
quality was expressed as the RNA integrity number (RIN, range 0–10). RIN values of included 
samples ranged between 6.6 and 8.5. 
2.2.5.2. Microarray hybridization: Hybridization to Affymetrix HT MG-430 P.M Array Plates 
was performed at the Microarray Department of the University of Amsterdam according to 
Affymetrix protocols. Quality control was performed using the pipeline at the 
www.arrayanalysis.org website (Maastricht University) 
2.2.5.3. Data pre-analysis: Raw data (CEL files) were normalized by robust multichip average 
(RMA) in the oligo BioConductor package, which summarizes perfect matches through median 
polish and collapses probes into core transcripts based on CDF annotation file provided by 
Affymetrix using the R open statistical package (http://www.r-project.org/). All data files have 
been submitted to the NCBI gene expression omnibus under accession number GSE65656, 
and GSE52982. 
2.2.5.4. Principal component analysis: Principal component analysis (PCA) was performed 
using all the probe sets in the array. A graphical representation was generated to show the 
relationship among the different samples. PCA is a linear projection method that defines a new 
dimensional space to capture the maximum information present in the initial data set. It is an 
unsupervised exploratory technique used to remove noise, reduce dimensionality and identify 
common/dominant signals oriented to try to find biological meaning (46). The two principal 
components with the highest amount of variance were plotted. PCA was performed using the 
prcomp package and the plot was drawn with gplots, both from the Bioconductor project 
(https://www.bioconductor.org/).  
2.2.5.5. Detection of differentially expressed genes (DEG): The linear model from Limma 
(47)  implemented in R was used to identify the DEGs. Pairwise comparisons for each genotype 
between ad libitum and dietary restriction samples were applied to calculate the fold change 
(FC), P value and false discovery rate (FDR) for each probe in the microarray. Cut-off values for 
a DEG were put at FDR < 5% with FC ≥ |1.5| (absolute value). For all mouse analyses, 
differentially expressed probes were considered as DEGs. 
2.2.5.6. Pathway analysis: Pathway enrichment analysis was conducted via overrepresentation 
analysis (ORA). ORA was performed in the Interactive pathway analysis (IPA) of complex 
genomics data software (Ingenuity Systems, Qiagen) or DAVID bioinformatics resources 
(https://david.ncifcrf.gov/ ) by employing a pre-filtered list of differentially expressed genes. 
Genes were selected as differentially expressed if they had a fold change≥ 1.5 and an FDR 
lower than 0.05. The over-represented canonical pathways were generated based on 
information in the Ingenuity Pathways Knowledge Base. A pathway was selected as 
deregulated when the P value in the Fisher test was lower than 0.01.  
Additionally, IPA transcription factor (TF) analysis was performed to identify the cascade of 
upstream transcriptional regulators that can explain the observed gene expression changes in 
the different lists of DEGs. To do this, data stored in the Ingenuity Knowledge Base, with prior 
information on the expected effects between TF and their target genes, were used. The analysis 
examines how many known targets of each TF are present in the list of DEGs, and also 
compares their direction of change to what is expected from the literature, in order to predict 
likely relevant transcriptional regulators. If the observed direction of change is mostly consistent 
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with a particular activation state of the transcriptional regulator (‘activated’ or ‘inhibited’), then a 
prediction is made about that activation state. For each TF two statistical measures are 
computed (overlap P value and activation z-score). The overlap P value labels upstream 
regulators based on significant overlap between data set genes and known targets regulated by 
a TF. The activation z-score is used to infer the likely activation states of upstream regulators 
based on comparison with a model that assigns random regulation directions. Overlap P value 
lower than 0.05 and z-score higher than |2| were selected as thresholds to identify a TF as 
relevant. 
2.2.5.7. Determination of enrichment factor and P values of overlap: Overlap between lists 
of DEGs was identified looking by the intersection between pair of lists. To determine if the 
overlap was higher than expected by chance the hypergeometric distribution was used as is 
implemented in phyper function in R. Additionally the factor of enrichment was calculated with 
the formula: EF= nAB/((nA× nB)/nC). Where: nA = Number of DEG in experimental group A; nB 
= Number of DEG in experimental group B; nC= Number of total genes in the microarray; nAB= 
Number of common DEG between A and B.  
2.2.5.8. Data integration by ranking meta-analysis: The methodology applied was combining 
rank orders. It is a non-parametric approach based on rank orders. The R package RankProd 
implemented in INMEX was used (48). In summary, for each dataset, the fold changes (FC) 
were calculated for all possible pairwise comparisons. The ranks of the fold changes within each 
comparison were used to calculate the rank product for each gene. To assess the null 
distribution of the rank product within each data set, a permutation test was performed. The 
process was repeated several times to compute the P-value and false discovery rate (FDR) 
associated with each gene. 
 
2.3. Results and discussion 
This section is divided into two sections. Each section describes the results and discussion of 
individuals sub-projects: 2.3.1 Transcriptomic analysis of kidney in aged mice after three days 
fasting, 2.3.2 Transcriptomic analysis of kidney in mice after several diets 
2.3.1 Characterization of transcriptomic fasting response in old mice. 
2.3.1.1. Preoperative fasting protects against renal ischemia-reperfusion injury in aged 
mice (43). 
Preoperative fasting strongly increased the probability of survival after IRI. Mice under a normal 
diet had less than 10% of survival after 10 days of the damage. Indicating that IRI is a strong an 
almost lethal level of stress in normal conditions. Both male and female fasted mice had an 
important survival compared with AL fed mice (Figure 1).  
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Figure 1. Survival curves of old mice after renal IRI with fasting or AL. Both fasted groups 
show a significantly improved survival: p = 0.0171 for males, p = 0.0040 for females. M = male, 
F = female, Adlib = ad libitum fed. (Modified from (43))  
Fasting also protect the renal function after IRI, markers indicative of the renal function as 
serum urea and creatinine levels were lower compared with AL mice after IRI. Additionally there 
were detected an increase in the tubular epithelial regeneration, less necrosis and more 
regeneration in fasting mice that their counterparts with AL diet (43).  
All results together indicated that fasting is able to activate the survival response that protect 
against renal IRI in old mice. Next, I explored the transcriptomic response and it was compared 
with the transcriptomic response of fasted young mice in order to detect how aging modified the 
response.  
2.3.1.2. Kidneys of fasting old mice have an incomplete transcriptional response 
compared with the transcriptome of kidneys of fasting young mice 
For this research were generated global transcriptome profiles from the kidneys of ten old male 
mice (72-74 weeks old) using Affymetrix microarrays. There was two experimental groups, five 
mice were under AL diet and the other five mice were under 3 days fasting. The quality of the 
microarrays were evaluated as is described in methods. All sample had high quality, then they 
were used in posterior analysis. Figure 2A shows the PCA plot of the samples. Samples in the 
same experimental group clustered together according the PC1. Two samples, one of each 
experimental group were located in the most negative part of PC2. Quality of those samples 
were re-checked, they had a similar quality compared with the other samples and the same date 
of hybridization, then there was no evidence that they have technical issues and it is probably 
related with biological variability of old mice. 
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Figure 2. Principal component analysis (PCA) of microarrays from old mice. Unbiased 
representation of each microarray analyzed. Brown triangles represent AL samples; blue circles 
represent 3 days fasted samples. PC1 explain 24% of the total variability. Samples of each 
experimental group are located in different parts of PC1. Fasted samples are in positive part of 
PC while AL samples are in the negative region of PC1.  
In a previous research was demonstrated that young mice fasting for three days have a 
complete protective response for renal IRI, the totality of mice survived (PMID: 19878145). 
Transcriptomic of four young mice after three days of fasting and four AL mice were studied in 
the same research. Those data were re-analyzed to compare the transcriptomic response after 
fasting in young mice with the response in old mice. Again, the raw files were evaluated by 
quality, all passed the control and they were used to posterior analysis. Figure 2B shows the 
PCA of those samples.  
The ideal option to identify parallels and divergences among the response of old and young 
mice to fasting should be to analyze the samples simultaneously, but both datasets were 
hybridized in two different dates. Affymetrix is very sensitive to technical variations as the facility 
where they are processes, the person on charge or even the date of hybridization. Figure 2C 
shows the unbiased relation of the samples when both datasets were combined. The PC1 
explaining the 50% of the variability is related with the day of hybridization and with the age of 
the mice but this to variables are connected. With this experimental setup is not possible to 
correct the batch effect then both datasets were processes independently.     
Datasets were analyzed comparing fasting intervention with AL samples. Table 2 summarized 
the number of differentially expressed genes detected in both groups of age. There were three 
times more DEG in young mice compared with old mice. The proportion of down- and up-
regulated genes were similar in both groups with a similar number of DEG in both directions.  
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Condition DEG Up Down EF 
3dayFast-Old 854 454 400 13.1 

3dayFast-Young 2408 1189 1219   
Table 2. Number of DEG in old and young fasting kidneys compared with AL kidneys. 
Venn diagram (Fig. 3) shows that majority of probe sets (87%) found in aged mice overlap with 
the probe sets found in young mice. However, young mice have three-fold increase of 
significantly regulated genes indicative of a stronger, more extensive response to fasting in 
young compared to aged mice.  
To know the extension of the similarity among both transcriptomic responses, the number of 
DEG in common were calculated (Fig 3). There were 296 up-regulated genes and 305 down-
regulated genes in common. The 70% of total DEG after fasting in old mice were de-regulated 
with the same direction of the change in young mice. Enrichment factor (EF) also was 
calculated, this factor means how many times there are more genes in common than expected 
by chance. In the comparison of old and young response the EF was 13.1, with a p value lower 
than 1E-15.  

 
 
Figure 3. Venn diagram of the DEG, up- and down-regulated. Intersections shows the 
overlapping among old and young transcriptomic response. 
To determine the effect on a biological level, pathway overrepresentation analyses of DEG were performed with the clustering algorithm implemented in DAVID. This approximation identified 
de-regulated pathways and they are clustered together if they have overlapping genes, then the interpretability of the result is more direct. The database pathways used in this analysis were KEGG and the Gen-Ontology biological process. The DEG were divided in up-regulated genes 
and down-regulated genes. Independent pathway analysis was performed with the set of list generated. The advantage of this approximation is that it incorporates the direction of the de-
regulation of the pathway. Table 3 and table 4 show the statistically significant de-regulated pathways.   
Pathway analysis on up-regulated genes in aged and young mice resulted in several clusters of de-regulated pathways in common (Table 3). There are up-regulation of pathways related with 
metabolism of fatty acid compose (cluster 1 in both lists), metabolism of xenobiotics and glutathione metabolism (cluster 3 in both lists) and lipid storage (cluster 3 in both lists). Others 
pathways were de-regulated only in old or young mice. The specific pathways de-regulated in 
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young mice were cholesterol metabolic process (cluster 2) and TGF-beta signaling pathway (cluster 5). The pathways up-regulated only in young mice are pathways related with stress 
response as cellular response to DNA damage stimulus and negative regulation of apoptosis.  A. 
Up Old     
Cluster 1     
Category Term Count FE PValue 
KEGG PPAR signaling pathway 14 9.2 2.57E-09 
KEGG Fatty acid degradation 11 11.7 1.95E-08 
KEGG Peroxisome 12 7.6 3.96E-07 
GO_BP fatty acid beta-oxidation 8 11.7 4.54E-06 
KEGG Fatty acid metabolism 7 7.2 3.76E-04 

     
Cluster 2     
Category Term Count FE PValue 
GO_BP cholesterol metabolic process 8 5.8 4.53E-04 
GO_BP cholesterol homeostasis 6 6.2 0.0029 

     
Cluster 3     
Category Term Count FE PValue 
KEGG 

Metabolism of xenobiotics by cytochrome 
P450 7 5.7 0.0013 

KEGG Drug metabolism - cytochrome P450 7 5.5 0.0015 
KEGG Glutathione metabolism 5 4.8 0.0201 

     
Cluster 4     
Category Term Count FE PValue 
GO_BP lipid storage 5 12.0 7.36E-04 
GO_BP 

positive regulation of sequestering of 
triglyceride 3 27.7 0.0047 

GO_BP lipid particle organization 3 12.9 0.0218 
     

Cluster 5     
Category Term Count FE PValue 
KEGG TGF-beta signaling pathway 8 4.9 0.0011 
KEGG 

Signaling pathways regulating pluripotency of 
stem cells 9 3.4 0.0046 
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B. 
Up 
Young     
Cluster 1     
Category Term Count FE PValue 
KEGG Fatty acid degradation 14 6.0 2.60E-07 
GO_BP fatty acid beta-oxidation 11 6.4 5.75E-06 
KEGG Biosynthesis of unsaturated fatty acids 8 6.3 1.92E-04 
KEGG Fatty acid metabolism 8 3.3 0.0095 
KEGG alpha-Linolenic acid metabolism 5 4.2 0.0281 

     
Cluster 2     
Category Term Count FE PValue 
GO_BP circadian rhythm 20 4.7 3.45E-08 
GO_BP circadian regulation of gene expression 10 4.2 5.64E-04 

     
Cluster 3     
Category Term Count FE PValue 
KEGG Drug metabolism - cytochrome P450 13 4.2 4.98E-05 
KEGG 

Metabolism of xenobiotics by 
cytochrome P450 12 4.0 1.73E-04 

KEGG Glutathione metabolism 10 3.8 9.73E-04 
     

Cluster 4     
Category Term Count FE PValue 
GO_BP lipid particle organization 6 10.2 1.94E-04 
GO_BP 

positive regulation of sequestering 
of triglyceride 4 14.6 0.0018 

GO_BP lipid storage 6 5.7 0.0035 
     

Cluster 5     
Category Term Count FE PValue 
GO_BP response to UV 10 5.4 7.21E-05 
GO_BP 

cellular response to DNA damage 
stimulus 25 1.5 0.0406 

     
Cluster 6     
Category Term Count FE PValue 
GO_BP 

negative regulation of  apoptotic 
signaling pathway 6 6.1 0.0025 

GO_BP 
negative regulation of endothelial cell 
apoptotic process 5 4.6 0.0224 

 Table 3. Pathways over-represented in the list of up-regulated genes. The analysis was 
performed with Gen-Ontology biological process and KEGG databases. Count means the 
number of DEG in the pathway, FE the number of times that there are more genes than 
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expected by chance. Pathways in bold are the common pathways de-regulated in old and young groups. 
 Amongst the de-regulated pathways in the list of down-regulated genes, the most altered 
pathways in old and young mice were steroid and cholesterol biosynthetic process (cluster 1 and 2 in table 4A and 4B) , steroid biosynthetic process and lipid metabolic process (Table 4). Additionally, the down-regulated genes in old mice had a wider pathways de-regulation 
compared with young mice. The specific pathways de-regulated in old mice were Cellular communication (Table 4B cluster 3), immune related pathways (Table 4B cluster 5 and 8) and 
RNA splicing (Table 4B cluster 7) among others.  A. 
Down Old     Cluster 1     Category Term Count FE PValue 
GO_BP lipid metabolic process 21 3.1 1.45E-05 
GO_BP steroid biosynthetic process 6 15.2 3.96E-05 
GO_BP cholesterol biosynthetic process 6 12.8 9.32E-05 
KEGG Steroid biosynthesis 4 12.4 0.0038 

     Cluster 2     Category Term Count FE PValue 
GO_BP cholesterol biosynthetic process 6 12.8 9.32E-05 
GO_BP isoprenoid biosynthetic process 4 16.1 0.0018 
KEGG Terpenoid backbone biosynthesis 4 10.2 0.0065 

 B. 
Down 
Young     Cluster 1     Category Term Count FE PValue 
GO_BP steroid biosynthetic process 14 5.0 3.25E-06 
KEGG Steroid biosynthesis 8 8.6 1.88E-05 
GO_BP cholesterol biosynthetic process 9 6.2 6.83E-05 
GO_BP cholesterol biosynthetic process 14 3.7 9.78E-05 

     Cluster 2 Enrichment Score: 3.496538729728804    Category Term Count FE PValue 
GO_BP 

GO:0006695~cholesterol biosynthetic 
process 9 6.2 6.83E-05 

KEGG 
mmu00900:Terpenoid backbone 
biosynthesis 7 6.2 6.42E-04 

GO_BP 
GO:0008299~isoprenoid biosynthetic 
process 6 7.8 7.39E-04 

     Cluster 3 Enrichment Score: 2.047875076022803    Category Term Count FE PValue 
KEGG mmu04512:ECM-receptor interaction 12 2.8 0.0035 
KEGG mmu04510:Focal adhesion 20 2.0 0.0058 
KEGG mmu04151:PI3K-Akt signaling pathway 26 1.5 0.0357 
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Cluster 4 Enrichment Score: 1.6786400505292474    Category Term Count FE PValue 
KEGG 

mmu00860:Porphyrin and chlorophyll 
metabolism 8 4.0 0.0033 

GO_BP 
GO:0033014~tetrapyrrole biosynthetic 
process 3 13.2 0.0187 

     Cluster 5 Enrichment Score: 1.6275706754998545    Category Term Count FE PValue 
KEGG 

mmu04610:Complement and coagulation 
cascades 11 3.0 0.0036 

KEGG mmu05020:Prion diseases 7 4.3 0.0047 
GO_BP 

GO:0006958~complement activation, 
classical pathway 7 2.8 0.0374 

     Cluster 6 Enrichment Score: 1.6016409696833063    Category Term Count FE PValue 
GO_BP 

GO:0042759~long-chain fatty acid 
biosynthetic process 4 9.8 0.0063 

KEGG 
mmu01040:Biosynthesis of unsaturated 
fatty acids 6 4.5 0.0089 

KEGG mmu01212:Fatty acid metabolism 8 3.2 0.0112 
GO_BP 

GO:0006636~unsaturated fatty acid 
biosynthetic process 4 5.9 0.0280 

     Cluster 7 Enrichment Score: 1.3488440421168715    Category Term Count FE PValue 
GO_BP GO:0051028~mRNA transport 12 3.0 0.0020 
GO_BP GO:0008380~RNA splicing 17 1.6 0.0819 

     Cluster 8 Enrichment Score: 1.242051379097638    Category Term Count FE PValue 
GO_BP 

GO:0019882~antigen processing and 
presentation 8 3.3 0.0106 

GO_BP 
GO:0051085~chaperone mediated protein 
folding 4 6.8 0.0188 

KEGG mmu05310:Asthma 5 4.3 0.0273 
     Cluster 9 Enrichment Score: 0.8639624899801572    Category Term Count FE PValue 

GO_BP 
GO:0007029~endoplasmic reticulum 
organization 5 4.1 0.0320 

 Table 4. Pathways over-represented in the list of down-regulated genes. The analysis was 
performed with Gen-Ontology biological process and KEGG database. Count means the number of DEG in the pathway, FE the number of times that there are more genes than 
expected by chance. Pathways in bold are the common pathways de-regulated in old and young groups.  
  
 



27  

2.3.1.3 Discussion  
Dietary interventions as DR and fasting induces an increased resistance to several types of acute stress (49, 50). Several mechanism have been linked to this protective phenotype as 
attenuation of oxidative stress, up-regulation of stress proteins, reduce inflammation and reduce IGF-1 signaling (5). In a clinical context, a cause of acute stress is IRI, it is a relevant cause of morbidity and mortality related to vaso-occlusive disease and organ transplantation. The 
damage caused by renal IRI in animal models is severe and lethal in the majority of the cases. Short time DR or three days fasting increases dramatically the protection of young mice against 
renal IRI, with a 100% of survival (5). It is important to know if fasting is able to induce the protective response in aged organisms because most of the people expose to IRI are old. We found that 3 days fasting induces the protective response in old mice, but compared to young 
mice the survival after renal IRI was 60% instead a 100% of survival described in young mice (5, 43). 
 We performed a transcriptomic analysis of kidneys of old and young mice after three days of 
fasting to identify how the protective response is modified by the age. Old and young datasets were analyzed independently because they were hybridized in different dates. First, a multidimensional reduction technique –PCA- was used to visualize the relation among the 
samples in each dataset. The PCA plot with the two more relevant PCs, showed that samples from older mice has a higher intra-group variability compared with samples from young mice. 
Transcriptional noise had been described in analysis of individual aged cells. Cells from older individuals had increased expression heterogeneity and variability (51), a plausible explanation, is that older individuals had been a longer time accumulating mutations in a stochastic way then 
it is expected the presence of more transcriptional noisy in tissues from old animals compared with young animals (52). 
 Identification of DEG showed that the coordinate transcriptomic response in older mice is smaller in the number of genes compared with young mice. There were three times more DEG 
induced by fasting in young mice than the induced in old mice. However, the overlapping among the responses where high, with 13 times more DEG in common than expected by chance and 
70% of DEG in old mice also DEG in young. When independent Affymetrix studies are compared, even they analyzed the same phenotype, the overlap is typically lower than 10% of the DEG (53). This result indicate the good quality of the data and that a proportion of the 
transcriptomic response is conserved with aging.   
To have a better understanding of the biological processes modulated by fasting an over-representation pathways analysis was performed. Up-regulated and down-regulated genes were studied in an independent analysis to improve the statistical power and to increase the 
number of detected pathways (54). In the list of up-regulated genes in old mice (Table 3A), five clusters of pathways were identified. Cluster 1, 2 and 4 contains pathways related with fatty acid 
degradation, beta-oxidation, cholesterol homeostasis and lipid storage. Those de-regulated pathways are related with the re-design of metabolic processes oriented to reduced fat 
synthesis and storage and increased oxidation in order to burn fat for the production of energy (55). The same clusters with the same pathways were detected in the up-regulated genes in young mice (Table 3B). The overlapping in these clusters indicated that the change in the 
metabolism is similar with the age and both group of age had a similar level of deprivation of nutrients. Other common up-regulated group of pathways was located in the  cluster 3 (Table3A 
and 3B) and includes metabolism of xenobiotics by cytochrome P450 and glutathione metabolism. This cluster is compose by pathways related with increased resistance to stress reducing the levels of oxidative stress (56, 57). It is probably the central pathway related with 
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the increases of the resistance to renal IRI in old mice but not the only in young mice. Cluster five, composed by TGF-beta signaling pathway was uniquely de-regulated in old mice (Table 
3A). Activation of this pathway had been linked with the regulation of NOX2/NOX4 expression and increased cerebral IRI (58), the up-regulation also is related with renal fibrosis (58). It is 
possible the activation of TGF-β could be related with the non-complete protection of fasting in old mice but this hypothesis need more validation.  
The analysis of down-regulated genes was also informative about the parallels and divergences among the transcriptional response in old and young mice. All the pathways down-regulated in 
old mice were also down-regulated in young mice. Those pathways were located in cluster 1 and 2 (Table 4A and 4B) and they were related with the synthesis of steroids and cholesterol; those pathways are connected with the re-design of the metabolic network in absence of food. 
Young mice had a more extensive pathways down-regulated grouped in clusters 3 to 9 (Table 4B). The pathways represented in those clusters were indicative of a down-regulation of the 
immune response, protein folding and endoplasmic reticulum organization, all of them previously linked to protective response for previous studies (5, 59, 60). 
 In summary, this research shown that fasting induces non-global protection against renal IRI in aged mice. In concordance with that, the transcriptomic response is smaller in old mice 
compared with young mice. The majority of the pathways de-regulated in old mice are also de-regulated in young mice. However, the transcriptomic of young mice revealed the de-regulation 
of additional pathways related with increase of stress protection. Possible explanations of those differences only could be speculative with the actual evidence. Several hypothesis can propose: Aged organs are not able to activate a vigorous response because their functional reserve are 
diminished, the chronic low stress of aging itself could induces the partial activation of the response, aged organs need more time to activated the complete response.  
 Several experimental approximations could help to answered some of the raising questions, time series to evaluated the progression of the fasting response day by day in young and old 
mice and identification which of the old mice have the protective response (survival after renal IRI) and which one does not have protective response previous to the transcriptomic analysis.  
  2.3.2 A signature of renal stress resistance induced by short-term dietary restriction, 
fasting, and protein restriction (44) 
 2.3.2.1 Short time restriction of dietary protein induces protection against renal IRI 
 To determine the effect of short-term macronutrient deficiency on renal IRI, male mice were fed 
by three days with regimens of protein-free, carbohydrate (CHO)-free and fat-free diets before inducing renal IRI. 
Only the protein-free diet improved survival (Fig. 4) and kidney function following renal IRI (44). Previously was showed that 30% DR for two weeks or 3 days fasting induce complete 
protection against renal IRI (5). Additionally, 30% DR for three days did not differ from mice fed ad libitum (37).   
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  Figure 4. Survival curves of mice fed with protein free diet or AL. Three days of protein-free 
diet improved survival compared with AL fed controls. Adapted from (44). 
 Then, there are dietary interventions able to induce the protective response: 30% DR for two 
weeks, three days fasting or protein restriction diet. In addition, there are dietary interventions that do not induce a protective response: three days of 30% DR, CHO restriction or fat restriction.  
 The analysis in combination of all those dietary interventions will be informative to detect what 
are the genes in the core of the protective response. Transcriptomic data were obtained for all those experimental groups, as is summarized in table 1B.  2.3.2.2. Combined transcriptomic analysis of macronutrient-free diets, fasting and DR  
The transcriptomic response of the kidney after protective diets: 3-days of fasting, two weeks of 30%DR, three days of protein restriction, and non-protective diets: three days of 30%DR, fat restriction or CHO restriction diet were analyzed by an Affymetrix microarray with 45,141 probes 
(HT MG-430 P.M). Each experimental group was compared to its corresponding AL fed control group (Table 1B). All microarrays were evaluated by quality, all of them passed it and then they 
were used for posterior analysis.  The complexity of the experimental setup made necessary to explore different strategies to do 
the analysis, first, the unbiased correlation of the samples was determinate by PCA (Fig. 5). The first obstacle to perform an integrate analysis of the data was the different day of hybridization of 
the samples. Affymetrix chips are sensible to hybridization conditions; different dates even in the same laboratory facility produce important technical variability. In the particular case of the data 
in this study the three day fast samples (control and experimental) were located in the positive part of the PC1 and precisely those samples were hybridized in a different date (Fig. 5). I performed several batch correction strategies (results not shown) but it was not possible to 
correct it, then this dataset was analyzed in an independent way. In the same PCA, control samples (white triangles and squares) and fat free diet samples are located close an indicator of 
fat free diet does not induced an important transcriptional response. The other samples are nor clearly separated, CHO free diet samples are located in similar positions of DR diets samples (3 days or 2 weeks).  
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 Figure 5. Unbiased graphical representation of PCA of all samples in the study. The 
largest source of variability in the study is represented by the PC1 (27%). The 3-day fasting 
group and their corresponding control group were hybridized on a different date than the other groups. This result made the joint analysis of all datasets impracticable. PC2 explains 15% of the variability, and it is related to the dietary interventions compared to the control samples. 
Adapted from (44).   
Next, the DEG were determined, Table 5 summarize the number and direction of the change of the DEG for each dietary intervention.  The highest number of DEG was found after three days of fasting. Two weeks of 30% CR induced five times lower number: 492 DEG. Three days of 
protein-free diet induced 391 DEG. Of the non-protective diets, the 3-day fat-free diet did not induce any DEPS when compared to control diet fed mice, while, according with the PCA 
analysis, three days of a CHO-free diet induced 1,717 DEPS. Three days of 30% CR resulted in 454 DEPS.  

Dietary Intervention DEG Up Down 
3-day fasting 2604 1268 1336 
2-week 30% DR 492 265 227 
3d 30% DR 454 284 170 
Protein-free 391 230 161 
Carbohydrate-free 1717 613 1104 
Fat-free 0 0 0 

Table 5. Number of DEG induced after dietary interventions. All comparison were performed 
with samples obtained from mice fed with control diet.  Protective diets are in bold.  
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Because the PCA (Fig. 5) suggested there are shared transcriptomic modifications in common among different dietary interventions, an overlapping analysis of DEG was performed. The 
number of DEG in common was calculated for each possible combination of interventions,. This analysis had in account the direction of the change, and then the overlapping genes indicate the 
same transcriptional response.   

Comparison Overlapping DEG EF P-value 
2wks 30%DR vs. 3d 30%DR 195 39.4 3.44E-270 Protein-free vs. 3d 
30%DR 116 29.5 2.22E-

138 Protein-free vs. 2wks 
30%DR 95 22.3 1.15E-99 
Protein-free vs. Fasting 222 9.8 5.27E-169 
2wks 30%DR vs. Fasting 247 8.7 8.88E-171 
3d 30%DR vs. Fasting 208 8.7 3.12E-156 2wks 30%DR vs. CHO-
free 122 8.2 5.71E-76 
Protein-free vs. CHO-free 113 6 5.84E-55 
Fasting vs. CHO-free 584 5.9 3.73E-

300 
3d 30%DR vs. CHO-free 107 5.8 8.66E-48 

Table 6: Comparison of the overlapping DEPS between the five dietary interventions and their corresponding P-value and enrichment factor. The enrichment factor indicates the 
number of times the overlapping DEG is higher than expected by chance.  All diets showed a significantly overlapping number of DEG, as shown by the corresponding p-values in the last column. Adapted from (44) 
 The highest percentages of EF were found between two weeks of 30%DR, three days of 
30%DR and protein-free diet. Because the number of DEG in fasting is high, the EF are smaller but even there are similarities among fasting and protein free, and DR interventions. Interestingly, the non-protective CHO free diet has EF from 5.8 to 6.0 with the other protective 
diets. This result revealed several characteristics of the transcriptomic response to dietary interventions: first, there is a common transcriptional response in general (protective and non-
protective diets). Second, two weeks of 30%DR and 3 days 30%DR induces a similar response. It is probably that the transcriptional response that 3 days 30%DR induces is incomplete and there are some additional genes induces by two weeks of 30%DR needed to confer the 
protection. Third, protein-free diet and two weeks of 30%DR had the higher level of EF (39.4) indicating that protein restriction induces a similar protection response than DR but quicker. 
 In order to improve the description of the relation among the transcriptomic response of the dietary interventions an additional analysis were performed. Since the 3-day fasting dataset was 
hybridized on a different date and it caused a stronger effect than the biological signal (Fig. 5). It was therefore not possible to integrate all complete datasets in one analysis. As a solution, we 
assumed 3-days of fasting to represent the widest transcriptomic protective response. It is supported with the overlapping analysis where fasting had the higher number of DEG in 
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common with the other diets. Then, all data sets were limited to its highest number of 2,604 DEG. This list of DEG was used for a principal component analysis (PCA) among the 
macronutrient free diets, two weeks-, and three days 30%DR and their control diets (Fig. 6).  

 Figure 6. Principal component analysis (PCA) plot, based on the 2604 significantly DEG after three days fasting.  The two control diets samples clustered together in the negative part 
of PC1 and neutral region of PC2. Fat free diet samples are located in the same region according with the evidence that this diet did not induce a transcriptional response. Both two weeks 30%DR and three days of 30%DR diet clustered close to each other. The protein-free 
diet had its own cluster, between control and DR samples. Three days of CHO-free diet samples were positioned far of the other samples. Adapted from (44). 
 When the PCA is limited to DEG after 3 days fasting the distribution of the samples are more informative respect the phenotype induced by them. The protective interventions were clustered 
close and the non-protective CHO-free diet samples were located far of the other interventions. Again, DR interventions does not matter the time of exposition had a similar transcriptomic 
response.  To compare the transcriptomic responses of protective interventions, all DEG were visualized in 
a Venn diagram (Fig. 7). This revealed 70 overlapping DEG in the three protective diets.  Numbers of overlapping genes appeared too small to perform pathway analysis with the aim to 
find a common denominator of protection against renal IRI, and therefore an alternative approximation for analysis should be used.  
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 Figure 7. Venn diagram with the DEG of protective diets. The complete list of DEG for each 
protective diet were used in this analysis. Intersection of sets represent only DEG with the same direction of change. 
 Until now, taking together all the results: The data has difficulties to be analyzed because the 
batch effects and the complexity of the phenotype. The transcriptomic response to protective and non-protective diet is similar, but the PCA analysis was able to show that there are also differences. Fasting induces the more important transcriptional regulation and most of the genes 
de-regulated by this intervention are also de-regulated by the others interventions.   2.3.3.2 Pathway analyses of individual dietary interventions 
To explore the biological value of these transcriptomic responses, we used an individual approximation to identify significantly enriched pathways as were determinate by Ingenuity 
analysis. The highest enriched pathways after the different dietary interventions were ranked by their –log p-value and summarized in Table 7. No clear pattern in overlapping pathways 
between all diets, or between the protective diets and the non-protective CHO-free diet, was observed. One pathway that emerged was the NRF2-mediated oxidative stress response pathway, since this pathway was activated by four out of five dietary interventions (Table 7) 
except by protein-free diet. 
 

3-day FASTING   
Canonical Pathway P-value Genes Ratio 
Superpathway Cholesterol Biosynthesis 3.41E-08 14/87 (16.1%) 
Cholesterol Biosynthesis I / II / III 2.18E-06 8/40 (20.0%) 
LXR / RXR Activation 2.20E-06 27/139 (19.4%) 
NRF2-mediated Oxidative Stress Response 6.27E-06 34/195 (17.4%) 
LPS/IL-1 Mediated Inhibition of RXR Function 7.46E-06 39/245 (15.9%) 
Acute Phase Response Signaling 7.24E-05 30/181 (16.6%) 
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GADD45 Signaling 1.25E-04 8/24 (33.3%) 
AMPK Signaling 1.25E-04 25/180 (13.9%) 
VDR/RXR Activation 2.18E-04 17/88 (19.3%) 
Xenobiotic Metabolism Signaling 3.00E-04 42/304 (13.8%) 
 
2-week 30% DR 

  

Canonical Pathway P-value Genes Ratio 
Circadian Rhythm Signaling 1.41E-05 6/38 (15.8%) 
Aldosterone Signaling Epithelial Cells 3.20E-05 11/168 (6.5%) 
Guanosine Nucleotides Degradation II 7.85E-04 3/22 (13.6%) 
Urate Biosynthesis 1.01E-03 3/22 (13.6%) 
Phenylalanine Degradation IV 1.27E-03 3/39 (7.7%) 
2-ketoglutarate Dehydrogenase Complex 1.48E-03 2/9 (22.2%) 
Adenosine Nucleotides Degradation II 1.57E-03 3/26 (11.5%) 
NRF2-mediated Oxidative Stress Response 2.39E-03 9/195 (4.6%) 
Protein Ubiquitination Pathway 2.63E-03 11/270 (4.1%) 
Purine Nucleotides Degradation II 2.71E-03 3/35 (8.6%) 
 
3-day PROTEIN-FREE 

  

Canonical Pathway P-value Genes Ratio 
Intrinsic Prothrombin Activation Pathway 5.18E-04 4/37 (10.8%) 
Superpathway Cholesterol Biosynthesis 6.79E-04 4/87 (4.6%) 
LPS/IL-1 Mediated Inhibition of RXR Function 8.81E-04 10/245 (4.1%) 
Mevalonate Pathway I 9.87E-04 3/29 (10.3%) 
Creatine-phosphate Biosynthesis 1.77E-03 2/9 (22.2%) 
Superpathway of Geranylgeranyl 2.02E-03 3/37 (8.1%) 
PXR/RXR Activation 2.12E-03 5/92 (5.4%) 
GADD45 Signaling 2.35E-03 3/24 (12.5%) 
Tryptophan Degradation 4.84E-03 2/18 (11.1%) 
Nicotine Degradation II 9.33E-03 4/85 (4.7%) 
 
3-day CARBOHYDRATE-FREE 

  

Canonical Pathway P-value Genes Ratio 
Histamine Degradation 9.52E-05 6/29 (20.7%) 
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Pyrimidine Deoxygenase De Novo Biosynthesis I 1.57E-04 6/34 (17.6%) 
Superpathway of Serine and Glycine Biosynthesis I 2.57E-04 4/18 (22.2%) 
Glycolysis I 6.98E-04 7/41 (17.1%) 
NRF2-mediated Oxidative Stress Response 8.17E-04 24/195 (12.3%) 
Cholesterol Biosynthesis I / II / III 1.04E-03 5/40 (12.5%) 
Colanic Acid Building Blocks Biosynthesis 1.52E-03 5/36 (13.9%) 
Fatty Acid β-oxidation 1.52E-03 5/21 (23.8%) 
Protein Ubiquitination Pathway 1.58E-03 30/270 (11.1%) 
Folate Transformations I 1.84E-03 4/32 (12.5%) 
 
3-day 30% DR 

  

Canonical Pathway P-value Genes Ratio 
Dopamine Degradation 1.08E-04 5/35 (14.3%) 
Aryl Hydrocarbon Receptor Signaling 1.37E-04 9/140 (6.4%) 
LPS/IL-1 Mediated Inhibition of RXR Function 2.48E-04 11/221 (5.0%) 
PXR/RXR Activation 
Circadian Rhythm Signaling 

2.63E-04 
1.03E-03 

6/65 (9.2%) 
4/33 (12.1%) 

NRF2-mediated Oxidative Stress Response 1.42E-03 9/193 (4.7%) 
Tyrosine Degradation I 1.82E-03 2/5 (40.0%) 
Histamine Degradation 2.09E-03 3/19 (15.8%) 
Noradrenaline and Adrenaline Degradation 2.14E-03 4/40 (10.0%) 
Adipogenesis Pathway 2.52E-03 7/134 (5.2%) 

Table 7. Top 10 over-represented canonical pathways after fasting, dietary restriction and macronutrient free diets individually ranked by their –log P-value. Analysis revealed no 
pathways regulated in common between the three protective diets. Genes ratio is the number and percentage of genes differentially expressed in ratio to the total number of genes involved in the pathway. Adapted from (44). 
 Independent analysis identified pathways related to increased stress resistance as NRF2-
mediated Oxidative Stress Response, LXR / RXR Activation and GADD45 signaling. Again, the individual analysis of de-regulated pathways was not informative about specific pathways de-regulated specifically and in common with protective diets. An explanation of that could be that 
each protective intervention induces a different protective response but EF analysis and PCA in figure 5 suggested a common transcriptional response.  2.3.3.3 Meta-analysis of protective transcriptomic responses  
To further identify a common protective response and dissect it from the response of the non-protective CHO-free diet, a more comprehensive approximation was used. Meta-analysis of 
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combining rank orders methodology was implemented to prevent bias of the results based on different dates of hybridization as well as the stronger transcriptomic response after three days 
of fasting (48). The meta-analytic combination of the transcriptome of protective diets yielded 640 DEG. The DEG in common showed a similar fold change and directionality among the three 
protective dietary interventions.   
Pathway P-value Z-score 
LXR/RXR Activation 7.24E-09 0.302 
FXR/RXR Activation 3.63E-06 1.045 
LPS/IL-1 Mediated Inhibition of RXR Function 2.24E-05 −2.646 
Superpathway of Cholesterol Biosynthesis 2.40E-05 N/A 
NRF2-mediated Oxidative Stress Response 3.72E-05 2.24 
Aryl Hydrocarbon Receptor Signaling 5.13E-05 1.633 
PXR/RXR Activation 9.12E-05 1.594 
Noradrenaline and Adrenaline Degradation 5.25E-04 N/A 
Superpathway of Cholesterol Biosynthesis 2.23E-03 N/A 
Glutathione-mediated Detoxification 2.47E-03 1.506 
Intrinsic Prothrombin Activation Pathway 3.47E-03 N/A 
Circadian Rhythm Signaling 3.59E-03 N/A 
Retinoate Biosynthesis I 3.91E-03 N/A 
Superpathway of Geranylgeranyldiphosphate Biosynthesis I 3.98E-03 N/A 

Table 8. The top 10 overrepresented pathways derived from the 640 DEG in common between 3-days of fasting, 2 weeks 30%DR and 3 days of a protein-free. These pathways are mostly 
involved in regulation of nuclear receptor signalling (5 out of 10), biosynthesis signalling (2 out of 10) and cellular stress and injury (2 out of 10). Adapted from (44).  
A pathway analysis of these DEG (Table 8) identified de-regulation de pathways related con inhibition of cellular stress and injury and biosynthesis pathways. Adding the 3-day 30%DR diet 
in the meta-analysis yielded 279 DEPS. No significant enriched pathways emerged indicating that this approximation was useful to detect the specific pathways related to the protective phenotype. 
  2.3.3.4 Discussion  
The injury by ischemia reperfusión is a common complication of transplantation and vascular 
disease, the development of strategies able to reduce the damage for this type of acute stress will improve the rate of success of organ transplantation and the survival after a vascular 
occlusive event. Reduced food intake without malnutrition increases lifespan and acute stress resistance, the best known of the stress-protective dietary interventions is the dietary restriction (DR), it consists in a reduction of the caloric ingest, -typically 30%-. Research had been 
performed to identify which is the better combination of duration and type of restriction in a diet able to activate the protective response against acute stress (31, 37, 61). It has been shown 
that two weeks of 30%DR or three days fasting induce a complete protection in a murine renal IRI model (5). It is not realistic for a patient to receive a diet of two weeks of 30%DR and three 
days fasting could be deleterious for the post-surgery recovery (37). Then is necessary to 
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identify other dietary regimens able to activate the protective response in a shorter time and without repercussion to the patient outcome. 
 In this research was demonstrated that protein-free diet for three days is sufficient to induce a 
complete protection for renal IRI, whereas fat- and carbohydrate-free diets did not. These results incorporate a new dietary protocol that induces the protective response. The emerging questions is whether the molecular pathways responsible for the protection are similar among 
all the dietary restriction protocols. If this is true, the simultaneous analysis of all responses will be informative about the central pathways responsible for the increases of the stress resistance 
in those experimental models. Although the mechanism responsible for the increase in life- health span and stress resistance of long-term and short-term DR have been studied intensively, they are still subject of investigation. Various pathways, factors, and genes have 
been proposed to play a central role in the protective effects (62), but attempts to validate these yielded conflicting results (63-65). The identification of the central pathways related to the 
protection could orient the development of pharmacological mimetic.  
In order to identify a potential transcriptomic signature related to the protective response, gene expression datasets of kidneys from mice exposed to diets proven to be either protective or not protective against renal IRI were generated and analyzed with different bioinformatics 
strategies. The samples were collected and hybridized in two different batches, one batch was composed by macronutrient deprivations diets and 30%DR, and fasting samples correspond to 
the other batch. Affymetrix chips and in general transcriptomic technologies are very sensitive to the date of hybridization (66, 67). There are several strategies to correct the batch effect; however, when there is an unbalanced experimental design (there are not samples of all 
experimental groups in the same batch) the batch correction is not possible. The effect of the batch can be identified using algorithms that reduce the dimensionality; they show in an 
unbiased way the distribution of the sample. When a principal component analysis (PCA) was performed on all the datasets (Fig 5), the effect of the different dates of hybridization was evident. 
 The identification of DEG in each individual dietary intervention showed that there is a 
correlation between the extension of the modification of the transcriptome and the intensity of the restriction. Fasting by three days induced five times more DEG than the other protective diets. Two weeks of dietary restriction had a similar extension of the de-regulation than three 
days of protein-restricted diet (Table 5). Additionally, the number of DEG after two weeks or three days of 30%DR was similar (492 vs. 391 DEG). Between the other two non-protective 
diets, CHO-free diets had the second biggest number of DEG in the datasets analyzed (1717 DEG) with almost two times more down-regulated genes than up-regulated genes. Because carbohydrates are the preferred source of fuel, the extensive transcriptional response was 
expected, the organism should adjust the metabolism to use different sources of energy. While fat-free diets did not induce any detectable modification in gene expression. It agrees with 
cohort studies in humans reporting that low-fat diets do not have an important impact on health or disease (68-70). 
 To identify the possible common transcriptional response related to the protective phenotype, with all the list of DEG the overlapping and EF were calculated (Table 6). As a positive evidence 
of a common response, the EF among all the protective diets were statistically significant and ranging from eight to 22.3. Comparisons including three days fasting had the smaller EF. The 
EF is sensitive to the size of the lists (71) and fasting by three days induced the wider transcriptional response. In the same direction, fasting had the larger number of DEG in common with other diets, indicating that its transcriptional response included most of the genes 
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deregulated in the other responses. As an indicator of the complexity and subtlety of the studied phenomena, there were also parallels among protective and non-protective diets. The larger EF 
were found between the no-protective exposition of 3 days 30%DR and 2 weeks 30%DR and between 3 days 30%DR and 3 days of the protein-free diet. Additionally, CHO-free diet showed 
a considerable overlap with gene expression profiles of protective diets (Table 6). Those results evidence that there is a transcriptional common response after protective and non-protective dietary modifications under study. 
 Because fasting results in the wider transcriptional response and it includes more of the DEG as 
the response of the other diets, we speculated If delimitated the study to only the DEG after fasting could give a better perspective about the relation of the samples from the different dietary interventions. A PCA plot was calculated filtering all the dataset with the DEG after 
fasting (Fig. 6). Three clusters were evident, the first cluster was on the negative part of PC1; it was composed by control and fat-free diet samples. The protective diets plus three days of 
30%DR samples were located in the positive part of both PCs. In addition, a third cluster separated the CHO-free diet samples in the positive part of the PC1 and negative region of 
PC2. This result finally generates convincing evidence that there is a common transcriptional de-regulation and this response can be differentiated to the response common to protective and non-protective interventions. 
 Next, a Venn diagram was calculated with the DEG of the protective diets (Fig. 7). The analysis 
of the intersection of the lists of DEG produces a robust list of DEG (72) but because the statistical power of a microarray study is lower than 50% is also conservative (73).  There were 70 DEG in common. This list of genes represent the core of the transcriptional protective 
response but the number was insufficient to find pathways de-regulated related with the phenotype. A similar analysis with the intersection of de-regulated pathways identified by an 
over-representation analysis with IPA neither identify relevant biological information (Table 7).  In order to overtake the limitations of the previous analytical approximations, a meta-analysis 
was performed. Meta-analysis techniques are useful to integrate datasets with the aim to increase the statistical power and to improve the biological interpretation (48). Combining rank 
orders was used because outliers do not affect it and it produces a robust list of DEG in common (48). The integration of all protective diets identified 640 DEG. Pathways analysis on those genes found well-characterized pathways induced by stress as NRF2-mediated oxidative 
stress response and glutathione-mediated detoxification. The identification of those pathways indicated that the meta-analysis is able to capture biological meaningful signals. The top up-
regulated pathways included the retinoid X receptor (RXR), the farnesoid X receptor (FXR) and the pregnane X receptor (PXR), all of them promiscuous nuclear hormone receptors (48). There are important evidence that the activation of those pathways could be the key process related 
with the activation of the protective response. The retinoid X receptor is activated by retinoic acids (RAs) (48), administration of RAs induces many of the beneficial effects observed after 
DR as ameliorate age-related insulin resistance and degenerative brain diseases (74, 75). Additionally, RAs protect from ischemic stroke in the brain (76-78). The FXR activation protects 
against fatty liver injury, improved hyperlipidemia, glucose intolerance, and insulin sensitivity (79). Finally, the PXR is the major transcriptional regulator of hepatic drug metabolism and protects the vasculature from oxidative stress (79). It is necessary additional experimental 
evidence to identify the importance of those pathways in the protective response, but the use of synthetic activators of those receptors looks like a promising line of research to development 
pharmacological activation of the stress resistance  
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3. CHAPTER 2 
 

TCR-NER deficient mice as model of neurodegenerative disease 
3.1 Introduction 

Aging significantly affects the central nervous system (CNS); signs of this are the normal 
cognitive deterioration associated with age and the greater incidence in elderly people of 
neurodegenerative diseases (ND) such as Alzheimer´s and Parkinson´s disease.  Thus, it is 
not surprising that both people with progeroid syndromes due to TC-NER deficiency (80, 81) 
as well as mouse models with these syndromes should have phenotypes related to the 
premature loss of CNS function (19, 82). 
The consistent relation between progeroide syndromes and ND plus the fact that neurons 
are post-mitotic cells, makes plausible the idea that they are particularly sensible to 
accumulation of DNA damage with age. Additionally, the susceptibility of certain regions of 
the brain to be target of damage in ND could be related with a differential ability to repair the 
DNA damage. We hypothesized that there are lower level expression of genes involved in 
the TC-NER in brain regions typically damage in ND. To gather preliminary insights in this 
direction, a meta-analysis on datasets from five microarray experiments on human brains 
available from the open source repository of the Allen Institute for Brain Science (Allen 
Human Brain Atlas, http://human.brain-map.org/) (82) was performed. The analysis focused 
on identify in several brain regions the level expression of 38 genes annotated in NER. With 
this information, a two-way cluster analysis was drawed to facilitate the visualization and 
identification of specific patterns of gene expression. Areas with a similar pattern of 
expression of NER genes were grouped together using the Euclidean distance (Fig. 1).  
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Figure 1. Heat map and two-way cluster analysis of transcription profile of TCR-NER genes 
in the normal human brain. Genes are on the horizontal axis, brain areas are on the vertical 
axis. The analyses with a complete review of the relation between TCR-NER and ND were 
already published (26). 
The anatomical areas were ordered into two clusters according to the gene expression 
levels. Regions involved in the initial stages of ND fall in the low expressing group (Fig. 1, 
red square in the lower portion, the black arrow pointed the substantia nigra ). An emerging 
question of these results was: could the decreased expression of TCR-NER genes result in 
decreased DNA repair capacity and this could contribute to the selective vulnerability of 
these cells?   
To study the link between DNA damage accumulation and ND, the transcriptome of the 
substantia nigra from mice Ercc1Δ/+ was extensively characterized and compared with 
molecular signatures of patients with Parkinson disease  (PD) and incidental Lewy body 
(ILBD) disease.  
The reasons to use the Ercc1Δ/+ mice as a model was the previous confirmed relation 
between the Ercc1 deficiency and premature brain damage (26, 27). The most severe 
deficiency Ercc1-/- mouse (null/null alleles) and the moderate deficiency Ercc1Δ/- mouse 
(deletion of seven carboxyl terminal amino acids/null allele) show accelerate aging and 
severe neurological phenotype. Which make impracticable to study the consequences of 
accumulation of progressive damage in brain. The Ercc1Δ/+ mouse does not have an 
evident phenotype but is expected to have a lower ability to repair stochastic DNA damage. 
Parkinson’s disease (PD) was selected as ND model because the substantia nigra was 
identified as one of the critical brain regions with lower expression of TCR-NER. Parkinson’s 
disease is a common neurodegenerative disorder characterized by degeneration of 
dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc).  Incidental Lewy 
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bodies (ILBD) were also studied because the actual state of knowledge points that they may 
represent preclinical PD (83). 
This research was performed in parallel with an extensive cellular, molecular and 
neurological characterization of the phenotype of the Ercc1Δ/+ mice. The multidisciplinary 
team of researchers that performed the experiments was under the direction of professor 
Pier Mastroberardino at Erasmus MC. This chapter is an adaptation of a paper already 
published with the results of this research (84). 

3.2 Methods 
3.2.1. Animals 
Generation and characterization of NER mutants Ercc1Δ/+ mice has been previously 
described (85). Ercc1Δ/+ mice were generated in a FVB:C57BL/6J (50:50) genetic 
background. Animals were kept on a regular diet and housed at the Animal Resource 
Center (Erasmus University Medical Center). It operates in compliance with the “Animal 
Welfare Act” of the Dutch government. 
3.2.2. RNA seq 
For RNA extraction four Ercc1Δ/+ and four wt mice 52 weeks old were killed by cervical 
dislocation, brains were rapidly excised on an ice-cold plate. Total RNA was isolated from 
the ventral mesencephalic area of the mouse brain using the RNAqueous Kit (Ambion) 
according to manufactures directions. Briefly, ventral midbrain tissues were homogenized in 
RNA lysis buffer and stored at -80^C until the extraction procedure. RNA quality was 
assessed via the BioAnalyzer machine (Agilent 2100). 
3.2.3. mRNASeq sample preparation 
Total RNA enrichment for sequencing poly(A) RNAs was performed with the TruSeq mRNA 
sample preparation kit (Illumina) according to the manufacturer’s protocols. In short, 1 µg of 
total RNA for each sample was used for poly(A) RNA selection using magnetic beads 
coated with poly-dT, followed by thermal fragmentation. The fragmented poly(A) RNA 
enriched samples were subjected to cDNA synthesis using Illumina TruSeq preperation kit 
according to the manufacturer’s protocol. Briefly, cDNA was synthesized by reverse 
transcriptase (Super-Script II) using poly-dT and random hexamer primers. The cDNA 
fragments were then blunt-ended through an end-repair reaction, followed by dA-tailing. 
Subsequently, specific double-stranded bar-coded adapters were ligated and library 
amplification for 15 cycles was performed.  
3.2.4 Sequencing  
Pooled cDNA libraries all consisted of equal concentration bar-coded samples (wt and 
Ercc1d/+ samples) were sequenced in one lane each on the HiSeq2000 (Illumina). 
3.2.5 mRNASeq analysis 
Reads were aligned to the mouse mm9 reference genome using Tophat (version 
1.3.1.Linux_x86_64, --coverage-search, -butterfly-search, --segment-mismatches 1,--
segment-length 18) via the NARWHAL automation software (86). 
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SAMMate (http://sammate.sourceforge.net/) (87) was used to detect and quantify 
transcripts. Gene counts were calculated taking into account the reads mapped on exons or 
on exon-exon junctions. 
Differentially expressed genes were detected using the R package EdgeR (PMID: 
24743990). It is a Bioconductor software package for examining differential expression of 
replicated count data. To account for biological and technical variability an overdispersed 
Poisson model is used. The degree of overdispersion across transcripts is moderate with an 
Empirical Bayes method. Genes with a false discovery rate (FDR) of < 0.05 and fold change 
±1.5 were considered to be differentially expressed. 
3.2.6 Human Parkinson and incidental Lewy body datasets analysis 
Microarray data from human substantia nigra  were obtained from GEO Omnibus repository 
(http://www.ncbi.nlm.nih.gov/geo/). Three subseries from superserie GSE20186 (88) were 
used in this analysis. Subserie GSE20159 consists of snap-frozen humain substantia nigras 
of 16 individuals with a clinicopathological diagnosis of incidental Lewy body (ILBD) disease. 
Subserie GSE20163 consists of SNs samples from 8 PD subjects obtained from the Human 
Brain and Spinal Fluid Resource Center, VAMC, and 9 control subjects obtained from the 
University of Rochester Alzheimer's Disease Center brain bank. Subseries GSE20164 
consists of SNs samples from 6 PD and 5 control subjects obtained at autopsy, brain 
hemispheres were frozen in liquid nitrogen and stored at -80C in the Kathleen Price Bryan 
Brain Bank in the Alzheimer's Disease Research Center at Duke University. 
Samples in subserie GSE20159 were hybridized in Illumina HumanHT-12v3 Expression 
BeadChips, this data was already normalized in GEO database by average normalization 
and under quality-control using GenomeStudio. Differences between samples from ILBD 
compared with samples from normal controls were calculated with the tool GEO2R that uses 
the linear model for microarray data analysis (Limma) package implemented in R. 
Samples in subseries GSE20163 and GSE20164 were hybridized in Affymetrix Human 
Genome U133A Array. They were normalized by robust multichip average (RMA) in the 
oligo BioConductor package, which normalizes the intensity values at the transcript level 
and collapses probes into core transcripts based on annotations provided by Affymetrix. 
Because the samples sizes of both subseries were small, they were combined in one bigger 
dataset.  The non-biological variation and batch effects were adjusted using a 
nonparametric empirical Bayes methodology as it is implemented in Combat (PMID: 
16632515). Limma was used to calculated fold changes and p values on pairwise 
comparisons between Parkinson samples and control samples. 
3.2.7 Pathway analysis: 
Pathway enrichment analysis was conducted via two different approaches: 
Overrepresentation analysis (ORA) and Gene set enrichment analysis (GSEA).  
ORA was performed in the Interactive pathway analysis (IPA) of complex genomics data 
software (Ingenuity Systems, www.ingenuity.com, Redwood City, CA) by employed a pre-
filtered list of differentially expressed genes. The overrepresented canonical pathways were 
generated based on information in the Ingenuity Pathways Knowledge Base. A Fisher exact 
test was performed to determine the likelihood of obtaining at least the equivalent numbers 
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of genes by as actually overlap between the input gene set and the genes present in each 
identified pathway.  
GSEA was conducted on an unfiltered ranked list of genes. Genes in each dataset were 
ranked by the level of differential expression using a combination of Log2Fold change and 
the p-value as was proposed by Xiao (89).  

 
Where:  
Πi = Modified pvalue of gene i 
Fci = Log2 fold change of gene  i 
pi = pvalue of gene i 
Statistical significance of pathway enrichment score was ascertained by permutation testing 
over size-matched random gene sets, and multiple testing was controlled by false positives 
a family-wise error rate (FWER) threshold of 5% was used (90), this statistical is more 
conservative than FDR. Pathway information was collected from Kyoto Encyclopedia of 
Genes and Genomes (KEGG) available at the Molecular Signatures Database 
(http://www.broadinstitute.org/gsea/msigdb/index.jsp). Because pathway in KEGG are 
redundant (two o more pathways shared more than 75% of the genes), the R package 
Recipa (91)  was used to reduce the redundancy among KEGG pathways. Pathways with 
an overlapping higher than 75% in their genes were collapsed in one. 
3.2.8 Comparison among transcriptomes of Ercc1Δ/+, PD and ILBD datasets: 
In this research were used four datasets from two different organisms (human and mouse) 
and from three different platforms (Rna-Seq, Illumina and Affimetrix). Then to do a fair 
comparison among them, the genes in each platform where filtered to do the comparison 
analysis with common genes across the studies.  
The final lists of deregulated pathways were compared by a counting method (Venn 
diagram). To determinate if the overlapping were higher than expected by chance a 
hypergeometric distribution was used. Additionally the factor of enrichment was calculated 
with the formula:  
EF=nAB/((nA×nB)/nC) 
Where: 
nA = Number of deregulated pathways in dataset A 
nB= Number of deregulated pathways in dataset B 
nC= Number of total pathways in KEGG database 
nAB = Number of common deregulated pathways between A and B 
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3.3 Results: 
3.3.1. Characterization of the transcriptome of substantia nigra from Ercc1 Δ/+ mice. 
Comparison of the RNA-seq of four samples of substantia nigra from Ercc1 Δ/+ 52 weeks 
old with the transcriptome of four wt samples matched by age revealed 460 differentially 
expressed genes (DEGs), 187 of which were up- and 273 down-regulated. 
Biological interpretation of the differential profiles were determined using overrepresentation 
analysis (ORA) to highlight significantly altered specific functional categories. Modified 
pathways included relevant processes for PD, including oxidative phosphorylation, 
mitochondrial dysfunction, and proteasome. Interestingly, EIF2-signaling pathway, which 
constitutes the pathway with highest significance in the analysis (Table 1), has been linked 
as potential biomarker in both genetic and sporadic forms of the disease (92). These results 
support the concept that inefficient TCR-NER affects biological processes relevant for the 
dopaminergic system integrity and their possible relation to the development of ND. 

Ercc1d vs wt Ingenuity Canonical Pathways P-value 
EIF2 Signaling 0 
Oxidative Phosphorylation 0 
Mitochondrial Dysfunction 0 
Huntington's Disease Signaling 0 
Calcium Signaling 0.0002 
Role of NFAT in Cardiac Hypertrophy 0.0002 
Sperm Motility 0.0003 
Dopamine-DARPP32 Feedback in cAMP Signaling 0.0004 
Glutamate Receptor Signaling 0.0004 
G-Protein Coupled Receptor Signaling 0.0005 
Neuropathic Pain Signaling In Dorsal Horn Neurons 0.0007 
Chemokine Signaling 0.0009 
Protein Kinase A Signaling 0.0009 
mTOR Signaling 0.0011 
Regulation of eIF4 and p70S6K Signaling 0.0011 
Gαq Signaling 0.0011 
Aldosterone Signaling in Epithelial Cells 0.0014 
CCR3 Signaling in Eosinophils 0.0015 
nNOS Signaling in Neurons 0.0016 
Synaptic Long Term Potentiation 0.0019 

Table 1. Top 20 de-regulated pathways in substantia nigra in Ercc1Δ/+ mice. Over-
representation analysis was performed with IPA. The directionality in the change of the 
pathways is not provided because up- and down-regulated genes were analyzed in one 
batch. 
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3.3,2 Identification of parallels and divergences among transcriptomic of substancia 
nigra of Ercc1Δ/+ mice and from patients with PD and ILBD. 
To identify whether the transcriptomic de-regulation in Ercc1Δ/+ mice recapitulated human 
pathology a pathway comparative analysis was performed. The ranking algorithm 
implemented in Gene set enrichment analysis (GSEA) was used on gene collections as 
defined by the Kyoto Encyclopedia of Genes and Genomes (KEGG) with a previously 
reduced redundancy. GSEA was used because it is designed to detect modest changes in 
the expression of groups of functionally related genes (93). Parkinson and ILBD are 
complex phenotypes and the heterogeneity of the human population is high then it is 
necessary to use a sensible technique to identify de-regulated pathways. Additionally, 
datasets involved in the comparison had different transcriptomic techniques and ranking 
method increases the comparability among heterogeneous datasets (94). The comparability 
of the results of GSEA (Table 2) with the over-representation analysis is restrained because 
in both analysis different set of pathways were used. However, the biological meaning of the 
de-pathways shows large similarities.  
A. 

Up-regulated  NAME FDR q-val 
KEGG_FOCAL_ADHESION_+_KEGG_ECM_RECEPTOR_INTERACTION 0 
KEGG_MAPK_SIGNALING_PATHWAY 0 
KEGG_REGULATION_OF_ACTIN_CYTOSKELETON 0 
KEGG_PATHWAYS_IN_CANCER 0 
KEGG_JAK_STAT_SIGNALING_PATHWAY 0 
KEGG_AXON_GUIDANCE 3.60E-04 KEGG_PHOSPHATIDYLINOSITOL_SIGNALING_SYSTEM_+_KEGG_INOSITOL_PHOSPHATE_METABOLISM 4.05E-04 
KEGG_CALCIUM_SIGNALING_PATHWAY 4.17E-04 
KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 4.28E-04 
KEGG_GNRH_SIGNALING_PATHWAY 4.52E-04 
KEGG_INSULIN_SIGNALING_PATHWAY 4.62E-04 
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 4.93E-04 
KEGG_VEGF_SIGNALING_PATHWAY 5.40E-04 
KEGG_TYPE_II_DIABETES_MELLITUS 5.56E-04 
KEGG_DILATED_CARDIOMYOPATHY_+_KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 6.79E-04 
KEGG_NEUROTROPHIN_SIGNALING_PATHWAY 7.82E-04 
KEGG_TGF_BETA_SIGNALING_PATHWAY 0.0026 
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B. 
Down-regulated  

NAME FDR q-val 
KEGG_RIBOSOME 0 
KEGG_OXIDATIVE_PHOSPHORYLATION 0 
KEGG_HUNTINGTONS_DISEASE_+_KEGG_PARKINSONS_DISEASE 0 
KEGG_ALZHEIMERS_DISEASE 0 
KEGG_PROTEASOME 0 
KEGG_PYRIMIDINE_METABOLISM 0 
KEGG_PEROXISOME 1.19E-04 
KEGG_GLUTATHIONE_METABOLISM 1.95E-04 
KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 2.66E-04 
KEGG_VALINE_LEUCINE_AND_ISOLEUCINE_DEGRADATION 7.51E-04 KEGG_DRUG_METABOLISM_CYTOCHROME_P450_+_KEGG_METABOLISM_OF_XENOBIOTICS_BY_CYTOCHROME_P450 0.0024 
KEGG_PURINE_METABOLISM_+_KEGG_RNA_POLYMERASE 0.0024 

Table 2. Up- and Down-regulated pathways in substantia nigra from Ercc1Δ/+ as was 
established by GSEA. The GSEA was performed on the KEGG pathways database with a 
previous processing oriented to collapse pathways with more than 75% of genes in 
common. The collapsed pathways are represented with a “+” symbol.  

The GSEA were performed on publicly available datasets from human PD and ILBD, which is 
regarded as a pre-symptomatic form of PD (83) and the discovered pathways were compared 
with the Ercc1Δ/+ de-regulate pathways. Of the 12 pathways down-regulated in Ercc1Δ/+ (Table 
2B), five were shared with ILBD and/or PD and include relevant processes for PD, such as 
oxidative phosphorylation, glutathione metabolism, proteasome (Fig. 2 and 3). The gene set 
KEGG_PARKINSONS_DISEASE (http://www.broadinstitute.org), which was consolidated with 
the KEGG_HUNTINGTONS_DISEASE pathway after redundancy reduction, is down-regulated 
in all datasets, further demonstrating affinities between the mouse model and the human 
disease. Of the 17 up-regulated pathways in Ercc1Δ/+, seven were shared with PD and none 
with ILBD (Fig. 2 and 3). Common up-regulated pathways include inflammation and mitogen-
activated protein kinase (MAPK) signaling, which are both relevant for human PD (PMID: 
23665870, PMID: 21395478). In summary, transcriptomic analyses highlight important 
molecular similarities between Ercc1Δ/+ mice and the human disease. 
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Figure 2. Venn diagram showing the intersection of de-regulates pathways in 
substantia nigra of Ercc1Δ/+ and patients with PD and ILBD. Adapted from (84) 
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Figure 3. Heatmap showing the common de-regulated pathways in Ercc1Δ/+ mice, in 
PD, and in ILBD. Red means up-regulation, green means down-regulation, black means do 
not change. Adapted from (84) 
Enrichment factors calculation (EF) was used to determinate objectively the strength of 
overlapping between Ercc1Δ/+ and human PD and ILBD. EF estimates similarity between 
datasets by comparing the extent of abundance of common elements in the groups under 
consideration (e.g., Ercc1Δ/+ and PD) with the extent of abundance that would be expected 
in random groups.  

Table 3. Enrichment factor and p values of the overlapping. Enrichment factor means 
how many times there are more or less pathways in common than expected by chance. 
Adapted from (84) 
The number of common down-regulated pathways in related pathologies such as PD and 
ILBD is 4.2 times more abundant than what expected by chance (p < 10−7; Table 3). Down-
regulated pathways common to Ercc1Δ/+ and PD and to Ercc1Δ/+ and ILBD are, 
respectively, 6.7 and 5.6 more abundant than what would be expected by chance (p < 
10−4). There was not a significant enrichment in up-regulated processes shared between 
Ercc1Δ/+ and ILBD, whereas there was a 2-fold enrichment (p < 0.0005) when comparing 
Ercc1Δ/+ and PD. As expected, the number of common up-regulated pathways between 
both PD and ILBD human datasets was 9.2 times more abundant than what would be 
expected by chance (p < 10−4). These additional analyses further confirm affinities between 
the transcriptional landscape of Ercc1Δ/+ and human PD with stronger similarity on down-
regulated pathways. 

 
3.4 Discussion 

Here is presented evidence that the transcriptome of substantia nigra in Ercc1 Δ/+ mice 52 
weeks old shows striking similarities with the transcriptome of patients with PD and 
moderate parallels with the transcriptome of patients with ILBD. 
The complete phenotypical characterization of Ercc1 Δ/+ mice support the RNA-seq 
conclusions (or vice versa). The mice with the slight deficiency in TCR-NER share with 
patients with PD, pathological alterations in DA neurons, as increased in the level of 
oxidation, more γH2AX foci, defects in protein homeostasis, impairment of proteosomal 
activity, higher levels of phosphorylated α-syn (p129S) and increases astrocyte activation in 
the substantia nigra. The recapitulation of the PD phenotype is extended also to the 
mitochondrial function. Mitochondrial C-I defects are relevant in the pathology of PD, 
Ercc1Δ/+ mice had a decreased basal (i.e., state 2 = state 4) and ADP-stimulated (i.e., state 
3) respiration in cells from the ventral mesencephalon (84). 

 All Up Down 
Comparison EF p value EF p value EF p value 
Ercc1  ∩ Parkinson 1.2 2.53E-01 2 4.23E-02 6.7 8.82E-05 
Ercc1 ∩ Lewy 0.7 9.61E-01 0.5 9.25E-01 5.6 1.77E-05 
Parkinson ∩ Lewy 2.8 1.79E-07 9.2 1.80E-05 4.2 6.51E-08 
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The ND in Ercc1 Δ/+ mice compatible with several characteristics of PD pointed the 
importance of NER in non-dividing neurons. A study exploring differentiated neurons and 
their precursors (PMID: 10669734), demonstrated that specialization induces up-regulation 
of the two NER specific nucleases XPG and XPF/Ercc1, thus indicating that those genes 
may be particularly relevant for mature neurons. Additionally, recent research described the 
relevant role of DNA damage and repair in the physiopathology of PD. Synucleinopathy 
models of Parkinson's disease showed activation of the DNA damage response in vivo 
probably mediated by oxidative stress and mitochondrial dysfunction (95). 
The comparison of down-regulated pathways showed significant EF among Ercc1 Δ/+ with 
both PD (EF 6.7) and ILBD (5.6). The EF between PD and ILBD was 4.2, that indicates that 
Ercc1 Δ/+ resembles better the PD down-regulated transcriptome that a less severe state of 
the disease. Conversely the up-regulated pathways showed more resemble between PD 
and ILBD (EF 9.2) compared with Ercc1 Δ/+ and PD (EF 2). This discordance between the 
overlapping depending of the direction of the de-regulation could be in agreement with the 
type of damage that is accumulated with the deficient of TCR-NER. The TCR-NER is 
responsible to repair de DNA damage in transcriptionally active genes, the accumulation of 
this type of damage produce a passive down-regulation of gene expression. In Ercc1 -/- 
mice, with a severe progeroid phenotype was found a preferential down-regulation of 
longest genes (96). The pathways up-regulated only in PD are pathways related with 
inflammation as leukocyte trans endothelial migration, or vascular function as complement 
and coagulation cascades, hematopoietic cell linage and vascular smooth muscle 
contraction. Because PD is a multifactorial disease where genetic-environmental 
interactions are fundamental is possible that in Ercc1 Δ/+ there is the expression of the 
genetic factors but because there are growing in controlled conditions the absence of the 
exposition of environmental factor restrict the activation of the other part of the pathological 
response as inflammatory pathways.  
In conclusion, the research provide novel evidence proving that inefficient NER could be at 
least a modification in idiopathic and genetic PD patients; and describe a new potential 
model of sporadic PD. 
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4. CHAPTER 3 
 

Integrative analysis of global gene expression identifies opposite patterns of reactive 
astrogliosis in aged human prefrontal cortex 

 
4.1 Introduction 
Aging is the physiological and morphological decline of individuals with the passing of time, 
which increases their susceptibility to diseases such as cancer, diabetes, neurodegenerative 
and cardiovascular disorders, and ultimately increases their vulnerability to death. It has 
become a public health problem since life expectancy has increased, with a consequent world 
population aging (8). 
The brain undergoes functional alterations during aging. The age-related changes do not show 
a unique pattern across different individuals (97). At the same age, some people exhibit 
characteristics of a healthy aging, but others manifest diminishing motor, sensory and cognitive 
abilities, in addition to increased risk of suffering neurodegenerative and neuropsychiatric 
diseases. The prefrontal cortex (PFC) seems to be morphological and functionally more 
vulnerable to the effects of aging compared with others areas (98). Molecular and cellular 
responses to aging have been described, for example, neurons show deregulation of 
transmission, formation, and elimination of synapses. In astrocytes has been reported an 
increase of the activation with aging.  Recently was identified up-regulation of genes of reactive 
astrocytes that are induced by neuroinflammation in brain mouse (99). However, the complete 
molecular mechanisms related to normal human brain aging are not completely understood.  
Transcriptomic studies have been successful to identify some of the specific processes 
described before (100) (101) (102) (103). However, they have limitations, main restrictions of 
those kinds of analysis is the inter-individual variability of the aging process, the complexity of 
getting samples from human’s brains and the intrinsical technical variation of the transcriptomic 
methodologies. We hypothesize that combining independent studies by meta-analysis could 
help us to identify the central and common process associated with PFC aging avoiding the 
non-general process specific of a particular dataset. 
We combined by meta-analysis the PFC gene expression profile from two different age groups -
58-80 years and 20-40 years- from four independent studies. We selected those range of ages 
given that until the forties it had been described that genes expression maintain a homogeneous 
pattern with a low rate of change, and after this period, the changes begin to rise through 
several decades to become homogeneous again around sixties.  Bioinformatics analysis of the 
result of the meta-analysis suggests that in older individuals the neuronal activity declines 
without necessarily presenting cell death or massive neuron dysfunction.  Clusters of genes with 
pre-synaptic and post-synaptic functions are down-regulated and over-represented, especially 
for glutamate, and gamma-aminobutyric acid (GABA) neurons. Additionally, the signature 
analysis identified the presence of reactive astrocytes in aged PFC. This astrogliosis is 
characterized by the presence of up-regulation of genes specific for two different types of 
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reactive astrocytes: A1 and A2. Neurotoxic A-like 1astrocytes were recently described in the 
brain of old rats (99). But, this is the first time, in our knowledge, that molecular signature of 
neuroprotective A2 astrocytes are identified in aging of the human PFC. 
 
4.2 Methods 
4.2.1 Data Selection 
We performed an advanced search in the National Center for Biotechnology Information (NCBI) 
GEO database (http://www.ncbi.nlm.nih.gov/geo/) to identify studies analyzing global gene 
expression in the human prefrontal cortex. The advanced search tool was used with the 
keyword PFC (prefrontal cortex) and studies were limited to Homo sapiens as the organism and 
expression profiling by array as the dataset type. We included studies which met the following 
conditions: (1) it was performed using any version of Affymetrix chips, (2) studies analyzed at 
least three samples in each age group (old: 58-80 years old, young: 20-40 years old), (3) the 
raw data were available, and (4) they passed quality control. We excluded one RNA-Seq study 
because we wanted to maintain a platform-controlled heterogeneity. The squematic overview of 
search strategy and selected entries is presented in the Figure 1. and the characteristics of the 
included studies are shown in the Table 1. 

 
Figure 1. Workflow of the data selection. Search in PubMed and GEO database identified 
nine datasets involving transcriptomic analysis of PFC in humans. After remotion of duplicates 
and quality control, five datasets were selected in this research. 
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GEO code Brain region Samples (Old/Young) Platform Reference 

GSE53987 Pre-frontal cortex 4/4 Affymetrix Human Genome U133 Plus 2.0 Array PMID: 25786133 

GSE11512 Dorsolateral prefrontal cortex 4/8 Affymetrix Human Genome U133 Plus 2.0 Array PMID: 19307592 

GSE17612 Brodmann area 10: anterior prefrontal cortex 7/3 Affymetrix Human Genome U133 Plus 2.0 Array PMID: 19255580 

GSE17757 Superior frontal gyrus region of the prefrontal cortex 4/3 Affymetrix Human Gene 1.0 ST Array PMID: 20647238 

GSE71620 Brodmann area 11 48/39 Affymetrix Human Gene 1.1 ST Array PMID: 26699485 
Table 1. Description of studies included in the analysis. GEO: Gene Expression Omnibus; 
Young are samples from people between 20-40 years old, Old are samples from people from 
58-80 years old. GSE71620 was used as an external validation dataset. 
4.2.2 Quality control, batch effect adjustment and data preprocessing 
All datasets underwent quality control (QC) using the QC module from ArrayAnalysis.org (104) 
to evaluate each microarray.  Several parameters were used to detect low-quality samples, as a 
virtual reconstruction of the image, the signal comparability and array correlation. Low-quality 
microarrays were eliminated for the subsequent analysis. 
Data preprocessing was performed using limma R/Bioconductor software package (105). The 
probesets were summarized, and the data were normalized and then log 2 transformed using 
the RMA algorithm. Since Affymetrix chips have several probes for the same gene, the most 
informative probe (that one showing the highest variability across the experimental groups) was 
kept and the others were discarded. 
In order to improve the statistical power and comparability of samples from the same dataset, a 
batch effect correction was performed using empirical Bayes methods implemented with 
ComBat (106).  
4.2.3 Data integration by meta-analysis 
Datasets selected for integration had a similar experimental design, sample size, and chemistry. 
These datasets were then merged using a modified Fisher's combined p-value meta-analysis 
implemented through MetaDE R package (107), as was described by Rhodes et al. (108).  For 
each gene in every dataset, a p-value was determined by a t-test, after a p value modified 
(Pmod) was calculated by multiplying the -log10 (p-value) times log1.5 (absolute fold change). 
Xiao et al. (89) described in detail the p-value modification using this methodology. This 
modification allows the p-value to be enriched with the FC magnitude and provides better 
control of false positives. The Pmods of each gene in all datasets were combined using the 
Rhodes methodology. 
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4.2.4 Biological interpretation 
DAVID (https://david.ncifcrf.gov/) was used to identify the functions of the selected differentially 
expressed genes (DEG). The Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene 
ontology biological function pathways databases were chosen for the over-representation 
analysis. Pathways with p-values lower than 0.05 were selected as enriched. 
4.2.5 Signature analysis 
Over-representation and under-representation analysis were performed using the 
hypergeometric test as is implemented in the over-representation enrichment analysis described 
in WebGestalt (109). Molecular signatures of specific cells, region of cells or molecular 
phenotypes were mined from the public literature. Signatures were interrogated against lists of 
DEG in order to identify if there are more (over-representation) or fewer (under-representation) 
genes from the signature in the DEG than expected by chance. 
4.3. Results 
4.3.1 Data selection 
After the PubMed and GEO omnibus database search, five studies met the inclusion criteria 
(Fig. 1): GSE53987 (110), GSE11512 (111), GSE17612 (112), GSE17757 (113) and GSE71620 
(100). All selected studies were performed using the Affymetrix platform, in humans, with at 
least three biological replicates for each experimental group (old, young) and they were from 
different regions of the PFC (Table 1). The first four studies were used to perform the meta-
analysis and the last one was used for external validation of the meta-analysis. GSE71620 was 
selected as validation study because it had a large number of biological replicates. We 
considered that results obtained by the integrative analysis of several small and independent 
studies which are concordant with the one single big study, implies that the conclusions of the 
integrative analysis are robust. 
4.3.2 Quality control, batch effect adjustment and data preprocessing 
All arrays involved in the analysis were evaluated for the quality of several parameters (Fig. 2). 
The data quality was determined through RNA degradation ratios, relative log expression and 
normalized unscaled standard errors using the Arrayanalysis.org platform (104). Low-quality 
arrays were removed and the complete datasets were analyzed again to reassess the quality of 
the remaining samples. 
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Figure 2. Study workflow. Study was performed in three connected modules. (A)Quality 
control and preprocessing of individual studies. (B) Each dataset was analyzed individually 
using limma Lists of DEG were compared by Venn analysis. (C) Datasets were combined by 
meta-analysis. The DEG were analyzed by pathway over-representation with DAVID and 
signature analysis was performed using the WebGestalt algorithms. Results of the meta-
analysis were validated by comparison with an external dataset (GSE71620) 
Following this process, a principal component analysis (PCA) plot was calculated for each 
dataset in order to detect outliers and to identify the unbiased distribution of the samples. 
Additionally, the scanning date was identified to detect batch effects. A batch correction was 
performed using ComBat. After batch correction, PCA plots were recalculated to check the 
modification in the distribution of the samples. All datasets had batch effects and all datasets 
were batch corrected.  Two samples were removed from GSE71620 because there were 
outliers, Table 1 summarize the studies and samples after the mentioned processes. 
4.3.3 Data integration: meta-analysis of gene expression in old vs. young PFC 
The meta-analysis methodology used in the integration of the four studies was designed to 
increase the statistical power of the individual datasets and provided a strong list of DEG 
consistently de-regulated across all the comparisons (114). In order to determine how the meta-
analysis was able to identify genes that were not recognized by the individual datasets, and to 
spot the number of genes that were not consistently differentially expressed across the 
individual analyses, a Venn diagram with the DEG from each individual analysis and from the 
meta-analysis was calculated using InteractiVenn (115). Figure 3 shows the DEG in each 
individual analysis compared with the DEG after the meta-analysis. The meta-analysis identified 
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most of the genes in each individual analysis and was able to detect 598 additional genes. 
Given that the meta-analysis combined the magnitude of the change in expression, the direction 
of the change and the level of statistical significance, the detected DEG had the same direction 
of change across all the datasets in the analysis. A complete list of DEG is presented in Table 
S1. When the DEG were divided into down-regulated and up-regulated genes (Table 2), down-
regulated genes outnumbered the up-regulated ones in a ratio of 2.2:1.  
A. 

 
B. 
Study DEG In Meta-analysis Proportion Out Meta-analysis Proportion 
GSE53987 341 238 0.70 103 0.30 
GSE11512 1302 1079 0.83 223 0.17 
GSE17612 97 66 0.68 31 0.32 
GSE17757 94 72 0.77 22 0.23 

Figure 3.  A) Venn diagram of DEG identified from the individual analysis (GSE11512, 
GSE17612, GSE53987, GSE17757) and from the meta-analysis. The meta-analysis identified 
1218 genes that were identified by the individual analysis (intersection of the black ellipse with 
others four ellipses) and 598 additional genes that were not identified in any individual analysis. 
B) Number and proportion of DEG from individual analysis and detected by the meta-analysis. 
In Meta-analysis means the DEG of individual analysis that were preserved in the meta-
analysis, Out Meta-analysis means the DEG from individual analysis that were not present in 
the meta-analysis. 
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 Meta-analysis GSE71620 Common genes Proportion of common genes 
DEG 1816 5120 1141 0.63 
Up-regulated 561 2076 339 0.60 
Down-regulated 1256 3044 783 0.62 
Total genes 6895 18989 6895   

Table 2. Summary of number and direction of the change of DEG detected in the analysis. Up-
regulated genes are genes with an increase in the expression in old samples compared with 
young samples and down-regulated genes are genes with lower expression in old samples 
compared with young samples. Total genes represent the number of genes in each analysis. 
Common genes are the genes identified simultaneously in both analyses (Meta-analysis and 
GSE71620). The proportion of common genes are the proportion of genes in common between 
the meta-analysis and the validation dataset (GSE71620). Those genes had the same direction 
of change.  
The external validation dataset, GSE71620, was analyzed individually with limma: 48 samples 
from people between 60 to 80 years old were compared with 39 young samples (people from 20 
to 40 years old) to detect the DEG (Table S2). Out of a total of 18,989 genes, 5,120 (27%) had 
an FDR lower than 0.05. Similar to the meta-analysis findings, there were more down-regulated 
genes than up-regulated genes (1.5:1). In order to have evidence of the reproducibility of the 
results of the meta-analysis, both lists of DEG were compared (Table 2). More than 60% of the 
DEG were shared between the meta-analysis and GSE71620, and the majority of them had the 
same direction of change with aging. Only 19 of 1.141 DEG (2%) had an opposite direction of 
change. That constitutes a very good overlapping between both analyses, as it is usual to find a 
very small proportion of common DEG (lower than 10%) when different datasets are analyzed in 
an independent way (53). 
4.3.4 Functional analysis of old PFC 
To identify the biological functions of the selected DEG in the meta-analysis, we performed a 
pathway analysis in DAVID using KEGG and Gene Ontology Biological process (GOBP) 
pathways databases. Pathways in KEGG and GOBP have several genes in common. Following 
this, we used the DAVID cluster tool to identify a set of non-overlapping pathways over-
represented in the list of DEG. In order to have a better comprehension of the involvement of 
the pathways in PFC aging, we performed independent analyses with both up-regulated and 
down-regulated genes. Table 3 shows the pathways over-represented in the down-regulated 
genes and Table 4 shows the pathways over-represented in the up-regulated genes. Tables S3, 
S4 presents the list of all genes identified in each pathway. 
Cluster 1     Category Term Count FE PValue 
KEGG_PATHWAY Glutamatergic synapse 34 4.1 1.34E-12 
KEGG_PATHWAY Dopaminergic synapse 34 3.7 4.41E-11 
KEGG_PATHWAY Circadian entrainment 28 4.1 2.48E-10 
KEGG_PATHWAY GABAergic synapse 26 4.3 5.21E-10 
KEGG_PATHWAY Cholinergic synapse 24 3.0 2.78E-06 
KEGG_PATHWAY Serotonergic synapse 22 2.8 3.25E-05 



57  

     Cluster 2     Category Term Count FE PValue 
GO_BP potassium ion transmembrane transport 19 2.4 9.52E-04 

     Cluster 3     Category Term Count FE PValue 
KEGG_PATHWAY Circadian entrainment 28 4.1 2.48E-10 
KEGG_PATHWAY Oxytocin signaling pathway 26 2.3 1.34E-04 
KEGG_PATHWAY cGMP-PKG signaling pathway 25 2.1 7.13E-04 
KEGG_PATHWAY Long-term depression 13 3.0 9.54E-04 
KEGG_PATHWAY Gap junction 16 2.5 0.001 
KEGG_PATHWAY Inflammatory regulation of TRP channels 16 2.3 0.004 

     Cluster 4     Category Term Count FE PValue 
KEGG_PATHWAY Nicotine addiction 15 5.2 3.27E-07 

Table 3. Pathways significantly over represented in down-regulated DEG in Old vs Young 
PFC.The pathways were clustered by genes in common. P.Values were corrected by multiple 
comparisons with the DAVID methodology. Count is the number of down-regulated DEG, FE the 
fold enrichment, it means the additional times there are more DEG in the pathway than 
expected by chance. 
 

Cluster 1     Category Term Count FE PValue 
KEGG_PATHWAY Mineral absorption 10 6.1 2.76E-05 
GO_BP cellular response to cadmium ion 6 11.5 1.19E-04 
GO_BP negative regulation of growth 6 10.3 2.13E-04 
GO_BP cellular response to zinc ion 6 10.3 2.13E-04 

     Cluster 2     Category Term Count FE PValue 

GO_BP positive regulation of cellular protein catabolic process 4 11.9 0.004 
GO_BP regulation of organelle assembly 3 24.5 0.005 

GO_BP positive regulation of protein localization to early endosome 3 19.6 0.008 
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GO_BP establishment of endothelial barrier 4 8.2 0.011 

GO_BP positive regulation of early endosome to late endosome transport 3 12.3 0.023 
     Cluster 3     Category Term Count FE PValue 

GO_BP negative regulation of smoothened signaling pathway 5 8.6 0.002 
GO_BP dorsal/ventral pattern formation 6 6.1 0.003 
GO_BP smoothened signaling pathway 6 2.8 0.059 

     Cluster 4     Category Term Count FE PValue 
GO_BP response to interferon-beta 4 14.5 0.002 
GO_BP response to interferon-gamma 5 6.8 0.006 
GO_BP negative regulation of viral genome replication 5 4.1 0.033 
GO_BP response to interferon-alpha 3 9.8 0.035 

Table 4. Pathways significantly over represented in DEG up-regulated in Old vs Young 
meta-analysis.The pathways were clustered by genes in common. P.Values were corrected by 
multiple comparisons with the DAVID methodology. Count is the number of up-regulated DEG, 
FE the fold enrichment, it means the additional times there are more DEG in the pathway than 
expected by chance. 
Down-regulated pathways were located in four clusters. Cluster 1 had 34 genes which were 
annotated in synapse pathways. Glutamatergic synapses had a higher and more significant 
proportion of down-regulated genes, followed by dopaminergic and GABAergic synapses. 
Cholinergic and serotonergic synapses had a lower level of enrichment and higher p values. 
Cluster 2 had 19 genes annotated in the potassium ion transmembrane transport pathway and 
Cluster 3 was enriched in genes related to inter-cell communication. 
Up-regulated pathways were aggregated in four clusters (Table 4). Cluster 1 had 10 genes 
annotated in mineral absorption, cellular response to cadmium ion and cellular response to zinc 
ion. Those pathways were over-represented mainly because there were seven metallothionein 
genes which were up-regulated and annotated in those pathways. Cluster 2 was composed of 
positive regulation of cellular protein catabolic process and regulation of organelle assembly, 
among others.  It was enriched in genes of the EZR family (ezrin, radixin, and moesin). Cluster 
3 contained smoothened signaling pathways, related to the sonic hedgehog (SHH) pathway. 
Finally, Cluster 4 was enriched in response to the interferon pathway. 
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4.3.5 Identification of cell types responsible for aging changes 
Since PFC is a complex tissue with a combination of several types of cells, and it has been 
described by previous reports that different PFC cells have different responses in aging (101). 
We wondered which types of cells underwent greater alteration during PFC aging. We 
hypothesized that cells with major modifications in aging would have an over-representation of 
cell type specific genes in the list of DEG. Then we used the list of specific markers for neurons, 
oligodendrocytes and astrocytes identified by Cahoy et al. (116) (Table S5) to perform an 
enrichment signature analysis. The results of the analysis are shown in Table 5. On the list of 
down-regulated genes from the meta-analysis, there are 1.91 times more down-regulated genes 
from neurons than expected and 2.04 times fewer down-regulated genes from astrocytes. On 
the list of up-regulated genes, there are 6.67 times fewer up-regulated genes from neurons than 
expected and 1.77 times more up-regulated genes from astrocytes. With these results, it is 
possible to conclude that, in old PFC, there is a down-regulation of specific neuron genes and 
an up-regulation of astrocyte genes. The number of up-regulated and down-regulated DEG 
specific to oligodendrocytes were those expected by chance (non-significant p-value), meaning 
that there were no important differences in the function of those cells between old and young 
samples. 
  

 Down-regulated Up-regulated 
ID EF Pvalue EF Pvalue 

Neuron 1.91 0.00E+00 -6.67 0.00E+00 
Oligodendrocyte -1.33 1.00E+00 -1.15 9.56E-01 
Astrocyte -2.04 0.00E+00 1.77 0.00E+00 

Table 5. Signature analysis of specific markers of neuron, oligodendrocyte and astrocyte. 
EF means enrichment factor, it is the number of times that there is more genes down-regulated 
or up-regulated than expected by chance. Positive EF means there is an over-representation of 
genes of cell type, negative EF means an under-representation of genes of cell type.  
4.3.6 Identification of specific neuronal regions with enrichment of down-regulated genes 
in aged PFC 
Next, we explored which neuronal zones were more represented in the list of down-regulated 
genes (Table 6A). To do that we used well established markers of different zones of the neuron (Table S6). As expected according to the pathway analysis (Table 3), there were more down-
regulated genes from postsynaptic (Enrichment factor, EF=3.07) and presynaptic (EF=2.13) regions than expected by chance. Interestingly, markers from other neuronal regions such as the nucleus, cytoplasm, dendritic cytoplasm or axonal cytoplasm were not over-represented. 
Taken together, these results suggest that, in aging, there is a specific down-regulation of synapses with less alteration in the other neuronal regions. 
 We discriminate the location of the DEG annotated in synapses to have a better delineation of the synapses de-regulation (Table 6B). We found that GABAergic synapse and glutamatergic 
synapse, the two main type of synapses in PFC had alteration in the expression of genes in presynaptic and postsynaptic regions. Interestingly, the other synapses have specific down-
regulation of gene expression only in postsynaptic markers (Table S7). 
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A. Down-regulated 
ID EF Pvalue 

Neuron Postsinaptic 3.07 2.26E-02 
Neuron Presinaptic 2.13 4.30E-02 
Neuron Dendritic Axonal Citoplasmatic 1.73 2.41E-01 
Neuron Nuclear Citoplasmatic -1.09 6.73E-01 
Growth Cone Markers -2.38 9.32E-01 

 
B. 

  Presynaptic Postsynaptic Total 
GABAergic synapse 15 24 26 
Glutamatergic synapse 19 20 34 
Dopaminergic synapse 0 34 34 
Serotoninergic synapse 0 21 22 
Cholinergic synapse 7 24 24 

Table 6. (A) Signature analysis of specific neuronal regions in the down-regulated DEG. 
EF means enrichment factor, it is the number of times that there is more genes down-regulated 
or up-regulated than expected by chance. Positive EF means there is an over-representation of 
genes of cell type, negative EF means an under-representation of genes of cell type. (B) 
Discrimination of DEG in presynaptic and postsynaptic region. Genes annotated in 
synapsis were located in pre-synaptic or postsynaptic region according KEGG database.   
 4.3.7 Identification of pathway enrichment in aged PFC astrocytes 
Astrocyte cells had the most over-representation of specific markers in the analysis of up-
regulated genes, suggesting that, in aging, there is increased activation of astrocytes. Several 
studies describe different ways to induce reactive astrogliosis: ischemic stroke (MCAO: middle 
cerebral artery occlusion) induces activation of astrocytes with a neuroprotective phenotype (A2 
astrocytes), while inflammation (LPS: endotoxin LPS from Escherichia coli O55:B55) activates 
astrocytes with neurotoxic properties (A1 astrocytes) (117), (118). Additionally, 
methamphetamine induces premature senescence (119) and astrocyte activation (120). We 
mined the transcriptional signatures of the kinds of activated astrocytes previously described 
and compared them with our list of DEG. Table 7 summarizes the results of the over-
representation analysis. The A1A2 signature comprises the up-regulated genes in activated 
astrocytes in general; up-regulated genes in the meta-analysis had 10 times more of those 
genes than expected. The down-regulated genes did not have any of those genes. This result 
shows that, in aging, not only is there an enrichment of astrocyte markers but those astrocytes 
are also active. Signatures for protective (MCAO astrocytes) and detrimental (LPS astrocytes) 
astrocytes were highly enriched too, with around five times more genes than expected by 
chance. The methamphetamine signature was not over-represented in either down-regulated or 
up-regulated genes.  
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 Down-regulated Up-regulated 
ID EF Pvalue EF Pvalue 

A1A2 NA NA 10.13 1.99E-06 
LPS astrocyte (A1) -4.76 0.004 4.83 2.82E-05 MCAO astrocyte (A2) -2.63 0.021 5.41 7.96E-07 Methamphetamine 1.21 0.288 -1.79 0.113 

Table 7. Signature analysis of several signatures of activated astrocytes. A1A2 is the 
signature of astrocyte activation. EF means enrichment factor, it is the number of times that 
there is more genes down-regulated or up-regulated than expected by chance. Positive EF 
means there is an over-representation of genes of cell type, negative EF means an under-
representation of genes of cell type.  
 
Finally, the pathway analysis (Table 4) found that SHH was statistically significantly up-
regulated. The SHH is a complex pathway and a recent report indicates that it is important in the 
interaction among neurons and astrocytes (121). We analyzed the SHH pathway in aging PFC 
more deeply. The SHH pathway is modulated by three transcription factors: GLI1/2/3, then we 
selected the transcriptional targets of GLI transcription factors using the TF2DNA database 
(122) (Table S8). In order to determine if the activation of the SHH pathway was limited to 
astrocytes, we performed the over-representation analysis with all the transcriptional targets of 
GLI (Gli total) and using the specific astrocyte genes (Gli astrocyte). Gli1/2/3 target genes were 
not over-represented in the list of DEG, but the specific astrocyte Gli1/2/3 targets were over-
represented in the list of up-regulated genes with an EF of 3.18, 2.51 and 3.45, respectively 
(Table 8). Additionally, those lists of genes were under-represented in the list of down-regulated 
genes. 
 

 Down-regulated Up-regulated 
ID EF Pvalue EF Pvalue 

Gli1 astrocyte -1.69 0.013 3.18 2.59E-07 
Gli1 total 1.12 0.034 1.02 0.471 
Gli2 astrocyte -2.17 0.001 2.51 0.001 
Gli2 total 1.04 0.306 1.2 0.953 
Gli3 astrocyte -2.63 0.021 3.45 0.002 
Gli3 total 1 0.528 -1.14 0.258 

Table 8. Signature analysis of targets of GLI transcription factors in DEG. Gli1 total means 
that all the transcriptional targets of Gli1 were interrogated against the list of DEG. Similarly, 
Gli2 and Gli3 means the transcriptional targets of the same transcription factor. Gli1 astrocyte, 
Gli2 astrocyte and Gli3 astrocyte means that only the transcriptional targets present in the list of 
specific markers of astrocyte were used. 
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4.4 Discussion 
4.4.1 General transcriptomic landscape of aging in PFC 
The combination of old PFC vs. young PFC samples from several independent studies by meta-
analysis identified a list of DEG that had high overlapping with the validation dataset constituted 
by a large number of biological replicates. The approach used in our study was able to detect 
genes with a consistent and coherent deregulation across several independent studies. The 
proportion of down-regulated genes vs. up-regulated genes was 2.2:1. In previous analyses of 
the aging transcriptomic profile on different tissues and organisms, the number and proportion 
of down-regulated and up-regulated genes was variable. Meta-analysis of the aged liver in mice 
found a 1:3 ratio of down-regulated to up-regulated genes (123). A similar result was obtained in 
other analysis using several aging organs -kidney, lung, brain cortex, liver- from humans, mice, 
and rats (102). In human lymphoblastoid cells, the proportion was 1:1 (124). Two studies using 
whole blood cells found a proportion close to 1.4:1 (125), (126). In a meta-analysis of human 
muscles, the proportion was 1.2:1 (127). This variation in the proportion of the direction of de-
regulated genes could be explained as follows: since post-mitotic cells (such as muscle cells 
and neurons) accumulate DNA damage over their lifespan, it is more probable that mutations in 
transcriptionally active genes will induce a down-regulation, while mitotically active cells with an 
accumulation of mutations are negatively selected and removed from the tissues. Our findings 
support this hypothesis because the down-regulated genes had an enrichment in specific 
markers for neurons -post-mitotic cells- and the up-regulated genes had an enrichment in 
specific markers for astrocytes -cells with proliferative ability in the nervous tissue-.  
In order to identify which types of PFC cells were altered in the de-regulation of the 
transcriptome of old samples compared with young samples, we performed on our list of DEG 
an over-representation and under-representation analysis with specific markers for neurons, 
oligodendrocytes, and astrocytes (116). As in previous studies on the cerebral cortex (101), we 
found an over-representation of neuronal markers in the down-regulated genes and an under-
representation of those markers in the up-regulated genes. Astrocyte markers had the opposite 
over-representation results, with an enrichment of up-regulated genes and fewer down-
regulated genes on the list of DEG. Oligodendrocyte markers had the number of DEG that 
would be expected by chance. Taken together, those results indicate that, in aging PFC, there is 
a down-regulation of neuronal genes without compensatory up-regulation of other neural genes, 
as well as an increased expression of astrocyte genes. Neuropathological studies show 
contradictory evidence regarding the change in the number of neurons and neuroglial cells in 
different regions of the brain with aging. Some results have pointed to a loss of neurons in the 
rat´s prefrontal cortex (128), basal forebrain (129), thalamus (130), cortex, hypothalamus, 
cerebellum and olfactory bulb (131). However, other studies found no modification in the 
number of neurons in aging. For instance, in the human substantia nigra, there was no 
correlation between the number of neurons and age (132), and in the Rhesus macaque, the 
number of white matter neurons did not show a correlation with age (133). Therefore, the down-
regulation of neuron-specific markers could be explained as a result of a decreased number of 
neurons or a down-regulation in the expression of genes related to a specific aging phenotype. 
Likewise, the over-representation of astrocyte genes in the up-regulated genes is due to an 
increase in the number of cells or their increased activation.  
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Our results, as discussed below, support that in aging, there is a down-regulation of gene 
expression in specific neuronal zones, especially synapses, and opposite patterns of activation 
of astrocytes.  
4.4.2 Neuron transcriptome in aged PFC: down-regulation of synapses 
Specific neuron markers were over-represented in the list of down-regulated genes. The 
analysis of markers for specific neuron zones evidenced that in aging the more pronounced 
alteration involved the synapses. Genes that codified proteins from the nucleus and cytoplasm 
of the neuron body and neuron prolongations were not over-represented. This coincides with a 
previous analysis using different transcriptomic data (103) and quantitative PCR (134) where 
the authors reported an altered synaptic gene expression associated with chronological aging. 
The unbiased analysis of the down-regulated genes showed that all types of synapses were 
down-regulated, and it is compatible with a general dysfunction of the synaptic connectivity, 
modulation, and activity. When a careful analysis of the down-regulated genes was performed, 
a similar down-regulation of presynaptic and postsynaptic genes for GABAergic and 
glutamatergic synapses was found, indicating a similar involvement of excitatory and inhibitory 
synapses. Interestingly, for the other types of synapses -serotonergic, cholinergic and 
dopaminergic-, the main down-regulation was almost exclusively restricted to the postsynaptic 
neuron. Synaptic functions do not have the same kind of alteration. For example, genes related 
to the synthesis and binding of vesicles were down-regulated (SYP, SYT1, SYN2, STX1A), 
while genes related with docking and transport of vesicles to the membrane were up-regulated 
(VAMP1, SANP23) (TableS1), indicating that the presynaptic dysfunction could be restricted to 
specific processes.  
Even though our research was based on the analysis of transcriptomic datasets, as an 
additional validation of our results, we found concordant results in a study using quantitative 
PCR in human old PFC (134). Mohan et al. reported down-regulation of interneuron and 
synaptic genes (calbindin, somatostatin, cholecystokinin, SLC17A7), and up-regulation of 
VAMP1 (134). 
4.4.3 Astrocyte transcriptome in aged PFC: the opposite activation 
Astrocytes, the most abundant glial cells, are important for adequate central nervous system 
(CNS) function. They are involved in the formation and elimination of neuronal synapses (135) 
(136), and also mediate the uptake and recycling of neurotransmitters (137). We found that, in 
aging, there is an up-regulation of specific astrocyte markers. These results coincide with a 
previous report using a different source of information (101). Current knowledge suggests that 
astrocyte number is preserved in aging (138) (139). Therefore, the up-regulation of astrocyte 
markers could be explained by an increase in the activation state of those cells. There are 
distinctive phenotypes of activated astrocytes, which depend on the stimuli that induce the 
activation. The best-characterized phenotypes of activated astrocytes are A1 and A2. Reactive 
astrocytes induced by LPS (A1 astrocytes) exhibit a phenotype that suggests they are 
detrimental, whereas reactive astrocytes induced by ischemia (A2 astrocytes) exhibit a cellular 
phenotype that suggests that they are beneficial or protective (117). The A1 and A2 phenotypes 
share common genes that are useful for identifying reactive astrocytes in general (activated 
A1A2 astrocytes). A study in rat brains found an increase of A1-like reactive astrocytes in the 
hippocampus and striatum with aging (99) suggesting that, in this animal model, astrocyte 
activation is mainly toxic and it is associated with the loss of brain function. We found that, in old 
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PFC, there is a strong up-regulation of A1A2 signature genes. When we analyzed what kind of 
activated astrocytes were present in old PFC we found a similar over-representation of A1 and 
A2 signature genes. Additionally, since there are reports linking methamphetamine abuse with 
the neurochemical profile of aging (140) and premature cellular senescence (119), therefore we 
compared the molecular profile of the astrocytes activated by methamphetamine abuse with our 
signature of old PFC, this profile was not over-represented, indicating that astrocyte activation 
by methamphetamine does not recapitulate normal aging astrocyte activation. These joint 
results indicate that aged human PFC seems to have patterns of gene-expression compatible 
with astrocytes activation which is heterogeneous mixing protective and toxic astrocytes.  
Due to the fact that we used whole tissue with a mixture of cells in our study, we cannot 
delineate more precisely the proportions and specific pathways activated in each type of 
activated astrocyte.  Single cell transcriptomic analysis of astrocytes in aging samples along 
with phenotypic analysis of this cells must be performed to answer this question. 
However, with the pathway and signature analysis of up-regulated genes, it is possible to 
suggest the molecular phenotype of astrogliosis in old PFC. The fact that mineral absorption 
was the main up-regulated pathway in the top cluster of activated pathways was an unexpected 
result of the transcriptomic analysis of the CNS. However, the pathway was statistically 
significant, because it contained several metallothionein (MT) genes. In the meta-analysis, 
seven MT genes were analyzed, all of which were from the MT I family, and were  up-regulated 
in old PFC. There is an increasing interest in the role of MT in normal and pathological CNS 
function. The MT superfamily has four isoforms (I to IV); isoforms I and II are expressed in the 
brain, mainly in astrocytes, while isoform III is expressed in neurons (141). Metallothioneins I/II 
are up-regulated in astrocytes in response to neuronal injury (142), and their expression is 
induced by several stimuli such as metals, hormones, cytokines, oxidative stress and 
inflammation (143). The over-expression of MTs is in general protective, for example, when MTs 
are overexpressed, the mouse lifespan is increased (144). Metallothioneins I/II play a 
neuroprotective role in several forms of brain injury and are able to augment the regenerative 
capacity of astrocytes (145). Metallothioneins I/II induce a form of astrogliosis that is permissive 
with the neurite outgrowth and associated with decreased chondroitin sulfate proteoglycan 
(CSPG) accumulation. CSPGs are involved in maintaining the structure and function of adult 
neurons, and in the regulation of proliferation, migration, and neurite outgrowth of neural stem 
cells in the brain. Aged rats show a significant increase in aggrecan expression throughout the 
PFC and in the hippocampus (146). We found up-regulation of the expression of two CSPG 
genes (BCAN and CD44), and thus the up-regulation of MT I could be related to an astrocyte 
effort to degrade the increased deposition of CSPGs as a response to synapse malfunction. 
Organelle assembly, the second cluster of up-regulated genes, includes the all three ERM 
family proteins (ezrin, radixin, and moesin). These proteins play a crucial role in organizing 
membrane domains and regulating signal transduction pathways such as SHH (147). In the 
brain, this family is important in the regulation of plasticity and neuroprotection: ezrin (EZR) is 
required for the structural plasticity of peripheral astrocyte processes associated with synapses 
(148), moesin (MSN) regulates dendrite arborization and spine-like protrusion growth (149), and 
radixin (RDX) stimulates adult neural progenitor cell migration and proliferation (150). Activation 
of the three members of the family promotes the migration of subventricular zone-derived 
neuroblasts in response to traumatic brain damage (151). In old PFC, neuronal synapse 
dysfunction could be sensed by the astrocytes as local damage, and part of the protective 
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response could be the up-regulation of ERM genes. Activation of ERM proteins is mediated by 
RhoA in HeLa cells (152) and fibroblasts (153), but is independent of RhoA in kidney-derived 
cells (154). RhoA was not up-regulated in our analysis nor in previous studies (117) of old PFC, 
but other Rho proteins as RhoJ and RhoU were up-regulated. If those proteins can interact with 
ERM proteins, then it is plausible that ERM protein activation is caused by other Rho family 
proteins in the brain and accessory proteins such as ARHGDIA, that is also up-regulated in 
aging, but additional analysis of interaction of those proteins are necessary to probe this 
hypothesis. 
Smoothened (SMO) signaling pathway, the representative pathway in the third cluster of up-
regulated genes, is the intracellular effector of the activation of Sonic Hedgehog (SHH) pathway. 
The SHH plays a key role in the development and patterning of the CNS. In the adult brain, 
SHH is one of the regulators of astrocyte function and activation. Given the importance of this 
pathway in the biology of astrocytes, we explored in detail their complete regulation in aged 
PFC. SHH regulates the activity of the GLI transcription factor family, in which there are three 
members: GLI 1, 2 and 3, each with a different role in SHH responsive gene regulation. GLI 1 is 
a transcriptional activator, GLI 2 is mainly a transcriptional activator with slight repressor activity, 
and GLI 3 is a transcriptional repressor of target genes (155).  We looked to see if the 
transcriptional targets of each GLI were over-represented on the list of DEG. When all the 
targets were interrogated, none of the lists of GLI targets were over-represented on the list of 
up-regulated genes and only GLI 1 targets were under-represented on the list of down-regulated 
genes. These results indicate that there is no general deregulation of the SHH pathway in old 
PFC. However, when we selected the GLI targets that are expressed specifically in astrocytes, 
there was an over-representation of GLI 1, 2 and 3 astrocyte targets on the list of up-regulated 
genes and under-representation of those targets on the list of down-regulated genes. GLI 1 and 
2 are transcriptional activators and GLI3 is a repressor, then, there is an activation of GLI 1 and 
2 and inactivation of GLI 3 in astrocytes in aging. Therefore, there is an activation of the SHH 
pathway specifically in astrocytes.  
Neurons in old PFC have a wide down-regulation of expression of synaptic genes, including the 
genes related to biosynthesis, transport, and release of neurotransmitters. A study recently 
described that neurons use SHH to control different properties of the astrocytes (156) (121). 
SHH stimulation of Bergmann glial cells -a type of cerebellar astrocytes- promotes glutamate 
detection and recovery and potassium homeostasis by up-regulation of SLC1A3 (GLAST) and 
KCNJ10 (KIR 4.1) (156). Those genes are up-regulated in old PFC, then the activation of SHH 
in PFC astrocytes could be a protective response induced by down-regulation in the expression 
of neuronal synaptic genes. Furthermore, SHH is also involved in neural progenitor proliferation, 
neovascularization, and synaptogenesis (157). SHH reduces astrocyte reactivity and the 
inflammatory response after a brain injury (157), and astrocytes stimulated by SHH protect 
neurons from cell death (121). This is compatible with the finding of over-representation of the 
protective astrocyte signature on the list of up-regulated genes.  
On the other hand, we found an over-representation of the neurotoxic astrocyte signature, 
suggesting that there are parallel pathways of astrocyte activation inducing diverse astrocyte 
phenotypes in brain aging. Our analysis identified up-regulation of related inflammatory 
pathways (the Cluster 4 of up-regulated genes). This cluster consisted of the enrichment in 
genes annotated in response to interferon alpha, beta, and gamma. In the aging brain, it is well 
characterized that interferon signaling at the choroid plexus negatively affects brain function 
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(158) and that the interferon pathways are induced in LPS-reactive astrogliosis (117). 
Inflammation is one of the hallmarks of aging, and the hypothalamus integrates inflammatory 
responses with systemic control of aging through nuclear factor kB (NF-kB) and microglia-
neuron neuroimmune crosstalk  (159) (160). Inflammation is so important in aging brains, that 
chronic treatment with an IFN-I activator contributes to the development of neurodegenerative 
disease in wild-type mice (161). In the context of astrocytes, neurotoxic phenotype development 
after exposure to LPS is characterized by the induction of interferon pathways (117). The 
activation of IFN pathways is also compatible with the aging model which describes 
inflammatory astrocyte (A1) activation. Moreover, the direct analysis of astrocytes in normal 
aging showed that one of the up-regulated pathways in mouse old brain astrocytes was 
interferon signaling (99).  
These results suggest that the up-regulated pathways we found were mainly due to astrocyte 
activation and they represent two divergent astrocytes molecular y cellular phenotypes. 
4.4.4 Conclusion 
Meta-analysis of transcriptomic data increases the statistical power of the individual datasets 
and, in addition, is able to identify DEG which are consistently de-regulated across the different 
experiments. A big advantage of this approach is that the particular characteristics of each 
dataset are unmasked and only the common processes for all datasets are revealed. In our 
analysis, we detected that neurons are some of the most important cells affected by aging in the 
PFC, and, in accordance with other researchers, we delineated the biggest impairment in 
synapse function, with specific variations depending on the type of synapses. Additionally, using 
the over-representation and under-representation analysis of curated expression signatures we 
identified that there are heterogeneous transcriptomic profiles associated with the activation of 
astrocytes. We found evidence of at least two different phenotypes of activated astrogliosis: A1 
(neurotoxic) and A2 (neuroprotective). Due to our analysis design, we cannot identify the 
chronological order or magnitude of those alterations, but the results are consistent with the 
normal cognitive decline associated with aging. A plausible hypothesis is that neurons, post-
mitotic cells accumulated DNA damage for decades, and then they expressed a phenotype 
characterized by synapsis dysfunction. As a response of that, there are activation of astrocytes 
in at least two different pathways: A1 and A2 astrocytes.  
We propose a model (Figure 4) where synapses in normal aged PFC are in two states: some 
synapses are deleteriously related to A1 astrocytes and others are protectively related to A2 
astrocytes. A1 astrocytes are the result of activation by aging-related inflammation and A2 
astrocytes could be activated as a response to the switch-off of the synapses. 
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Figure 4. Model of tripartite synapse in old PFC. In old PFC there is a down-regulation of 
expression of presynaptic genes in GABAergic and Glutamatergic synapses and down-
regulation of post-synaptic genes in all kind of synapses. They are in two divergent 
environments (A) The presence of A1 astrocytes induces a neurotoxic phenotype, those 
astrocytes have an activation of inflammatory response represented by interferon pathways. (B) 
There are also A2 astrocytes in old PFC. A2 astrocytes have activation of metallothioneins, EZR 
and SHH pathways. Those pathways are pro-synaptogenic and neuroprotective, then, the 
alteration in the function of the synapses will be less severe than in (A).    
 
There are several questions remaining: what is the origin of synapse down-regulation? Is the 
astrocytes phenotypes fixed or can they change with time or stimuli? What is the extent of A1 
and A2 activation? How is the local synapse environment under A1 or A2 astrocyte regulatory 
control? And finally, what is the situation of this complex relationship between neurons and 
reactive astrocytes in neurodegenerative diseases? 
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5. GENERAL CONCLUSIONS 
Aging, a ubiquitous biological process, is the greatest risk factor for morbidity and mortality in developed countries. It is associated with increased rates of cardiovascular disease, cancer and 
neurodegenerative disease among others. One of the biggest dreams of humanity for a long time has been to delay, stop or for the most optimistic, reverse the deterioration of function and 
physiology associated with time. The current state of knowledge understands aging as a complex phenotype that depends on the interaction of several factors. The study of complex processes requires the use of integrative 
tools as the omics and the systems biology. The main presumption at the beginning of this research was that accumulation of DNA damage 
is an important player in the aging and the modulation of the ability to repair the damage is able to modify the evolution of the phenotype. With the experience acquired analyzing several datasets of transcriptomic from old mice and 
humans with normal and abnormal phenotype the first conclusion that emerges is that even at a first glance aging looks like noisy and stochastic phenomena there is an internal consistency 
and common processes. To make evident the molecular mechanisms of aging is necessary to use the appropriate techniques with a bit of creativity. The study of the phenotypic and transcriptomic response to the dietary interventions that 
induces renal IRI identified that aged mice are able to activate a similar but reduce protection against acute stress. It is a positive result because indicate that old organisms can be 
beneficiated of interventions that modulate pathways related to healthy aging. Indeed, a pilot study was showed that old donor receptors of renal transplant had beneficial outcomes of a short time calorie and protein restriction diet (162). 
The identification that different dietary interventions are able to induce the same stress protection by common pathways reinforces the idea that aging and related phenotypes depend 
on evolutionarily conserved pathways. The parallel study of the transcriptional protective responses pointed to a set of promising pathways (retinoid X receptor, the farnesoid X receptor, 
and the pregnane X receptor) involved in increased resistance to stress and probably in the survival response related to the extension of lifespan. The direct connection between a limited capability to repair the DNA damage (Ercc1Δ/+ mice)  
and neurodegenerative diseases as Parkinson gives, in the opposite sense that previous results, more experimental evidence that connect the accumulation of DNA damage in 
transcriptionally active genes with aging. The combination of next-generation transcriptomic with exhaustive phenotypic characterization confirmed the identification of a powerful animal model of sporadic Parkinson. The larger enrichment of down-regulated pathways in common with 
transcriptomic of patients with the disease generates an opportunity to explore environmental factors interacting with the genetic factors in the developing of neurodegenerative diseases that 
could be related with the up-regulation of specific pathways. Finally, the integrative analysis of several independent studies of the transcriptome of the prefrontal cortex of normal aging people evidences that in normal aging also there are common 
and conserved mechanisms. It is an example of how the omics technologies can identify relevant pathways to improve the knowledge of complex phenotypes. The identification of 
protective and neurotoxic astrocytes in the old brain and the description of the molecular signatures and de-pathways is the first step to develop pharmacological interventions to modulate the aging.  
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6. RECOMMENDATIONS AND PROSPECTS 
 
The main findings of this research conformed the initial steps to get more in deep in the 
comprehension molecular mechanisms of aging. The final objective of any research in aging in to develop strategies able to modify the natural progression of the associated phenotypes to the 
age and to avoid the apparition of chronic diseases. In my opinion, three promising results need additional research to move in the study to understand how they can be modulated. First, pharmacological activation of the family of X 
receptors and how then are able to activated the survival response. What are the effects at short and long time? Second, additional exploration of the transcriptomic response of the 
substantia nigra of Ercc1Δ/+ mice at different ages and expose at molecules able to interact with the genotype to produces Parkinson´s disease. And finally, a better description of the protective and non-protective astrocytes and the exploration of molecules able to activate the 
pathways identified in A2 astrocytes.  
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