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We present a study of the Gaussian q-measure introduced by Díaz and Teruel from
a probabilistic and from a combinatorial viewpoint. A main motivation for the introduction
of the Gaussian q-measure is that its moments are exactly the q-analogues of the double
factorial numbers. We show that the Gaussian q-measure interpolates between the uniform
measure on the interval [−1,1] and the Gaussian measure on the real line.
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1. Introduction

The main goal of this work is to describe explicitly the Gaussian q-measure and show that it fits into a diagram

Lebesgue on [−1,1] Gaussian q-measure on [−ν,ν] q→1q→0
Gaussian on R,

where ν = ν(q) = 1√
1−q

. That is we are going to construct a q-analogue for the Gaussian measure and show that as q moves

from 0 to 1 the Gaussian q-measure interpolates, in the appropriated sense, from the uniform measure on the interval
[−1,1] to the normal measure on the real line. If we think of the parameter q as time, we see that the Gaussian q-measure
provides a transition from the uniform distribution on the interval [−1,1] to the normal distribution centered at the origin,
so it describes a process of specialization at the origin with a simultaneous spread of probabilities towards infinity.

Let us make a couple of remarks about terminology. We shall use q-density, q-distribution, etc., to refer to the q-
analogues of the corresponding classical notions. The point to keep in mind is that we always replace Lebesgue measure
dx by the Jackson q-measure dqx. Unfortunately, to our knowledge, there is not available axiomatic definition for the later
object. So, to that extent, our terminology should be taken heuristically. The problem of justifying axiomatically the termi-
nology used, although of great value for understanding the foundations of our approach to the Gaussian q-distribution, will
not be further discussed in this work. Next we remark that the object of study of this work – the Gaussian q-measure – is
not the same, despite the choice of name, as the q-Gaussian measures that have been studied in the literature. As far as we
know there are two different distributions that are called the q-Gaussian distribution. One of them was introduced by Tsallis
et al. in [19,22], and has been developed in many works, see the book [15] and the references therein. That construction
is motivated by the fact that the q-Gaussian distribution is the maximum entropy distribution with prescribed mean and
dispersion for the so-called Tsallis or extended entropy [21]; also the q-Gaussian distribution is an exact stable solution of
the nonlinear Fokker–Planck equation [18,20]. Recently, a central limit theorem involving the q-Gaussian measure has been
proven by Umarov, Tsallis and Steinberg [23]. The other definition has been studied by several researchers in various works
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such as [4,6,5,16]. This type of q-Gaussian measure is motivated by the fact that it is the orthogonal measure associated with
a certain family of polynomials called the q-Hermite polynomials. A key fact is that, in both cases, the q-Gaussian measure
is a piecewise absolutely continuous measure with respect to the Lebesgue measure; in contrast the Gaussian q-measure
studied in this work is piecewise absolutely continuous with respect to the Jackson q-measure, i.e. we are not just changing
the density to be integrated, we are simultaneously changing the very notion of integration. Our generalization is motivated
mainly by the fact it yields the right moments, i.e. the moments of the Gaussian q-measure are the q-analogues of the
Pochhammer 2-symbol, as one may expect [11,13].

2. Gaussian q-measure

The construction of the q-analogue of the Gaussian measure introduced in [13] and further studied in [9,10] requires
only a few basic notions from q-calculus [1,2,7,8,14,17,24]. Fix a real number 0 � q < 1. The q-derivative of a map f : R → R

at x ∈ R \ {0} is given by

∂q f (x) = f (qx) − f (x)

(q − 1)x
.

Notice that for q = 0, a case often ruled out in the literature, one gets that

∂0 f (x) = f (x) − f (0)

x
.

For an integer n � 1 we have that ∂qxn = [n]qxt−1 where [n]q = qn−1
q−1 = 1 + q + · · · + qn−1. Inductively one can show that

∂n
q xn = [n]q[n − 1]q[n − 2]q · · · [2]q = [n]q! = (1 − q)−n

n∏
i=1

(
1 − qi) = (1 − q)n

q

(1 − q)n
,

where we have made use of the notation

(a + b)n
q =

n−1∏
i=0

(
a + qib

)
.

A right inverse for the q-derivative is obtained via the Jackson integral or q-integral. For a,b ∈ R, the Jackson or q-integral
of f : R → R on [a,b] is given by

b∫
a

f (x)dqx = (1 − q)

∞∑
n=0

qn(bf
(
qnb

) − af
(
qna

))
.

Notice that for good enough functions if one lets q approach 1 then the q-derivative approach the Newton derivative,
and the Jackson integral approach the Riemann integral. Note also that for q = 0 we get that

b∫
a

f (x)d0x = bf (b) − af (a).

It is easy to show that q-integration has the following properties.

Proposition 1. For a,b, c ∈ R the following identities hold

1.

b∫
0

f (x)dqx = (1 − q)b
∞∑

n=0

qn f
(
qnb

)
. 2.

b∫
a

f (x)dqx = −
a∫

b

f (x)dqx.

3.

bc∫
ac

f (x)dqx = c

a∫
b

f (cx)dqx. 4.

0∫
−b

f (x)dqx =
b∫

0

f (−x)dqx.

5.

c∫
a

f (x)dqx =
b∫

a

f (x)dqx +
c∫

b

f (x)dqx. 6.

b∫
−b

f (x)dqx =
b∫

0

(
f (x) + f (−x)

)
dqx.
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The identities above show the similitude between the Riemann and Jackson integrals. However the reader should be
aware of the sharp distinctions between them. Notice that the q-integral of a function f on an interval [a,b] depends on
the values of f on the interval [0,b]. Consider the q-measure of the interval [a,b]; by definition it is given by

mq[a,b] =
b∫

a

1[a,b] dqx = (b − a) + qa − qlb,

where l is the smallest integer such that ql < b
a . Note that for q = 0 we get that

m0[a,b] = b − a.

Therefore, for intervals, m0 agrees with the Lebesgue measure. One can check that mq is additive, i.e. if a < b < c < d then

mq
([a,b] � [c,d]) = mq[a,b] + mq[c,d],

and also that mq is well-behaved under re-scalings, i.e. for c > 0 we have that

mq[ca, cb] = cmq[a,b].
However the measures mq for 0 < q < 1 fail to be translation invariant, indeed we have that

mq[a + c,b + c] = mq[a,b] + c
(
q − ql).

In order to find the q-analogue of the Gaussian measure we should find q-analogues for the main characters appearing
in the Gaussian measure, namely

√
2π, ∞, e− x2

2 , xn, dx.

The Lebesgue measure dx is replaced by the Jackson q-measure dqx. The monomial xn remains unchanged. The q-analogue

of e− x2
2 is constructed in several steps. The q-analogue of the exponential function ex is

ex
q =

∞∑
n=0

xn

[n]q! =
∞∑

n=0

(1 − q)n

(1 − q)n
q

xn.

The function ex
q is such that e0

q = 1 and ∂qex
q = ex

q . Notice that the q-exponential ex
q interpolates between 1

1−x as q ap-
proaches 0, and ex as q approaches 1; thus the q-exponential ex

q provides a transition from the hyperbolic to the exponential
regime. This procedure is illustrated in Fig. 1 which shows how ex

q changes as q varies.
The q-analogue of the identity exe−x = 1 is ex

q E−x
q = 1, where the function Ex

q is given by

Ex
q =

∞∑
n=0

q
n(n−1)

2
xn

[n]q! =
∞∑

n=0

q
n(n−1)

2
(1 − q)n

(1 − q)n
q

xn.

The function Ex
q is such that E0

q = 1 and ∂q Ex
q = Eqx

q . It is easy to see that Ex
q approaches 1 + x as q goes to 0, and

approaches ex as q approaches to 1; thus the q-exponential Ex
q provides a transition from the linear to the exponential

regime. This interpolation is shown in Fig. 2 which shows how the graph of Ex
q changes as q varies.

Finding the right q-analogue for e− x2
2 is a bit tricky. With hindsight we know that it is given by

E
− q2x2

[2]q
q2 =

∞∑
n=0

(−1)nqn(n+1)

(1 + q)n[n]q2!
x2n =

∞∑
n=0

qn(n+1)(q − 1)n

(1 − q2)n
q2

x2n.

Perhaps the most delicate issue is finding the q-analogues for the integration limits. Remarkably the q-analogue of an
improper integral is a proper integral with limits −ν and ν where

ν = ν(q) = 1√
1 − q

.

Notice that ν approaches 1 as q goes to 0 and approaches ∞ as q goes to 1. The normalization factor is also delicate. It
turns out that the q-analogue c(q) of

√
2π is given by

c(q) =
ν∫

E
−q2x2

[2]q
q2 dqx = 2

ν∫
E

−q2x2

[2]q
q2 dqx = 2(1 − q)ν

∞∑
n=0

qn E
−q2(qnν)2

[2]q
q2 ,
−ν 0



4 R. Díaz, E. Pariguan / J. Math. Anal. Appl. 358 (2009) 1–9
Fig. 1. Plot of ex
q as function of q and x.

Fig. 2. Plot of Ex
q as a function of q and x.

or equivalently

c(q) = 2(1 − q)
1
2

∞∑ (−1)mqm(m+1)

(1 − q2m+1)(1 − q2)m
2

.

m=0 q
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Fig. 3. Plot of c(q) as a function of q.

Note that c(0) = 2 and that c(q) approaches
√

2π as q goes to 1; one may think of c(q)2

2 as a being a q-analogue for π ,
indeed one gets the following remarkably identity

π = 2 lim
q→1

( ∞∑
m=0

(−1)m(1 − q)
1
2 qm(m+1)

(1 − q2m+1)(1 − q2)m
q2

)2

.

The graph of c(q) as a function of q is shown in Fig. 3.
We are ready to introduce the Gaussian q-density.

Definition 2. The Gaussian q-density is the functions sq : R → R is given by

sq(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < −ν,

1
c(q)

E
−q2x2

[2]q
q2 for −ν � x � ν,

0 for x > ν.

Theorem 3. The Gaussian q-density interpolates between the uniform density on the interval [−1,1] and the Gaussian density on the
real line.

Proof. We must show that sq converges to 1
2 1[−1,1] as q goes to 0, and that sq converges to 1√

2π
e− x2

2 as q approaches 1.

Both results are immediate from our previous remarks. �
The transition of the Gaussian q-density from the uniform density on [−1,1] to the Gaussian density on the real line is

shown in Fig. 4.

3. Gaussian q-measure and q-combinatorics

The reader may be wondering about the motivation behind our definition of the Gaussian q-density sq . It has been
constructed so that it generalizes the fact that the Gaussian measure provides a bridge between measure theory and com-
binatorics; indeed the moments of the Gaussian measure are given by

1√
2π

∞∫
xne− x2

2 dx = ∣∣M[n]∣∣,

−∞
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Fig. 4. Plot of the Gaussian q-density as a function of q and x.

where |M[n]| is the cardinality of the set M[n] of matchings on [n] = {1,2, . . . ,n}, i.e. the number of partitions of [n] in
blocks of cardinality 2. Thus the Gaussian measure has a clear combinatorial meaning, this fact explains the role of graphs
in the computation of Feynman integrals [12].

Just as the basic object of study in combinatorics is the cardinality of finite sets, the basic object of study in
q-combinatorics is the cardinality of q-weighted sets, i.e. pairs (x,ω) where x is a finite set and ω : x → N[q] is an ar-
bitrary map. The cardinality of such a pair is given by

|x,ω| =
∑
i∈x

ω(i).

Let us now describe [10] the interpretation in terms of q-combinatorics of the Gaussian q-measure. A matching m on [n]
is a sequence m = {(a1,b1), (a2,b2), . . . , (an,bn)} such that ai < bi , a1 < a2 < · · · < an , and [n] = ⊔{ai,bi}. Next we define
a q-weight on M[n] the set of matchings on [n]. For a pair (ai,bi) in a matching m we set ((ai,bi)) = { j ∈ [[2n]]: ai < j < bi}.
Also for an integer i we set Bi(m) = {b j: 1 � j < i}. The weight ω(m) of a matching m is defined as follows

ω(m) =
∏

(ai ,bi)∈m

q|((ai ,bi))\Bi(m)| = q
∑

(ai ,bi )∈m |((ai ,bi))\Bi(m)|
.

Theorem 4. For n � 0 we have that

1

c(q)

ν∫
−ν

xn E
−q2x2

[2]q
q2 dqx = ∣∣M[n],ω∣∣.

Since there are no matchings for a set of odd cardinality we have that∣∣M[2n + 1],ω∣∣ = 0.

One can show by induction that∣∣M[2n],ω∣∣ = [2n − 1]q!! = [2n − 1]q[2n − 3]q · · · [3]q.

Therefore we have that
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• 1
c(q)

∫ ν
−ν x2n+1 E

−q2x2

[2]q
q2 dqx = 0.

• 1
c(q)

∫ ν
−ν x2n E

−q2x2

[2]q
q2 dqx = [2n − 1]q!!.

The q-combinatorial interpretation of the Gaussian q-measure is the starting point for our construction of q-measures of
the Jackson–Feynman type in [9,10]. It would be interesting to study the categorical analogues of these q-measures along
the lines of [3,12]. The reader should note that the formula above provides a q-integral representation the q-analogue of the
Pochhammer k-symbol with k = 2. A q-integral representation for the general Pochhammer q,k-symbol is treated in [13].
The integral representation of the Pochhammer k-symbol is studied in [11].

4. Gaussian q-distribution

Let us study how probabilities are distributed on the real line according to the Gaussian q-distribution.

Proposition 5. For 0 � a < b � ν we have

1

c(q)

b∫
a

E
−q2t2

[2]q
q2 dqt = 1 − q

c(q)

∞∑
n=0

qn(n+1)(q − 1)n

(1 − q2n+1)(1 − q2)n
q2

(
b2n+1 − a2n+1).

Proof.

b∫
a

E
−q2t2

[2]q
q2 dqt = (1 − q)

∞∑
m=0

qm(
bE

−q2(qmb)2

[2]q
q2 − aE

−q2(qma)2

[2]q
q2

)

= (1 − q)

∞∑
m,n=0

qn(n+1)(q − 1)nq(2n+1)m

(1 − q2)n
q2

(
b2n+1 − a2n+1)

= (1 − q)

∞∑
n=0

qn(n+1)(q − 1)n

(1 − q2n+1)(1 − q2)n
q2

(
b2n+1 − a2n+1). �

The reader may wonder about the convergence of the series on the right-hand side of the formula from the statement
of the previous theorem. Indeed the factors (a2n+1 − b2n+1) may suggest divergency, note however that the factors qn(n+1)

ensure convergency.

Definition 6. The Gaussian q-distribution Gq : R → R is given by

Gq(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < −ν,

1
c(q)

∫ x
−ν E

−q2t2

[2]q
q2 dqt for −ν � x � ν,

1 for x > ν.

Below we need the following notation, if A ⊆ R then as usual we define the characteristic function 1A as follows

1A(x) =
{

0 for x not in A,

1 for x in A.

Next result provides explicit formulae for the Gaussian q-distribution.

Theorem 7. For x ∈ R we have that

Gq(x) = 1[−(1−q)−1/2,(1−q)−1/2](x)

(
1

2
+ 1 − q

c(q)

∞∑
n=0

qn(n+1)(q − 1)n

(1 − q2n+1)(1 − q2)n
q2

x2n+1

)
+ 1((1−q)−1/2,∞)(x).

Proof. The result follows from the previous proposition, the fact that sq(x) is symmetric about the origin, and the straight-
forward set theoretical identities:

[−ν, x] � [x,0] = [−ν,0] for −ν � x � 0;
[−ν, x] = [−ν,0] � [0, x] for 0 � x � ν. �
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Fig. 5. Plot of the Gaussian q-distribution for −1 � x � 1.

Theorem 8. The Gaussian q-distribution interpolates between the uniform distribution on the interval [−1,1] and the Gaussian dis-
tribution on the real line.

Proof. We must show that Gq(x) converges to

1 + x

2
1[−1,1]

as q goes to 0; and converges to

1√
2π

x∫
−∞

e− t2
2 dt

as q approaches 1. Both results are immediate from our previous considerations. �
The transition of the Gaussian q-distribution from 1+x

2 1[−1,1] to the Gaussian distribution as q moves from 0 to 1 is
shown in Fig. 5.

5. Conclusion

The countless applications of the Gaussian measure in mathematics, science and engineering, suggest that the Gaussian
q-measure may also find its share of applications. We showed that as q moves from 0 to 1 the Gaussian q-density and
the Gaussian q-distribution interpolate between the uniform density and the uniform distribution on the interval [−1,1] to
the Gaussian density and the Gaussian distribution. Note that the transition from specialization to uniformity is a common
phenomena both in nature and in mathematics. Indeed, we are used the see objects breaking apart but we seldom see
them coming back together to form a unity from the many pieces. Likewise in mathematics the transfer of heat in a
compact manifold will eventually end up with a uniform temperature trough out the manifold, regardless of the fact that
the initial distribution of heat many have been localized around some point. The reverse transition form uniformity to
specialization occurs less often, yet it is a standard phenomena in certain domains of nature, phenomena of such type play
a most fundamental role in some chemical interactions and in microbiology. For that reason we believe that our Gaussian
q-measure may find some applications in those fields of study.
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