dc.contributor.advisorCadavid Gutiérrez, Luis Fernandospa
dc.contributor.advisorPatarroyo, Manuel A.spa
dc.creatorSuárez Martínez, Carlos Fernandospa
dc.date.accessioned2017-10-11T13:59:03Zspa
dc.date.available2017-10-11T13:59:03Zspa
dc.date.created2017-10-05spa
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/13809spa
dc.descriptionEl presente trabajo tiene como propósito contribuir al conocimiento del complejo mayor de histocompatibilidad clase II (CMH-II) de los monos Aotus, contribuyendo a la validación de este primate como modelo experimental, y aumentando el conocimiento en la evolución de los genes del CMH en primates. Además, se profundizó en el análisis de convergencia y polimorfismo de los genes del CMH-DR en primates. Se implementaron metodologías de modelación computacional de la unión CMH-péptido, como herramientas necesarias para entender los mecanismos de presentación de péptidos por parte del CMH clase II a los linfocitos T. El estudio del polimorfismo de la región de unión al péptido, permitió el desarrollo de estrategias para reducir eficientemente el número de sistemas a considerar en el diseño de péptidos a ser usados como candidatos a vacuna contra la malaria. Usando minería de datos sobre distribuciones de Ramachandran, se desarrolló una escala de similitud estructural de aminoácidos, con el fin de implementar su uso en el desarrollo de péptidos candidatos a vacunas. Adicionalmente, se encontró que la estructura secundaria de las proteínas tiene una relación clara con los patrones evolutivos de sustitución y la mutabilidad de los aminoácidos. Así, se ha generado un marco de conceptual que contribuye al desarrollo de vacunas basadas en péptidos, que tiene como base el estudio del polimorfismo del complejo mayor de histocompatibilidad, las restricciones fisicoquímicas/estructurales que moldean el proceso de reconocimiento molecular involucrado en la interacción CMH-péptido y la aplicación de metodologías computacionales para cuantificar el proceso de unión CMH-péptido.spa
dc.description.abstractThis work was aimed to contribute to increase our knowledge on the MHC class II in monkeys from the genus Aotus. Determining the sequences of MHC-DPA and MHC-DRA genes has allowed to complete the characterisation of the Aotus MHC, contributing towards validating the role of this primate as experimental model and increasing our knowledge regarding MHC gene evolution in primates. It also dealt with in–depth analysis of MHC-DR genes’ convergence and polymorphism in primates. The study involves computational modelling of MHC-peptide binding methodologies (based on quantum chemistry and neural networks) as necessary tools for understanding the mechanisms of MHC class II peptide presentation to T-lymphocytes. Studying peptide binding region polymorphism has enabled developing strategies (pocket profiles) for efficiently reducing the amount of systems to be considered when designing peptides to be used as candidates for an antimalarial vaccine. Data-mining regarding Ramachandran distribution led to developing an amino acid structural similarity scale for use in developing/designing peptides as vaccine candidates. It was found that protein secondary structure has a clear relationship with amino acid substitution and mutability evolutionary patterns. A conceptual framework thus emerged aimed at developing peptide-based vaccines as a basis for studying the mayor histocompatibility complex polymorphism, the physicochemical/structural restrictions shaping the molecular recognition involved in MHC-peptide interaction and using computational methodologies for quantifying MHC-peptide binding.eng
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.sourceinstname:Universidad del Rosariospa
dc.sourcereponame:Repositorio Institucional EdocURspa
dc.subjectComplejo mayor de histocompatibilidadspa
dc.subjectEvolución molecularspa
dc.subjectMonos del nuevo mundospa
dc.subjectPlatyrrhinispa
dc.subjectMicrosatélite D6S2878spa
dc.subjectConvergencia molecularspa
dc.subjectEstructura secundaria de proteínasspa
dc.subjectSustituciones de aminoácidosspa
dc.subjectMatrices de mutaciónspa
dc.subjectPrimatesspa
dc.subjectPM7spa
dc.subjectFMO-PIEDAspa
dc.subjectDFTBspa
dc.subjectInteracción proteína-proteínaspa
dc.subjectUnión CMH-péptidospa
dc.subject.ddc574.29spa
dc.subject.lembInmunologíaspa
dc.titleCaracterización del complejo mayor de histocompatibilidad clase II en primates del género Aotusspa
dc.typeinfo:eu-repo/semantics/doctoralThesisspa
dc.publisherUniversidad del Rosariospa
dc.creator.degreeDoctor en Ciencias Biomédicasspa
dc.publisher.programDoctorado en Ciencias Biomédicasspa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.subject.keywordMajor histocompatibility complexeng
dc.subject.keywordMolecular evolutioneng
dc.subject.keywordNew world monkeyseng
dc.subject.keywordPlatyrrhinieng
dc.subject.keywordD6S2878 microsatelliteeng
dc.subject.keywordMolecular convergenceeng
dc.subject.keywordMHC-peptide bindingeng
dc.subject.keywordProtein secondary structureeng
dc.subject.keywordSubstitution matriceseng
dc.subject.keywordPrimateseng
dc.subject.keywordPM7eng
dc.subject.keywordDFTBeng
dc.subject.keywordFMO-PIEDAeng
dc.subject.keywordprotein-protein interactioneng
dc.rights.accesRightsinfo:eu-repo/semantics/openAccessspa
dc.subject.decsInmunologíaspa
dc.subject.decsHistocompatibilidadspa
dc.subject.decsPolimorfismo genéticospa
dc.type.spaTesis de doctoradospa
dc.rights.accesoAbierto (Texto completo)spa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.source.bibliographicCitationNeefjes J, Ovaa H. A peptide's perspective on antigen presentation to the immune system. Nature chemical biology. 2013;9(12):769-75.spa
dc.source.bibliographicCitationHershkovitz P. Two new species of night monkeys, genus Aotus (Cebidae: Platyrrhini): A preliminary report on Aotus taxonomy. Am J Primatol. 1983;4:209–43.spa
dc.source.bibliographicCitationTorres O, Enciso S, Ruiz F, Silva E, Yunis I. Chromosome diversity of the genus Aotus from Colombia. Am J Primatol. 1998;44:255–75.spa
dc.source.bibliographicCitationFernandez-Duque E. Primates in Perspective. New York: Oxford University Press; 2007. p. 139–54.spa
dc.source.bibliographicCitationDefler T, Bueno M. Aotus diversity and the species problem. Primate Conservation. 2007; 22: 55-70.spa
dc.source.bibliographicCitationDefler T. Historia Natural de los Primates Colombianos. Bogotá D.C.: Universidad National de Colombia; 2010.spa
dc.source.bibliographicCitationSetoguchi T, Rosenberger AL. A fossil owl monkey from La Venta, Colombia. Nature. 1987;326(6114):692-4.spa
dc.source.bibliographicCitationTakai M, Nishimura T, Shigehara N, Setoguchi T. Meaning of the canine sexual dimorphism in fossil owl monkey, Aotus dindensis from the middle Miocene of La Venta, Colombia. Front Oral Biol. 2009;13:55-9.spa
dc.source.bibliographicCitationPerelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, et al. A molecular phylogeny of living primates. PLoS Genet. 2011;7(3):e1001342.spa
dc.source.bibliographicCitationFinstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, et al. A mitogenomic phylogeny of living primates. PLoS One. 2013;8(7):e69504.spa
dc.source.bibliographicCitationMenezes AN, Bonvicino CR, Seuanez HN. Identification, classification and evolution of owl monkeys (Aotus, Illiger 1811). BMC Evol Biol. 2010;10:248.spa
dc.source.bibliographicCitationAquino R, Encarnación F. Characteristics and use of sleeping site in Aotus (Cebidae: Primates) in the Amazonian lowland of Perú. Am J Primatol. 1986;11:319-31.spa
dc.source.bibliographicCitationAquino R, Encarnación F. Population densities and geographic distribution of night monkeys (Aotus nancymai and Aotus vociferans) (Cebidae: Primates) in Northeastern Perú. American Journal of Primatology. 1988;14:375–81.spa
dc.source.bibliographicCitationAquino R, Encarnación F. Aotus: The Owl Monkey. San Diego: Academic Press; 1994. p. 59–95.spa
dc.source.bibliographicCitationFernandez-Duque E, Rotundo M, Sloan C. Density and population structure of owl monkeys (Aotus azarai) in the Argentinean Chaco. Am J Primatol. 2001;53:99–108.spa
dc.source.bibliographicCitationChapman A, Chapman J. Implications of Small Scale Variation in Ecological Conditions for the Diet and Density of Red Colobus Monkeys. Primates. 1999; 40: 215-31.spa
dc.source.bibliographicCitationAnkel-Simons F, Rasmussen DT. Diurnality, nocturnality, and the evolution of primate visual systems. Am J Phys Anthropol. 2008;Suppl 47:100-17.spa
dc.source.bibliographicCitationHernández A, Díaz A. Estado preliminar poblacional del mono nocturno (Aotus sp. Humboldt, 1812) en las comunidades Indígenas Siete de Agosto y San Juan de Atacuari- Puerto Nariño, Departamento de Amazonas, Colombia. Ibagué, Colombia.: Universidad del Tolima; 2011.spa
dc.source.bibliographicCitationBontrop R. Non-human primates: essential partners in biomedical research. Immunol Rev. 2001;183:5-9.spa
dc.source.bibliographicCitationLanghorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10(1):23.spa
dc.source.bibliographicCitationWard JM, Vallender EJ. The resurgence and genetic implications of New World primates in biomedical research. Trends Genet. 2012;28(12):586-91.spa
dc.source.bibliographicCitationRodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.spa
dc.source.bibliographicCitationPatarroyo ME, Bermudez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev. 2011;111(5):3459-507.spa
dc.source.bibliographicCitationYoung MD, Porter JA, Jr., Johnson CM. Plasmodium vivax transmitted from man to monkey to man. Science. 1966;153(3739):1006-7.spa
dc.source.bibliographicCitationContacos PG, Collins WE. Falciparum malaria transmissible from monkey to man by mosquito bite. Science. 1968;161(3836):56-.spa
dc.source.bibliographicCitationGysin J. Malaria: parasite biology, pathogenesis and protection. Washington DC.: ASM.; 1988. p. 419–39.spa
dc.source.bibliographicCitationLujan R, Dennis V, Chapman WJ, Hanson W. Blastogenic responses of peripheral blood leukocytes from owl monkeys experimentally infected with Leishmania braziliensis panamensis. Am J Trop Med Hyg. 1986;35(6):1103-9.spa
dc.source.bibliographicCitationPico de Coaña Y, Rodriguez J, Guerrero E, Barrero C, Rodriguez R, Mendoza M, et al. A highly infective Plasmodium vivax strain adapted to Aotus monkeys: quantitative haematological and molecular determinations useful for P. vivaxmalaria vaccine development. Vaccine. 2003;21:3930–7.spa
dc.source.bibliographicCitationPolotsky Y, Vassell R, Binn L, Asher L. Immunohistochemical detection of cytokines in tissues of Aotus monkeys infected with hepatitis A virus. Ann N Y AcadSci. 1994;730:318–21.spa
dc.source.bibliographicCitationNoya O, Gonzalez-Rico S, Rodriguez R, Arrechedera H, Patarroyo M, Alarcon D. Schistosomamansoniinfection in owl monkeys (Aotus nancymai): evidence for the early elimination of adult worms. Acta Trop. 1998;70:257–67.spa
dc.source.bibliographicCitationBone J, Soave O. Experimental tuberculosis in owl monkeys (Aotus trivirgatus). Lab Anim Care. 1970;5(946-8).spa
dc.source.bibliographicCitationJones F, Baqar S, Gozalo A, Nunez G, Espinoza N, Reyes S, et al. New World monkey Aotus nancymae as a model for Campylobacter jejuni infection and immunity. Infect Immun. 2006;74(1):790-3.spa
dc.source.bibliographicCitationDing Y, Casagrande V. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci. 1997;14:691-704.spa
dc.source.bibliographicCitationCadavid LF, Lun CM. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics. 2009;61(1):27-41.spa
dc.source.bibliographicCitationCastillo F, Guerrero C, Trujillo E, Delgado G, Martinez P, Salazar LM, et al. Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics. 2004;56(7):480-9.spa
dc.source.bibliographicCitationdel Castillo H, Vernot JP. Characterizing the CD3 epsilon chain from the New World primate Aotus nancymaae. Biomedica. 2008;28(2):262-70.spa
dc.source.bibliographicCitationMontoya GE, Vernot JP, Patarroyo ME. Partial characterization of the CD45 phosphatase cDNA in the owl monkey (Aotus vociferans). Am J Primatol. 2002;57(1):1-11.spa
dc.source.bibliographicCitationMontoya GE, Vernot JP, Patarroyo ME. Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans. Tissue Antigens. 2004;64(2):165-72.spa
dc.source.bibliographicCitationDiaz OL, Daubenberger CA, Rodriguez R, Naegeli M, Moreno A, Patarroyo ME, et al. Immunoglobulin kappa light-chain V, J, and C gene sequences of the owl monkey Aotus nancymaae. Immunogenetics. 2000;51(3):212-8.spa
dc.source.bibliographicCitationHernandez EC, Suarez CF, Parra CA, Patarroyo MA, Patarroyo ME. Identification of five different IGHV gene families in owl monkeys (Aotus nancymaae). Tissue Antigens. 2005;66(6):640-9.spa
dc.source.bibliographicCitationFavre N, Daubenberger C, Marfurt J, Moreno A, Patarroyo M, Pluschke G. Sequence and diversity of T-cell receptor alpha V, J, and C genes of the owl monkey Aotus nancymaae. Immunogenetics. 1998;48(4):253-9.spa
dc.source.bibliographicCitationGuerrero JE, Pacheco DP, Suarez CF, Martinez P, Aristizabal F, Moncada CA, et al. Characterizing T-cell receptor gamma-variable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens. 2003;62(6):472-82.spa
dc.source.bibliographicCitationMoncada CA, Guerrero E, Cardenas P, Suarez CF, Patarroyo ME, Patarroyo MA. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics. 2005;57(1-2):42-52.spa
dc.source.bibliographicCitationHernandez EC, Suarez CF, Mendez JA, Echeverry SJ, Murillo LA, Patarroyo ME. Identification, cloning, and sequencing of different cytokine genes in four species of owl monkey. Immunogenetics. 2002;54(9):645-53.spa
dc.source.bibliographicCitationSpirig R, Peduzzi E, Patarroyo ME, Pluschke G, Daubenberger CA. Structural and functional characterisation of the Toll like receptor 9 of Aotus nancymaae, a non-human primate model for malaria vaccine development. Immunogenetics. 2005;57(3-4):283-8.spa
dc.source.bibliographicCitationDelgado G, Parra C, Patarroyo M. Phenotypical and functional characterization of non-human primate Aotus spp. dendritic cells and their use as a tool for characterizing immune response to protein antigens. Vaccine. 2005;23(26):3386-95.spa
dc.source.bibliographicCitationDaubenberger CA, Salomon M, Vecino W, Hubner B, Troll H, Rodriques R, et al. Functional and structural similarity of V gamma 9V delta 2 T cells in humans and Aotus monkeys, a primate infection model for Plasmodium falciparum malaria. J Immunol. 2001;167(11):6421-30.spa
dc.source.bibliographicCitationPinzon-Charry A, Vernot JP, Rodriguez R, Patarroyo ME. Proliferative response of peripheral blood lymphocytes to mitogens in the owl monkey Aotus nancymae. J Med Primatol. 2003;32(1):31-8.spa
dc.source.bibliographicCitationDaubenberger CA, Spirig R, Patarroyo ME, Pluschke G. Flow cytometric analysis on cross-reactivity of human-specific CD monoclonal antibodies with splenocytes of Aotus nancymaae, a non-human primate model for biomedical research. Vet Immunol Immunopathol. 2007;119(1-2):14-20.spa
dc.source.bibliographicCitationGlass EJ. Genetic variation and responses to vaccines. Anim Health Res Rev. 2004;5(2):197-208.spa
dc.source.bibliographicCitationSpurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci. 2010;277(1684):979-88.spa
dc.source.bibliographicCitationSuarez CF, Cardenas PP, Llanos-Ballestas EJ, Martinez P, Obregon M, Patarroyo ME, et al. alpha(1) and alpha(2) domains of Aotus MHC Class I and Catarrhini MHC class Ia share similar characteristics. Tissue Antigens. 2003;61(5):362-73.spa
dc.source.bibliographicCitationCardenas PP, Suarez CF, Martinez P, Patarroyo ME, Patarroyo MA. MHC class I genes in the owl monkey: mosaic organisation, convergence and loci diversity. Immunogenetics. 2005;56(11):818-32.spa
dc.source.bibliographicCitationCadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI. Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(26):14536-41.spa
dc.source.bibliographicCitationNino-Vasquez JJ, Vogel D, Rodriguez R, Moreno A, Patarroyo ME, Pluschke G, et al. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria parasites. Immunogenetics. 2000;51(3):219-30.spa
dc.source.bibliographicCitationPatarroyo ME, Cifuentes G, Baquero J. Comparative molecular and three-dimensional analysis of the peptide-MHC II binding region in both human and Aotus MHC-DRB molecules confirms their usefulness in antimalarial vaccine development. Immunogenetics. 2006;58(7):598-606.spa
dc.source.bibliographicCitationDiaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, et al. Sequence and diversity of MHC DQA and DQB genes of the owl monkey Aotus nancymaae. Immunogenetics. 2000;51(7):528-37.spa
dc.source.bibliographicCitationDiaz D, Daubenberger CA, Zalac T, Rodriguez R, Patarroyo ME. Sequence and expression of MHC-DPB1 molecules of the New World monkey Aotus nancymaae, a primate model for Plasmodium falciparum. Immunogenetics. 2002;54(4):251-9.spa
dc.source.bibliographicCitationSuarez CF, Patarroyo ME, Trujillo E, Estupinan M, Baquero JE, Parra C, et al. Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics. 2006;58(7):542-58.spa
dc.source.bibliographicCitationSuarez CF, Patarroyo MA, Patarroyo ME. Characterisation and comparative analysis of MHC-DPA1 exon 2 in the owl monkey (Aotus nancymaae). Gene. 2011;470(1-2):37-45.spa
dc.source.bibliographicCitationLopez C, Suarez CF, Cadavid LF, Patarroyo ME, Patarroyo MA. Characterising a microsatellite for DRB typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS One. 2014;9(5):e96973.spa
dc.source.bibliographicCitationBaquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suarez C, et al. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics. 2006;58(7):590-7.spa
dc.source.bibliographicCitationSuárez CF, Pabón L, Barrera A, Aza-Conde J, Patarroyo MA, Patarroyo ME. Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochemical and Biophysical Research Communications. 2017.spa
dc.source.bibliographicCitationStephens R, Horton R, Humphray S, Rowen L. Gene organisation, sequence variation and isochore structure at the centromeric boundary of the human MHC. J Mol Biol. 1999;291:789-99.spa
dc.source.bibliographicCitationWatanabe A, Shiina T, Shimizu S, Hosomichi K, Yanagiya K, Kita Y, et al. A BAC-based contig map of the cynomolgus macaque (Macaca fascicularis) major histocompatibility complex genomic region. Genomics. 2007;89(3):402-12.spa
dc.source.bibliographicCitationTregenza T, Wedell N. Genetic compatibility mate choice and patterns of parentage. Invited Review Mol Ecol. 2000;9:1013-27.spa
dc.source.bibliographicCitationHughes A, Hughes M. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics. 1995;42:233-43.spa
dc.source.bibliographicCitationSommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2(16:1–16:18).spa
dc.source.bibliographicCitationRobinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG. The IMGT/HLA database. Nucleic Acids Res. 2013;41(Database issue):D1222-7.spa
dc.source.bibliographicCitationSutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol. 2011;20(21):4408-20.spa
dc.source.bibliographicCitationYeager M, Hughes AL. Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev. 1999;167:45-58.spa
dc.source.bibliographicCitationHughes AL, Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415-35.spa
dc.source.bibliographicCitationHedrick PW. Pathogen resistance and genetic variation at MHC loci. Evolution. 2002;56(10):1902-8.spa
dc.source.bibliographicCitationPotts WK, Wakeland EK. Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet. 1993;9(12):408-12.spa
dc.source.bibliographicCitationWorley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS. MHC heterozygosity and survival in red junglefowl. Mol Ecol. 2010;19(15):3064-75.spa
dc.source.bibliographicCitationEjsmond MJ, Babik W, Radwan J. MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evol Biol. 2010;10:332.spa
dc.source.bibliographicCitationApanius V, Penn D, Slev PR, Ruff LR, Potts WK. The nature of selection on the major histocompatibility complex. Crit Rev Immunol. 1997;17(2):179-224.spa
dc.source.bibliographicCitationPotts WK, Slev PR. Pathogen-based models favoring MHC genetic diversity. Immunol Rev. 1995;143:181-97.spa
dc.source.bibliographicCitationBorghans JA, Beltman JB, De Boer RJ. MHC polymorphism under host-pathogen coevolution. Immunogenetics. 2004;55(11):732-9.spa
dc.source.bibliographicCitationPotts WK, Manning CJ, Wakeland EK. The role of infectious disease, inbreeding and mating preferences in maintaining MHC genetic diversity: an experimental test. Philos Trans R Soc Lond B Biol Sci. 1994;346(1317):369-78.spa
dc.source.bibliographicCitationJordan WC, Bruford MW. New perspectives on mate choice and the MHC. Heredity. 1998;81 ( Pt 2):127-33.spa
dc.source.bibliographicCitationHuchard E, Raymond M, Benavides J, Marshall H, Knapp LA, Cowlishaw G. A female signal reflects MHC genotype in a social primate. BMC Evol Biol. 2010;10:96.spa
dc.source.bibliographicCitationHuchard E, Knapp LA, Wang J, Raymond M, Cowlishaw G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol Ecol. 2010;19(12):2545-61.spa
dc.source.bibliographicCitationSetchell JM, Huchard E. The hidden benefits of sex: evidence for MHC-associated mate choice in primate societies. Bioessays. 2010;32(11):940-8.spa
dc.source.bibliographicCitationRoberts SC, Little AC, Gosling LM, Jones BC, Perrett DI, Carter V, et al. MHC-assortative facial preferences in humans. Biol Lett. 2005;1(4):400-3.spa
dc.source.bibliographicCitationHavlicek J, Roberts SC. MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology. 2009;34(4):497-512.spa
dc.source.bibliographicCitationManning CJ, Wakeland EK, Potts WK. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature. 1992;360(6404):581-3.spa
dc.source.bibliographicCitationYamazaki K, Beauchamp GK. Genetic basis for MHC-dependent mate choice. Adv Genet. 2007;59:129-45.spa
dc.source.bibliographicCitationWedekind C, Chapuisat M, Macas E, Rulicke T. Non-random fertilization in mice correlates with the MHC and something else. Heredity. 1996;77 ( Pt 4):400-9.spa
dc.source.bibliographicCitationDorak MT, Lawson T, Machulla HK, Mills KI, Burnett AK. Increased heterozygosity for MHC class II lineages in newborn males. Genes Immun. 2002;3(5):263-9.spa
dc.source.bibliographicCitationKlein J, Sato A, Nagl S, O’hUigín C. Molecular trans-species polymorphism. Annu Rev Ecol Syst. 1998;29:1-21.spa
dc.source.bibliographicCitationKlein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007;41:281-304.spa
dc.source.bibliographicCitationKlein J, Satta Y, Takahata N, O'HUigin C. Trans-specific Mhc polymorphism and the origin of species in primates. J Med Primatol. 1993;22(1):57-64.spa
dc.source.bibliographicCitationTrtkova K, Mayer WE, O'Huigin C, Klein J. Mhc-DRB genes and the origin of New World monkeys. Molecular phylogenetics and evolution. 1995;4(4):408-19.spa
dc.source.bibliographicCitationO'HUigin C. Quantifying the degree of convergence in primate Mhc-DRB genes. Immunol Rev. 1995;143:123-40.spa
dc.source.bibliographicCitationDoxiadis GG, de Groot N, de Groot NG, Doxiadis, II, Bontrop RE. Reshuffling of ancient peptide binding motifs between HLA-DRB multigene family members: old wine served in new skins. Mol Immunol. 2008;45(10):2743-51.spa
dc.source.bibliographicCitationSlierendregt BL, Otting N, Kenter M, Bontrop RE. Allelic diversity at the Mhc-DP locus in rhesus macaques (Macaca mulatta). Immunogenetics. 1995;41(1):29-37.spa
dc.source.bibliographicCitationBontrop RE, Otting N, de Groot NG, Doxiadis GG. Major histocompatibility complex class II polymorphisms in primates. Immunol Rev. 1999;167:339-50.spa
dc.source.bibliographicCitationRobinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003;31(1):311-4.spa
dc.source.bibliographicCitationSteiper M, Young N. Primate molecular divergence dates. Molecular phylogenetics and evolution. 2006;41:384–94.spa
dc.source.bibliographicCitationWang JH, Reinherz EL. Structural basis of T cell recognition of peptides bound to MHC molecules. Mol Immunol. 2002;38(14):1039-49.spa
dc.source.bibliographicCitationBackert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 2015;7:119.spa
dc.source.bibliographicCitationLafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des. 2009;15(28):3209-20.spa
dc.source.bibliographicCitationLenz TL. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution. 2011;65(8):2380-90.spa
dc.source.bibliographicCitationDoytchinova IA, Flower DR. In silico identification of supertypes for class II MHCs. Journal of Immunology. 2005;174(11):7085-95.spa
dc.source.bibliographicCitationDoytchinova IA, Guan P, Flower DR. Identifiying human MHC supertypes using bioinformatic methods. Journal of Immunology. 2004;172(7):4314-23.spa
dc.source.bibliographicCitationLund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, et al. Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics. 2004;55(12):797-810.spa
dc.source.bibliographicCitationSchwensow N, Fietz J, Dausmann K, Sommer S. Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity. 2007;99(3):265-77.spa
dc.source.bibliographicCitationSepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proceedings of the Royal Society of London B: Biological Sciences. 2013;280(1759):20130134.spa
dc.source.bibliographicCitationHill AV. Common West African HLA antigens are associated with protection from severe malaria. Nature. 1991;352(6336):595-600.spa
dc.source.bibliographicCitationWang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.spa
dc.source.bibliographicCitationSidney J, Southwood S, Moore C, Oseroff C, Pinilla C, Grey HM, et al. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. Curr Protoc Immunol. 2013;Chapter 18:Unit 18 3.spa
dc.source.bibliographicCitationSturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555-61.spa
dc.source.bibliographicCitationZhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One. 2012;7(2):e30483.spa
dc.source.bibliographicCitationRothbard JB, Taylor WR. A sequence pattern common to T cell epitopes. Embo J. 1988;7(1):93-100.spa
dc.source.bibliographicCitationUdaka K, Wiesmuller KH, Kienle S, Jung G, Tamamura H, Yamagishi H, et al. An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics. 2000;51(10):816-28.spa
dc.source.bibliographicCitationPeters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005;6:132.spa
dc.source.bibliographicCitationSidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008;4:2.spa
dc.source.bibliographicCitationNielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 2007;8:238.spa
dc.source.bibliographicCitationZhang W, Liu J, Niu Y. Quantitative prediction of MHC-II binding affinity using particle swarm optimization. Artif Intell Med. 2010;50(2):127-32.spa
dc.source.bibliographicCitationAndreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(11-12):641-50.spa
dc.source.bibliographicCitationLundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J Immunol Methods. 2011;374(1-2):26-34.spa
dc.source.bibliographicCitationNielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12(5):1007-17.spa
dc.source.bibliographicCitationRoomp K, Antes I, Lengauer T. Predicting MHC class I epitopes in large datasets. BMC Bioinformatics. 2010;11:90.spa
dc.source.bibliographicCitationNielsen M, Justesen S, Lund O, Lundegaard C, Buus S. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 2010;6:9.spa
dc.source.bibliographicCitationNoguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, et al. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng. 2002;94(3):264-70.spa
dc.source.bibliographicCitationNielsen M, Lund O, Buus S, Lundegaard C. MHC class II epitope predictive algorithms. Immunology. 2010;130(3):319-28.spa
dc.source.bibliographicCitationVider-Shalit T, Louzoun Y. MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides. J Immunol Methods. 2011;374(1-2):43-6.spa
dc.source.bibliographicCitationLiu W, Meng X, Xu Q, Flower DR, Li T. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics. 2006;7:182.spa
dc.source.bibliographicCitationDonnes P. Support vector machine-based prediction of MHC-binding peptides. Methods Mol Biol. 2007;409:273-82.spa
dc.source.bibliographicCitationAgudelo W, Patarroyo M. Quantum chemical analysis of MHC-peptide interactions for vaccine design. Mini reviews in medicinal chemistry. 2010;10(8):746-58.spa
dc.source.bibliographicCitationWan S, Knapp B, Wright DW, Deane CM, Coveney PV. Rapid, Precise, and Reproducible Prediction of Peptide–MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. J Chem Theory Comput. 2015;11(7):3346-56.spa
dc.source.bibliographicCitationPatronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 2013;3(1):120139.spa
dc.source.bibliographicCitationBordner AJ, Abagyan R. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins. 2006;63(3):512-26.spa
dc.source.bibliographicCitationZhang H, Wang P, Papangelopoulos N, Xu Y, Sette A, Bourne PE, et al. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One. 2010;5(2):e9272.spa
dc.source.bibliographicCitationBordner AJ. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One. 2010;5(12):e14383.spa
dc.source.bibliographicCitationYanover C, Bradley P. Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(17):6981-6.spa
dc.source.bibliographicCitationKnapp B, Omasits U, Schreiner W. Side chain substitution benchmark for peptide/MHC interaction. Protein Sci. 2008;17(6):977-82.spa
dc.source.bibliographicCitationTong JC, Tan TW, Ranganathan S. Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci. 2004;13(9):2523-32.spa
dc.source.bibliographicCitationBui HH, Schiewe AJ, von Grafenstein H, Haworth IS. Structural prediction of peptides binding to MHC class I molecules. Proteins-Structure Function and Genetics. 2006;63(1):43-52.spa
dc.source.bibliographicCitationCárdenas C, Ortiz M, Balbín A, Villaveces JL, Patarroyo ME. Allele effects in MHC–peptide interactions: A theoretical analysis of HLA-DRβ1* 0101-HA and HLA-DRβ1* 0401-HA complexes. Biochemical and biophysical research communications. 2005;330(4):1162-7.spa
dc.source.bibliographicCitationBalbín A, Cárdenas C, Villaveces JL, Patarroyo ME. A theoretical analysis of HLA-DRβ1* 0301–CLIP complex using the first three multipolar moments of the electrostatic field. Biochimie. 2006;88(9):1307-11.spa
dc.source.bibliographicCitationBohorquez HJ, Obregon M, Cárdenas C, Llanos E, Suárez C, Villaveces JL, et al. Electronic energy and multipolar moments characterize amino acid side chains into chemically related groups. The Journal of Physical Chemistry A. 2003;107(47):10090-7.spa
dc.source.bibliographicCitationCárdenas C, Villaveces JL, Bohórquez H, Llanos E, Suárez C, Obregón M, et al. Quantum chemical analysis explains hemagglutinin peptide–MHC Class II molecule HLA-DRβ1* 0101 interactions. Biochemical and biophysical research communications. 2004;323(4):1265-77.spa
dc.source.bibliographicCitationCárdenas C, Villaveces JL, Suárez C, Obregón M, Ortiz M, Patarroyo ME. A comparative study of MHC Class-II HLA-DRβ1* 0401-Col II and HLA-DRβ1* 0101-HA complexes: a theoretical point of view. Journal of structural biology. 2005;149(1):38-52.spa
dc.source.bibliographicCitationCárdenas C, Obregón M, Balbín A, Villaveces JL, Patarroyo ME. Wave function analysis of MHC–peptide interactions. Journal of Molecular Graphics and Modelling. 2007;25(5):605-15.spa
dc.source.bibliographicCitationAgudelo WA, Galindo JF, Ortiz M, Villaveces JL, Daza EE, Patarroyo ME. Variations in the electrostatic landscape of class II human leukocyte antigen molecule induced by modifications in the myelin basic protein peptide: a theoretical approach. PLoS One. 2009;4(1):e4164.spa
dc.source.bibliographicCitationStone JE, Hardy DJ, Ufimtsev IS, Schulten K. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling. 2010;29(2):116-25.spa
dc.source.bibliographicCitationAkimov AV, Prezhdo OV. Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chemical reviews. 2015;115(12):5797-890.spa
dc.source.bibliographicCitationStewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of molecular modeling. 2013;19(1):1-32.spa
dc.source.bibliographicCitationElstner M. The SCC-DFTB method and its application to biological systems. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). 2006;116(1):316-25.spa
dc.source.bibliographicCitationChristensen AS, Kubař Ts, Cui Q, Elstner M. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chemical reviews. 2016;116(9):5301-37.spa
dc.source.bibliographicCitationKitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M. Fragment molecular orbital method: an approximate computational method for large molecules. Chemical Physics Letters. 1999;313(3):701-6.spa
dc.source.bibliographicCitationFedorov DG, Nagata T, Kitaura K. Exploring chemistry with the fragment molecular orbital method. Physical Chemistry Chemical Physics. 2012;14(21):7562-77.spa
dc.source.bibliographicCitationFedorov DG, Kitaura K. Pair interaction energy decomposition analysis. Journal of computational chemistry. 2007;28(1):222-37.spa
dc.source.bibliographicCitationGonzález R, Suárez CF, Bohórquez HJ, Patarroyo MA, Patarroyo ME. Semi-empirical quantum evaluation of peptide–MHC class II binding. Chemical Physics Letters. 2017;668:29-34.spa
dc.source.bibliographicCitationPatiño LC, Beau I, Carlosama C, Buitrago JC, González R, Suárez CF, et al. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Human Reproduction. 2017:1-9.spa
dc.source.bibliographicCitationPatarroyo ME, Arévalo-Pinzón G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria parasite survival depends on conserved binding peptides' critical biological functions. Current issues in molecular biology. 2016;18:57-78.spa
dc.source.bibliographicCitationAlba MP, Suarez CF, Varela Y, Patarroyo MA, Bermudez A, Patarroyo ME. TCR-contacting residues orientation and HLA-DRbeta* binding preference determine long-lasting protective immunity against malaria. Biochem Biophys Res Commun. 2016;477(4):654-60.spa
dc.source.bibliographicCitationBermudez A, Calderon D, Moreno-Vranich A, Almonacid H, Patarroyo MA, Poloche A, et al. Gauche(+) side-chain orientation as a key factor in the search for an immunogenic peptide mixture leading to a complete fully protective vaccine. Vaccine. 2014;32(18):2117-26.spa
dc.source.bibliographicCitationPatarroyo ME, Moreno-Vranich A, Bermudez A. Phi (Phi) and psi (Psi) angles involved in malarial peptide bonds determine sterile protective immunity. Biochem Biophys Res Commun. 2012;429(1-2):75-80.spa
dc.source.bibliographicCitationBeck HP, Felger I, Barker M, Bugawan T, Genton B, Alexander N, et al. Evidence of HLA class II association with antibody response against the malaria vaccine SPF66 in a naturally exposed population. Am J Trop Med Hyg. 1995;53(3):284-8.spa
dc.source.bibliographicCitationPatarroyo ME, Vinasco J, Amador R, Espejo F, Silva Y, Moreno A, et al. Genetic control of the immune response to a synthetic vaccine against Plasmodium falciparum. Parasite Immunol. 1991;13(5):509-16.spa
dc.source.bibliographicCitationPatarroyo MA, Bermudez A, Lopez C, Yepes G, Patarroyo ME. 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria. PLoS One. 2010;5(3):e9771.spa
dc.source.bibliographicCitationCifuentes G, Patarroyo ME, Urquiza M, Ramirez LE, Reyes C, Rodriguez R. Distorting malaria peptide backbone structure to enable fitting into MHC class II molecules renders modified peptides immunogenic and protective. J Med Chem. 2003;46(11):2250-3.spa
dc.source.bibliographicCitationStern LJ, Wiley DC. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure. 1994;2(4):245-51.spa
dc.source.bibliographicCitationMadden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587-622.spa
dc.source.bibliographicCitationBarber LD, Parham P. Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol. 1993;9:163-206.spa
dc.source.bibliographicCitationAdzhubei AA, Sternberg MJ, Makarov AA. Polyproline-II helix in proteins: structure and function. Journal of molecular biology. 2013;425(12):2100-32.spa
dc.source.bibliographicCitationBohórquez HJ, Suárez CF, Patarroyo ME. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Scientific Reports. 2017;7(1):7717.spa
dc.source.bibliographicCitationGonzález-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MHT, Silva ALSd, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic acids research. 2014;43(D1):D784-D8.spa
dc.source.bibliographicCitationBerkholz DS, Krenesky PB, Davidson JR, Karplus PA. Protein Geometry Database: a flexible engine to explore backbone conformations and their relationships to covalent geometry. Nucleic acids research. 2009;38(suppl_1):D320-D5.spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.spa


Archivos en el ítem

Thumbnail


Este ítem aparece en la(s) siguiente(s) colección(ones)

 

Reconocimientos: