dc.contributor.advisorCadavid Gutiérrez, Luis Fernando
dc.contributor.advisorPatarroyo, Manuel A.
dc.creatorSuárez Martínez, Carlos Fernando
dc.date.accessioned2017-10-11T13:59:03Z
dc.date.available2017-10-11T13:59:03Z
dc.date.created2017-10-05
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/13809
dc.descriptionEl presente trabajo tiene como propósito contribuir al conocimiento del complejo mayor de histocompatibilidad clase II (CMH-II) de los monos Aotus, contribuyendo a la validación de este primate como modelo experimental, y aumentando el conocimiento en la evolución de los genes del CMH en primates. Además, se profundizó en el análisis de convergencia y polimorfismo de los genes del CMH-DR en primates. Se implementaron metodologías de modelación computacional de la unión CMH-péptido, como herramientas necesarias para entender los mecanismos de presentación de péptidos por parte del CMH clase II a los linfocitos T. El estudio del polimorfismo de la región de unión al péptido, permitió el desarrollo de estrategias para reducir eficientemente el número de sistemas a considerar en el diseño de péptidos a ser usados como candidatos a vacuna contra la malaria. Usando minería de datos sobre distribuciones de Ramachandran, se desarrolló una escala de similitud estructural de aminoácidos, con el fin de implementar su uso en el desarrollo de péptidos candidatos a vacunas. Adicionalmente, se encontró que la estructura secundaria de las proteínas tiene una relación clara con los patrones evolutivos de sustitución y la mutabilidad de los aminoácidos. Así, se ha generado un marco de conceptual que contribuye al desarrollo de vacunas basadas en péptidos, que tiene como base el estudio del polimorfismo del complejo mayor de histocompatibilidad, las restricciones fisicoquímicas/estructurales que moldean el proceso de reconocimiento molecular involucrado en la interacción CMH-péptido y la aplicación de metodologías computacionales para cuantificar el proceso de unión CMH-péptido.es
dc.description.abstractThis work was aimed to contribute to increase our knowledge on the MHC class II in monkeys from the genus Aotus. Determining the sequences of MHC-DPA and MHC-DRA genes has allowed to complete the characterisation of the Aotus MHC, contributing towards validating the role of this primate as experimental model and increasing our knowledge regarding MHC gene evolution in primates. It also dealt with in–depth analysis of MHC-DR genes’ convergence and polymorphism in primates. The study involves computational modelling of MHC-peptide binding methodologies (based on quantum chemistry and neural networks) as necessary tools for understanding the mechanisms of MHC class II peptide presentation to T-lymphocytes. Studying peptide binding region polymorphism has enabled developing strategies (pocket profiles) for efficiently reducing the amount of systems to be considered when designing peptides to be used as candidates for an antimalarial vaccine. Data-mining regarding Ramachandran distribution led to developing an amino acid structural similarity scale for use in developing/designing peptides as vaccine candidates. It was found that protein secondary structure has a clear relationship with amino acid substitution and mutability evolutionary patterns. A conceptual framework thus emerged aimed at developing peptide-based vaccines as a basis for studying the mayor histocompatibility complex polymorphism, the physicochemical/structural restrictions shaping the molecular recognition involved in MHC-peptide interaction and using computational methodologies for quantifying MHC-peptide binding.es
dc.format.mimetypeapplication/pdfes
dc.language.isospaspa
dc.sourceinstname:Universidad del Rosariospa
dc.sourcereponame:Repositorio Institucional EdocURspa
dc.subjectComplejo mayor de histocompatibilidades
dc.subjectEvolución moleculares
dc.subjectMonos del nuevo mundoes
dc.subjectPlatyrrhinies
dc.subjectMicrosatélite D6S2878es
dc.subjectConvergencia moleculares
dc.subjectEstructura secundaria de proteínases
dc.subjectSustituciones de aminoácidoses
dc.subjectMatrices de mutaciónes
dc.subjectPrimateses
dc.subjectPM7es
dc.subjectFMO-PIEDAes
dc.subjectDFTBes
dc.subjectInteracción proteína-proteínaes
dc.subjectUnión CMH-péptidoes
dc.subject.ddc574.29es
dc.subject.lembInmunologíaes
dc.titleCaracterización del complejo mayor de histocompatibilidad clase II en primates del género Aotuses
dc.typeinfo:eu-repo/semantics/doctoralThesis
dc.publisherUniversidad del Rosariospa
dc.creator.degreeDoctor en Ciencias Biomédicases
dc.publisher.programDoctorado en Ciencias Biomédicasspa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.subject.keywordMajor histocompatibility complexes
dc.subject.keywordMolecular evolutiones
dc.subject.keywordNew world monkeyses
dc.subject.keywordPlatyrrhinies
dc.subject.keywordD6S2878 microsatellitees
dc.subject.keywordMolecular convergencees
dc.subject.keywordMHC-peptide bindinges
dc.subject.keywordProtein secondary structurees
dc.subject.keywordSubstitution matriceses
dc.subject.keywordPrimateses
dc.subject.keywordPM7es
dc.subject.keywordDFTBes
dc.subject.keywordFMO-PIEDAes
dc.subject.keywordprotein-protein interactiones
dc.rights.accesRightsinfo:eu-repo/semantics/openAccesses
dc.subject.decsInmunologíaes
dc.subject.decsHistocompatibilidades
dc.subject.decsPolimorfismo genéticoes
dc.type.spaTesis de doctoradospa
dc.rights.accesoAbierto (Texto Completo)es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersionspa
dc.source.bibliographicCitationNeefjes J, Ovaa H. A peptide's perspective on antigen presentation to the immune system. Nature chemical biology. 2013;9(12):769-75.es
dc.source.bibliographicCitationHershkovitz P. Two new species of night monkeys, genus Aotus (Cebidae: Platyrrhini): A preliminary report on Aotus taxonomy. Am J Primatol. 1983;4:209–43.es
dc.source.bibliographicCitationTorres O, Enciso S, Ruiz F, Silva E, Yunis I. Chromosome diversity of the genus Aotus from Colombia. Am J Primatol. 1998;44:255–75.es
dc.source.bibliographicCitationFernandez-Duque E. Primates in Perspective. New York: Oxford University Press; 2007. p. 139–54.es
dc.source.bibliographicCitationDefler T, Bueno M. Aotus diversity and the species problem. Primate Conservation. 2007; 22: 55-70.es
dc.source.bibliographicCitationDefler T. Historia Natural de los Primates Colombianos. Bogotá D.C.: Universidad National de Colombia; 2010.es
dc.source.bibliographicCitationSetoguchi T, Rosenberger AL. A fossil owl monkey from La Venta, Colombia. Nature. 1987;326(6114):692-4.es
dc.source.bibliographicCitationTakai M, Nishimura T, Shigehara N, Setoguchi T. Meaning of the canine sexual dimorphism in fossil owl monkey, Aotus dindensis from the middle Miocene of La Venta, Colombia. Front Oral Biol. 2009;13:55-9.es
dc.source.bibliographicCitationPerelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, et al. A molecular phylogeny of living primates. PLoS Genet. 2011;7(3):e1001342.es
dc.source.bibliographicCitationFinstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, et al. A mitogenomic phylogeny of living primates. PLoS One. 2013;8(7):e69504.es
dc.source.bibliographicCitationMenezes AN, Bonvicino CR, Seuanez HN. Identification, classification and evolution of owl monkeys (Aotus, Illiger 1811). BMC Evol Biol. 2010;10:248.es
dc.source.bibliographicCitationAquino R, Encarnación F. Characteristics and use of sleeping site in Aotus (Cebidae: Primates) in the Amazonian lowland of Perú. Am J Primatol. 1986;11:319-31.es
dc.source.bibliographicCitationAquino R, Encarnación F. Population densities and geographic distribution of night monkeys (Aotus nancymai and Aotus vociferans) (Cebidae: Primates) in Northeastern Perú. American Journal of Primatology. 1988;14:375–81.es
dc.source.bibliographicCitationAquino R, Encarnación F. Aotus: The Owl Monkey. San Diego: Academic Press; 1994. p. 59–95.es
dc.source.bibliographicCitationFernandez-Duque E, Rotundo M, Sloan C. Density and population structure of owl monkeys (Aotus azarai) in the Argentinean Chaco. Am J Primatol. 2001;53:99–108.es
dc.source.bibliographicCitationChapman A, Chapman J. Implications of Small Scale Variation in Ecological Conditions for the Diet and Density of Red Colobus Monkeys. Primates. 1999; 40: 215-31.es
dc.source.bibliographicCitationAnkel-Simons F, Rasmussen DT. Diurnality, nocturnality, and the evolution of primate visual systems. Am J Phys Anthropol. 2008;Suppl 47:100-17.es
dc.source.bibliographicCitationHernández A, Díaz A. Estado preliminar poblacional del mono nocturno (Aotus sp. Humboldt, 1812) en las comunidades Indígenas Siete de Agosto y San Juan de Atacuari- Puerto Nariño, Departamento de Amazonas, Colombia. Ibagué, Colombia.: Universidad del Tolima; 2011.es
dc.source.bibliographicCitationBontrop R. Non-human primates: essential partners in biomedical research. Immunol Rev. 2001;183:5-9.es
dc.source.bibliographicCitationLanghorne J, Buffet P, Galinski M, Good M, Harty J, Leroy D, et al. The relevance of non-human primate and rodent malaria models for humans. Malar J. 2011;10(1):23.es
dc.source.bibliographicCitationWard JM, Vallender EJ. The resurgence and genetic implications of New World primates in biomedical research. Trends Genet. 2012;28(12):586-91.es
dc.source.bibliographicCitationRodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.es
dc.source.bibliographicCitationPatarroyo ME, Bermudez A, Patarroyo MA. Structural and immunological principles leading to chemically synthesized, multiantigenic, multistage, minimal subunit-based vaccine development. Chem Rev. 2011;111(5):3459-507.es
dc.source.bibliographicCitationYoung MD, Porter JA, Jr., Johnson CM. Plasmodium vivax transmitted from man to monkey to man. Science. 1966;153(3739):1006-7.es
dc.source.bibliographicCitationContacos PG, Collins WE. Falciparum malaria transmissible from monkey to man by mosquito bite. Science. 1968;161(3836):56-.es
dc.source.bibliographicCitationGysin J. Malaria: parasite biology, pathogenesis and protection. Washington DC.: ASM.; 1988. p. 419–39.es
dc.source.bibliographicCitationLujan R, Dennis V, Chapman WJ, Hanson W. Blastogenic responses of peripheral blood leukocytes from owl monkeys experimentally infected with Leishmania braziliensis panamensis. Am J Trop Med Hyg. 1986;35(6):1103-9.es
dc.source.bibliographicCitationPico de Coaña Y, Rodriguez J, Guerrero E, Barrero C, Rodriguez R, Mendoza M, et al. A highly infective Plasmodium vivax strain adapted to Aotus monkeys: quantitative haematological and molecular determinations useful for P. vivaxmalaria vaccine development. Vaccine. 2003;21:3930–7.es
dc.source.bibliographicCitationPolotsky Y, Vassell R, Binn L, Asher L. Immunohistochemical detection of cytokines in tissues of Aotus monkeys infected with hepatitis A virus. Ann N Y AcadSci. 1994;730:318–21.es
dc.source.bibliographicCitationNoya O, Gonzalez-Rico S, Rodriguez R, Arrechedera H, Patarroyo M, Alarcon D. Schistosomamansoniinfection in owl monkeys (Aotus nancymai): evidence for the early elimination of adult worms. Acta Trop. 1998;70:257–67.es
dc.source.bibliographicCitationBone J, Soave O. Experimental tuberculosis in owl monkeys (Aotus trivirgatus). Lab Anim Care. 1970;5(946-8).es
dc.source.bibliographicCitationJones F, Baqar S, Gozalo A, Nunez G, Espinoza N, Reyes S, et al. New World monkey Aotus nancymae as a model for Campylobacter jejuni infection and immunity. Infect Immun. 2006;74(1):790-3.es
dc.source.bibliographicCitationDing Y, Casagrande V. The distribution and morphology of LGN K pathway axons within the layers and CO blobs of owl monkey V1. Vis Neurosci. 1997;14:691-704.es
dc.source.bibliographicCitationCadavid LF, Lun CM. Lineage-specific diversification of killer cell Ig-like receptors in the owl monkey, a New World primate. Immunogenetics. 2009;61(1):27-41.es
dc.source.bibliographicCitationCastillo F, Guerrero C, Trujillo E, Delgado G, Martinez P, Salazar LM, et al. Identifying and structurally characterizing CD1b in Aotus nancymaae owl monkeys. Immunogenetics. 2004;56(7):480-9.es
dc.source.bibliographicCitationdel Castillo H, Vernot JP. Characterizing the CD3 epsilon chain from the New World primate Aotus nancymaae. Biomedica. 2008;28(2):262-70.es
dc.source.bibliographicCitationMontoya GE, Vernot JP, Patarroyo ME. Partial characterization of the CD45 phosphatase cDNA in the owl monkey (Aotus vociferans). Am J Primatol. 2002;57(1):1-11.es
dc.source.bibliographicCitationMontoya GE, Vernot JP, Patarroyo ME. Comparative analysis of CD45 proteins in primate context: owl monkeys vs humans. Tissue Antigens. 2004;64(2):165-72.es
dc.source.bibliographicCitationDiaz OL, Daubenberger CA, Rodriguez R, Naegeli M, Moreno A, Patarroyo ME, et al. Immunoglobulin kappa light-chain V, J, and C gene sequences of the owl monkey Aotus nancymaae. Immunogenetics. 2000;51(3):212-8.es
dc.source.bibliographicCitationHernandez EC, Suarez CF, Parra CA, Patarroyo MA, Patarroyo ME. Identification of five different IGHV gene families in owl monkeys (Aotus nancymaae). Tissue Antigens. 2005;66(6):640-9.es
dc.source.bibliographicCitationFavre N, Daubenberger C, Marfurt J, Moreno A, Patarroyo M, Pluschke G. Sequence and diversity of T-cell receptor alpha V, J, and C genes of the owl monkey Aotus nancymaae. Immunogenetics. 1998;48(4):253-9.es
dc.source.bibliographicCitationGuerrero JE, Pacheco DP, Suarez CF, Martinez P, Aristizabal F, Moncada CA, et al. Characterizing T-cell receptor gamma-variable gene in Aotus nancymaae owl monkey peripheral blood. Tissue Antigens. 2003;62(6):472-82.es
dc.source.bibliographicCitationMoncada CA, Guerrero E, Cardenas P, Suarez CF, Patarroyo ME, Patarroyo MA. The T-cell receptor in primates: identifying and sequencing new owl monkey TRBV gene sub-groups. Immunogenetics. 2005;57(1-2):42-52.es
dc.source.bibliographicCitationHernandez EC, Suarez CF, Mendez JA, Echeverry SJ, Murillo LA, Patarroyo ME. Identification, cloning, and sequencing of different cytokine genes in four species of owl monkey. Immunogenetics. 2002;54(9):645-53.es
dc.source.bibliographicCitationSpirig R, Peduzzi E, Patarroyo ME, Pluschke G, Daubenberger CA. Structural and functional characterisation of the Toll like receptor 9 of Aotus nancymaae, a non-human primate model for malaria vaccine development. Immunogenetics. 2005;57(3-4):283-8.es
dc.source.bibliographicCitationDelgado G, Parra C, Patarroyo M. Phenotypical and functional characterization of non-human primate Aotus spp. dendritic cells and their use as a tool for characterizing immune response to protein antigens. Vaccine. 2005;23(26):3386-95.es
dc.source.bibliographicCitationDaubenberger CA, Salomon M, Vecino W, Hubner B, Troll H, Rodriques R, et al. Functional and structural similarity of V gamma 9V delta 2 T cells in humans and Aotus monkeys, a primate infection model for Plasmodium falciparum malaria. J Immunol. 2001;167(11):6421-30.es
dc.source.bibliographicCitationPinzon-Charry A, Vernot JP, Rodriguez R, Patarroyo ME. Proliferative response of peripheral blood lymphocytes to mitogens in the owl monkey Aotus nancymae. J Med Primatol. 2003;32(1):31-8.es
dc.source.bibliographicCitationDaubenberger CA, Spirig R, Patarroyo ME, Pluschke G. Flow cytometric analysis on cross-reactivity of human-specific CD monoclonal antibodies with splenocytes of Aotus nancymaae, a non-human primate model for biomedical research. Vet Immunol Immunopathol. 2007;119(1-2):14-20.es
dc.source.bibliographicCitationGlass EJ. Genetic variation and responses to vaccines. Anim Health Res Rev. 2004;5(2):197-208.es
dc.source.bibliographicCitationSpurgin LG, Richardson DS. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci. 2010;277(1684):979-88.es
dc.source.bibliographicCitationSuarez CF, Cardenas PP, Llanos-Ballestas EJ, Martinez P, Obregon M, Patarroyo ME, et al. alpha(1) and alpha(2) domains of Aotus MHC Class I and Catarrhini MHC class Ia share similar characteristics. Tissue Antigens. 2003;61(5):362-73.es
dc.source.bibliographicCitationCardenas PP, Suarez CF, Martinez P, Patarroyo ME, Patarroyo MA. MHC class I genes in the owl monkey: mosaic organisation, convergence and loci diversity. Immunogenetics. 2005;56(11):818-32.es
dc.source.bibliographicCitationCadavid LF, Shufflebotham C, Ruiz FJ, Yeager M, Hughes AL, Watkins DI. Evolutionary instability of the major histocompatibility complex class I loci in New World primates. Proceedings of the National Academy of Sciences of the United States of America. 1997;94(26):14536-41.es
dc.source.bibliographicCitationNino-Vasquez JJ, Vogel D, Rodriguez R, Moreno A, Patarroyo ME, Pluschke G, et al. Sequence and diversity of DRB genes of Aotus nancymaae, a primate model for human malaria parasites. Immunogenetics. 2000;51(3):219-30.es
dc.source.bibliographicCitationPatarroyo ME, Cifuentes G, Baquero J. Comparative molecular and three-dimensional analysis of the peptide-MHC II binding region in both human and Aotus MHC-DRB molecules confirms their usefulness in antimalarial vaccine development. Immunogenetics. 2006;58(7):598-606.es
dc.source.bibliographicCitationDiaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, et al. Sequence and diversity of MHC DQA and DQB genes of the owl monkey Aotus nancymaae. Immunogenetics. 2000;51(7):528-37.es
dc.source.bibliographicCitationDiaz D, Daubenberger CA, Zalac T, Rodriguez R, Patarroyo ME. Sequence and expression of MHC-DPB1 molecules of the New World monkey Aotus nancymaae, a primate model for Plasmodium falciparum. Immunogenetics. 2002;54(4):251-9.es
dc.source.bibliographicCitationSuarez CF, Patarroyo ME, Trujillo E, Estupinan M, Baquero JE, Parra C, et al. Owl monkey MHC-DRB exon 2 reveals high similarity with several HLA-DRB lineages. Immunogenetics. 2006;58(7):542-58.es
dc.source.bibliographicCitationSuarez CF, Patarroyo MA, Patarroyo ME. Characterisation and comparative analysis of MHC-DPA1 exon 2 in the owl monkey (Aotus nancymaae). Gene. 2011;470(1-2):37-45.es
dc.source.bibliographicCitationLopez C, Suarez CF, Cadavid LF, Patarroyo ME, Patarroyo MA. Characterising a microsatellite for DRB typing in Aotus vociferans and Aotus nancymaae (Platyrrhini). PLoS One. 2014;9(5):e96973.es
dc.source.bibliographicCitationBaquero JE, Miranda S, Murillo O, Mateus H, Trujillo E, Suarez C, et al. Reference strand conformational analysis (RSCA) is a valuable tool in identifying MHC-DRB sequences in three species of Aotus monkeys. Immunogenetics. 2006;58(7):590-7.es
dc.source.bibliographicCitationSuárez CF, Pabón L, Barrera A, Aza-Conde J, Patarroyo MA, Patarroyo ME. Structural analysis of owl monkey MHC-DR shows that fully-protective malaria vaccine components can be readily used in humans. Biochemical and Biophysical Research Communications. 2017.es
dc.source.bibliographicCitationStephens R, Horton R, Humphray S, Rowen L. Gene organisation, sequence variation and isochore structure at the centromeric boundary of the human MHC. J Mol Biol. 1999;291:789-99.es
dc.source.bibliographicCitationWatanabe A, Shiina T, Shimizu S, Hosomichi K, Yanagiya K, Kita Y, et al. A BAC-based contig map of the cynomolgus macaque (Macaca fascicularis) major histocompatibility complex genomic region. Genomics. 2007;89(3):402-12.es
dc.source.bibliographicCitationTregenza T, Wedell N. Genetic compatibility mate choice and patterns of parentage. Invited Review Mol Ecol. 2000;9:1013-27.es
dc.source.bibliographicCitationHughes A, Hughes M. Natural selection on the peptide-binding regions of major histocompatibility complex molecules. Immunogenetics. 1995;42:233-43.es
dc.source.bibliographicCitationSommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool. 2005;2(16:1–16:18).es
dc.source.bibliographicCitationRobinson J, Halliwell JA, McWilliam H, Lopez R, Parham P, Marsh SG. The IMGT/HLA database. Nucleic Acids Res. 2013;41(Database issue):D1222-7.es
dc.source.bibliographicCitationSutton JT, Nakagawa S, Robertson BC, Jamieson IG. Disentangling the roles of natural selection and genetic drift in shaping variation at MHC immunity genes. Mol Ecol. 2011;20(21):4408-20.es
dc.source.bibliographicCitationYeager M, Hughes AL. Evolution of the mammalian MHC: natural selection, recombination, and convergent evolution. Immunol Rev. 1999;167:45-58.es
dc.source.bibliographicCitationHughes AL, Yeager M. Natural selection at major histocompatibility complex loci of vertebrates. Annu Rev Genet. 1998;32:415-35.es
dc.source.bibliographicCitationHedrick PW. Pathogen resistance and genetic variation at MHC loci. Evolution. 2002;56(10):1902-8.es
dc.source.bibliographicCitationPotts WK, Wakeland EK. Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends Genet. 1993;9(12):408-12.es
dc.source.bibliographicCitationWorley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS. MHC heterozygosity and survival in red junglefowl. Mol Ecol. 2010;19(15):3064-75.es
dc.source.bibliographicCitationEjsmond MJ, Babik W, Radwan J. MHC allele frequency distributions under parasite-driven selection: A simulation model. BMC Evol Biol. 2010;10:332.es
dc.source.bibliographicCitationApanius V, Penn D, Slev PR, Ruff LR, Potts WK. The nature of selection on the major histocompatibility complex. Crit Rev Immunol. 1997;17(2):179-224.es
dc.source.bibliographicCitationPotts WK, Slev PR. Pathogen-based models favoring MHC genetic diversity. Immunol Rev. 1995;143:181-97.es
dc.source.bibliographicCitationBorghans JA, Beltman JB, De Boer RJ. MHC polymorphism under host-pathogen coevolution. Immunogenetics. 2004;55(11):732-9.es
dc.source.bibliographicCitationPotts WK, Manning CJ, Wakeland EK. The role of infectious disease, inbreeding and mating preferences in maintaining MHC genetic diversity: an experimental test. Philos Trans R Soc Lond B Biol Sci. 1994;346(1317):369-78.es
dc.source.bibliographicCitationJordan WC, Bruford MW. New perspectives on mate choice and the MHC. Heredity. 1998;81 ( Pt 2):127-33.es
dc.source.bibliographicCitationHuchard E, Raymond M, Benavides J, Marshall H, Knapp LA, Cowlishaw G. A female signal reflects MHC genotype in a social primate. BMC Evol Biol. 2010;10:96.es
dc.source.bibliographicCitationHuchard E, Knapp LA, Wang J, Raymond M, Cowlishaw G. MHC, mate choice and heterozygote advantage in a wild social primate. Mol Ecol. 2010;19(12):2545-61.es
dc.source.bibliographicCitationSetchell JM, Huchard E. The hidden benefits of sex: evidence for MHC-associated mate choice in primate societies. Bioessays. 2010;32(11):940-8.es
dc.source.bibliographicCitationRoberts SC, Little AC, Gosling LM, Jones BC, Perrett DI, Carter V, et al. MHC-assortative facial preferences in humans. Biol Lett. 2005;1(4):400-3.es
dc.source.bibliographicCitationHavlicek J, Roberts SC. MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology. 2009;34(4):497-512.es
dc.source.bibliographicCitationManning CJ, Wakeland EK, Potts WK. Communal nesting patterns in mice implicate MHC genes in kin recognition. Nature. 1992;360(6404):581-3.es
dc.source.bibliographicCitationYamazaki K, Beauchamp GK. Genetic basis for MHC-dependent mate choice. Adv Genet. 2007;59:129-45.es
dc.source.bibliographicCitationWedekind C, Chapuisat M, Macas E, Rulicke T. Non-random fertilization in mice correlates with the MHC and something else. Heredity. 1996;77 ( Pt 4):400-9.es
dc.source.bibliographicCitationDorak MT, Lawson T, Machulla HK, Mills KI, Burnett AK. Increased heterozygosity for MHC class II lineages in newborn males. Genes Immun. 2002;3(5):263-9.es
dc.source.bibliographicCitationKlein J, Sato A, Nagl S, O’hUigín C. Molecular trans-species polymorphism. Annu Rev Ecol Syst. 1998;29:1-21.es
dc.source.bibliographicCitationKlein J, Sato A, Nikolaidis N. MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet. 2007;41:281-304.es
dc.source.bibliographicCitationKlein J, Satta Y, Takahata N, O'HUigin C. Trans-specific Mhc polymorphism and the origin of species in primates. J Med Primatol. 1993;22(1):57-64.es
dc.source.bibliographicCitationTrtkova K, Mayer WE, O'Huigin C, Klein J. Mhc-DRB genes and the origin of New World monkeys. Molecular phylogenetics and evolution. 1995;4(4):408-19.es
dc.source.bibliographicCitationO'HUigin C. Quantifying the degree of convergence in primate Mhc-DRB genes. Immunol Rev. 1995;143:123-40.es
dc.source.bibliographicCitationDoxiadis GG, de Groot N, de Groot NG, Doxiadis, II, Bontrop RE. Reshuffling of ancient peptide binding motifs between HLA-DRB multigene family members: old wine served in new skins. Mol Immunol. 2008;45(10):2743-51.es
dc.source.bibliographicCitationSlierendregt BL, Otting N, Kenter M, Bontrop RE. Allelic diversity at the Mhc-DP locus in rhesus macaques (Macaca mulatta). Immunogenetics. 1995;41(1):29-37.es
dc.source.bibliographicCitationBontrop RE, Otting N, de Groot NG, Doxiadis GG. Major histocompatibility complex class II polymorphisms in primates. Immunol Rev. 1999;167:339-50.es
dc.source.bibliographicCitationRobinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, et al. IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res. 2003;31(1):311-4.es
dc.source.bibliographicCitationSteiper M, Young N. Primate molecular divergence dates. Molecular phylogenetics and evolution. 2006;41:384–94.es
dc.source.bibliographicCitationWang JH, Reinherz EL. Structural basis of T cell recognition of peptides bound to MHC molecules. Mol Immunol. 2002;38(14):1039-49.es
dc.source.bibliographicCitationBackert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med. 2015;7:119.es
dc.source.bibliographicCitationLafuente EM, Reche PA. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Curr Pharm Des. 2009;15(28):3209-20.es
dc.source.bibliographicCitationLenz TL. Computational prediction of MHC II-antigen binding supports divergent allele advantage and explains trans-species polymorphism. Evolution. 2011;65(8):2380-90.es
dc.source.bibliographicCitationDoytchinova IA, Flower DR. In silico identification of supertypes for class II MHCs. Journal of Immunology. 2005;174(11):7085-95.es
dc.source.bibliographicCitationDoytchinova IA, Guan P, Flower DR. Identifiying human MHC supertypes using bioinformatic methods. Journal of Immunology. 2004;172(7):4314-23.es
dc.source.bibliographicCitationLund O, Nielsen M, Kesmir C, Petersen AG, Lundegaard C, Worning P, et al. Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics. 2004;55(12):797-810.es
dc.source.bibliographicCitationSchwensow N, Fietz J, Dausmann K, Sommer S. Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity. 2007;99(3):265-77.es
dc.source.bibliographicCitationSepil I, Lachish S, Hinks AE, Sheldon BC. Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proceedings of the Royal Society of London B: Biological Sciences. 2013;280(1759):20130134.es
dc.source.bibliographicCitationHill AV. Common West African HLA antigens are associated with protection from severe malaria. Nature. 1991;352(6336):595-600.es
dc.source.bibliographicCitationWang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol. 2008;4(4):e1000048.es
dc.source.bibliographicCitationSidney J, Southwood S, Moore C, Oseroff C, Pinilla C, Grey HM, et al. Measurement of MHC/peptide interactions by gel filtration or monoclonal antibody capture. Curr Protoc Immunol. 2013;Chapter 18:Unit 18 3.es
dc.source.bibliographicCitationSturniolo T, Bono E, Ding J, Raddrizzani L, Tuereci O, Sahin U, et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat Biotechnol. 1999;17(6):555-61.es
dc.source.bibliographicCitationZhang L, Chen Y, Wong HS, Zhou S, Mamitsuka H, Zhu S. TEPITOPEpan: extending TEPITOPE for peptide binding prediction covering over 700 HLA-DR molecules. PLoS One. 2012;7(2):e30483.es
dc.source.bibliographicCitationRothbard JB, Taylor WR. A sequence pattern common to T cell epitopes. Embo J. 1988;7(1):93-100.es
dc.source.bibliographicCitationUdaka K, Wiesmuller KH, Kienle S, Jung G, Tamamura H, Yamagishi H, et al. An automated prediction of MHC class I-binding peptides based on positional scanning with peptide libraries. Immunogenetics. 2000;51(10):816-28.es
dc.source.bibliographicCitationPeters B, Sette A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics. 2005;6:132.es
dc.source.bibliographicCitationSidney J, Assarsson E, Moore C, Ngo S, Pinilla C, Sette A, et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 2008;4:2.es
dc.source.bibliographicCitationNielsen M, Lundegaard C, Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics. 2007;8:238.es
dc.source.bibliographicCitationZhang W, Liu J, Niu Y. Quantitative prediction of MHC-II binding affinity using particle swarm optimization. Artif Intell Med. 2010;50(2):127-32.es
dc.source.bibliographicCitationAndreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67(11-12):641-50.es
dc.source.bibliographicCitationLundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J Immunol Methods. 2011;374(1-2):26-34.es
dc.source.bibliographicCitationNielsen M, Lundegaard C, Worning P, Lauemoller SL, Lamberth K, Buus S, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003;12(5):1007-17.es
dc.source.bibliographicCitationRoomp K, Antes I, Lengauer T. Predicting MHC class I epitopes in large datasets. BMC Bioinformatics. 2010;11:90.es
dc.source.bibliographicCitationNielsen M, Justesen S, Lund O, Lundegaard C, Buus S. NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure. Immunome Res. 2010;6:9.es
dc.source.bibliographicCitationNoguchi H, Kato R, Hanai T, Matsubara Y, Honda H, Brusic V, et al. Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. J Biosci Bioeng. 2002;94(3):264-70.es
dc.source.bibliographicCitationNielsen M, Lund O, Buus S, Lundegaard C. MHC class II epitope predictive algorithms. Immunology. 2010;130(3):319-28.es
dc.source.bibliographicCitationVider-Shalit T, Louzoun Y. MHC-I prediction using a combination of T cell epitopes and MHC-I binding peptides. J Immunol Methods. 2011;374(1-2):43-6.es
dc.source.bibliographicCitationLiu W, Meng X, Xu Q, Flower DR, Li T. Quantitative prediction of mouse class I MHC peptide binding affinity using support vector machine regression (SVR) models. BMC Bioinformatics. 2006;7:182.es
dc.source.bibliographicCitationDonnes P. Support vector machine-based prediction of MHC-binding peptides. Methods Mol Biol. 2007;409:273-82.es
dc.source.bibliographicCitationAgudelo W, Patarroyo M. Quantum chemical analysis of MHC-peptide interactions for vaccine design. Mini reviews in medicinal chemistry. 2010;10(8):746-58.es
dc.source.bibliographicCitationWan S, Knapp B, Wright DW, Deane CM, Coveney PV. Rapid, Precise, and Reproducible Prediction of Peptide–MHC Binding Affinities from Molecular Dynamics That Correlate Well with Experiment. J Chem Theory Comput. 2015;11(7):3346-56.es
dc.source.bibliographicCitationPatronov A, Doytchinova I. T-cell epitope vaccine design by immunoinformatics. Open Biol. 2013;3(1):120139.es
dc.source.bibliographicCitationBordner AJ, Abagyan R. Ab initio prediction of peptide-MHC binding geometry for diverse class I MHC allotypes. Proteins. 2006;63(3):512-26.es
dc.source.bibliographicCitationZhang H, Wang P, Papangelopoulos N, Xu Y, Sette A, Bourne PE, et al. Limitations of Ab initio predictions of peptide binding to MHC class II molecules. PLoS One. 2010;5(2):e9272.es
dc.source.bibliographicCitationBordner AJ. Towards universal structure-based prediction of class II MHC epitopes for diverse allotypes. PLoS One. 2010;5(12):e14383.es
dc.source.bibliographicCitationYanover C, Bradley P. Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(17):6981-6.es
dc.source.bibliographicCitationKnapp B, Omasits U, Schreiner W. Side chain substitution benchmark for peptide/MHC interaction. Protein Sci. 2008;17(6):977-82.es
dc.source.bibliographicCitationTong JC, Tan TW, Ranganathan S. Modeling the structure of bound peptide ligands to major histocompatibility complex. Protein Sci. 2004;13(9):2523-32.es
dc.source.bibliographicCitationBui HH, Schiewe AJ, von Grafenstein H, Haworth IS. Structural prediction of peptides binding to MHC class I molecules. Proteins-Structure Function and Genetics. 2006;63(1):43-52.es
dc.source.bibliographicCitationCárdenas C, Ortiz M, Balbín A, Villaveces JL, Patarroyo ME. Allele effects in MHC–peptide interactions: A theoretical analysis of HLA-DRβ1* 0101-HA and HLA-DRβ1* 0401-HA complexes. Biochemical and biophysical research communications. 2005;330(4):1162-7.es
dc.source.bibliographicCitationBalbín A, Cárdenas C, Villaveces JL, Patarroyo ME. A theoretical analysis of HLA-DRβ1* 0301–CLIP complex using the first three multipolar moments of the electrostatic field. Biochimie. 2006;88(9):1307-11.es
dc.source.bibliographicCitationBohorquez HJ, Obregon M, Cárdenas C, Llanos E, Suárez C, Villaveces JL, et al. Electronic energy and multipolar moments characterize amino acid side chains into chemically related groups. The Journal of Physical Chemistry A. 2003;107(47):10090-7.es
dc.source.bibliographicCitationCárdenas C, Villaveces JL, Bohórquez H, Llanos E, Suárez C, Obregón M, et al. Quantum chemical analysis explains hemagglutinin peptide–MHC Class II molecule HLA-DRβ1* 0101 interactions. Biochemical and biophysical research communications. 2004;323(4):1265-77.es
dc.source.bibliographicCitationCárdenas C, Villaveces JL, Suárez C, Obregón M, Ortiz M, Patarroyo ME. A comparative study of MHC Class-II HLA-DRβ1* 0401-Col II and HLA-DRβ1* 0101-HA complexes: a theoretical point of view. Journal of structural biology. 2005;149(1):38-52.es
dc.source.bibliographicCitationCárdenas C, Obregón M, Balbín A, Villaveces JL, Patarroyo ME. Wave function analysis of MHC–peptide interactions. Journal of Molecular Graphics and Modelling. 2007;25(5):605-15.es
dc.source.bibliographicCitationAgudelo WA, Galindo JF, Ortiz M, Villaveces JL, Daza EE, Patarroyo ME. Variations in the electrostatic landscape of class II human leukocyte antigen molecule induced by modifications in the myelin basic protein peptide: a theoretical approach. PLoS One. 2009;4(1):e4164.es
dc.source.bibliographicCitationStone JE, Hardy DJ, Ufimtsev IS, Schulten K. GPU-accelerated molecular modeling coming of age. Journal of Molecular Graphics and Modelling. 2010;29(2):116-25.es
dc.source.bibliographicCitationAkimov AV, Prezhdo OV. Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chemical reviews. 2015;115(12):5797-890.es
dc.source.bibliographicCitationStewart JJ. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of molecular modeling. 2013;19(1):1-32.es
dc.source.bibliographicCitationElstner M. The SCC-DFTB method and its application to biological systems. Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta). 2006;116(1):316-25.es
dc.source.bibliographicCitationChristensen AS, Kubař Ts, Cui Q, Elstner M. Semiempirical quantum mechanical methods for noncovalent interactions for chemical and biochemical applications. Chemical reviews. 2016;116(9):5301-37.es
dc.source.bibliographicCitationKitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M. Fragment molecular orbital method: an approximate computational method for large molecules. Chemical Physics Letters. 1999;313(3):701-6.es
dc.source.bibliographicCitationFedorov DG, Nagata T, Kitaura K. Exploring chemistry with the fragment molecular orbital method. Physical Chemistry Chemical Physics. 2012;14(21):7562-77.es
dc.source.bibliographicCitationFedorov DG, Kitaura K. Pair interaction energy decomposition analysis. Journal of computational chemistry. 2007;28(1):222-37.es
dc.source.bibliographicCitationGonzález R, Suárez CF, Bohórquez HJ, Patarroyo MA, Patarroyo ME. Semi-empirical quantum evaluation of peptide–MHC class II binding. Chemical Physics Letters. 2017;668:29-34.es
dc.source.bibliographicCitationPatiño LC, Beau I, Carlosama C, Buitrago JC, González R, Suárez CF, et al. New mutations in non-syndromic primary ovarian insufficiency patients identified via whole-exome sequencing. Human Reproduction. 2017:1-9.es
dc.source.bibliographicCitationPatarroyo ME, Arévalo-Pinzón G, Reyes C, Moreno-Vranich A, Patarroyo MA. Malaria parasite survival depends on conserved binding peptides' critical biological functions. Current issues in molecular biology. 2016;18:57-78.es
dc.source.bibliographicCitationAlba MP, Suarez CF, Varela Y, Patarroyo MA, Bermudez A, Patarroyo ME. TCR-contacting residues orientation and HLA-DRbeta* binding preference determine long-lasting protective immunity against malaria. Biochem Biophys Res Commun. 2016;477(4):654-60.es
dc.source.bibliographicCitationBermudez A, Calderon D, Moreno-Vranich A, Almonacid H, Patarroyo MA, Poloche A, et al. Gauche(+) side-chain orientation as a key factor in the search for an immunogenic peptide mixture leading to a complete fully protective vaccine. Vaccine. 2014;32(18):2117-26.es
dc.source.bibliographicCitationPatarroyo ME, Moreno-Vranich A, Bermudez A. Phi (Phi) and psi (Psi) angles involved in malarial peptide bonds determine sterile protective immunity. Biochem Biophys Res Commun. 2012;429(1-2):75-80.es
dc.source.bibliographicCitationBeck HP, Felger I, Barker M, Bugawan T, Genton B, Alexander N, et al. Evidence of HLA class II association with antibody response against the malaria vaccine SPF66 in a naturally exposed population. Am J Trop Med Hyg. 1995;53(3):284-8.es
dc.source.bibliographicCitationPatarroyo ME, Vinasco J, Amador R, Espejo F, Silva Y, Moreno A, et al. Genetic control of the immune response to a synthetic vaccine against Plasmodium falciparum. Parasite Immunol. 1991;13(5):509-16.es
dc.source.bibliographicCitationPatarroyo MA, Bermudez A, Lopez C, Yepes G, Patarroyo ME. 3D analysis of the TCR/pMHCII complex formation in monkeys vaccinated with the first peptide inducing sterilizing immunity against human malaria. PLoS One. 2010;5(3):e9771.es
dc.source.bibliographicCitationCifuentes G, Patarroyo ME, Urquiza M, Ramirez LE, Reyes C, Rodriguez R. Distorting malaria peptide backbone structure to enable fitting into MHC class II molecules renders modified peptides immunogenic and protective. J Med Chem. 2003;46(11):2250-3.es
dc.source.bibliographicCitationStern LJ, Wiley DC. Antigenic peptide binding by class I and class II histocompatibility proteins. Structure. 1994;2(4):245-51.es
dc.source.bibliographicCitationMadden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587-622.es
dc.source.bibliographicCitationBarber LD, Parham P. Peptide binding to major histocompatibility complex molecules. Annu Rev Cell Biol. 1993;9:163-206.es
dc.source.bibliographicCitationAdzhubei AA, Sternberg MJ, Makarov AA. Polyproline-II helix in proteins: structure and function. Journal of molecular biology. 2013;425(12):2100-32.es
dc.source.bibliographicCitationBohórquez HJ, Suárez CF, Patarroyo ME. Mass & secondary structure propensity of amino acids explain their mutability and evolutionary replacements. Scientific Reports. 2017;7(1):7717.es
dc.source.bibliographicCitationGonzález-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MHT, Silva ALSd, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic acids research. 2014;43(D1):D784-D8.es
dc.source.bibliographicCitationBerkholz DS, Krenesky PB, Davidson JR, Karplus PA. Protein Geometry Database: a flexible engine to explore backbone conformations and their relationships to covalent geometry. Nucleic acids research. 2009;38(suppl_1):D320-D5.es
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.spa


Archivos en el ítem

Thumbnail


Este ítem aparece en la(s) siguiente(s) colección(ones)

 

Reconocimientos: