Ítem
Acceso Abierto

Estudio de interacciones hospedero-patógeno y proteína-proteína en Plasmodium Vivax : evaluación de las proteínas del cuello de optrias -2, -4 y -5 y del antígeno apical de membrana-1


Archivos
Fecha
2018-04-16

Directores
Patarroyo, Manuel A.
Fuentes García, Manuel
Fernández-Soto, Pedro

ISSN de la revista
Título del volumen
Editor
Universidad del Rosario

Buscar en:

Métricas alternativas

Resumen
La malaria es una de las enfermedades tropicales transmitidas por vectores más importantes a nivel mundial, donde Plasmodium vivax representa una de las especies más ampliamente distribuidas, afectando ~13.8 millones de personas por año. Pese a ello, el progreso aparentemente lento de la infección y los niveles bajos de parasitemia en el humano, comparados a lo reportado en Plasmodium falciparum, han llevado a clasificar a la infección por P. vivax erróneamente como benigna. Esto, sumado a los retos experimentales que trae consigo el cultivo de este parásito, obstaculizan en gran medida el conocimiento a nivel biológico, celular y molecular, necesario para el desarrollo de métodos de control efectivos contra P. vivax. Hoy en día, se conoce que un inadecuado diagnóstico, el mal manejo terapéutico y/o el retraso en el tratamiento, pueden llevar a recaídas y estados de enfermedad grave, similares a los reportados para la malaria producida por P. falciparum, lo que impone retos en la búsqueda de nuevas alternativas específicas contra esta especie. Teniendo en cuenta la necesidad de identificar posibles blancos terapéuticos contra P. vivax, este trabajo se enfocó en estudiar interacciones del tipo receptor-ligando y proteína-proteína de moléculas de P. vivax localizadas en los organelos apicales de esquizontes intraeritrocíticos. Basados en estudios previos en P. falciparum y Toxoplasma gondii, donde se describe la importancia funcional de las proteínas localizadas en el cuello de las roptrias (RONs) -2, -4 y 5 y del antígeno apical de membrana 1 (AMA1), se caracterizó en P. vivax la unión de cada una de estas proteínas con reticulocitos humanos y se evaluó la capacidad de PvRON2 para establecer interacciones con las proteínas PvRON4, PvRON5 y PvAMA1. Para esto, inicialmente se caracterizó mediante herramientas bioinformáticas y experimentales la presencia de los genes pvron4 y pvron5 en el genoma y transcriptoma de esquizontes de la cepa Vivax Colombia Guaviare 1 (VCG-1) de P. vivax. Estos dos genes codifican proteínas de alto peso molecular que se expresan en el polo apical de esquizontes y co-localizan con proteínas presentes en las roptrias. Para evaluar la capacidad de interacción de las proteínas PvRON2, PvRON4, PvRON5 y PvAMA1 con receptores sobre la membrana de reticulocitos humanos, todas ellas fueron producidas de forma recombinante y purificadas mediante cromatografía de afinidad. Se encontró que la proteína recombinante PvRON5 se unió tanto a normocitos como a reticulocitos CD71+, con una marcada preferencia por reticulocitos humanos. Por su parte, las proteínas recombinantes que incluyen los dominios I y II de PvAMA-1 (PvAMA-DI-DII), la región central de la proteína PvRON2 (PvRON2-RI) y la región carboxi-terminal de PvRON4, interactúan específicamente con reticulocitos CD71+CD45-. Los estudios de competencia de unión con péptidos sintéticos que cubren las secuencias de las proteínas recombinantes mostraron que los péptidos 21270 (derivado del DI de PvAMA1), 40305 (de PvRON4) y 40595 (de PvRON2-RI) fueron capaces de inhibir la unión de las proteínas recombinantes a reticulocitos CD71+CD45-, lo que sugiere que estas secuencias peptídicas contienen parte de las propiedades de unión de cada una de las proteínas de las que derivan. Los tres péptidos se unen específicamente y con alta afinidad a eritrocitos con porcentajes de unión mayores al 2% (obtenidas de las curvas de unión específica), permitiendo catalogarlos como péptidos con alta capacidad de unión a eritrocitos (HABPs, del inglés High Activity Binding Peptides). La unión de las proteínas PvAMA1 y PvRON4 a eritrocitos humanos fue sensible al tratamiento de los eritrocitos con diferentes enzimas (tripsina, quimotripsina y/o neuraminidasa), sugiriendo que la naturaleza de los receptores para estas proteínas es de tipo proteico. Estos resultados destacan la función de adhesina de las proteínas evaluadas y revelan las regiones mínimas de interacción con la célula hospedera, que sumado a la expresión de estas proteínas en esquizontes intraeritrocíticos y su localización en organelos apicales, sugieren una fuerte participación de estas moléculas durante el proceso de invasión de los merozoitos de P. vivax a reticulocitos humanos. Finalmente, mediante resonancia de plasmones de superficie, se caracterizaron las interacciones entre la proteína PvRON2 con las proteínas PvRON4, PvRON5 y PvAMA1. Los análisis revelaron que la región carboxi-terminal de la proteína PvRON2 (PvRON2-RII) y PvRON2-RI interactúan específicamente y con alta afinidad con el dominio II y III de PvAMA1 (PvAMA-DII-DIII) y con una menor afinidad con las proteínas PvAMA-DI-DII, PvRON4 y PvRON5. Al modificar algunos residuos de la proteína PvAMA1, reportados en P. falciparum como críticos en la interacción RON2-AMA1, no se encontraron diferencias importantes en los valores de las velocidades de asociación (Kon), disociación (Koff) y en la constante de disociación de la interacción (kD). Esto sugiere que, si bien existen interacciones proteína-proteína (IPP) conservadas entre estos parásitos (Pv-Pf), cada parásito utiliza distintas regiones de las proteínas para interactuar, lo que resalta su capacidad para especializarse o restringirse para invadir un tipo de célula específica y pone de manifiesto aún más la necesidad de diseñar medidas de control específicas contra P. vivax.
Abstract
Malaria is one of the most important tropical diseases transmitted by vectors worldwide; Plasmodium vivax represents one of the most widely distributed species (affecting ~ 13.8 million people worldwide per year). Despite this, the apparently slow progress of infection and low parasitaemia levels in humans compared to those reported in Plasmodium falciparum have erroneously led to P. vivax infection being classified as benign. Added to this, the experimental challenges involved in culturing this parasite greatly hinder accumulating the biological, cellular and molecular knowledge necessary for developing effective control methods against P. vivax. It is known nowadays that unsuitable diagnosis, poor therapeutic management and/or delayed treatment can lead to relapses and severe disease states similar to those reported for P. falciparum malaria, thereby imposing challenges regarding the search for new, specific, alternative approaches to tackling this species. The present work has been focused on studying receptor-ligand and protein-protein interactions of P. vivax molecules located in intra-erythrocyte schizonts’ apical organelles regarding the need for identifying therapeutic targets against P. vivax. Protein interaction with human reticulocytes was characterised in P. vivax and PvRON2 ability to establish interactions with PvRON4, PvRON5 and PvAMA1 was evaluated, based on previous P. falciparum and Toxoplasma gondii studies, describing the functional importance of rhoptry neck proteins. Work began by using bioinformatics and experimental tools for predicting pvron4 and pvron5 genes in the P. vivax VCG-1 (Vivax Colombia Guaviare 1) strain’s genome and schizonts transcriptome. These two genes encode high molecular weight proteins which are expressed at schizonts’ apical poles and co-localise with proteins in the rhoptries. Such proteins were produced recombinantly and purified by affinity chromatography for evaluating PvRON2, PvRON4, PvRON5 and PvAMA1 ability to interact with receptors on human reticulocyte membrane. Recombinant PvRON5 bound to both CD71+ normocytes and reticulocytes, having a marked preference for human reticulocytes. PvAMA1 domains I and II (PvAMA-DI-DII), PvRON2 central region (PvRON2-RI) and PvRON4 carboxy-terminal region specifically interacted with CD71+CD45- reticulocytes. Competition studies with synthetic peptides covering recombinant protein sequences showed that PvAMA1-derived peptide 21270, PvRON4-derived 40305 and PvRON2-RI-derived 40595, were capable of inhibiting recombinant protein binding to CD71+CD45- reticulocytes, suggesting that these peptide sequences contained some of the evaluated proteins’ binding properties. The three peptides bound specifically and with high affinity to erythrocytes having higher (2%) binding percentages (obtained from specific binding curves), thereby allowing their classification as high erythrocyte binding capacity peptides (HABPs). PvAMA1 and PvRON4 binding to human erythrocytes was sensitive to erythrocytes treatment with different enzymes (trypsin, chymotrypsin and/or neuraminidase), suggesting the receptors’ protein type nature. These results highlighted the adhesin function of the proteins evaluated and revealed minimum host cell interaction regions suggesting these molecules’ active participation during P. vivax merozoite invasion of human reticulocytes (along with these proteins’ expression in intra-erythrocytic schizonts and location in apical organelles). Surface plasmon resonance was used for characterising PvRON2 interactions with PvRON4, PvRON5 and PvAMA1. This revealed that PvRON2-RI and carboxy-terminal regions (PvRON2-RII) specifically interacted and with great affinity with PvAMA1 domain II and III (PvAMA-DII-DIII) but with less affinity with PvAMA-DI-DII, PvRON4 and PvRON5. No significant differences were found in interaction association (Kon) or dissociation (Koff) rates or dissociation constant (kD) values when modifying some PvAMA1 residues reported as being critical in the P. falciparum RON2-AMA-1 interaction, suggesting that although conserved interactions between these parasites (Pv-Pf) have been observed, each parasite uses different regions to interact, thereby highlighting their ability to specialise or restrict themselves to invading a specific cell type and the need for designing specific control measures against P. vivax.
Palabras clave
Malaria , Receptor-ligando , Proteína de las roptrias , Plasmodium vivax
Keywords
Malaria , Receptor-ligand interactions , Rhoptry neck proteins , Plasmodium vivax
Buscar en:
Enlace a la fuente