Ítem
Acceso Abierto

Relación entre atrofia cortical difusa y desempeño cognitivo : estudio en población mayor de 60 años en un hospital universitario en la ciudad de Bogotá

dc.contributor.advisorLópez, Jhon Álvaro
dc.creatorCogollos, Jenny
dc.creatorPiedrahita, Paula Viviana
dc.creatorUrquijo, Paula
dc.creator.degreePsicólogo(a)
dc.date.accessioned2016-12-16T14:32:56Z
dc.date.available2016-12-16T14:32:56Z
dc.date.created2016-12-13
dc.date.issued2016
dc.descriptionEl presente trabajo tuvo como objetivo evaluar la existencia de la relación entre la atrofia cortical difusa objetivada por neuroimagenes cerebrales y desempeños cognitivos determinados mediante la aplicación de pruebas neuropsicológicas que evalúan memoria de trabajo, razonamiento simbólico verbal y memoria anterógrada declarativa. Participaron 114 sujetos reclutados en el Hospital Universitario Mayor Méderi de la ciudad de Bogotá mediante muestreo de conveniencia. Los resultados arrojaron diferencias significativas entre los dos grupos (pacientes con diagnóstico de atrofia cortical difusa y pacientes con neuroimagenes interpretadas como dentro de los límites normales) en todas las pruebas neuropsicológicas aplicadas. Respecto a las variables demográficas se pudo observar que el grado de escolaridad contribuye como factor neuroprotector de un posible deterioro cognitivo. Tales hallazgos son importantes para determinar protocoles tempranos de detección de posible instalación de enfermedades neurodegenerativas primarias.spa
dc.description.abstractThe objective of this study was to evaluate if there is a relationship between diffuse cortical atrophy objectified by cerebral neuroimages and cognitive performances determined by the application of neuropsychological tests that evaluate working memory, verbal symbolic reasoning and declarative anterograde memory. 114 participants were recruited at the Hospital Universitario Mayor Méderi of Bogotá through a convenience sample. The results showed significant differences between the two groups (patients with diagnosis of diffuse cortical atrophy and patients with neuroimages interpreted as within normal limits) in al applied neuropsychological tests. Regarding the demographic variables, it was observed that the level of schooling contributes as a neuroprotective factor of a possible cognitive impairment. Such findings are important in determining early protocols for the detection of possible primary neurodegenerative diseases.eng
dc.format.mimetypeapplication/pdf
dc.format.tipoDocumentospa
dc.identifier.doihttps://doi.org/10.48713/10336_12751
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/12751
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentEscuela de Medicina y Ciencias de la Saludspa
dc.publisher.programPsicologíaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma. PARGRAFO: En caso de presentarse cualquier reclamación o acción por parte de un tercero en cuanto a los derechos de autor sobre la obra en cuestión, EL AUTOR, asumirá toda la responsabilidad, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos la universidad actúa como un tercero de buena fe. EL AUTOR, autoriza a LA UNIVERSIDAD DEL ROSARIO, para que en los términos establecidos en la Ley 23 de 1982, Ley 44 de 1993, Decisión andina 351 de 1993, Decreto 460 de 1995 y demás normas generales sobre la materia, utilice y use la obra objeto de la presente autorización. -------------------------------------- POLITICA DE TRATAMIENTO DE DATOS PERSONALES. Declaro que autorizo previa y de forma informada el tratamiento de mis datos personales por parte de LA UNIVERSIDAD DEL ROSARIO para fines académicos y en aplicación de convenios con terceros o servicios conexos con actividades propias de la academia, con estricto cumplimiento de los principios de ley. Para el correcto ejercicio de mi derecho de habeas data cuento con la cuenta de correo habeasdata@urosario.edu.co, donde previa identificación podré solicitar la consulta, corrección y supresión de mis datos.spa
dc.source.bibliographicCitationAlbert, M. S., De Kosky, S. T., Dickson, D., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer´s & Dementia, 7, 270–279.
dc.source.bibliographicCitationAndrés, P., Van der Linden, M., Parmentier, F. B. R. (2004). Directed forgetting in working memory: age-related differences. Memory, 12, 248- 256.
dc.source.bibliographicCitationBarkhof, F., Polvikoski, T. M., van Straaten, E. C., et al. (2007). The significance of medial temporal lobe atrophy: a postmortem MRI study in the very old. Neurology, 9 (69), 1521-1527.
dc.source.bibliographicCitationBarnes, J., Whitwell, J. L., Frost, C., Josephs, K. A., Rossor, M., & Fox, N. C. (2006). Measurements of the amygdala and hippocampus in pathologically confirmed Alzheimer disease and frontotemporal lobar degeneration. Archives of Neurology, 63, 1434–1439.
dc.source.bibliographicCitationBobinski, M., De Leon, M. J., Wegiel, J., et al. (2000). The histological validation of post mortem magnetic resonance imagingdetermined hippocampal volume in Alzheimer’s disease. Neuroscience, 95, 721–725.
dc.source.bibliographicCitationBoutet, C., Chupin, M., Colliot, O. et al., y The Alzheimer’s Disease Neuroimaging Initiative. (2012). Is radiological evaluation as good as computer-based volumetry to assess hippocampal atrophy in Alzheimer’s disease? Neuroradiology, 54, 1321–1330.
dc.source.bibliographicCitationBresciani, L., Rossi, R., Testa, C., et al. (2005). Visual assessment of medial temporal atrophy on MR films in Alzheimer’s disease: comparison with volumetry. Aging Clinical and Experimental Research, 17, 8–13.
dc.source.bibliographicCitationBritt, W. G., Hansen, A. M., Bhaskerrao, S., Larsen, J.P., Petersen, F., Dickson, A. (2011). Mild cognitive impairment: prodromal Alzheimer's disease or something else? Journal of Alzheimer´s Disease, 27(3), 543-551.
dc.source.bibliographicCitationBrück, A., Virta, J. R., Koivunen, J., et al. (2013). [11C]PIB, [18F]FDG and MR imaging in patients with mild cognitive impairment. European Journal of Nuclear Medicine and Molecular Imaging, 40, 1567–1572.
dc.source.bibliographicCitationBrüggen, K., Dyrba, M., Barkhof, F., et al. (2015). Basal forebrain and hippocampus as predictors of conversion to Alzheimer’s disease in patients with mild cognitive impairment: a multicenter DTI and volumetry study. Journal of Alzheimer´s Disease, 48(1), 197-204.
dc.source.bibliographicCitationBudson, A. E. & Price, H. B. (2005). Disfunción de memoria. The New England Journal of Medicine, 352, 692 – 699.
dc.source.bibliographicCitationBusch, R. M., Chelune, G. J., & Suchy, Y. (2006). Using norms in neuropsychological assessment of the elderly. En D. K. Attix & K. A. Welsh-Bohmer (Eds.), Geriatric neuropsychology: Assessment and intervention, 133–157. Nueva York: Guilford Press.
dc.source.bibliographicCitationCaramazza, A. & Hillis, A. (1991). Lexical organization of nouns and verbs in the brain. Nature, 349, 788-790.
dc.source.bibliographicCitationChetelat, G. & Barón, J. C. (2003). Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. NeuroImage, 18(2), 525-541.
dc.source.bibliographicCitationChupin, M., Gérardin, E., Cuingnet, R. et al., & The Alzheimer’s Disease Neuroimaging Initiative. (2009). Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus, 19, 579–87.
dc.source.bibliographicCitationClerx, L., van Rossum, I.A., Burns, L., et al (2013). Measurements of medial temporal lobe atrophy for prediction of Alzheimer’s disease in subjects with mild cognitive impairment. Neurobiology of Aging, 34, 2003–2013.
dc.source.bibliographicCitationColliot, O., Chetelat, G., Chupin, M., Desgranges, B., Magnin, B., Benali, H., et al. (2008). Discrimination between Alzheimer disease, mild cognitive impairment, and normal aging by using automated segmentation of the hippocampus. Radiology, 248, 194–201.
dc.source.bibliographicCitationCordovez, J., Gálvez, M., Rojas, G., Bravo, C., & Cerda, A. (2013). Uso de volumetría y carga lesional en el seguimiento de pacientes con esclerosis múltiple. Experiencia local y revisión de la literatura. Revista chilena de Radiología, 19(4), 156-164.
dc.source.bibliographicCitationCourchesne, E., Chisum, H. J., Townsend, J., Cowles, A., Covington, J., Egaas, B., Harwood, M., Hinds, S. & Press, G. A. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Neuroradiology, 216(3), 672-682.
dc.source.bibliographicCitationCummings, J. L., Doody, R., & Clark, C. (2007) Disease-modifying therapies for Alzheimer’s disease: challenges to early intervention. Neurology, 69, 1622–1634.
dc.source.bibliographicCitationDamasio, A.R., Everitt, B.J. & Bishop, D. (1996). The Somatic Marker Hyphotesis and the possible functions of the prefrontal cortex. Philosophical Transactions of the Royal Society B, 351,1413-1420.
dc.source.bibliographicCitationDe Carli, C., Frisoni, G.B., Clark, C.M., et al. (2007). Qualitative estimates of medial temporal atrophy as a predictor of progression from mild cognitive impairment to dementia. Archives of Neurology, 64, 108–115.
dc.source.bibliographicCitationDe Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 133, 277–285.
dc.source.bibliographicCitationDe Leon, M. J., De Sant, S., Zinkowski, R., et al. (2004). Key Symposium: MRI and CSF studies in the early diagnosis of Alzheimer’s disease. Journal of Internal Medicine, 256, 205–223.
dc.source.bibliographicCitationDen Heijer, T., Geerlings, M. I., Hoebeek, F. E., Hofman, A., Koudstaal, P. J., & Breteler, M. M. (2006). Use of hippocampal and amygdalar volumes on magnetic resonance imaging to predict dementia in cognitively intact elderly people. Archives of General Psychiatry, 63, 57–62.
dc.source.bibliographicCitationDen Heijer, T., van der Lijn, F., Koudstaal, P. J., Hofman, A., van der Lugt, A., Krestin, G. P., Niessen, W. J. & Breteler, M. M. B. (2010). A 10-year follow-up of hippocampal volume on magnetic resonance imaging in early dementia and cognitive decline. Brain, 133, 1163-1172.
dc.source.bibliographicCitationDevanand, D. P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., et al. (2007). Hippocampal and entorhinal atrophy in mild cognitive impairment: prediction of Alzheimer disease. Neurology, 68, 828–836.
dc.source.bibliographicCitationDevanand, D. P., Liu, X., Tabert, M. H., et al. (2008), Combining early markers strongly predicts conversion from mild cognitive impairment to Alzheimer’s disease. Biological Psychiatry, 64, 871–879.
dc.source.bibliographicCitationDevanand, D. P., Bansal, R., Liu, J., Hao, X., Pradhaban, G., & Peterson, B. S. (2012). MRI hippocampal and entorhinal cortex mapping in predicting conversion to Alzheimer’s disease. NeuroImage, 60, 1622–1629.
dc.source.bibliographicCitationDickerson, B. C., Goncharova, I., Sullivan, M. P., et al. (2001). MRI derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiology of Aging, 22, 747–754.
dc.source.bibliographicCitationDickerson, B. C., Fenstermacher, E., Salat, D. H., Wolk, D. A., Maguire, R. P., Desikan, R., Pacheco, J., Quinn, B. T., Van der Kouwe, A., Greve, D. N., Albert, M. S., Killiany, R. J. & Fischl, B. (2008). Detection of cortical thickness correlates of cognitive performance: reliability across MRI scan sessions, scanners, and field strengths. Neuroimage, 39, 10-18.
dc.source.bibliographicCitationDickerson, B. C. & Wolk, D. A. (2012). MRI cortical thickness biomarker predicts AD-like CSF and cognitive decline in normal adults. Neurology, 78, 84-90.
dc.source.bibliographicCitationDickerson, B. C., Wolk, D. A., & The Alzheimer’s Disease Neuroimaging Initiative. (2013). Biomarker-based prediction of progression in MCI: Comparison of AD signature and hippocampal volume with spinal fluid amyloid-betaβ and tau. Frontiers in Aging Neuroscience, 5, 55.
dc.source.bibliographicCitationDu, A.T., Schuff, N., Amend, D., et al. (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 71, 441–447.
dc.source.bibliographicCitationDuara, R., Loewenstein, D. A., Potter, E., et al. (2008). Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology, 71, 1986–1992.
dc.source.bibliographicCitationEscobar, A. (2001). Envejecimiento cerebral normal. Revista Mexicana de Neurociencia, 2(4), 197-202.
dc.source.bibliographicCitationDuque, J. (2003). Relaciones neurobiológicas y envejecimiento. Revista de neurología. 36. 6, 549-554.
dc.source.bibliographicCitationEskildsen, S. F., Coupé, P., García, D., Fonov, V., Pruessner, J. C., Collins, D. L., & The Alzheimer’s Disease Neuroimaging Initiative. (2013). Prediction of Alzheimer's disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. NeuroImage, 65, 511-521.
dc.source.bibliographicCitationEwers, M., Walsh, C., Trojanowski, J. Q., et al, & The North American Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2012). Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging, 33, 1203–1214.
dc.source.bibliographicCitationFerrarini, L., Frisoni, G. B., Pievani, M., Reiber, J. H., Ganzola, R., & Milles, J. (2009). Morphological hippocampal markers for automated detection of Alzheimer’s disease and mild cognitive impairment converters in magnetic resonance images. Journal of Alzheimer´s Disease, 17,643–659.
dc.source.bibliographicCitationFleisher, A. S., Sun, S., Taylor, C., et al. (2008). Volumetric MRI vs clinical predictors of Alzheimer disease in mild cognitive impairment. Neurology, 70(3), 191–99.
dc.source.bibliographicCitationFleischman, D. A., Leurgans, S., Arfanakis, K., Arvanitakis, Z., Barnes, L. L., Boyle, P. A., Han, D., & Bennet, D. A. (2014). Gray-matter macrostructure in cognitively healthy older persons: associations with age and cognition. Brain structure & function, 219(6), 2029- 2049.
dc.source.bibliographicCitationFjell, A. M., Amlien, I. K., Westlye L.T., Stenset, V., Fladby, T., Skinningsrud, A., Eilsertsen, D.E., Bjornerud, A., & Walhovd, K.B. (2010). CSF biomarker pathology correlates with a medial temporo-parietal network affected by very mild to moderate Alzheimer’s disease but not a fronto-striatal network affected by healthy aging. NeuroImage, 49, 1820–1830.
dc.source.bibliographicCitationFox, N. C., Crum, W. R., Scahill, R. I., Stevens, J. M., Janssen, J. C., & Rossor, M. N. (2001). Imaging of onset and progression of Alzheimer’s disease with voxel-compression mapping of serial magnetic resonance images. Lancet Neurology, 358, 201–205.
dc.source.bibliographicCitationGontier, J. (2004). Memoria de trabajo y envejecimiento. Revista de Psicología de la Universidad de Chile, 13(2), 111-124.
dc.source.bibliographicCitationGosche, K. M., Mortimer, J. A., Smith, C. D., Markesbery, W. R., & Snowdon, D. A. (2002). Hippocampal volume as an index of Alzheimer neuropathology: findings from the Nun Study. Neurology, 58, 1476–1482.
dc.source.bibliographicCitationBeltran, V., Padilla, E., Palma, L., Aguilar, A., Díaz, S. (2011). Bases neurobiológicas del envejecimiento neuronal. Revista digital universitaria. 12, 3, 3-11.
dc.source.bibliographicCitationHernández, L., Montañés, P., Gamez, A., Cano, C., Castellar, E. (2007). Neuropsicología del envejecimiento normal. Revista de la Asociación Colombiana de Gerontología y Geriatría. 21, 1, 992-1004.
dc.source.bibliographicCitationIkram, M. A., Vrooman, H. A., Vernooij, M. W., van der Lijn, F., Hofman, A., van der Lugt, A., et al. (2008). Brain tissue volumes in the general elderly population. The Rotterdam Scan Study. Neurobiology of Aging, 29, 882–890.
dc.source.bibliographicCitationJack, C. R., Petersen, R. C., Xu, Y. C., Waring, S. C., O’Brien, P. C., Tangalos, E. G., et al. (1997). Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology, 49, 786–794.
dc.source.bibliographicCitationJack, C. R., Peterson, R.C., Xu, Y., O’Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., et al. (2000). Rates of hippocampal atrophy correlate with the change in clinical status in aging and AD. Neurology, 55, 484– 489.
dc.source.bibliographicCitationJack, C, R., Knopman, D. S., Jagust, W. J., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12, 207–16.
dc.source.bibliographicCitationKaras, G. B., Scheltens, P., Rombouts, S. A., Visser, P. J., van Schijndel, R. A., Fox, N. C., Barkhof, F. (2004). Global and local gray matter loss in mild cognitive impairment and Alzheimer's disease. NeuroImage, 23(2), 708-716.
dc.source.bibliographicCitationKilliany, R. J.,Gomez, T,, Moss, M., et al. (2000). Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Annals of Neurology, 47, 430–439.
dc.source.bibliographicCitationKilliany, R. J., Hyman, B. T, Gomez, T., et al. (2002). MRI measures of entorhinal cortex versus hippocampus in preclinical AD. Neurology, 58, 1188–1196.
dc.source.bibliographicCitationKirova, A., Bays, R., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer´s disease. BioMed Research International, 1-9.
dc.source.bibliographicCitationKorf, E. S., Wahlund, L. O., Visser, P. J., & Scheltens, P. (2004). Medial temporal lobe atrophy on MRI predicts dementia in patients with mild cognitive impairment. Neurology, 63, 94–100.
dc.source.bibliographicCitationLapuente, R. & Sánchez, J. P. (1998). Cambios neuropsicológicos asociados al envejecimiento normal. Anales de psicología, 14(1), 27 - 43
dc.source.bibliographicCitationLehericy, S., Baulac, M., Chiras, J., et al. (1994). Amygdalohippocampal MR volume measurements in the early stages of Alzheimer’s disease. American Journal of Neuroradiology, 15, 929–937.
dc.source.bibliographicCitationLiu, Y., Mattila, J., Ruiz, M. A., et al, & The Alzheimer’s Disease Neuroimaging Initiative. (2013). Predicting AD conversion: comparison between prodromal AD guidelines and computer assisted Predict AD tool. PLOS ONE, 8, e55246.
dc.source.bibliographicCitationLuis, C. A., Barker, W. W., Loewenstein, D. A., et al. (2004). Conversion to dementia among two groups with cognitive impairment. Dementia and Geriatric Cognitive Disorders, 18, 307–313.
dc.source.bibliographicCitationLuszcz, M. (1999). Toward understanding age-related memory loss in late adulthood. Gerontology, 45, 2- 9.
dc.source.bibliographicCitationMattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., et al. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392, 32-37.
dc.source.bibliographicCitationMcEvoy, L.K., Notestine, C. F., Roddey, J.C., Hagler, D.J., Holland, D., Karow, D.S., Pung, C. J., Brewer, J.B., & Dale, A.M. (2009). Alzheimer Disease: Quantitative Structural Neuroimaging for Detection and Prediction of Clinical and Structural Changes in Mild Cognitive Impairment. Radiology, 251(1), 195-205.
dc.source.bibliographicCitationMontes, J., Gutiérrez, L., Silva, J. F., García, G. & Del río, Y. (2012). Perfil cognoscitivo de adultos mayores de 60 años con y sin deterioro cognoscitivo. Revista chilena de neuropsicología, 7(3), 121-126.
dc.source.bibliographicCitationMora, S., García, R., Perea, M. V., Ladera, V., Unzueta, J., Patiño, M. C. & Rodríguez, E. (2012). Deterioro cognitivo leve: detección temprana y nuevas perspectivas. Revista de neurología, 54(5), 303-310.
dc.source.bibliographicCitationMorris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., & Berg, L. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58(3), 397-405.
dc.source.bibliographicCitationMortimer, J. A., Borenstein, A. R., Gosche, K. M., & Snowdon, D, A. (2005). Very early detection of Alzheimer neuropathology and the role of brain reserve in modifying its clinical expression. Journal of Geriatric Psychiatry and Neurology, 18, 218–223.
dc.source.bibliographicCitationMüller, M. J., Greverus, D., Dellani, P. R., Weibrich, C., Wille, P. R., Scheurich, A., Stoeter, P., Fellgiebel, A. (2005). Functional implications of hippocampal volume and diffusivity in mild cognitive impairment. NeuroImage, 28(4), 1033-1042.
dc.source.bibliographicCitationMungas, D., Harvey, D., Reed, B. R., Jagust, W. J, DeCarli, C., Beckett, L., Mack, W. J., Kramer, J.H., Weiner, M.W., Schuff, N., & Chui, H.C. (2005). Longitudinal volumetric MRI change and rate of cognitive decline. Neurology, 65(5), 565-571.
dc.source.bibliographicCitationOrganización Mundial de la Salud. (2013). Epidemiología de la demencia. En Organización Mundial de la Salud, Demencia: Una prioridad de salud pública (pp. 11-32). Washington: Organización Panamericana de la Salud.
dc.source.bibliographicCitationPalmer, K., Backman, L., Winblad, B., & Fratiglioni, L. (2008a). Early symptoms and signs of cognitive deficits might not always be detectable in persons who develop Alzheimer’s disease. International Psychogeriatrics, 20, 252–258.
dc.source.bibliographicCitationPalmer, K., Backman, L., Winblad, B., & Fratiglioni, L. (2008b). Mild cognitive impairment in the general population: occurrence and progression to Alzheimer disease. American Journal of Geriatric Psychiatry, 16, 603–11.
dc.source.bibliographicCitationPéres, K., Chrysostome, V., Fabrigoule, C., Orgogozo, J. M., Dartigues, J. F., & Barberger, P. (2006). Restriction in complex activities of daily living in MCI: impact on outcome. Neurology, 67, 461–466.
dc.source.bibliographicCitationPérez, V. T. (2005). El deterioro cognitivo: una mirada previsora. Revista cubana de medicina general integral, 21(1-2), 1-9.
dc.source.bibliographicCitationPetersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56, 303–308.
dc.source.bibliographicCitationPetersen, R. C., Doody, R., Kurz, A., et al. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.
dc.source.bibliographicCitationPetersen, R. C. (2004). Mild cognitive impairment as a diagnostic entity. J Intern Med, 256(3), 183-194.
dc.source.bibliographicCitationPihlajamäki, M., Jauhiainen, A. M., & Soininen, H. (2009). Structural and functional MRI in mild cognitive impairment. Current Alzheimer Research, 6(2), 179-185.
dc.source.bibliographicCitationPrins, N. D., van Dijk, E. J., den Heijer, T., Vermeer, S. E., Jolles, J., Koudstaal, P. J., et al. (2005). Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain, 128, 2034–2041.
dc.source.bibliographicCitationRamani, A., Jensen, J. H., & Helpern, J. A. (2006). Quantitative MR imaging in Alzheimer disease. Radiology, 241(1), 26-44.
dc.source.bibliographicCitationRaz, N., Gunning, F. M., Head, D., et al. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268–82.
dc.source.bibliographicCitationRidha, B. H., Barnes, J., Bartell, J. W., Godbolt, A., Pepple, T., Rossor, M. N., Fox, N. C. (2006). Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. Lancet Neurology, 5, 828-834.
dc.source.bibliographicCitationRidha, B. H., Barnes, J., van de Pol, L. A., Schott, J. M., Boyes, R. G., Siddique, M.M., et al. (2007). Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Archives of Neurology, 64, 849–54.
dc.source.bibliographicCitationRitchie, K., Artero, S., & Touchon, J. (2001). Classification criteria for mild cognitive impairment: a population-based validation study. Neurology, 56, 37–42.
dc.source.bibliographicCitationRosenbaum, R. S., Köhler, S., Schacter, D. L., Moscovitch, M., Westmacott, R., Black, S. E., Gao, F., & Tulving, E. (2005). The case of K.C.: Contributions of a memory- impaired person to memory theory. Neuropsychologia, 43, 989–1021.
dc.source.bibliographicCitationRuitenberg, A., Ott, A., van Swieten, J. C., Hofman, A., Breteler, M. M. B. (2001). Incidence of dementia: does gender make a difference? Neurobiol Aging, 22, 575–580.
dc.source.bibliographicCitationRusinek, H., Endo, Y., De Santi, S., et al. (2004). Atrophy rate in medial temporal lobe duringprogression of Alzheimer disease. Neurology, 63, 2354–2359.
dc.source.bibliographicCitationSarria, S., Frascheri, L., Siurana., Auger, C., Rovira, A. (2013) Neurocisticercosis. Hallazgos radiológicos. Radiología, 55(2): 130-141.
dc.source.bibliographicCitationSaavedra, C., Serrano, J. M., Martín, P. & Pardo, A. (2009). Alteración de la memoria de trabajo en personas mayores con y sin deterioro cognitivo. Psicogeriatría, 1(2), 81-88.
dc.source.bibliographicCitationScheltens, P., Leys, D., Barkhof, F., et al. (1992). Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. Journal of Neurology, Neurosurgery & Psychiatry, 55, 967–72.
dc.source.bibliographicCitationSchott, J. M., Fox, N. C., Frost, C., et al. (2005). Assessing the onset of structural change in familial Alzheimer’s disease. Annals of Neurology, 53, 181–188.
dc.source.bibliographicCitationShyu, K. K., Wu, Y. T., Chen, T. R., Chen, H.Y., Hu, H.H., & Guo, W.Y. (2010). Measuring complexity of fetal cortical surface from MR images using 3-D modified box counting method. Instrumentation & Measurement Magazine, 99, 1–10.
dc.source.bibliographicCitationSloane, P. D., Zimmerman, S., Suchindran, C., Reed, P., Wang, L., Boustani, M. & Sudha, S. (2002). The public health impact of Alzheimer´s disease, 2000-2050: potential implication of treatment advances. Annual Review of Public Health, 23, 213-231.
dc.source.bibliographicCitationSmith, G. E., Petersen, R.C., Parisi, J.E., et al. (1996). Definition, course, and outcome of mild cognitive impairment. Aging, Cognition, and Neuropsychology, 3, 141–147.
dc.source.bibliographicCitationSonnen, J. A., Montine, K. S., Quinn, J. F., Kaye, J. A., Breitner, J. C., Montine, T. J. (2008). Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurology,7, 704–14.
dc.source.bibliographicCitationStoub, T. R., Rogalski, E. J., Leurgans, S., Bennett, D. A., & Detoledo, L. (2008) Rate of entorhinal and hippocampal atrophy in incipient and mild Alzheimer’s disease: Relation to memory function. Neurobiology of Aging, 31(7), 1089-1098.
dc.source.bibliographicCitationStuss, D.T,. Gallup Jr, G.G., Alexander, M.P. (2001). The frontal lobes are necessary for the “theory of mind”. Brain, 124, 279-286.
dc.source.bibliographicCitationTapiola, T., Pennanen, C., Tapiola, M., et al. (2008). MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiology of Aging, 29, 31–38.
dc.source.bibliographicCitationTeipel, S., Drzezga, A., Grothe, M. J., Barthel, H., Chételat, G., Schuff, N., Skudlarski, P., Cavedo, E., Frisoni, G. B., Hoffmann, W., Thyrian, J. R., Fox, C., Minoshima, S., Sabri, O., Fellgiebel, A. (2015). Multimodal imaging in alzheimer’s disease: validity and usefulness for early detection. Lancet Neurology, 14, 1037-1053
dc.source.bibliographicCitationThomas, B. P., Welch, E. B., Niederhauser, B. D., Whetsell, W. O., Anderson, A. W., Gore, J. C., et al. High-resolution (2008). 7T MRI of the human hippocampus. Journal of Magnetic Resonance Imaging, 28, 1266–1272.
dc.source.bibliographicCitationTisserand, D. J., Visser, P. J., van Boxtel, M. P. K. & Jolles, J. (2000). The relation between global and limbic volumes on MRI and cognitive performance in healthy individual across the age range. Neurobiology of Aging, 21(4), 569-576.
dc.source.bibliographicCitationTrzepacz, P. T., Yu, P., Sun, J., et al, & The Alzheimer’s Disease Neuroimaging Initiative. (2014). Comparison of neuroimaging modalities for the prediction of conversion from mild cognitive impairment to Alzheimer’s dementia. Neurobiology of Aging, 35, 143–51.
dc.source.bibliographicCitationVan der Lijn, F., den Heijer, T, Breteler, M. M., Niessen, W. J. (2008). Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage, 43, 708–720.
dc.source.bibliographicCitationVisser, P. J., Scheltens, P., Verhey, F. R., et al. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246, 477–485.
dc.source.bibliographicCitationWahlund, L. O., Julin, P., Johansson, S. E., & Scheltens, P. (2000). Visual rating and volumetry of the medial temporal lobe on magnetic resonance imaging in dementia: a comparative study. Journal of Neurology, Neurosurgery & Psychiatry, 69, 630–635.
dc.source.bibliographicCitationWee, C. Y., Yap, P. T., Shen, D., & The Alzheimer’s Disease Neuroimaging Initiative. (2013). Prediction of Alzheimer’s disease and mild cognitive impairment using cortical morphological patterns. Human Brain Mapping, 34, 3411–3425.
dc.source.bibliographicCitationWestman, E., Cavallin, L., Muehlboeck, J. S., et al, and the Add Neuro Med consortium. (2011).Sensitivity and specificity of medial temporal lobe visual ratings and multivariate regional MRI classification in Alzheimer’s disease. PLOS ONE, 6, e22506.
dc.source.bibliographicCitationWhitwell, J.L., Shiung, M.M., Przybelski, S.A.,Weigand, S. D., Knopman, D.S., Boeve, B. S., Petersen, R. C., & Jack, C. R. (2008). MRI patterns of atrophy associated with progression to AD in amnestic mild cognitive impairment. Neurology, 70, 512-520.
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectAtrofia cortical difusaspa
dc.subjectDesempeño cognitivospa
dc.subjectMemoria de Trabajospa
dc.subjectRazonamiento simbólico verbalspa
dc.subjectMemoria anterógrada declarativaspa
dc.subjectNeuroimagenspa
dc.subject.ddcEnfermedades
dc.subject.decsAtrofiaspa
dc.subject.decsPsicologíaspa
dc.subject.decsDesarrollo cognitivospa
dc.subject.keywordDiffuse cortical atrophyeng
dc.subject.keywordCognitive performanceeng
dc.subject.keywordWorking memoryeng
dc.subject.keywordVerbal symbolic reasoningeng
dc.subject.keywordDeclarative anterograde memoryeng
dc.subject.keywordNeuroimageeng
dc.titleRelación entre atrofia cortical difusa y desempeño cognitivo : estudio en población mayor de 60 años en un hospital universitario en la ciudad de Bogotáspa
dc.typebachelorThesiseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
local.department.reportEscuela de Medicina y Ciencias de la Saludspa
Archivos
Bloque original
Mostrando1 - 1 de 1
Cargando...
Miniatura
Nombre:
Cogollos_PiedrahitaandUrquijo_TG2_162v3.pdf
Tamaño:
783.06 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal