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Abstract

In this paper we overcome a lacks of Black-Scholes model, i. e. the infinite
propagation velocity, the infinitely large asset prices etc. The proposed model
is based on the telegraph process with jumps. The option price formula is
derived.
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1. Basic model

We consider the continuous-time model with one risky asset (a share with
price St at time t) and a riskless asset (with price Bt = ert at time t). We
suppose the stock price St follows the equation

dSt = St−(adt+ cd(Xt − ηt)). (1.1)

Here

Xt =

t∫
0

(−1)Nsds (1.2)

is the so-called telegraph process driven by a Poisson process N = Nt, t ≥ 0
(with parameter λ > 0), ηt is some pure jump process. We suppose the
process St, t ≥ 0 to be right-continuous.
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It is well known that the telegraph process X posesses inertia and thus if
ηt ≡ 0, the model has the arbitrage opportunities. The respective arbitrage
strategy (at least for a, c > 0, r = 0) can be described as follows. Let T > 0
be a fixed time horizon. For arbirary A, B, S0 < A < B < S0e

(a+c)T , one
can buy the risky asset at the time t1 = min{t ∈ [0, T ] : St = A} and, then
sell it at time t2 = min{t > t1, t ≤ T : St = A or St = B}. Note that
t1 coincides with the turn of trend with zero probability. If St2 = A, then
we have no losses. Thus this strategy creates the positive capital with the
positive probability IP{St2 = B}.

Hereafter we consider the process ηt of the following form

ηt =
1

2λ

(
1− (−1)Nt

)
. (1.3)

It makes the process Xt − ηt, t ≥ 0 to be a martingale (with respect to the
driving Poisson process N = Nt).

Remark 1.1. In the model (1.1) the jumps’ values are ± 1
λ
. If the jumps’

values |∆ητj
| 6= 1

λ
, the model (1.1) does not have martingale measures (see

the proof of Lemma 1.1 below).

Remark 1.2. It is well known (see e. g. [2], [3]), that the process cXt, t ∈
[0, T ] converges to vwt, t ∈ [0, T ] as c, λ → ∞, c2/λ → v2. Clearly, ηt

defined by (1.3) a. s. converges to 0. Thus in such rescaling the model (1.1)
converges to Black-Scholes model.

Equation (1.1) can be rewritten in the form

dSt = St

(
(a+ cσt)dt+

c

2λ
dσt

)
, (1.4)

where σt = (−1)Nt . The solution of (1.4) has the form of stochastic expo-
nential

St = Et

(
at+ cXt +

c

2λ
σt

)
= S0 exp

(
at+ cXt +

c

2λ
σt

)∏
s≤t

(
1 +

c

2λ
∆σs

)
e−

c
2λ

∆σs

= S0 exp(at+ cXt)κ
c
t , (1.5)
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where ∆σs denotes the jump value of σ at time s and

κc
t =


(1− c2/λ2)n, Nt = 2n

(1− c2/λ2)n(1− c/λ), Nt = 2n+ 1
, n = 0, 1, 2, . . .

We assume the following restrictions on the parameters:

|r − a| < |c|, (1.6)

|c| < λ. (1.7)

If (1.6) fails, the model has the arbitrage opportunities. Assumption (1.7)
guarantees the stock price St to be positive.

As the process N is the unique source of randomness, there is only one
equivalent martingale measure. We are looking for the respective martingale
in the form Mt = µ(Xt − ηt), 0 ≤ t ≤ T (cf. [1], Chapter 1.3). Denote
Zt = Et(M).

Lemma 1.1. The process (ZtB
−1
t St)t≥0 is the martingale (with respect to the

original measure P ) if and only if

µ =
λ(r − a)

c
. (1.8)

Proof. First notice that ZtB
−1
t St = S0e

−rtEt(Mt)Et(at+ c(Xt − ηt)). By
the Yor’s rule it equals to

S0e
−rtEt(Ψ),

where
Ψ = Ψt = at+ c(Xt − ηt) +Mt + cµ

∑
s≤t

(∆ηs)
2.

To finish the proof it is sufficient to make Ψt − rt to be a martingale.
This is plain that

Ψt − rt = (a− r)t+ (c+ µ)(Xt − ηt) +
cµ

λ2
Nt.

Thus ZtB
−1
t St is the martingale iff µ fits the equation

a− r +
cµ

λ
= 0,
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which completes the proof. ut
The density of martingale measure P ∗ is

Zt =
dP ∗

t

dPt

= Et(M) = exp(µXt)κ
µ
t ,

where µ is defined in (1.8) and, so

κµ
t =


(1− (a− r)2/c2)n, Nt = 2n

(1− (a− r)2/c2)n(1− (a− r)/c), Nt = 2n+ 1
, n = 0, 1, 2, . . .

2. Pricing and hedging options

Fix time horizon T and consider a trading strategy Πt = (ϕt, ψt)0≤t≤T , where
ϕ represents the amount of the risky asset held over time and ψ is the same
for the bond. We suppose the processes ϕ and ψ to be adapted with the
driving Poisson process. To take the jumps in account we will constrain the
processes ϕ and ψ to be left-continuous.

The value at time t of the strategy Πt is given by Vt = ϕtSt + ψte
rt, 0 ≤

t ≤ T and the strategy is self-financing if

dVt = ϕtdSt + ψtdBt = ϕtSt(adt+ cdXt) + ψtre
rtdt

between the jump times, and at the jump time τj the value Vt jumps by
∆Vτj

= ϕτj
∆Sτj

= c
λ
ϕτj

στj
Sτj−.

The condition of self-financing can be written now as

Vt = V0 +

t∫
0

ϕsSs(ads+ cdXs) +

t∫
0

ψsre
rsds+

c

λ

Nt∑
j=1

ϕτj
στj
Sτj−. (2.1)

Consider the function

F (t, x, σ) = IE∗
(
e−r(T−t)f

(
xea(T−t)+cσXT−tκcσ

T−t

))
= e−r(T−t)IE

(
eµσXT−tκµσ

T−tf
(
xea(T−t)+cσXT−tκcσ

T−t

))
, (2.2)

0 ≤ t ≤ T, −∞ < x <∞, σ = ±1,
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where IE∗ denotes the expectation with respect to the equivalent martingale
measure P ∗ defined in section 1. We decompose F into two parts, i. e.
F = F+ +F−, where F+ and F− respect to the even and odd number of turns
at time T − t of the telegraph particle.

Denoting by pn = pn(y, t) the probability densities of the telegraph par-
ticle, which commences n turns at time t, we can rewrite F± as follows:

F+(t, x, σ) = e−r(T−t)
∞∑

n=0

(1− µ2/λ2)n

·
∞∫

−∞

eσµyf
(
xea(T−t)+σcy(1− c2/λ2)n

)
p2n(y, T − t)dy, (2.3)

F−(t, x, σ) = e−r(T−t)
∞∑

n=0

(1− µ2/λ2)n(1− σµ/λ)

·
∞∫

−∞

eσµyf
(
xea(T−t)+σcy(1− c2/λ2)n(1− σc/λ)

)
p2n+1(y, T − t)dy, (2.4)

such that F (t, x, σ) ≡ F+(t, x, σ) + F−(t, x, σ).

Theorem 2.1. Let X = f(ST ) be the non-negative claim, which is square-
integrable under the probability P ∗. Then there exists the replicating left-
continuous in t strategy Πt = (ϕt, ψt)0≤t≤T , where

ϕt =
1

cσt(1− µσt/λ)St

{(λ− µσt)(F+(t, St, σt)− F+(t, St(1− cσt/λ), σt))

+(λ+ µσt)(F−(t, St, σt)− F−(t, St(1 + cσt/λ), σt))} (2.5)

+
2

1− µσt/λ

∂F−
∂x

(t, St, σt)

between jumps and

ϕτj
=
F (τj, Sτj

, στj
)− F (τj−, Sτj−, στj−)

στj
Sτj−c/λ

;

ψt = e−rt(Vt − ϕtSt).
The strategy value Vt is

Vt = IE∗
(
e−r(T−t)f(ST ) | Ft

)
= F (t, St, σt).

5



By the definitions it is easy to prove the following assertion.

Lemma 2.1. Let ϕt, 0 ≤ t ≤ T be an adapted, left-continuous process and
let V0 ∈ IR . There exists a unique process ψt, 0 ≤ t ≤ T such that the pair
Πt = (ϕt, ψt), 0 ≤ t ≤ T defines the self-financing strategy with initial value
V0. The value of this strategy at time t is given by

Vt = V0 + r

t∫
0

Vsds+ c

t∫
0

ϕsSsσs

(
1− µσs

λ

)
ds+

c

λ

Nt∑
j=1

ϕτj
στj
Sτj−.

Proof. Inserting in the self-financing condition (2.1) ψs = e−rs(Vs−ϕsSs)
one can see, that

Vt = V0 + r

t∫
0

Vsds+

t∫
0

ϕsSs (a− r + σs) ds+
c

λ

Nt∑
j=1

ϕτj
στj
Sτj−.

To finish the proof of the lemma it is sufficient to note that by (1.8) a−r+cσ =

cσ
(
1− µσ

λ

)
, σ = ±1. ut

Further, let us notice, that, as usual,

Vt = IE∗
(
e−r(T−t)f(ST ) | Ft

)
.

By (1.5)

Vt = IE∗
(
e−r(T−t)f(S0e

aT+cXTκc
T ) | Ft

)
= IE∗

(
e−r(T−t)f(Ste

a(T−t)+c
∫ T

t
σsdsκc

T/κ
c
t) | Ft

)
= F (t, St, σt),

where F is defined by (2.2).

Lemma 2.2. Let Vt, 0 ≤ t ≤ T be the value of strategy with the initial value
V0 = IE∗(e−rTf(ST )) = F (0, S0, +1). Then

Vt = V0 + r

t∫
0

Vsds+
∫ t

0
(λ−µσs) (F+(s, Ss, σs)− F+(s, Ss(1− cσs/λ), σs)) ds

+
∫ t

0
(λ+ µσs) (F−(s, Ss, σs)− F−(s, Ss(1 + cσs/λ), σs)) ds

+2c

t∫
0

σsSs
∂F−
∂x

(s, Ss, σs)ds+
Nt∑
j=1

(
F (τj, Sτj

, στj
)− F (τj−, Sτj−, στj−)

)
.

6



Proof. First notice that between the jumps

Vt = V0 +

t∫
0

∂F

∂s
(s, Ss, σs)ds+

t∫
0

∂F

∂x
(s, Ss, σs)Ss(a+ cσs)ds. (2.6)

Then by Appendix the densities pn resolve the equations (3.3)-(3.4).
To detalize (2.6) we use (2.3)-(2.4) and (3.3)-(3.4). After some simplifi-

cation we have between jumps

∂F

∂t
(t, x, σ) = (r + λ)F (t, x, σ)− ax

∂F

∂x
(t, x, σ)

−cσx∂F+

∂x
(t, x, σ) + cσx

∂F−
∂x

(t, x, σ)

−λ ((1 + σµ/λ)F−(t, x(1 + cσ/λ), σ) + (1− σµ/λ)F+(t, x(1− cσ/λ), σ))

−µσ(F+(t, x, σ)− F−(t, x, σ)).

Combining this with representation (2.6) we complete the proof of the lemma.
ut

To finish the the proof of (2.5) it is sufficient to compare the results of
Lemma 2.1 and Lemma 2.2. ut

To demonstrate that ϕt is left-continuous we need in the following lemma.

Lemma 2.3. Let τj, j = 1, 2, . . . be the jump times and F± are defined by
(2.3)-(2.4). Then

F+(τj, Sτj
, στj

) = F+(τj−, Sτj−

(
1−

cστj−

λ

)
, στj−)−

2µστj−

λ

F−(τj−, Sτj−, στj−)

1− µστj−/λ

−
2cστj−Sτj−

λ

∂F−
∂x

(τj−, Sτj−, στj−)

1− µστj−/λ
, (2.7)

F−(τj, Sτj
, στj

) =
1 + µστj−/λ

1− µστj−/λ
F−(τj−, Sτj−

(
1 +

cστj−

λ

)
, στj−). (2.8)

Proof. First notice that by (1.5)

στj
= −στj−, Sτj

= Sτj−

(
1− cτj−

λ

)
. (2.9)
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Then, by the exact formulas (3.7)-(3.8) (see Appendix) one can see that

p2n(−x, t) = p2n(x, t) +
2

λ

∂p2n+1

∂x
(x, t), (2.10)

p2n+1(−x, t) = p2n+1(x, t). (2.11)

Applying (2.9)-(2.11) to the definitions (2.3)-(2.4) of F± and integrating
by parts (if it is necessary) one can obtain the lemma. ut

By Lemma 2.3 it is easy to check the left-continuity of ϕt. Indeed, apply-
ing (2.7) and (2.8) to the representation (2.5) we obtain

ϕτj− =
1

cστj−(1− µστj−

λ
)Sτj−

{
(λ− µστj−)

(
F+(τj−, Sτj−, στj−)− F+(τj, Sτj

, στj
))

+
2µστj−

λ

F−(τj−, Sτj−, στj−)

1− µστj−/λ
+

2cστj−Sτj−

λ

∂F−
∂x

(τj−, Sτj−, στj−)

1− µστj−/λ

)

+(λ+ µστj−)

(
F−(τj−, Sτj−, στj−)−

1− µστj−/λ

1 + µστj−/λ
F−(τj, Sτj

, στj
)

)}

+
2

1− µστj−/λ

∂F−
∂x

(τj−, Sτj−, στj−)

=
F (τj, Sτj

, στj
)− F (τj−, Sτj−, στj−)

στj
Sτj−c/λ

= ϕτj
.

Theorem 2.1 is proved.
Now we consider the standard call option with the maturity time T and

with the strike K. Hereafter we suppose that K < S0e
(|c|+a)T .

The strategy value Vt can be obtain conditioning with respect to the
number of jumps

Vt = F (t, St, σt) =
∞∑

n=0

V
(n)
t . (2.12)

Here
V

(0)
t = e(µ−λ−r)(T−t)

(
Ste

(cσt+a)(T−t) −K
)+
,

V
(2n)
t = (z∗−)n(z∗+)n

T−t∫
−(T−t)

p2n(x, T − t)eσtµx
(
Ste

a(T−t)+cσtxzn
−z

n
+ −K

)+
dx,
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V
(2n+1)
t = (z∗−)n+1(z∗+)n

T−t∫
−(T−t)

p2n+1(x, T−t)eσtµx
(
Ste

a(T−t)+cσtxzn+1
− zn

+ −K
)+
dx.

Here

z∗− = 1− r − a

c
, z∗+ = 1 +

r − a

c
,

and
z− = 1− c

λ
, z+ = 1 +

c

λ
.

notice that zn
+, z

n
− → 0, as n →∞. Therefore the sum (2.12) contains only

the finite number of summonds: V
(2n)
t ≡ 0 for n > n0 and V

(2n+1)
t ≡ 0 for

n > n1, where

n0 = max

n : n ≤
ln K

St
− (c+ a)(T − t)

ln(z+z−)

 ,
n1 = max

n : n ≤
ln K

Stz−
− (c+ a)(T − t)

ln(z+z−)

 .
The non-zero terms have the following form:
for n ≤ n0

V
(2n)
t = (z∗−)n(z∗+)n·



T−t∫
xn

p2n(x, T − t)eσtµx
(
Ste

a(T−t)+cσtxzn
−z

n
+ −K

)
dx, cσt > 0

xn∫
−(T−t)

p2n(x, T − t)eσtµx
(
Ste

a(T−t)+cσtxzn
−z

n
+ −K

)
dx, cσt < 0

,

for n ≤ n1

V
(2n+1)
t = (z∗−)n+1(z∗+)n·



T−t∫
yn

p2n+1(x, T − t)eσtµx
(
Ste

a(T−t)+cσtxzn+1
− zn

+ −K
)
dx, cσt > 0

yn∫
−(T−t)

p2n+1(x, T − t)eσtµx
(
Ste

a(T−t)+cσtxzn+1
− zn

+ −K
)
dx, cσt < 0

.

Here we denote

xn = xn(S0, K, T, t) =
ln K

St
− a(T − t)− n ln(z−z+)

cσt

,
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yn = yn(S0, K, T, t) =
ln K

Stz−
− a(T − t)− n ln(z−z+)

cσt

.

Notice that under the above assumptions −(T − t) ≤ xn, yn ≤ T − t.
Densities pn are obtained in Appendix.

3. Diffusion-telegraph model

Now we consider two independent processes: the standard Brownian motion
w = (wt)t≥0 and the Poisson process N = (Nt)t≥0 with parameter λ > 0.
Consider the model of the market with the two risky assets S1 and S2, which
are defined by the following equations:

dSi
t = Si

t

(
aidt+ σidwt + cid(Xt − ηt)

)
, Si

0 > 0, i = 1, 2.

As before we are looking for the martingale M = (Mt)t≥0 in the form

Mt = νwt + µ(Xt − ηt).

Lemma 3.1. Let Zt = Et(M). If ∆ ≡ σ1c2 − σ2c1 6= 0, then ZtB
−1
t Si

t , i =
1, 2 are the martingales if and only if

ν =
(r − a1)c2 − (r − a2)c1

∆
, (3.1)

µ = −λ(r − a1)σ2 − (r − a2)σ1

∆
. (3.2)

Proof. As in Lemma 1.1 ZtB
−1
t Si

t = Si
0e
−rtEt(Ψ

i), where

Ψi
t = ait+ σiwt + ci(Xt − ηt) + νwt + µ(Xt − ηt) + νσit+

µci

λ2
Nt, i = 1, 2.

Thus

Ψi
t − rt = (ai + νσi +

µci

λ
− r)t+ martingale.

Therefore Ψi
t − rt, ı = 1, 2 are the martingales, if and only if ν and µ fit the

system

ai + νσi +
µci

λ
− r = 0, i = 1, 2,
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which leeds to (3.1) and (3.2). The lemma is proved.
The martingale measure P ∗ has the density

Zt =
dP ∗

dP
= Et(M) = exp

(
νwt −

ν2t

2
+ µ(Xt − ηt)

)∏
s≤t

(1− µ∆ηs)e
µ∆ηs

= exp

(
νwt −

ν2t

2
+ µ(Xt − ηt)

)
κµ

t .

It is clear that the process w∗t = wt − νt is the Brownian motion w.r.t.
equivalent martingale measure P ∗.

The price of the option with the claim f = (S1
T −K)+ can be calculated

as follows.
Notice that

B−1
T S1

T = S1
0 exp

(
a1T + σ1wT −

(σ1)2T

2
+ c1(XT − ηT )− rT

)
κc1

T

and

σ1wT + (a1 − r)T = σ1w∗T + σ1νT + (a1 − r)T = σ1w∗T −
µc1

λ
T.

Therefore

B−1
T S1

T = S1
0 exp

(
σ1w∗T + c1(XT − ηT )−

(
µc1

λ
+

(σ1)2

2

)
T

)
κc1

T .

Using the independence of the processes w∗ and N with respect to P ∗ we
obtain

cT = IE∗
(
B−1

T S1
T −Ke−rT

)+

= IE∗
(
S1

0e
c1(XT−ηT )−µc1

λ
Tκc1

T · eσ1w∗T−
(σ1)2T

2 −Ke−rT
)+

= e−λT
∞∑

n=0

Cn,

where Cn are defined below. Conditioning on the number of jumps we have

C0 = eµT · cBS
T

(
S1

0 exp

{
c1T − µc1T

λ

})
,

11



C2k =
(λT )2k

(2k)!

(
1− µ2

λ2

)k T∫
−T

eµxcBS
T

S1
0 exp

c1x− µc1T

λ

(
1− (c1)2

λ2

)k

 dx,

C2k+1 =
(λT )2k+1

(2k + 1)!

(
1− µ2

λ2

)k (
1− µ

λ

)

·
T∫

−T

eµxcBS
T

S1
0 exp

c1x− µc1T

λ

(
1− (c1)2

λ2

)k (
1− c1

λ

)
 dx.

Here cBS
T (s) denotes the price of the standard Black-Scholes call option

with the initial asset price s (and with the maturity time T , the volatility
σ1, the strike K and the interest rate r).

That is in this model the option price of the claim f = (S1
T −K)+ takes

the form of the mixture of the Black-Scholes prices.

Appendix. Telegraph process and its distribu-

tions

Let X = Xt, t ≥ 0 be a telegraph process defined by (1.2). We denote by
pn(x, t), n ≥ 0 the generalized probabilty densities of the current position
of telegraph process which has n turns, i. e. for any measurable set ∆

IP (X(t) ∈ ∆, Nt = n) =
∫
∆

pn(x, t)dx.

First notice that the functions pn(x, t), n ≥ 2 form the solution of the
following equations:

∂p2n

∂t
+
∂p2n

∂x
= −λp2n + λp2n−1, (3.3)

∂p2n+1

∂t
− ∂p2n+1

∂x
= λp2n − λp2n+1. (3.4)

and then

∂2pn

∂t2
=
∂2pn

∂x2
− 2λ

∂pn

∂t
+ λ2(pn−2 − pn), n ≥ 2.
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After the change of variables qn = eλtpn we have

∂2qn
∂t2

=
∂2qn
∂x2

+ λ2qn−2, n ≥ 2. (3.5)

These equations should be supplied with zero initial conditions.
To describe the first two density functions pn, n = 0, 1 note that

p0(x, t) = e−λtδ(x− t).

Further, notice that the conditional distribution of X(t) under the condition
Nt = 1 is the uniform on [−t, t]. Thus

p1(x, t) = λte−λt 1

2t
θ(t2 − x2) =

λ

2
e−λtθ(t2 − x2).

Respectively

q0 = δ(x− t), q1 =
λ

2
θ(t2 − x2).

Equations (3.5) are equivalent to

qn(x, t) =
λ2

2

t∫
0

ds

x+(t−s)∫
x−(t−s)

qn−2(y, t)dy =

∣∣∣∣∣ s′ = s− y,
y′ = s+ y

∣∣∣∣∣

=
λ2

4

t−x∫
0

t+x∫
0

qn−2

(
s′ − y′

2
,
s′ + y′

2

)
ds′dy′. (3.6)

Repeatedly applying (3.6) one can obtain

q2n =
λ2n

22n

(t+ x)(t2 − x2)n−1

n!(n− 1)!
θ(t2 − x2), n ≥ 1 (3.7)

and

q2n+1 =
λ2n+1

22n+1

(t2 − x2)n

(n!)2
θ(t2 − x2), n ≥ 0. (3.8)
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