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Pair trading is a statistical trading strategy based on the concept of mean reverting;

investors select two related assets and establish a relation between them buying the

underpriced asset and selling the overpriced. When the market returns to the equilibrium

the strategy create profit from the short and long position. The empirical application of

this paper proposes the evaluation of three methodologies for the implementation of the

pair trading strategy using the information of Colombian public debt bonds. Finding

that after applying two methodologies of backtesting stochastic stochastic approach show

the best perfomance.
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Chapter 1

Introduction

Capital markets are constantly developing quantitative methods to speculate and in-

crease profits, pairs trading it is one of these strategies and has been used since mid-80s

[Gatev et all, 2006][1]. Pair trading it is a simple algorithm based on three steps: the

identification of two assets that have moved together then follow up the spread between

them and when the movement relation change open a long (short) position on the high

asset (low asset).

The success of these kinds of strategies is based on the need of guaranteeing the mean

reversion process of assets prices. Arbitrage pricing theory (APT) indicates that when

two assets have the same risk factors the return of both should to be the same [Vidya-

murthy,2004] [2], so the key for a successful pair trading is the selection of: pairs and

the threshold to get in (out) of the strategy.

Pairs selection throughout the focus on three main methodologies: Distance method

which is based on the statistical relation of the assets identifies the pairs using the sum

of squared differences between the two normalized price series [Gatev et all, 1999][3].

The second one is conintegration approach, based on Engle and Granger (1987)[4], this

proposal indicates that the time series has to have the following two characteristics in

order to find a long term relation: both series have to be integrated of order d and first

order combined to create a single time series. Finally the stochastic approach involves

the definition of the spread as a latent state variable which follows a Vasicek process

[Elliot,2005]

The use of the Pairs strategy has been studied with sufficient proficiency by academics

and practitioners; however for fixed income market there is not such abundance of re-

search but it is possible highlight two approximations: the first one related with the use

of the return or price of the bonds as price as indicated by Nath [2003][5] and the second
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with the analysis of interest rate term structure in order to exploit deviations from level,

slope and curvature of the yield curve [Chua et all, 2004][6]

The aim of this paper is compare these three methodologies for the most liquid market

in Colombia which is the public debt bonds (TES). The paper is organized as follows this

introduction as chapter 1, chapter 2 outlines the three methodologies; chapter 3 shows

the empirical application for the Colombian market and chapter 4 presents results and

conclusions.



Chapter 2

Pairs Trading

Pairs trading is a statistical trading strategy based on the concept of mean reverting;

investors select two related assets and establish a relative mean between them, buying the

underpriced asset and selling the overpriced. When the market returns to the equilibrium

(or media) the strategy create profit from the short and long position [Zhang, 2012][7].

The strategy requires the definition of: the trigger to get in or out of the strategy, the

definition of formation period and the execution of the trading strategy and of course

the pair selection.

Figure 2.1 indicates as an example of the strategy, the levels where the spread process

exceeds some trigger. This means that when the red line it is above the blue line exists

a pair opportunity.

Figure 2.1: Example of pair trading between TFIT30-TFIT28
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A pair trading strategy has two major characteristics that make it interesting for insti-

tutions do not want to take major market risks: the first one indicates that the expected

return does not depend on the market movement, this means the strategy it is market

neutral [Bolgomolov, 2011][8]. The second one is that pairs trading is cash-neutral.

2.1 Distance Method

According with Gatev [1999][3] the selection of a pair respond a combination of assets

which minimize the sum of squared deviation of normalized prices (SSD). It is simple

strategy with a low cost of implementation and for this reason may be the favorite among

practitioners.

However this approach has some strong assumptions that could not be real for financial

data. The distance method assumes: a static linear relationship between the two assets

and prices which are identically independent random variables. One of the advantages

of this non-parametric model is the absence of mis-specification and mis-estimation but

it does not have forecasting power [Do et all,2006][9].

The trigger and the formation period are arbitrary and according with Gatev [1999][3],

the trigger corresponds two historical standard deviations, and formation period should

be one year and the trading period six months.

Thus the distance measurement is:

SSDx,y =

T∑
i=1

(Sx,i−Sy,i )2 (2.1)

where:

SSDx,y: Sum of squared deviation of normalized prices

Sx,i: Normalized price asset X

Sy,i: Normalized price asset Y

and the normalized prices are:

Sxi =
(Px,i−µx)

σx
Syi =

(Py,i−µy)

σy
(2.2)

where:
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P,i : Price of the asset (x or y)

µ: Historical Media

σ: Historical standard deviation

2.1.1 Pairs Formation - Distance Method

The first step in the selection of pairs to evaluate it is the normalization of the asset

prices, this means:

P a
n t =

(Pa,t−µa)

σa
(2.3)

With Pa,i as the log price of asset a and µ, σ are the mean and standard deviation

respectively.

Next it is necessary to establish the sum squared difference, this would be the criteria

to select de pairs to test.

SSD =
∑

(P a
n − P b

n)2 (2.4)

Finally the 20 pairs with the lowest sum of squared deviation are going to be selected

and to be tested in the pair trading strategy. When an asset is selected to be a part of

pair it is not removed from the sample, so it is possible for one asset to belong to more

than one pair.

2.1.2 Rules to open or close positions

The price spread for distance method will be:

yt = log(P a
n t)− log(P b

nt) (2.5)

According with Gatev et all [1999][3], Bogomolov [2010][8], Do et all [2006][9] and Vidya-

murthy [2004] [2] the selected trigger to open or close positions will be 2 standard devi-

ations of the price spread this means:

Strategy 1:

yt ≥ 2σyt: Sell asset a and buy asset b.
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yt ≤ 2σyt: Buy asset a and sell asset b.

Open positions will be closed when the spread reach 0.5σ value.Also are going to be

evaluated the following triggers 1.5σ and σ. This is: Strategy 2:

yt ≥ 1.5σyt: Sell asset a and buy asset b.

yt ≤ 1.5σyt: Buy asset a and sell asset b.

Strategy 3:

yt ≥ σyt: Sell asset a and buy asset b.

yt ≤ σyt: Buy asset a and sell asset b.

2.2 Cointegration

Cointegration allows the estimation of the long-term relation of two variables when they

have the same integration level, so two non-stationary time series are conintegrated if a

linear combination of them is stationary [Engle and Granger, 1987][4].

Conintegration approach fits perfectly for pairs trading concept which try to exploit

the short-term deviation from a long-term relation. Short-term deviations are rectified

by the error correction which according with Vidyamurthy [2004] [2] correspond to the

adjustment of one or both time series to reach the long term relation; this means that

unlike the distance method, conintegration has the ability of forecasting based on past

information.

The cointegration relation between two assets would be:

log(Pxt)− γlog(Pyt) = µ− εt (2.6)

Where γ represents the cointegration factor , µ the mean of cointegration relationship

and ε a new stationary time series which could be tested using Augmented Dickey Fuller

(ADF) [10] test on the residuals.

The coefficient γ it obtained using a simple OLS regression, this give us:

γ =
Cov(log(Pxt), log(Pyt))

V ar(log(Pyt)
(2.7)
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Augmented Dickey Fuller (ADF) is based on the following auxiliary regression estab-

lishing that when ρ <1 then the series it is stationary. The hypothesis behind the test

are: null hypothesis indicates if ρ = 1 and alternative hypothesis indicates ρ < 1.

∆ε = α+ βt+ ρεt−1 (2.8)

Then the τ statistic from the ADF will be:

τ =
ρ

S.E(ρ)
(2.9)

Yakop [2011] [11]suggests that it is necessary should be considering other tests to iden-

tify the presence of a unitary root in the series. The suggested tests are: Johansen

cointegration test and the Philips Perron (PP) test.

To establish a estacionary relation between the two assets ADF and PP are going to be

implemented.

2.2.1 Pairs Formation - Cointegration Approach

Pairs formation under cointegration aproach involves two main steps. The first one it is

the estimation of spread process, for this purpose the price spread between assets a and

b:

yt = α− log(P a
t )− βlog(P b

t ) + εt (2.10)

Using a simple OLS model the parameters α and β are estimated. The residual vector is

tested using Augmented Dickey Fuller (ADF) and Philips Perron test to prove station-

arity of the series. Both tests are evaluated at significance level of 5%.Pairs who exceed

this confidence level will be used to implement the strategy.

Here it is important to remark that unlike the other two methodologies, the use of

cointegration shows the existence of a mechanism of selection of pairs (unit root tests)

2.2.2 Rules to open or close positions

As previously defined the spread between asset prices was estimated by equation [2.10]

and the parameters α and β are defined by the OLS estimation. To create a consistent
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method to compare the methodologies the triggers for cointegration will be the same for

distance method:2,1.5 and 1 standard deviation from the price spread process yt.

Strategy 1:

yt ≥ 2σyt: Sell asset a and buy asset b.

yt ≤ 2σyt: Buy asset a and sell asset b.

Strategy 2:

yt ≥ 1.5σyt: Sell asset a and buy asset b.

yt ≤ 1.5σyt: Buy asset a and sell asset b.

Strategy 3:

yt ≥ σyt: Sell asset a and buy asset b.

yt ≤ σyt: Buy asset a and sell asset b.

The estimated parameters will remain constant throughout the trading period and open

positions will be closed when the spread reach 0.5σ value

2.3 Stochastic Spread

According with Elliot et all (2005)[12] if it is possible to establish a mean reverting

property of the price spread between two assets it is also possible to expect that this

property remains for some time in the future, creating some opportunities for the sta-

tistical arbitrage. Do et all (2006)[9] indicates that the observation process would be:

yt = log(Pat)− log(Pbt) (2.11)

Where yt it is the observed log price spread at time t, and has two main characteristics:

it is described by a state-space model and it is guided by a latent state variable xt which

in its discrete version can be write as:

xt+1 − xt = λ(µ− xt)τ + σ
√
τεt+1 (2.12)

Where λ indicates the mean reverting speed, µ it is the long term spread mean and σ

denotes the standard deviation. In its continuous form xt would be:
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dxt = λ(µ− xt)dt+ σdWt (2.13)

with {Wt |t ≥ 0} as a Brownian motion. Clearly [2.13] shows a Vasicek process which is

a special case of Orsetein-Uhlenbeck model. These kinds of models are widely used to

describe price process from different assets because they implicitly describe the economic

theory of demand and supply: When the price it is too high (low) the demand would

decrease (increase) and supply would increase (decrease) until the market arise a new

point of equilibrium.

The observation process yt also could be expressed as the sum of the state variable and

a Gaussian noise:

yt = xt +Dωt (2.14)

Where ωt are iid N(0,1) and independent of the εt and D > 0 is a constant measure of

errors.

It is possible to re-write the state variable (Eq. 2.12) as:

xt+1 = A+Bxt + εt (2.15)

where A=aτ , B=(1-b)τ and C=σ
√
τ which are constants and could be obtain through

a Kalman Filter.

2.3.1 Kalman Filter

Back to the state-space model previously defined it is possible to define covariance and

mean from the state process as:

x̄t+1 = A+Bx̂t Σ̄xxt + 1 = B2Σxxt + C2 (2.16)

where x̄t and Σ̄xxt + 1 are defined as:

µt = x̂t = x̂t|t = E(xt|Yt) (2.17)

Σ̄xxt = Rt = E[(xt − x̂t)2|Yt)] (2.18)
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Defining Yt as the new arrival of information from the observable variable this is:

Yt = σ{y0, y1, ...., yt} (2.19)

Then and according to Elliot et all [2005][12] recursively it is possible to obtain the

Kalman GainK and from there follow the estimation:

Kt+1 =
Σt+1|t

Σt+1|t +D2
(2.20)

x̂t+1 = x̂t+1|t+1 = x̂t+1|t +Kt+1[yt+1 − x̂t+1|t] (2.21)

Rt+1 = Σt+1|t+1 = D2Kt+1 = Σt+1|t −Kt+1Σt+1|t (2.22)

Finally through the following maximum likelihood function the parameters A,B and C

are obtained

logL(y) =

N∑
i=1

log p(yi|Yi−1)

=
N

2
log 2π − 1

2

N∑
i=1

log|Fi|+ ε′F−1i εi

(2.23)

Where:

Fi = V ar(yi|Yi−1)

ε = yi − E[yi|Yi−1]

2.3.2 Pairs Formation-Stochastic Approach

After obtaining the parameters A, B and C it is possible to obtain the mean and the

standard deviation of the spread between the bonds as follows:

µs =
A

1−B
σs = C (2.24)
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To build the pair it is necesary to obtaining the 20 lowest standard deviations, as in

distance method the literature takes as given the pairs and does not describe how to

select them.

2.3.3 Rules to open or close positions

For the stochastic approximation, the spread will be defined by the latent state variable

xt described in equation [2.15]. As it was previously defined mean and standard deviation

from this process, it is possible to establish some measurement of z-score like:

z − scorestoch =
xt − µs
σs

(2.25)

Using this dispersion measure the pair trading is evalueted

Strategy 1:

xt ≥ 2z − scorestoch: Sell asset a and buy asset b.

xt ≤ 2z − scorestoch: Buy asset a and sell asset b.

Strategy 2:

xt ≥ 1.5z − scorestoch: Sell asset a and buy asset b.

xt ≤ 1.5z − scorestoch: Buy asset a and sell asset b.

Strategy 3:

xt ≥ 1z − scorestoch: Sell asset a and buy asset b.

xt ≤ 1z − scorestoch: Buy asset a and sell asset b.

2.3.4 Backtesting

To perform the backtest of the strategies previously described, it is required establishing

criteria to compare the results obtained from the strategy. Sharpe ratio is this measure.

Sharpe Ratio it is a measure of the excess of return for the assumed risk of an asset or

portfolio in comparison with a risk free or benchmark portfolio. In this case the risk free

rate will be the return of the COLTES basket.

SharpeRatio =
rpair − rCOLTES

σpair
(2.26)
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Following Campbell et all [2015] [13] two types of tests will be carried out using Sharpe

Ratio as an indicator of performance of the strategy as described below:

The first test requires the split of the sample in two groups: The first group will be

call as in sample and it is going to be used to select pairs and establish the parameters

to describe the spread process this sample contains 293 trading dates. For this sample

returns and Sharpe Ratio will be computed as a measure of profitability of the strategy.

The second group will be call as the out of the sample which is used to evaluate how

the parameters obtain from the know history of the asset price behaves during a trading

period where there is uncertainty, this sample contains 100 trading dates.

This first test to backtest is a trading strategy widely used by for practitioners and

academics. However according with Campbell et all [2015] [13] sometimes the use of

the results in-sample and out of the sample could create an overfitting of the out of the

sample results because it is not true that the results during this periodit are unknown,

this can lead to the investor to try to make adjustments for the strategy in order to get

better results during the out of the sample evaluation.

The second test used involves the whole sample and also it is based on the Sharpe ratio.

This methodology assumed normal returns IID to use the Sharpe ratio as hypothesis

test where:

T− statistic =
rpair − rCOLTES

σpair ∗
√

(N)
(2.27)

The correspond p-value will be:

p− value = Pr(|r| > T − statistic) (2.28)

Null hypothesis for this test is that the tested pair strategies can generate zero or negative

returns. Campbell et all [2015] [13] indicates that investors will try N strategies before to

accepting that one strategy it is successful this N tries involve: changes of asset, trigger

or any other factor that could improve the final result. So it is necessary to create a

p-value for the multiple test as:
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p− valueM = Pr(max|ri|, i....N > T − statistic)

=

N∏
i=1

Pr(|r| > T − statistic)

= 1− (1− p− value)N

(2.29)

The main idea it is avoid the overfitting penalizing the use of multiple test reducing the

p-value with any new test. But this measure corresponds to the maximum population

achieved by the strategy evaluated; clearly in a sample level is expected that the Sharpe

Ratio is lower or at best equal to the population. Therefore it is necessary to apply a

haircut for the purpose of adjusting the measurement, this will be the haircutted Sharpe

Ratio (HSR).

This haircut will be:

haircut =
SharpeRatio−HaircuttedSharpeRatio

SharpeRatio
(2.30)

Then we can re-write the p-value for multiple test as:

p− valueM = Pr(max|ri|, i....N > HSR
√

(N)) (2.31)



Chapter 3

Results and conclusions

3.1 Results

The data used for this empirical application of pairs trading corresponds to closing

clean prices from Colombian public debt bonds (TES). The selected issues to evaluate

correspond to those with have mandatory trading operation. The prices are obtained

from Bloomberg and cover 393 trading dates.

In order to evaluate correctly trading strategies it is necessary take into account trans-

action costs that have to be cover by profits generated by the trading activity. For this

purpose it is necessary to apply an adjustment to the final result of the strategy. The

fee to open or close a position belong 0.008% for operations bigger than COP 5000M

according with the Colombian stock exchange (BVC). This means that each time that

the strategy was apply the utility it is adjusted by 0.0016%

Threshold to evaluate each method will be 2, 1.5 and 1 times the standard deviations.

The idea is to evaluate if given the low costs of the operation of the wholesale fixed

income market in Colombia it is possible to increase the return given the possibility of

opening and closing positions with greater speed.

The pairs selected for the distance method and the stochastic approximation correspond

the 20 lowest measures of dispersion (SSD for distance method and σij for stochastic

approach. For cointegration method was evaluated, 27 pairs which simultaneously passed

the ADF and PP tests.

14
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3.1.1 In sample and Out of the sample results

According with results from table A.1 in sample and out of the sample results from

distance method show a positive Sharpe ratio for 95% of the tested pairs using as a

trigger 1σ and 1.5σ and for 2σ the proportion it is reduced to 50% and 30% respectively.

However if the idea of the investor it is no just to get any positive return instead wants

a return that justifies the assumed risk (Sharpe Ratio ¿1) then the proportions seem

lowers and as is expected in sample results are better: in average 52% of the tested pairs

meet this condition, the average for out of the sample results is 38%.

When the pair is tested using a lower standard deviation the profits from applying the

strategy improve. However it does not involve a positive return in all cases. As the

value of the trigger to get in a position decreases, the proportion of pairs that provide

positive returns increases for the in sample results: 2σ 50% of the pairs show a positive

return, for 1.5σ 60% and for 1σ 70% show profits, out sample results indicates that 2σ

40% , 1.5σ 50% and for 1σ 60% show profits.

Cointregration method also shows poorly results in comparison with the returns of the

benchmark basket as well as the distance method. In sample results do not exhibit

any pair with a Sharpe Ratio bigger than one and out of the sample results shows only

three pairs that meet the condition. Table 3.1 exhibits a comparison of the Sharpe ratio

from out of the sample results between the common pairs selected by the distance and

cointegration method, the best performance of the first method is confirmed for triggers

1.5 σ and 1σ.

Table 3.1: Sharpe Ratio common pairs Distance and Cointegration Method

Distance Cointegration

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT19-TFIT22 -99.8985 0.8182 0.951 -12.406 -3.719 -3.212

TFIT19-TFIT24 -7.8580 1.3834 0.571 -6.341 -2.314 -1.977

TFIT19-TFIT26 0.0000 1.1338 1.272 -4.165 -4.023 -2.774

TFIT19-TFIT30 1.2154 1.7303 1.184 -11.849 -6.535 -4.052

TFIT22-TFIT26 -10.8855 0.4583 0.722 -8.339 -1.277 -1.092

TFIT22-TFIT28 3.5650 0.9184 1.008 -11.711 -3.018 -1.792

Mean -18.976 1.073 0.951 -9.135 -3.480 -2.483

The Stochastic approach in general shows better performance than cointegration ap-

proach and distance method. Using in sample outcomes 80% of the tested pair give as
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a result a Sharpe ratio greater than 1 and for the out of sample results the proportion

on average was the 48%. One characteristic of the stochastic approach it is that it does

not seem affected by the change of trigger level as the other methodologies. From this

perspective the performance of this methodology it is superior. Also the comparison of

common pairs between distance and stochastic approach will confirm that statement.

Table 3.2 for instance indicates that the out of the sample results of pair TFIT22-TFIT26

with distance method it does not reach the level of 1 however with Stochastic approach

does it and the return it is the 1.026% .

Table 3.2: Sharpe Ratio common pairs Distance and Stochastic Approach

Distance Stochastic Approach

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT18-TFIT26 0.000 0.962 1.269 -10.107 -10.105 -10.070

TFIT19-TFIT22 -99.899 0.818 0.951 9.831 9.811 9.832

TFIT22-TFIT24 -99.899 0.629 1.355 9.691 9.691 9.691

TFIT22-TFIT26 -10.886 0.458 0.722 -0.188 1.989 1.739

TFIT26-TFIT30 -64.171 0.494 0.198 9.388 8.994 9.784

Mean -54.971 0.672 0.899 3.723 4.076 4.195

3.1.2 Haircutted Sharpe Ratios

Distance method results showed in Table B1 exhibits that using a simple test, 14 pairs

(see Appendix B) with Sharpe Rations greater than 1 and with a confidence level of

95% reject the null hypothesis of zero or negative returns, however as it was describe in

chapter 2 is not enough use a simple test to define that the strategy it a success. After

applying the haircut to Sharpe Ratio remains 6 pairs with Sharpe ratio greater than 1

only at 2σ trigger, of these only two reject the alternative hypothesis of the test.

Table 3.3: Distance Method -Haircutted Sharpe Ratio

Distance Method

HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT18-TFIT24 1.58 0.14 0.00 0.0569 0.4450 0.4994
TFIT22-TFIT30 2.90 0.23 0.00 0.0019 0.4106 0.5000
TFIT19-TFIT22 2.37 0.00 0.00 0.0089 0.5000 0.5000
TFIT19-TFIT26 4.71 0.19 0.00 0.0000 0.4264 0.4998
TFIT19-TFIT28 4.57 0.06 0.00 0.0000 0.4769 0.4993
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Performance of the cointegration approach exhibits an improvement for this backtest

methodology. Using as a trigger 2 σ for individual test, eleven pairs show Sharpe ratios

greater than 1, for 1.5σ there were eight pair and for 1σ only 7 pairs. When the multiple

test methodology it is applied nine pairs for the 2σ reject the null hypothesis.

Table 3.4: Cointegration Approach -Haircutted Sharpe Ratio

Cointegration Approach

HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT1018-TFIT20 6.741 3.194 2.189 0.0000 0.0007 0.0143

TFIT1018-TUVT25 4.211 0.000 0.000 0.0000 0.5000 0.5000

TFIT1018-TFIT26 4.706 4.137 0.380 0.0000 0.0000 0.3519

TFIT1018-TFIT28 4.706 4.681 0.765 0.0000 0.0000 0.2220

TFIT1018-TUVT33 4.652 0.000 0.000 0.0000 0.5000 0.5000

Stochastic approach exhibits the best performance between the 3 strategies. Using

simple test 16 pairs reject the null hypothesis which at first glance seems not to be very

different from the results of distance method however the Sharpe ratio are considerably

higher. For instance the biggest Sharpe ratio in distance method was 8.38 which belongs

to the pair TFIT19-TFIT26 instead stochastic approach gives a 19.75 Sharpe ratio for

at least 3 evaluated pairs. Using the multiple test methodology the results of this

methodology are clearly superior and 15 of the pairs reject the null hypothesis at any

trigger level.

Table 3.5: Stochastic Approach -Haircutted Sharpe Ratio

Stochastic Spread

HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT19-TFIT22 4.706 4.706 4.706 0.0000 0.0000 0.0000

TFIT18-TFIT26 5.267 1.982 3.151 0.0000 0.0238 0.0008

TFIT22-TUVT21 6.400 6.940 7.565 0.0000 0.0000 0.0000

TFIT22-TFIT26 7.642 8.691 8.850 0.0000 0.0000 0.0000

TFIT19-TUVT19 6.703 4.752 3.535 0.0000 0.0000 0.0002
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3.2 Conclusions

The wholesale public debt market in Colombia presents low transaction costs that could

stimulate the use of algorithmic trading strategies such as Pairs Trading, however given

is high liquidity it is possible that the returns obtained are not as high as those generated

in the stock market or derivative market.

Using the in sample and out of the sample result s as backtest , stochastic approach

showed better results than those obtained using the cointegration method or the distance

method, also it is the methodology that exhibit less impact for changes in the trigger.

This could be a main characteristic to take into the account when the strategy it is

implemented in markets whit higher transactional costs like shares or derivatives.

Usually trading strategies are not evaluated behind the out of the sample methodology

and in some cases the investor only keeps the results in sample , this could lead major

losses when the strategy it is apply in the real world. Before to establish if any strategy

it is a real discovery it is necessary to adjust the expected results taking into the account

the previous fitting apply during the strategy definition, this would give as a result a

conservative risk profile from the expected returns.

Future research on the strategy should consider the use of high frequency data to maxi-

mize returns by making use of the intraday volatility of the public debt market, as well

as in general it is necessary to establish a pair selection criteria to correct the gap left by

the current literature. It is also suggested to analyze this type of strategies for markets

such as derivatives and FX where there are greater volatilities and opportunities for

increase portfolio returns.



Appendix A

In sample and Out of the sample

Results

Table A.1: Results - Distance Method

Out of the sample In Sample

Returns* Sharpe Ratio Returns* Sharpe Ratio

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT30-TFIT28 0.121 0.454 1.037 0.244 0.4870 0.87057 0.093 1.165 2.247 -1.557 0.86344 0.3353

TFIT26-TFIT28 -0.048 0.077 -0.960 -14.370 2.6151 -0.722 0.102 -0.246 -0.778 13.621 0.23466 1.262

TFIT26-TFIT30 -0.008 0.442 0.391 -64.171 0.4940 0.19755 -0.065 0.101 -1.150 -10.413 0.99652 0.8068

TFIT18-TFIT24 -0.078 0.362 0.455 -6.218 1.1545 1.01674 0.177 0.288 -1.277 5.625 1.92703 0.8114

TFIT26-TFIT24 -0.005 0.129 -0.044 -81.986 0.8640 0.94144 0.000 1.212 0.843 0.000 0.42831 0.8438

TFIT22-TFIT26 -0.031 -0.247 -0.284 -10.886 0.4583 0.72213 0.354 -0.301 0.405 2.367 0.84413 0.8343

TFIT22-TFIT24 -0.003 0.180 0.405 -99.899 0.6295 1.35544 0.893 0.698 0.616 1.551 0.18926 -0.029

TFIT22-TFIT30 0.084 -0.274 0.070 -0.127 1.6138 1.10332 -0.002 -0.068 1.047 -240.604 1.75819 1.0604

TFIT24-TFIT28 0.046 0.259 -0.248 0.330 1.5735 -0.0085 -0.002 0.239 2.580 -240.604 1.90584 1.3836

TFIT22-TFIT28 0.258 -0.293 -0.012 3.565 0.9184 1.00772 0.000 -0.750 1.477 0.000 0.16218 1.5048

TFIT19-TFIT22 -0.003 -0.031 0.252 -99.899 0.8182 0.95131 0.069 -0.211 1.489 3.554 -0.6247 0.9771

TFIT19-TFIT18 -0.006 -0.047 0.193 -35.794 -4.6212 0.09756 -0.015 -0.527 -0.945 1.275 -1.2846 -0.922

TFIT19-TFIT24 -0.076 0.379 0.731 -7.858 1.3834 0.57124 -0.068 0.442 0.724 -4.322 2.29965 1.1005

TUVT25-TUVT33 -0.234 -0.355 1.802 -2.106 -1.9831 0.88731 -0.058 0.081 3.761 2.609 2.1826 1.2418

TFIT19-TFIT26 0.000 -0.216 0.274 0.000 1.1338 1.27165 0.282 0.629 -0.147 7.242 2.40017 0.9848

TFIT18-TFIT22 0.222 0.016 0.420 1.435 1.5355 1.17661 -0.222 -0.055 0.002 2.624 1.35182 1.2361

TFIT19-TFIT30 -0.141 -0.446 -0.050 1.215 1.7303 1.18387 -0.002 -0.278 1.374 -240.604 2.24721 0.9026

TFIT19-TFIT28 0.242 -0.162 -0.218 2.739 1.6840 0.92415 -0.002 0.160 2.869 -170.425 2.37586 1.446

TFIT18-TFIT24 -0.078 0.362 0.455 -6.218 1.1545 1.01674 0.177 0.288 -1.277 5.625 1.92703 0.8114

TFIT18-TFIT26 0.000 -0.258 -0.339 0.000 0.9615 1.26893 -0.002 0.112 1.665 -240.604 2.27695 1.2948

Average 0.013 0.017 0.217 -21.000 0.730 0.792 0.086 0.149 0.776 -55.152 1.223 0.894

1*Percentage values
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Table A.2: Cointegration Approach

Out of the sample In Sample

Returns* Sharpe Ratio Returns* Sharpe Ratio

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT18-TFIT1018 0.000 0.268 0.168 0.000 2.559 0.561 -0.627 -0.627 0.146 -9.152 -5.179 -0.001

TFIT18-TFIT19 0.000 0.022 -0.301 0.000 -0.830 -9.181 0.020 0.020 -2.915 -5.427 0.147 -6.345

TFIT18-TUVT23 0.000 0.113 -0.624 0.000 0.237 -2.734 -0.070 -0.070 1.766 -13.954 0.369 1.807

TFIT19-TFIT1018 -0.248 -0.111 0.068 -8.517 -8.058 -0.155 -0.861 -0.861 -1.074 -7.089 -5.903 -2.857

TFIT19-TUVT19 -0.190 -0.218 -0.808 -5.139 -9.171 -5.950 0.270 0.270 -2.422 3.681 1.264 -2.616

TFIT19-TFIT20 -0.006 0.100 0.001 -81.081 -0.755 -10.432 -0.033 -0.033 -1.389 -1.676 -1.823 -3.486

TFIT19-TFIT22 -0.038 -0.295 -0.455 -12.406 -3.719 -3.212 -0.069 -0.069 0.388 -12.001 -0.158 -0.108

TFIT19-TFIT24 -0.388 -0.770 -1.117 -6.341 -2.314 -1.977 -0.313 -0.313 -2.396 -3.082 -0.789 -1.540

TFIT19-TUVT25 0.000 0.043 -1.948 0.000 -1.002 -2.689 -1.318 -1.318 -2.764 -7.711 -0.774 -2.497

TFIT19-TFIT26 -0.690 -1.129 -1.995 -4.165 -4.023 -2.774 -0.216 -0.216 1.206 -1.827 2.460 0.327

TFIT19-TFIT30 -0.533 -1.554 -2.468 -11.849 -6.535 -4.052 0.064 0.064 -1.411 -0.107 1.365 -0.341

TFIT19-TUVT33 0.000 -0.544 -4.272 0.000 -3.136 -2.420 -0.638 -0.638 -3.801 -2.765 -0.937 -0.890

TFIT22-TFIT20 -0.236 -0.484 -0.775 -3.247 -2.649 -1.619 -0.650 -0.650 -0.731 -8.189 -4.090 -0.776

TFIT22-TFI24 0.047 0.112 -0.161 -1.215 -0.100 -0.872 0.120 0.120 1.082 -0.414 0.806 0.273

TFIT22-TUVT25 -0.003 0.348 1.013 -113.767 2.090 0.928 -0.858 -0.858 -1.161 -2.620 1.719 -1.707

TFIT22-TFIT26 -0.051 -0.745 -0.633 -8.339 -1.277 -1.092 0.475 0.475 1.726 1.003 0.362 0.420

TFIT22-TFIT28 -0.769 -1.511 -1.162 -11.711 -3.018 -1.792 -0.008 -0.008 0.416 -108.346 0.803 -0.069

TFIT22-TFIT30 -0.030 -0.523 -2.239 -14.389 -3.465 -2.190 1.397 1.397 2.538 3.126 2.069 0.279

TFIT1018-TFIT20 -0.050 -0.395 -0.764 -10.819 -3.585 -1.420 0.716 0.716 2.656 5.729 1.114 3.911

TFIT18-TUVT21 -0.284 -1.523 -3.279 -12.241 -4.082 -3.358 0.150 0.150 -2.153 1.429 -9.882 -2.224

TFIT1018-TUVT23 -1.570 -1.737 -3.165 -5.859 -3.001 -2.544 0.050 0.050 -7.704 -0.144 -6.278 -4.514

TFIT1018-TFIT24 -0.136 -0.375 -1.171 -13.155 -1.324 -2.291 0.046 0.046 2.112 0.740 -0.095 1.386

TFIT1018-TUVT25 -1.083 -1.559 -3.397 -5.930 -2.919 -3.115 1.307 1.307 2.645 3.367 3.738 2.566

TFIT1018-TFIT26 -0.093 -1.655 -2.681 -6.595 -3.840 -2.404 2.763 2.763 4.110 5.652 4.677 2.651

TFIT1018-TFIT28 0.025 -2.361 -4.016 1.685 -3.298 -2.152 2.990 2.990 5.066 7.804 3.846 2.370

TFIT1018-TFIT30 -0.555 -2.576 -4.807 -11.831 -3.351 -2.456 4.067 4.067 3.753 5.457 3.282 1.814

TFIT1018-TUVT33 -1.783 -2.893 -3.765 -5.840 -5.583 -3.724 0.566 0.566 -1.002 5.461 4.437 -0.502

Total -8.666 -21.949 -44.751 -13.065 -2.820 -2.782 9.338 9.338 -1.316 -5.224 -0.128 -0.469

2*Percentage values
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Table A.3: Stochastic Approach - Results

Out of the sample In Sample

Returns* Sharpe Ratio Returns* Sharpe Ratio

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT19-TFIT20 -0.583 -0.583 -0.583 -10.358 -10.358 -10.358 -2.045 -2.045 -2.045 -17.292 -17.292 -17.292

TFIT22-TFIT24 0.676 0.676 0.676 9.691 9.691 9.691 -0.562 -0.562 -0.562 -17.753 -17.753 -17.753

TUVT21-TUVT23 0.350 0.350 0.350 9.403 9.403 9.403 -1.510 -1.510 -1.510 -17.354 -17.354 -17.354

TFIT1018-TFIT20 -0.777 -0.777 -0.777 -10.269 -10.269 -10.269 -2.885 -2.885 -2.885 -17.241 -17.241 -17.241

TFIT1018-TUVT21 -1.976 -1.976 -1.976 -10.106 -10.106 -10.106 0.213 0.213 0.213 15.436 15.436 15.436

TFIT19-TFIT22 1.233 1.105 1.244 9.831 9.811 9.832 4.816 4.738 4.854 17.043 17.042 17.044

TFIT22-TUVT25 -1.125 -0.920 -0.383 -10.186 -10.227 -1.985 7.623 8.898 10.150 4.903 4.418 4.338

TFIT19-TUVT21 0.271 0.318 0.318 1.296 1.494 1.494 6.234 6.734 6.793 5.853 5.654 4.545

TFIT18-TFIT26 -1.947 -1.983 -3.000 -10.107 -10.105 -10.070 5.410 4.519 4.361 5.934 5.420 5.342

TUVT19-TUVT25 2.901 3.011 1.904 9.928 9.931 9.890 2.981 3.418 3.514 16.997 17.013 17.015

TFIT22-TUVT21 -2.255 -2.553 -3.002 -10.093 -10.082 -10.070 7.741 7.875 7.547 10.525 10.866 10.672

TFIT22-TFIT26 0.000 1.026 0.809 -0.188 1.989 1.739 4.521 4.688 4.688 17.038 17.041 17.041

TFIT18-TUVT23 3.518 3.631 3.991 6.943 4.598 4.537 4.261 4.263 4.341 17.033 17.033 17.035

TFIT19-TUVT21 0.271 0.318 0.318 1.296 1.494 1.494 6.234 6.734 6.793 5.853 5.654 4.545

TFIT26-TFIT30 0.341 0.208 0.966 9.388 8.994 9.784 4.370 3.660 4.564 17.035 17.020 17.039

TFIT1018-TFIT22 -0.765 -0.989 -1.441 -10.273 -10.211 -10.145 1.426 1.152 1.535 3.549 3.661 4.286

TFIT19-TUVT19 -1.332 -2.392 -2.340 -10.157 -10.087 -10.089 3.514 4.126 3.562 9.898 9.770 9.966

TFIT20-TFIT24 -2.353 -2.347 -2.453 -10.089 -10.089 -10.085 4.677 4.433 4.693 6.693 6.296 6.380

TFIT1018-TUVT23 -1.624 -1.624 -1.624 -10.129 -10.129 -10.129 -1.296 -1.296 -1.296 -17.393 -17.393 -17.393

TFIT1018-TUVT25 0.512 0.550 0.291 9.592 9.620 9.281 1.057 1.149 0.868 3.381 3.575 3.323

Total -4.666 -4.951 -6.712 -1.729 -1.732 -1.308 56.779 58.303 60.178 3.507 3.443 3.349

3*Percentage values



Appendix B

Haircutted Sharpe Ratios

Table B.1: Haircutted Sharpe Ratios - Distance Method

Sharpe Ratio p-value HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT30-TFIT28 0.570 0.741 0.378 0.28435 0.22936 0.35271 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT26-TFIT28 2.125 2.071 1.336 0.01681 0.01918 0.09071 0.272 0.218 0.000 0.39281 0.41390 0.49991

TFIT26-TFIT30 -3.618 2.138 0.642 0.99985 0.01624 0.26050 0.000 0.287 0.000 0.50000 0.38696 0.50000

TFIT18-TFIT24 2.995 1.978 1.469 0.00137 0.02399 0.07097 1.581 0.138 0.002 0.05689 0.44496 0.49938

TFIT26-TFIT24 -197.290 -0.724 1.215 1.00000 0.76538 0.11210 0.000 0.000 0.000 0.50000 0.50000 0.49999

TFIT22-TFIT26 -1.999 1.009 1.457 0.97719 0.15656 0.07255 0.000 0.000 0.001 0.50000 0.50000 0.49947

TFIT22-TFIT24 1.442 0.697 0.375 0.07469 0.24287 0.35389 0.001 0.000 0.000 0.49957 0.50000 0.50000

TFIT22-TFIT30 3.880 2.080 0.728 0.00005 0.01877 0.23315 2.897 0.226 0.000 0.00188 0.41056 0.50000

TFIT24-TFIT28 2.021 2.174 1.307 0.02164 0.01486 0.09567 0.172 0.328 0.000 0.43152 0.37164 0.49995

TFIT22-TFIT28 1.764 1.277 1.523 0.03883 0.10072 0.06388 0.034 0.000 0.003 0.48635 0.49997 0.49877

TFIT19-TFIT22 3.514 -0.800 1.192 0.00022 0.78805 0.11660 2.371 0.000 0.000 0.00888 0.50000 0.49999

TFIT19-TFIT18 -1.940 0.279 -0.204 0.97382 0.39011 0.58090 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TFIT24 -8.067 1.777 1.291 1.00000 0.03782 0.09840 0.000 0.038 0.000 0.50000 0.48499 0.49996

TUVT25-TUVT33 1.410 0.261 1.060 0.07920 0.39701 0.14463 0.001 0.000 0.000 0.49973 0.50000 0.50000

TFIT19-TFIT26 8.387 2.036 1.391 0.00000 0.02087 0.08207 4.706 0.186 0.001 0.00000 0.42641 0.49979

TFIT18-TFIT22 2.177 0.284 1.325 0.01474 0.38827 0.09252 0.332 0.000 0.000 0.37011 0.50000 0.49993

TFIT19-TFIT30 1.560 2.180 0.871 0.05937 0.01462 0.19180 0.005 0.335 0.000 0.49809 0.36867 0.50000

TFIT19-TFIT28 5.099 1.835 1.480 0.00000 0.03326 0.06938 4.569 0.058 0.002 0.00000 0.47692 0.49928

TFIT18-TFIT24 2.995 1.978 1.469 0.00137 0.02399 0.07097 1.581 0.138 0.002 0.05689 0.44496 0.49938

TFIT18-TFIT26 2.376 1.754 1.596 0.00875 0.03976 0.05524 0.599 0.031 0.007 0.27462 0.48750 0.49715
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Table B.2: Haircutted Sharpe Ratios - Cointegration Method

Sharpe Ratio p-value HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT18-TFIT1018 -20.481 -3.388 -1.532 1.0000 0.9996 0.9373 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT18-TFIT19 0.000 -1.916 2.585 0.0000 0.9723 0.0049 0.000 0.000 0.923 0.00000 0.50000 0.17807

TFIT18-TUVT23 2.244 1.523 1.645 0.0124 0.0639 0.0499 0.415 0.003 0.012 0.33908 0.49877 0.49527

TFIT19-TFIT1018 -9.763 -6.631 -4.130 1.0000 1.0000 1.0000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TUVT19 -14.509 -2.399 2.319 1.0000 0.9918 0.0102 0.000 0.000 0.517 0.50000 0.50000 0.30243

TFIT19-TFIT20 -3.744 -3.250 -1.184 0.9999 0.9994 0.8817 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TFIT22 -2.850 0.183 0.217 0.9978 0.4274 0.4141 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TFIT24 -1.389 -0.814 -1.551 0.9176 0.7921 0.9396 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TUVT25 2.237 -2.645 -1.491 0.0126 0.9959 0.9320 0.406 0.000 0.000 0.34235 0.50000 0.50000

TFIT19-TFIT26 -1.467 0.988 -0.030 0.9288 0.1615 0.5118 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TFIT30 2.810 2.470 -0.118 0.0025 0.0068 0.5468 1.284 0.742 0.000 0.09950 0.22913 0.50000

TFIT19-TUVT33 -35.877 -3.062 -0.881 1.0000 0.9989 0.8109 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TFIT20 -7.580 -4.453 -1.642 1.0000 1.0000 0.9497 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TFI24 0.728 -0.296 0.388 0.2333 0.6163 0.3491 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TUVT25 5.895 -0.305 0.521 0.0000 0.6196 0.3013 5.670 0.000 0.000 0.00000 0.50000 0.50000

TFIT22-TFIT26 0.802 0.691 0.077 0.2114 0.2447 0.4694 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TFIT28 -0.901 0.532 0.134 0.8163 0.2974 0.4469 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TFIT30 3.984 1.786 0.304 0.0000 0.0371 0.3806 3.041 0.040 0.000 0.00118 0.48385 0.50000

TFIT1018-TFIT20 6.637 4.093 3.391 0.0000 0.0000 0.0003 6.741 3.194 2.189 0.00000 0.00070 0.01429

TFIT18-TUVT21 -13.617 -4.460 -2.188 1.0000 1.0000 0.9857 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT1018-TUVT23 -1.240 -3.954 -6.011 0.8924 1.0000 1.0000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT1018-TFIT24 0.000 5.027 3.609 0.0000 0.0000 0.0002 0.000 4.470 2.509 0.00000 0.00000 0.00606

TFIT1018-TUVT25 4.837 0.486 -0.524 0.0000 0.3134 0.6998 4.211 0.000 0.000 0.00001 0.50000 0.50000

TFIT1018-TFIT26 13.837 4.782 2.217 0.0000 0.0000 0.0133 4.706 4.137 0.380 0.00000 0.00002 0.35188

TFIT1018-TFIT28 13.795 5.181 2.485 0.0000 0.0000 0.0065 4.706 4.681 0.765 0.00000 0.00000 0.22203

TFIT1018-TFIT30 12.887 3.097 1.377 0.0000 0.0010 0.0843 4.706 1.741 0.000 0.00000 0.04080 0.49983

TFIT1018-TUVT33 5.160 -1.602 -2.405 0.0000 0.9454 0.9919 4.652 0.000 0.000 0.00000 0.50000 0.50000
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Table B.3: Haircutted Sharpe Ratios - Stochastic Approach

Sharpe Ratio p-value HSR p-value

Tested Pair 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ 2σ 1.5σ 1σ

TFIT19-TFIT20 -19.986 -19.986 -19.986 1.000000 1.000000 1.000000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT22-TFIT24 19.182 19.182 19.182 0.000000 0.000000 0.000000 4.706 4.706 4.706 0.00000 0.00000 0.00000

TUVT21-TUVT23 18.434 18.434 18.434 0.000000 0.000000 0.000000 4.706 4.706 4.706 0.00000 0.00000 0.00000

TFIT1018-TFIT20 -19.941 -19.941 -19.941 1.000000 1.000000 1.000000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT1018-TUVT21 -20.087 -20.087 -20.087 1.000000 1.000000 1.000000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT19-TFIT22 19.746 19.751 19.751 0.000000 0.000000 0.000000 4.706 4.706 4.706 0.00000 0.00000 0.00000

TFIT22-TUVT25 3.797 3.722 3.972 0.000073 0.000099 0.000036 2.778 2.672 3.025 0.00273 0.00377 0.00124

TFIT19-TUVT21 4.668 4.989 4.778 0.000002 0.000000 0.000001 3.982 4.419 4.132 0.00003 0.00000 0.00002

TFIT18-TFIT26 5.607 3.253 4.062 0.000000 0.000570 0.000024 5.267 1.982 3.151 0.00000 0.02376 0.00081

TUVT19-TUVT25 19.682 19.716 19.718 0.000000 0.000000 0.000000 4.706 4.706 4.706 0.00000 0.00000 0.00000

TFIT22-TUVT21 6.405 6.770 7.180 0.000000 0.000000 0.000000 6.400 6.940 7.565 0.00000 0.00000 0.00000

TFIT22-TFIT26 7.229 7.881 7.965 0.000000 0.000000 0.000000 7.642 8.691 8.850 0.00000 0.00000 0.00000

TFIT18-TUVT23 12.833 12.826 19.757 0.000000 0.000000 0.000000 4.706 4.706 4.706 0.00000 0.00000 0.00000

TFIT19-TUVT21 4.668 4.989 4.778 0.000002 0.000000 0.000001 3.982 4.419 4.132 0.00003 0.00000 0.00002

TFIT26-TFIT30 10.405 0.053 10.201 0.000000 0.478821 0.000000 4.706 0.000 4.706 0.00000 0.50000 0.00000

TFIT1018-TFIT22 2.051 2.871 2.818 0.020110 0.002045 0.002415 0.199 1.383 1.298 0.42105 0.08326 0.09711

TFIT19-TUVT19 6.611 5.233 4.341 0.000000 0.000000 0.000007 6.703 4.752 3.535 0.00000 0.00000 0.00020

TFIT20-TFIT24 3.117 3.082 2.632 0.000914 0.001027 0.004250 1.772 1.718 0.997 0.03823 0.04290 0.15931

TFIT1018-TUVT23 -20.149 -20.149 -20.149 1.000000 1.000000 1.000000 0.000 0.000 0.000 0.50000 0.50000 0.50000

TFIT1018-TUVT25 3.043 2.903 3.777 0.001171 0.001846 0.000079 1.656 1.435 2.750 0.04881 0.07564 0.00298
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