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Chapter 1

Introduction

Circuit breakers are mechanisms implemented in trading platforms at stock exchanges

to provide time for agents to assimilate new information in a continuous trading envi-

ronment in order to enhance the price discovery process. There is no consensus with

respect to the need and the effectiveness of circuit breakers.

The literature has discussed whether it is better to have price halts, price limits or

not having any at all, and their effects on Market Quality, Subrahmanyam (1994) stud-

ied the trading halts in the NYSE, where if the Dow Jones moved by more than 250

or 400 points in a one or two hours period respectively then the market was halted for

a stipulated period of time. In his study he concluded that trading halts may actually

increase price variability. Christie et al, (2002) suggest that high levels of volatility were

sustained for longer periods of time due to the halt. This effect could be due to the

fact that during the halt there is no trading, then individuals cannot absorb information

efficiently and therefore uncertainty increases, also slowing down the price discovery pro-

cess. Madhavan (1992) shows that during periods of severe information asymmetries,

a continuous market may not be viable, and that once a market is halted it may be

difficult to restart the trading process.

Circuit breakers can have different designs that may be used simultaneously, the two

most common types of circuit breakers are (discretionary) trading halts and price limits.

A trading halt is activated when prices have moved or will imminently move by some

specific amount; trading will be halted until a specific amount of time (an hour or the

next day) or until the order imbalance is resolved (possibly by means of a call auction).

Price limits are introduce to force traders to deal within a certain range. Whereas price

limits have had a long tradition, specially in future markets trading halts started to be

widely used since Black Monday, October 1987.
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In particular we are interested in a type of circuit breakers known as a volatility call

auctions. The design of such circuit breaker is a follows: there is a predefined upper

and lower bounds for prices (bounds are set in accordance to the historical liquidity for

the asset and a current reference price), if in a continuous trading environment a buy

or sell order is submitted above or below the bounds then a call auction is activated

lasting approximately two and a half minutes, with a random thirty second closing time.

During the call auction the order that initiates the call auction cannot refrain from par-

ticipating and can only submit a better price. In general during the time of the auction

the clearing price is public but the order book is not, in this way individuals have more

information about the impact of the event that triggered the circuit breaker. Finally

when the auction ends, the continuous trading session goes on, unless another volatility

auction is initialized.

Stock specific circuit breaking mechanisms like the volatility call auctions are more

commonly used European stock exchanges in particular the Spanish Stock Exchange

than US stock exchanges. Reboredo (2010) studied the effect of volatility call auctions

in the Spanish Stock Exchange (SSE) finding that the decrease in volatility following

volatility auctions is stronger that in the absence of the auction, on the other hand, that

volatility auctions provide for new information to be quickly incorporated in prices. He

also concludes that the bid-ask spread widens before an auction, this results goes in line

to Madhavan (1992) proposition that the switch that activates the auction should be the

bid-ask spread and not the volatility. Abad and Pascual (2010) also examine this mech-

anism for the SSE, they find that volatility, trading activity and illiquidity remains high

for around ninety minutes after continuous trading resumes. However they mention that

as in previous studies a major drawback is the lack of an appropriate comparison, that

is the lack of a proper counterfactual does not allow to answer the following question:

What would be the behavior of the specific stock had the volatility auction not taken

place?

In order to examine the effectiveness of such a mechanism we follow an event study

approach using high frequency quote data. The event in question is the period during

which continuous trading halts and the volatility auction mechanism is put in place

(around two and a half minutes). Our objective is to measure the effect of the mech-

anism with respect to returns and volatility. As in any event study we use the period

before the event in order to come up with a proper counterfactual that we will use in

the post event window to measure the effect of the mechanism.
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We propose a method denoted as synthetic portfolio for event studies in market mi-

crostructure that is particularly interesting to use with high frequency data and thinly

traded markets. The main advantage of the synthetic portfolio method is that it pro-

vides a robust data driven method to build a counterfactual and it is derived from a well

established techniques, synthetic control method for comparative case studies, Abadie,

et al. (2010). Although a synthetic portfolio approach has already been used in the

literature Guidolin and La Ferrara (2007), Castañeda and Vargas (2012), Acemoglu et

al. (2015) to the best of our knowledge this is the first paper that documents its re-

lationship to synthetic control methods and established methodological affinities to the

standard event study techniques pioneered by Brown and Warner (1985) and reviewed

by MacKinlay (1997).

Our contribution is both methodological by proposing the synthetic portfolio approach

for event studies and empirical by applying such technique to evaluate the effectiveness

of a volatility call auction as a circuit breaker using intra day data.

We use intraday data of 45 assets listed in the Colombian Stock Exchange (Bolsa de

Valores de Colombia - BVC) from august 2010 to august 2012. The data contains bid

and ask quotes, trades, and also the time when a volatility auction was triggered and

when it finished. In total there are 1062 volatility auctions in our time window.

Our are results mixed we find that for Colombian Stock Market securities, the asyn-

chronicity of intraday data reduces the analysis to a selected group of stocks, never-

theless it is possible to find weights that could provide and accurate synthetic portfolio

that replicates the returns of a security affected by a volatility auction. The realized

volatility increases after the auction, indicating that the mechanism is not enhancing

the price discovery process by reducing volatility.



Chapter 2

Database and sample

In 2009 the Bolsa de Valores de Colombia (BVC), the Colombian Stock Exchange,

changed the stock trading platform. The new platform incorporated features such as

volatility call auctions. In the Colombian case stocks have price limits defined using

deviations of the closing price of the previous day of trading, according to the volatility

there are three price intervals (6.5%, 5.5%, and 4%), each asset is classified in one group

in function of its own volatility. If during the continuous trading session the platform

identifies the posibility of a match outside or in the price limits a volatility auction is

set in place. As soon as it starts all the orders that were placed before are withdrawn

from the book, the auction last for two and a half minutes and has a 30 seconds random

closure. When the auction ends the equilibrium price is calculated, as the one that

maximizes trading volume. Depending on the new reference price the price limits are

recalculated, therefore any order submitted at the auction that has prices out of the

new limits are eliminated. In the BVC there are no limits to the number of volatility

auctions and an auction can start in the very moment that another auction ends. It

does not matter the size of the order that starts the auction, but the order that causes

the auction cannot be canceled until the end of the auction (Figure 5.1).

Our data is composed of 45 assets listed in the Colombian Stock Exchange (Bolsa de

Valores de Colombia - BVC) from august 2010 to august 2012. The data contains bid

and ask quotes, trades, and also the time where a volatility auction was triggered and

when it finished. In total there are 1062 volatility auctions, this auctions are triggered

at any time of the day and about 90% are concentrated in no more than 19 assets as seen

in figure 5.3. We narrowed down the analysis to a group of 8 assets (ECOPETL, ENKA,

EXITO, FABRI, INVARGOS, ISA, PFBCOLO, and PREC). The BVC defines different

liquidity groups for stocks. Our selection is based on the assets that belonged to the

high liquidity group defined by the BVC for our time window, this group is redefined

4
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every quarter. Finally a set of auctions where selected according to differents criterias

in chapter 4.



Chapter 3

Synthetic portfolio approach for

event studies

The synthetic control method (Abadie, et al. 2010), (SCM) has received a lot of at-

tention in comparative case studies on different subjects: terrorism, natural disasters,

tabacco control programs. As opposed to competing methods SCM strength relies in the

use of a combination of units to built a more objective comparison for the unit exposed

to the intervention, rather than a choosing a single unit.

The SCM is a weighted average of the available control units, that makes explicit:

the contribution of each unit to the counterfactual of interest and the similarities (or

lack thereof) between the unit affected by the event or the intervention of interest and

the syntectic control in terms of the pre-intervention outcomes and other predictors of

post-intervention outcomes.

We are not aware of the use of SCM in event studies (comparative case studies) in

finance. In our case we have an intervention: the volatility action that effects at least

one security in the market. Let T0 denote the starting time of the volatility auction. The

available data is intra-day data of the securities of interest Yi,t for security i = 1, . . . , J

and t = 1, . . . , T , where T0 < T . Suppose that security 1 is the only one affected by the

intervention. Let Y N
i,t (Y I

i,t) denote the outcome that would be (is) observed for security

i if the volatility auction had not taken (takes) place at time T0. Note that Y N
i,t is a

latent variable and Y I
i,t is the observed outcome for the variable of interest after the

intervention (T0 < t < T ); then αi,t = Y I
i,t − Y N

i,t it the effect of the intervention for unit

i at time t ∈ (T0, T ]. Abadie et al. (2010) proposes the following estimate for the effect

6
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of the intervention,

α̂1,t = Y1,t −
J∑

j=2

w∗jYj,t (3.1)

where w∗j is obtained by imposing a series of restrictions on the data generating process

with respect to Y N
i,t and the tractability of the other units to the outcome of the unit of

interest in the pre-intervention period.

Suppose there exist a vector of weights W = (w∗2, . . . , w
∗
J) such that( ∑J

j=2w
∗
jYj,1 = Y1,1,

∑J
j=2w

∗
jYj,2 = Y1,2∑J

j=2w
∗
jYj,T0 = Y1,T0 and

∑J
j=2w

∗
jZj = Z1

)
(3.2)

Where Z denote a vector of observed covariates that are part of the data generating

process of Y N
i,t , along with other non-observable components. However, the existence

or use of this set of covariates is not essential for the SCM to work. Although some

restrictions on the weights and the use of covariates can provide a safeguard against

extrapolation or data-snooping as discussed in Abadie et al 2010.

Since the estimate of the effect of the intervention and in particular the synthetic con-

trol, 3.1 is a weighted average of the available control units; its application in finance is

equivalent to building a synthetic benchmark with a different purpose than the usual.

The purpose of tracking and index with a couple of securities is to setup a passive

investment strategy the follows the performance of a popular index, like the S&P500.

Therefore the idea is to choose a set of securities and find the weights that minimize the

replication or tracking error. In analogy to a standard portfolio problem we must define

an objective function and specify the relevant constrains for the problem. A simple

objective function is the the average of the deviations of the tracking portfolio returns

from the index returns over the period of time (Gilli and Kellezi, 2002).

R1,T0 =

∑T0
t=1WRt − rindext

T0 − 1
(3.3)

Where W is a vector of weights for the J assets, Rt is the vector of observed returns at

time t, and rindext is the return of the index.

In our proposed methodology for event studies the index would be Y1,t the security

of interest where we want to measure the effect of the intervention. In other words the

security whose trading had been halted because of the volatility auction mechanism. On

the other hand the syntectic control is build by using the other securities (those in con-

tinuous trading, before, during and after the intervention) to replicate the performance
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of the security of interest.

The methodology is very simple since we only need to obtain w∗j required to estimate

the effect of the intervention in 3.1 by solving the tracking problem. Therefore we have

to solve,

w∗ = argminw

T0∑
t=1

Y1,t − J∑
j=2

wjYj,t

2

(3.4)

This would we for the pre-intervention period t ∈ [1, T0). A proper tracking of the

security of interest (security 1) would guarantee that the syntectic control is a proper

counterfactual. We denote this syntectic control as a synthetic portfolio (SP) that is a

proper counterfactual.

With the post-intervention data we would estimate the desired effect.

α̂1,t = Y1,t −
J∑

j=2

w∗jYj,t, t ∈ (T0, T ] (3.5)

The outcome variable Yi,t is determined based on the effect we are interested in analyz-

ing: trading activity (number of trades), liquidity (bid and ask price), and for returns

and volatility (returns). In this last case where Yi,t := Ri,t it is possible to determine a

relationship between the syntethic control methos we propose and the traditional pro-

cedure for event studies.

For traditional event studies we have a similar set-up, with respect to the time in-

dex, t: pre-event or estimation window t ∈ [1, T0) and a event window t = T0 and a

post-event window t ∈ [T0, T ). However, in our particular setup the estimation of the

variables of interest is done in the post-event window rather than the event window.

Using the notation of event studies the abnormal returns of the asset of interes (asset

1) are equivalent to α̂1,t.

α̂1,t := AR1,t = R1,t −
J∑

j=2

w∗jRj,t, t ∈ (T0, T ] (3.6)

This expresion is similar to the definition of abnormal returns where the normal per-

formance (the counterfactual in traditional even studies) is defined by a costant mean

return model (Figure 5.2).

AR1,t = R1,t −
1

T − T0

T∑
t=T0+1

R1,t (3.7)
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The important diference is that the abnormal returns in the traditional event studies are

based on the difference between the observed returns of the asset and the simple time

average of the returns of the same asset over the event window. In the case of the syn-

tethic portfolio the abnormal returns are based on the difference between the observed

returns of the asset and a weighted average of the returns of all other asset available

that were not affected by the event of interest. After we obtain the abnormal retunrs we

can estimate the cumulative abnormal returns CAR1(T0, T ) =
∑T

t=T0+1AR1,t. In order

to analyse the effects on volatility we can obtain realized volatility estimates for the

returns of the asset and also for the returns of the syntetic portfolio over the post-event

window.

In traditional event studies there is another posibility to define the normal performance,

that is to use a market model (CAPM or another factor model based on its deviations)

instead of a constant mean return model. This is actually very close to the orgininal

idea of a synthetic control. The syntehtic control (the counterfactual or normal return

model) is also a factor model. Therefore, we can define as in Abadie, et al. (2010) a

factor model for the dynamics ot the latent process RN
i,t, that is the return that would

be observed for security i if the volatility auction had not taken place at time T0. In

finance it is not dificult to come up with a generally accepted factor model, for example

in traditional event studies that factor model is the CAPM.

AR1,t = R1,t − α̂i − β̂iRm,t (3.8)

where Rm,t denotes the market return. We can go a step further and propose a hybrid

approach where abnormal returns are defined as the difference between the observed

returns of the asset and the returns of the synthetic porfolio. However, such returns can

also be conditiones on the market return

α̂1,t := AR1,t = R1,t −
J∑

j=2

w∗j R̂j,t, t ∈ (T0, T ] (3.9)

R̂j,t = α̂j − β̂jRm,t, t ∈ [1, T0) (3.10)

There is however a problem with this approach in stock markets composed of thinly-

traded securities. In these markets the market index might give an important weigth to

the asset we are trying to analize and therefore this contitioning method will not provide

a proper counterfactual.



Chapter 4

Empirical analysis

For a proper selection of the sample for implemting SMC and calculating the abnormal

returns, we selected each of the eigth assets and introduced the next criterias for a given

asset Ai i = 1, ..., 8:

1. We identified the time and day of the volatility auction of Ai.

2. Discarded sucesive volatility auction.

3. Checked that the volatility auction was not triggered at the begining nor the ending

of the trading session.

4. Verified that the asset Ai had trading activity during the day.

5. Excluded the assets Aj 6=i that during the day had an activation of a volatility

auction. Also if the assets Aj 6=i did not have trading activity either before or after

the auction of Ai.

6. Extracted the series for the time before and after the auction of Ai.

Even after these selection criterias, we had to exclude some assets Aj 6=i that belonged to

the Ai syntetic portfolio, and some auctions due to the asynchronicity of information for

computing returns, and volatility. Finally for a given asset Ai we calculated the optimal

weigths for each Aj 6=i that replicated the returns of Ai, and the abnormal returns.

4.1 Result

For PFBCOLOM, PREC, ECOPETL and ISA a single auction was selected, in tables 4

to 7 we report the optimal weigths and the assets that replicated the abnormal returns

10
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before and after de auction, some weigths are negative indicating that in order to repli-

cate the asset the portfolio must contain short sales.

In figures 5.4 to 5.7, we report the real returns vs. the returns of the tracking port-

folio. For PFBCOLOM, ECOPETL and ISA the adjusment of the return series before

the auction is quite similar, on the other side PREC adjustment is not as precise. This

behaviour is verified in figures 5.8 to 5.11 where the abnormal returns for PREC show

notorious differences before the auction is triggered.

In table 5.6 we report the results for the Cumulative Abnormal Returns and the cu-

mulative returns of the asset afected by the volatility call auction. In the framework of

Synthetic Control Methods, the cumulative abnormal returns indicate the overrreaction

or underreaction of the affected variable. We find an underreaction for PFBCOLOM,

while the other assets overreact after the auction. The magnitude of the reaction is

observed in the cumulative returns, where we can conclude that for PFBCOLOM, ISA,

and ECOPETL there is a change in the trend of returns when the auction is set in place.

In table 5.7 are the calculations of realized volatility for PFBCOLOM before the auc-

tion are almost identical for the synthetic portfolio and the observed series, the result

contrast with the realized volatility after the auction. In this case, the observed realized

volatility was higher than the synthethic asset volatility. Nevertheless the results for

the other assets are quite heterogeneous, realized volatility calculations before the auc-

tion appears to differ in the synthetic portfolio and observed returns series. Therefore

different robustness test should be applied to verify if the calculated weights provide a

proper adjustment, this could be done by checking if the difference between the observed

returns and the synthetic portfolio returns are statistically significant.



Chapter 5

Conclusions

In this paper we exposed the difficulty of measuring the effects of a volatility call auc-

tion due to the lack of a proper counterfactual, in the literature some methodologies

as pseudo-events or comparisons between assetes with familiar characteristics have been

used.

We suggest a different methodological approach by proposing synthetic portfolio for

event studies, this approach could allow us to build a counterfactual. Our counterfac-

tual is a weighted average portfolio of the returns of assets, which have not been affected

by the volatility call auction during the period of time when the mechanism was trig-

gered for a given security.

We find that for Colombian Stock Market securities, the asynchronicity of intraday

data reduces the analysis to a selected group of stocks, nevertheless it is possible to find

weights that could provide and accurate synthetic portfolio that replicates the returns of

a security affected by a volatility auction. For the assets we study the realized volatility

increases after the auction, indicating that the mechanism is not enhancing the price

discovery process by reducing volatility.

In future research we plan to design or implement different test in order to verify the

statistical significance of our results for Cumulative Abnormal Returns. This tests will

provide a better inference about the volatility of assets before and after the auction.

12
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Table 5.2: PFBCOLOM Synthetic portfolio composition

GRUPOSUR CONCONC AV AL INV ARGOS ETB
0.3966 0.3647 0.1775 0.1474 0.0918

CEMARGOS PFDAV V ND BCOLO INTBOL PREC
0.0871 0.0235 0.0192 0.0107 0.0011

SIE ECOPETL CNEC NUTRESA FABRI
−0.011 −0.016 −0.078 −0.106 −0.108

Table 5.3: PREC Synthetic portfolio composition

FABRI AV AL EXITO PFDAV V ND CORFICOL
0.8411 0.5320 0.0670 0.0120 −0.0773

ISA ECOPETL EEB
−0.0886 −0.0908 −0.1953

Table 5.4: ISA Synthetic portfolio composition

CEMARGOS INTBOL ETB TABLEMA GRUPOSUR
0.6789 0.6101 0.1146 −0.0599 −0.1664

EEB
−0.1773

Table 5.5: ECOPETL Synthetic portfolio composition

INTBOL CEMARGOS EEB ETB FABRI
0.9213 0.4100 0.3169 0.0413 0.0378

TABLEMA GRUPOSUR
−0.2821 −0.4452

Table 5.6: Returns results

Cumulative Abnormal Returns Cumulative Returns

Asset Before After Before After

PFBCOLOM 2.1654% −0.4022% 2.5131% −0.5857%
PREC 4.4041% 0.6338% 4.0658% 0.3145%
ISA −1.9793% 1.5131% −3.5253% 3.4486%
ECOPETL −1.5981% 2.0370% −4.2666% 3.5447%

Table 5.7: Volatility results

Realized Volatility

Observed Synthetic

Asset Before After Before After

PFBCOLOM 0.0153% 0.0928% 0.0152% 0.0331%
PREC 0.0202% 0.0130% 0.0079% 0.0022%
ISA 0.0239% 0.0831% 0.0118% 0.0355%
ECOPETL 0.0442% 0.0076% 0.0174% 0.0345%
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