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Joaqúın Coleff
Universidad del Rosario

Daniel Garćıa
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Abstract

We analyze the optimal provision of information in a procurement
auction with horizontally differentiated goods. The buyer has private
information about her preferred location on the product space and has
access to a costless communication device. A seller who pays the entry
cost may submit a bid comprising a location and a minimum price.
We characterize the optimal information structure and show that the
buyer prefers to attract only two bids. Further, additional sellers are
inefficient since they reduce total and consumer surplus, gross of entry
costs. We show that the buyer will not find it optimal to send public
information to all sellers. On the other hand, she may profit from
setting a minimum price and that a severe hold-up problem arises if
she lacks commitment to set up the rules of the auction ex-ante.
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1 Introduction

Ann would like to purchase a unique good. There is a number of sellers with
the technology to produce it, but they are uncertain about Ann’s preferred
design. How should Ann communicate with those potential sellers? How
many sellers should she try to attract? In this paper we attempt to answer
these questions in the context of a horizontally differentiated market with
entry costs. More precisely we analyze the problem of a buyer whose ideal
product is somewhere in a Salop circle, with linear transportation costs. She
can commit to send a number of signals informing about her location to any
number of sellers. Each of these signals may be either private (observed only
by one seller) or public (observed by all sellers). If he enters the market, a
seller has to pay a positive cost and submit a bid comprising a location in
the circle and a price. The contract is then awarded through a Generalized
Second Price Auction to the highest surplus creating bidder who receives the
maximum price that would have allowed him to win.

We solve this problem taking a mechanism design approach. We first
ask which is the distribution of locations that maximizes ex-post consumer
surplus conditional on every seller getting an expected profit equal to his
entry cost. We show that this problem is equivalent to maximizing total
surplus subject to free entry. The solution to this problem requires indepen-
dent and identically distributed locations with maximal dispersion. Using
these insights, we characterize the optimal distribution of locations given the
number of entrants. We also show that the buyer will optimally solicit only
two bids, and that every additional bid reduces consumer surplus net of the
entry cost.

We then ask whether the buyer can use the release of information to imple-
ment the optimal distribution of locations in a Perfect Bayesian Equilibrium
(PBE). We show that the buyer can do so by communicating privately with
each seller, using a distribution of signals akin to the optimal distribution of
locations. We show that the buyer will never find it optimal to supply public
information to the sellers. We further show that if the entry cost is not too
high, the buyer can achieve Full Implementation of the optimal distribution
and achieve her Second Best Payoff in any PBE.

Finally, we show that if the buyer cannot commit to set up the rules
of the auction before releasing information a severe hold-up problem ensues.
Indeed, once sellers have entered the market, the auctioneer has incentives to
set up a strictly positive reserve surplus. In any equilibrium, then, sellers will
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only enter if the information provided is so low that, even with an optimal
reserve price, profits will be high enough to cover entry costs. The buyer may,
however, obtain her First Best Payoff by either setting up a minimum price
that ensures each buyer with non-negative profits or committing to releasing
negatively correlated signals.

In our view, the interest of these results for the study of procurement
auctions is threefold. First, anecdotal evidence suggests that communica-
tion between buyer and sellers preceding procurement auctions is often a key
determinant of the outcome. In most scoring auctions, bidders are able to
make formal inquiries and enter in informal discussions with the referees,
prior to making their bids. This process enables the bidders to better gauge
the potential value of the project but it also helps them fine-tuning their bid
to the preferences of the buyer.1Second, attracting bidders to an auction is of
primary concern to the auctioneer. In particular, it ensures competition and
minimizes the risk of not awarding the contract or awarding it to a disad-
vantageous offer. Since the communication process is usually specified before
bids are made, it is likely to affect entry decisions in the presence of substan-
tial entry costs. Recent evidence provided in Li and Zheng (2009) suggests
that this is indeed the case. They estimate the entry cost to bid in auctions
for road reparation in approximately 8% of the winning bid. Therefore, not
taking into account endogenous entry leads to very different results and it is
likely to offer an incomplete picture of the problem of the auctioneer. Third,
buyer-seller communication has received substantial attention by regulators.
For instance, the EU Directives on Procurement restrict private communi-
cation between the procurer and potential bidders to ensure a “fair process”
and to level the playing field. They also require governments to attract a
rather large number of bidders (often more than five) in order to “promote
sufficient competition”. However, and to the best of our knowledge, there
is no theoretical framework that can be used to assess the effects of such
recommendations, in the presence of horizontal differentiation. The present
paper is an attempt in such direction.

Finally, even if our paper is framed in the setting of a procurement auc-
tion, we believe our insights may extend more broadly. For instance, our
model may be applied to online ad search auctions (Varian, 2009). In some

1For instance, Design-Build Auctions in Florida allow preselected sellers to
meet with the referees before submitting their bids. Details can be found at
www.dot.state.fl.us/construction/designbuild/DBRules/DBRulesMain.shtm.
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of these auctions, bidders may adapt their advertisements to the character-
istics of the platform where their ad is placed. By doing so they increase
the number of clicks they receive and enhance the value for the platform.
The platform is likely to possess more information than bidders over the
distribution of viewers preferences and has to decide how to disclose it.

1.1 Related Literature

This paper contributes to a number of strands in the literature. First, there
is a large literature studying the value for the auctioneer to reveal her infor-
mation to the bidders, started by the seminal paper of Milgrom and Weber
(1982). Most of these papers analyze vertically differentiated markets and
information generates correlation between bidders valuations. An important
exception is Ganuza (2004), who analyzes a horizontally differentiated mar-
ket, where the seller knows the exact location of the good and the buyers are
located in the product space. His main result is that, in contrast to Milgrom
and Weber (1982), the auctioneer has suboptimal incentives to provide in-
formation. There are a number of differences between both papers. First, in
our model the buyer has a fixed position but sellers compete and may locate
closer or further from him. Second, he only considers the supply of public
information. Finally, he does not consider entry costs. We show that, if the
informed party (in our case the buyer) supplies private information, the link
between ignorance and competition disappears. The only reason why the
buyer wants to conceal some information is because he needs to foster entry.

In a related paper Ganuza and nalva (2010) study the incentives of the
auctioneer to release private and independent signals in a model with ex-
ogenous entry. They show that the auctioneer has suboptimal incentives to
supply information since more precise signals increase bidders’ rents. In our
model the rents given to the bidders are fixed by their entry cost, and so is
the optimal precision for a given distribution. Nonetheless, the auctioneer
may now choose among different distributions that lead to different surplus
created for a given level of bidders profits. Further, we can now study the
optimal number of bidders in such an environment.

Our paper is, therefore, closely related to the literature of the value of
entry in auctions with vertically differentiated bidders. Bulow and Klemperer
(1996) show that a Second Price Auction without a reserve price with n +
1 participants generates more surplus for the auctioneer than an optimal
auction with n participants. If entry is costly, the SPA is indeed the optimal
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mechanism. This literature, however, has not studied the role of information
revelation by the auctioneer. In our setup, both increasing the precision of
the signals and increasing the number of entrants promotes competition. We
show that the auctioneer is always better off by increasing the precision of
the information she supplies at the cost of reducing the number of entrants.

A similar result can be found in a handful of papers. Levin and Smith
(1994) model entry as a simultaneous move game and increasing the pool of
entrants decreases total entry for sufficiently many entrants. This is because
for a new firm to enter, the distribution of the remaining entrants must be
roughly the same. In a symmetric equilibrium this implies that the individual
probability of entry falls and, therefore, the mean entry falls. As already
stated, if entry were sequential (as in Bulow and Klemperer (2009)) the
result would not obtain. In Taylor (1995) and Che and Gale (2003) the
result obtains because of inefficient duplication of investments. It is worth
noticing that in our model inefficient duplication of entry costs is not the only
mechanism that leads the auctioneer to restrict entry. Numerical results show
that more entrants require less information to the point of reducing welfare
net of entry costs.

2 Model

We consider a buyer who demands a unit of a given good that comes in dif-
ferent varieties. The buyer (she) has private information about her preferred
variety θ. There is a common prior that θ follows a uniform distribution over
a circle of length 2. Consuming a variety x yields a (gross) utility v−‖θ, x‖,
where ‖θ, x‖ represents a linear transportation cost measured along the short-
est arc from θ to x as in Salop (1979). We assume that v ≥ 1 so that it is
always ex post efficient for the buyer to acquire the good.

On the supply side, there is a pool of N sellers deciding whether to enter
the market. Entry requires an upfront payment of k but manufacturing the
good is assumed to be costless for all firms.2 We assume that entry decisions
are sequential (as, e.g., in Bulow and Klemperer (2009)) and the length of
the pool is known. We assume that Nk > v so that there are always idle
sellers. Let n be the number of entrants. Upon entry, each seller i receives
information from the buyer. In particular, we assume that he observes the

2The entry cost comprises all expenditures that a seller must undertake to participate
in the auction. Examples are design, marketing, and research costs.
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i-th element of a vector s = (s1, s2, ... , sn) distributed according to F(s|θ),
and makes a bid (pi, xi) where pi is the minimum acceptable price and xi
is the location in the product space. The buyer uses a Generalized Second
Price Auction Mechanism (GSP) whereby she accepts the highest surplus
offering bid and commits to pay the highest price that would have made this
bid the winner. Formally if bidder i wins, he receives

p∗i := max
j 6=i
‖θ, xj‖ − ‖θ, xi‖+ pj. (1)

Finally, we allow the buyer to choose the distribution F(s|θ) of the signals
she sends to each seller. We impose that the marginal distribution for each
sellers, Fi is symmetric around θ and is measurable with respect to the dis-
tance ‖si, θ‖, and that every two signals (si, sj) are not negatively correlated
conditional on θ.3

The timing is as follows. First, the buyer commits to an information
structure F. Second, each seller decides whether to enter and observes the
realization of his signal si and makes a bid (pi, xi). Third, the GSP defines
the allocation, price, profits and consumers surplus.

We proceed as follows. We first show that the outcome of the auction
depends only on the distribution of locations. We then study the distribution
of locations that maximizes Consumer Surplus subject to the entry condition,
for a given number of entrants. Using this result we characterize the optimal
number of entrants and the Consumer Surplus as a function of the entry cost.
We then show how to implement a given distribution of locations in a Perfect
Bayesian Equilibrium by choosing the appropriate information structure.

3 Equilibrium

As it is standard in any GSP Mechanism it is a dominant strategy for each
seller to bid a minimum acceptable price equal to their marginal cost (in our
case normalized to zero). To see this, notice that the final price defined in
Equation 1 does not depend on the price submitted by the winner bidder but
the probability with which he wins is weakly decreasing in its price.

3Recall that we assume that the buyer is only able to transmit private or public signals,
and therefore, negatively correlated signals cannot arise from the supply of private and
public signals. See Section 5 for a discussion.
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Therefore for a given profile of locations x = (x1, x2, ... , xn), let i∗(x) =
arg maxi v−‖xi, θ‖ denote the winning seller. Then, we can define the Con-
sumer Surplus as

CS = max
i 6=i∗

v − ‖xi, θ‖. (2)

and the seller i∗’s profits as

Πi∗ = min
i 6=i∗
‖xi, θ‖ − ‖xi∗ , θ‖. (3)

Notice then that, for a given ex-ante distributions of locations G̃(x),
we can define G(y) with y = (y1, y2, ... , yn) as the ex-ante distribution of
distances so that G(y) = Pr(‖θ, x1‖, ‖θ, x2‖, ... , ‖θ, xn‖ ≤ y). Notice that
G : [0, 1]n → [0, 1].4 Using this distribution we can characterize the ex-
pected Consumer Surplus as the difference between the valuation and the
expected value of the second lowest realization of n draws using G (one draw
using each distribution Gi), v − Y n

(2)(G). Analogously, the expected sum of
profits equals the expected difference of the first and second realization of
these n draws, Y n

(2)(G) − Y n
(1)(G). Thus, the buyer-optimal distribution of

distances/locations solves5

max
G

E[CS](G) = v − Y n
(2)(G),

subject to E[Π](G) = Y n
(2)(G)− Y n

(1)(G) ≥ n k. (4)

3.1 Optimal Distribution of Locations with Two Sell-
ers

In this Subsection we analyze Program (4) where the buyer chooses distribu-
tion of locations subject to entry of 2 sellers. We first show that the optimal
distribution of locations is symmetric across sellers and the buyer cannot in-
crease her surplus by adding positive correlation across locations (conditional
on θ). More formally,

4Given that we limit to symmetric distribution of signals Fi, we can see that there will
be an exact mapping between G̃ and G. Then, we can refer to distances and locations
equivalently.

5The sum of total profits should exceed the n times the entry costs, but, in principle,
this does not guarantee entry of n sellers since the distribution of profit may be unequal.
We later check that the solution of this relaxed program coincides with the solution of the
general one.
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Lemma 1. Let V be the value of Program (4) with two sellers, then there
exists a distribution G such that E[CS](G,G) = V and G(x1|x2) = G(x1).

Using this result, we can solve the Problem of the buyer as minimizing
the First Order Statistic of a given distribution subject to a given difference
between the First and the Second Order Statistic. Thus, we have.

Proposition 2. The optimal distribution of distances with two sellers is
a binary distribution G∗ with support {0, 1} and such that G∗(0) = 1

2
(1 +√

1− 4k).

Notice then that the consumer surplus with this binary distribution is
E[CS](G∗) = v − (1−G∗(0))2 − 2k. Since

(1−G∗(0))2 =
1

2
(1− 2k −

√
1− 4k) < k,

the welfare loss with two sellers does not exceed the cost of an additional
entrant. Hence, we get the following Corollary.

Corollary 3. The optimal number of sellers is 2.

3.2 Optimal Distribution of Locations With Many Sell-
ers

Often procurers are required to solicit a number of bids exceeding two. For
instance, the EU Directives on Government Procurement forbid public enti-
ties to run procurement auctions with less than three (and often five) different
sellers to promote transparency and fairness.6 Thus, it may be of interest
to explore the effects of increasing the number of bidders in the allocation
and surplus obtained by the buyer. Additionally, we have assumed that all
sellers are ex-ante homogeneous and, in particular, have the same marginal
cost. If sellers were heterogenous with respect to their cost of producing
the good, the buyer may profit from attracting more sellers (as standard in
vertically-differentiated auctions).

Unfortunately, we cannot use the previous result when n > 2 because the
order-statistics may not be well-behaved. Nonetheless, there exists a large
class of distributions of distances for which the same result applies for any
n.

6See Article 44, Directive 2004/18/EC.
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Assumption 4 (Log-Concavity). For all x, y ∈ [0, 1] and for all λ ∈ [0, 1]

λ logG(x) + (1− λ) logG(y) ≤ logG(λx+ (1− λ)y).

Assumption 4 is satisfied by many distributions and guarantees that the
order-statistics of G are well-behaved.7 The following result gives the solution
of this problem for a fixed n, within this family of distributions.

Proposition 5. The optimal log-concave distribution of distances is

G∗(x) = p(n)1−x,

and p(n) ≥ 1
n
.

Using this technology we can now study the effect of adding sellers. First
of all, it can be shown that n = 2 is optimal within this class, since the
welfare loss with two sellers is also lower than the entry cost.8 In general,
adding sellers has two countervailing effects on the welfare loss. First, more
sellers imply more draws for a given distribution and, thus, a lower expected
minimum distance. Second, more sellers reduce total expected profits and
require more disperse locations to satisfy the entry condition. As can be seen
in Figure 1.b, exact numerical results show that this second effect dominates
for every n and k.9

Figure 1.a shows the optimal p(n) for different number of entrants n as a
function of the entry cost k. Figure 1.b plots the welfare loss generated for
each n.

4 Implementation of Location Distributions

Up to now we have studied the properties of the optimal distribution of loca-
tions for a given entry cost k and a given number of entrants. The question
remains whether there exists an equilibrium of the locations game that im-
plements such a distribution with a given information structure. We show

7Other restrictions would suffice. For instance, Increasing Failure Rate would give the
same results.

8This distribution is not tractable but other distributions within this class can be used
to get an upper bound on the welfare loss. For instance, a uniform distribution with an
atom at zero.

9This can be proven analytically by further restricting the set of available distributions.
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Figure 1: Welfare loss and dispersion of locations as a function of the entry
cost.

here that this is indeed the case for conditionally independent locations. We
further show that the optimal distribution of locations G̃∗ can be fully imple-
mented whenever k is not too large. As a Corollary we obtain that the buyer
cannot increase her surplus by using public signals when communicating with
sellers.

Proposition 6. Any conditionally independent joint distribution of locations
G̃∗ can be implemented by an information communication structure F with
conditionally independent signals. The optimal distribution with two sellers
can be implemented with the following signal structure:

F ∗i (si|θ) =


1
4
(1−

√
1− 4k) if si ∈ [θ − 1, θ),

1
4
(3 +

√
1− 4k) if si ∈ [θ, θ + 1),

1 if si = θ + 1.
(5)

Further, if k < 2
9
, this distribution uniquely achieves the Second Best Con-

sumer Surplus.

The idea is straightforward. Each seller locates at the expectation of θ
conditional on winning the auction. If signals are private and other sellers
choose their locations equal to their signals, this expectation is also equal
to his signal. Thus, a symmetric equilibrium exists where all sellers choose
their signals as their locations. Thus, any conditionally independent set of
distributions can be implemented using the equivalent distribution of signals.
Additionally, one can show that this is the unique equilibrium for a number
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of distributions, including the optimal for two sellers, whenever the signal is
sufficiently precise.

Since optimal distributions are conditionally independent and symmet-
ric, it is straightforward to see that using Public signals cannot improve
Consumer Surplus (if sellers coordinate in the equilibrium just described).
Additionally, one can show that Public signals are always subject to multiple
equilibria.10 Therefore,

Corollary 7. Public signals cannot increase the consumer surplus over Pri-
vate signals.

Hence, our model suggests that Procurement Auctions with specialized
products and entry costs should limit the number of sellers and use private
communication to foster surplus extraction.

5 Extensions

In this Section we discuss potential limitations of our results. There are
three arrangements that would allow the buyer to attain the second best
surplus of v − 2k. First, the buyer may subsidize upfront the entry cost
to two different sellers and perfectly reveal her location. Second, she may
set a minimum price that ensures an expected profit equal to the entry cost
without distorting the locations. Finally, she may use negatively correlated
signals that ensure that at least one of them is precise.

Nonetheless, it is worth noting that subsidizing entry may be hard to
enforce since sellers may enter the auction without spending resources to
obtain the subsidy. Regarding minimum prices, they may be hard to enforce
since they are ex-post suboptimal and, if anything, the buyer has ex-post
incentives to set a Reserve Surplus.11 Finally, negatively correlated signals
cannot be generated through a communication process where the buyer sends
private or public signals to each seller.12

10There is always an equilibrium where one seller follows the signal and the others
locate elsewhere. This equilibrium has an unequal profit distribution and is, therefore,
dominated.

11Minimum prices are often used to screen suspicious bids that are unlikely to be carried
on. We do not know of any other model where a cup on the rents that the auctioneer
improves her rents.

12At the expense of more notation, this idea could be formalized by allowing the seller
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5.1 Commitment

Consider now what happens after information has been supplied but before
sellers locations are revealed. If the buyer lacks commitment, she will choose
to introduce a reserve surplus in order to increase the payoff she can attain.
This reduces sellers profits and, thus, the equilibrium number of entrants.
In this Section we compare the surplus for a buyer who can commit to a
standard inverse second price auction (SPA) and a buyer who cannot commit
and chooses to fix an ex-post optimal reserve surplus.

The first thing to notice is that a positive reserve surplus cannot increase
consumer surplus whenever the participation constraint of sellers is binding,
since total surplus decreases and sellers must be granted non-negative net
profits.

In the case with two sellers, disclosing the buyer parameter θ, each seller
j privately observes independently how much surplus it can create, i.e., vj ∈
[v− 1, v]. Suppose that the distribution of signals follows G∗(|ε|). Then, the
distribution of vj is characterized by,

G(vj) = 1−G∗(v − vj) if vj ∈ [v − 1, v].

For simplicity, let v = 1. If the reserve surplus is chosen once sellers have
entered the market, the optimal reserve surplus is r = min{r∗, 1}, where r∗

is defined by r∗ = 1−G∗(r∗)
g∗(r∗)

.13

In general, different distributions lead to different reserve prices and, con-
sequently, different ex-post rents for entrants for a given dispersion of the sig-
nals. For instance, if G∗(|ε|) is the optimal distribution under commitment,
the optimal reserve surplus is 1 for all G(0) > 0 and, thus, ex-post profits
are zero and no seller will enter the market.

The optimal distribution without commitment must trade-off the ex-post
benefits of more dispersion with the ex-ante gains in precision through a
lower reserve surplus. In Figure 2.a we plot the surplus extracted by the
buyer as a function of the entry cost when using two different log-concave
distributions: the optimal distribution under full commitment and a uniform
distribution with an atom at 0. The optimal log-concave distribution under
full commitment generates a lower surplus because it requires much higher
distortion of information. In particular, if G(0) ≥ 1

e
the buyer will choose a

to send any number of independent signals to one or all sellers. The resulting information
structure will satisfy non-negative correlation.

13see e.g. Krishna (2009).
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reserve surplus equal to 1 giving no rents. Under the alternative distribution,
the maximum mass at zero compatible with entry is 1

2
> 1

e
. Figure 2.b plots

the mass points at zero of these distributions as a function of the entry cost.

(a) Expected consumer surplus (b) Information

Figure 2: Comparing consumer surplus with 2 sellers between the optimal
log-concave distribution and a uniform distribution that has a mass point at
zero.

6 Conclusions

In this paper we have analyzed the optimal information revelation policy for
a buyer of a differentiated product who must attract potential sellers to its
market. We show that she will only attract two sellers. Additional sellers
increase competition lowering total profits so that the buyer must compensate
them by reducing the information supplied. Lower information implies lower
total surplus and also lower consumer surplus. Finally, we show that if the
buyer cannot set up the rules of the selling mechanism in advance, she faces
a commitment problem that would seriously limit the amount of information
he can supply to sellers, thus lowering her total surplus.

Procurement auctions run by governments are heavily regulated. Many of
these regulations suggest the use of public information when communicating
to different sellers and advice governments to attract a large number of sellers.
For instance, Directives 2004/18 from the EU recommend14

14See Article 44, paragraph 3 Directive 2004/18/EC.
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In the restricted procedure the minimum shall be five. In the
negotiated procedure with publication of a contract notice and
the competitive dialogue procedure the minimum shall be three.
In any event the number of candidates invited shall be sufficient
to ensure genuine competition.

Our results suggest that increasing the number of sellers may not be
the best way to promote competition in environments where information
provision is relevant. On the other hand, the same Directives establish the use
of a competitive dialogue whereby the buyer releases information to each seller
independently. Our results suggest that such a policy is, indeed, optimal.
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A Appendix

Proof of Lemma 1 . We first allow the buyer to choose a joint distribution of
locations that is not conditionally independent, so that Gi(xi|xj) 6= Gi(xi|x′j)
for some xj 6= x′j.

To see this, we compare the First Order Statistic of 2 draws using G(xi|xj)
and G(xi), its marginal.∫ 1

0

∫ x2

0
x1dG1(x1|x2)dG2(x2) +

∫ 1

0

∫ x1

0
x2dG2(x2|x1)dG1(x1) ≥∫ 1

0

∫ x2

0
x1dG1(x1)dG2(x2) +

∫ 1

0

∫ x1

0
x2dG2(x2)dG1(x1),

rewriting,∫ 1

0

∫ x2

0
x1d[G1(x1|x2)−G1(x1)]dG2(x2) +

∫ 1

0

∫ x1

0
x2d[G2(x2|x1)−G2(x2)]dG1(x1) ≥ 0.

which holds true if and only if x1 and x2 are positively correlated conditional
on θ. To see that profits are weakly lower, notice that the distribution of the
mean only depends on the marginal distribution and the difference between
the First and the Second Order Statistic is proportional to the difference
between the mean and the First Order Statistic.
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With positive correlation between both draws, the expectation of the
first order statistic of two draws increases and the expectation of the Second
Order Statistic of two draws decreases. Hence consumer surplus is lower with
positive correlation for a given level of profits (since they are defined by the
difference between the Second and the First Order Statistic). Clearly, then,
for any feasible distribution of locations with positive correlation conditional
on θ, there is another distribution of locations that has a weakly higher
Consumer Surplus.

Now, we show that restricting to locations that are identically distributed
is without loss of generality with two sellers. we show that asymmetric
distributions cannot increase the payoffs of the buyer. Let G1 and G2 be the
optimal asymmetric distributions. The problem of the buyer is

min
{G1,G2}

∫ 1

0

x[1−G1(x)]dG2(x) +

∫ 1

0

x[1−G2(x)]dG1(x),

s.t

∫ 1

0

∫ x2

0

(x2 − x1)dG1(x1)dG2(x2) ≥ k,∫ 1

0

∫ x1

0

(x1 − x2)dG2(x2)dG1(x1) ≥ k.

The first observation is that in a solution to the buyer’s problem, both
constraints must hold with equality. For a contradiction, suppose not so
that, say, the first constraint is not binding. Thus, profits of Seller 1 exceed
the entry cost. Consider the alternative distribution function Ĝ2 constructed
by adding mass at zero. Formally for α > 0, Ĝ2(x) = α + (1 − α)G2(x).
If α is small enough, clearly the first constraint is satisfied while the second
constraint is relaxed. The objective function is clearly reduced. Thus, a
contradiction.

The second observation is then that if both constraints are satisfied and
one distribution Second-Order Stochastically Dominates the other, then the
dual problem (where the First Order Statistic of the distribution is mini-
mized) is not in an optimal solution. Namely, if G1 �SOSD G2 then the dual
requires that G1 = G2. This is an extension of Proposition 2 in the paper.

Since profits are the same, we can write the problem of the buyer as,

min{G1,G2} Y 2
(1) :=

∫ 1

0

x[1−G1(x)]dG2(x) +

∫ 1

0

x[1−G2(x)]dG1(x),

s.t. Π1 + Π2 = Y 2
(2) − Y 2

(1) ≥ 2k.
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Aggregated profits Y 2
(2) − Y 2

(1) can be expressed as15∫ 1

0

xG1(x)dG2(x) +

∫ 1

0

xG2(x)dG1(x)−
∫ 1

0

x[1−G1(x)]dG2(x)−
∫ 1

0

x[1−G2(x)]dG1(x).

We proceed by contradiction. Suppose (G1, G2) is a solution to this prob-
lem. We show that if G2 �SOSD G1 then (G1, G1) is preferred to (G1, G2).

First, we show that (G1, G1) is feasible, since aggregate profits are not
smaller, i.e., Y 2

(2)(G1, G1)− Y 2
(1)(G1, G1) ≥ Y 2

(2)(G1, G2)− Y 2
(1)(G1, G2).

2

∫ 1

0

xG1(x)dG1(x)− 2

∫ 1

0

x[1−G1(x)]dG1(x) ≥
∫ 1

0

xG1(x)dG2(x)

+

∫ 1

0

xG2(x)dG1(x)−
∫ 1

0

x[1−G1(x)]dG2(x)−
∫ 1

0

x[1−G2(x)]dG1(x),

As G1 and G2 have the same mean,
∫ 1

0
xdG1 =

∫ 1

0
xdG2, the inequality can

be re-expressed as

4

∫ 1

0

xG1(x)dG1(x) ≥ 2

∫ 1

0

xG1(x)dG2(x) + 2

∫ 1

0

xG2(x)dG1(x),

and ∫ 1

0

xG1(x)d(G1 −G2) +

∫ 1

0

x(G1 −G2)dG1 ≥ 0,

Under some (standard) assumptions on the distribution function we have
that this is equivalent to∫ 1

0

xdG1(G1 −G2) ≥ 0.

Integrating by parts,16 ∫ 1

0

G1[G2 −G1]dx ≥ 0.

15Where the cumulative distribution of the maximum of two draws is G1(x)G2(x) and
the cumulative distribution of the minimum of two draws is 1− [1−G1(x)][1−G2(x)].

16Notice that [G1 −G2] changes sign.
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This inequality holds since G2 �SOSD G1. Notice that G1 is an increasing
bounded function. Using the Mean Value Theorem we have that, for some
numbers µ(0, a) and µ(a, 1) where µ(a, 1) > µ(0, a)

µ(0, a)

∫ a

0

((G2(x)−G1(x))dx ≥ µ(a, 1)

∫ 1

a

((G1(x)−G2(x))dx. (6)

which is equivalent to

(µ(a, 1)− µ(0, a))

∫ 1

a

((G2(x)−G1(x))dx ≥ 0. (7)

for every a ∈ (0, 1). If G1 �SOSD G2,
∫ 1

a
((G2(x)− G1(x))dx ≤ 0 with strict

inequality for some a. Thus a contradiction.
Now, we show that (G1, G1) generates higher consumer surplus than

(G1, G2), i.e., Y 2
(1)(G1, G1) ≤ Y 2

(1)(G1, G2).

2

∫ 1

0

x[1−G1(x)]dG1(x) ≤
∫ 1

0

x[1−G1(x)]dG2(x) +

∫ 1

0

x[1−G2(x)]dG1(x),

or,

0 ≤
∫ 1

0

x[1−G1(x)]d[G2 −G1]−
∫ 1

0

x[G2 −G1(x)]dG1(x),

which is equivalent to

0 ≤
∫ 1

0

xd[1−G1(x)][G2 −G1].

Integrating by parts,

0 ≤
∫ 1

0

[1−G1(x)][G1 −G2]dx.

This inequality holds again since G2 �SOSD G1.
Thus, the remaining case is such that neither distribution dominates the

other. Both the set of log-concave distributions and the set of all distribution
functions with support in the unit interval have the property that for every
mean there exists a unique distribution function such that no other distri-
bution function with the same mean is an spread of it. In other words, the
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partial order induced by Second Order Stochastic Dominance has a greatest
element. To see this suppose that there are two distributions (G and F )
with the same mean and no other distribution second-order stochastically
dominates it. Since they are different distributions and not ranked we have
that ∫ a

0

G(x)dx >

∫ a

0

F (x)dx,∫ 1

0

G(x)dx =

∫ 1

0

F (x)dx.

But then consider the distribution H(x) such that∫ a

0

H(x)dx = max

{∫ a

0

G(x)dx,

∫ a

0

F (x)dx

}
. (8)

Notice that H(0) = 0 and H(1) = 1 so that H has the same mean and is a
mean preserving spread of both G and F .

Finally, a solution (G1, G2) cannnot exist. A candidate (G1, H) where
H �SOSD G1 and H �SOSD G2 is superior (G1, G2). And (H,H) is preferred
to (G1, H). The proof is completed.

Proof of Proposition 2. Jia, Harstad, and Rothkopf (2010) shows that if H
is a Mean-Preserving Spread (MPS) of H ′, then

Y 2
(2)(H)− Y 2

(1)(H) > Y 2
(2)(H

′)− Y 2
(1)(H

′).

By duality, this implies that if a given distribution H is optimal, there does
not exist a distribution H ′ satisfying the constraint and being a MPS of H.
Thus, the optimal distribution is Second-Order Stochastically Dominated by
all other distributions. Now, we show that a binary distribution G∗ with
atoms at 0 and 1 solves the problem.

We need to prove that for any G with mean 1 − G∗(0) the function
∆(α) ≤ 0 for any α ∈ [0, 1], where

∆(α) :=

∫ α

0

[G(x)−G∗(x)]dx.

G∗ is flat for all x ∈ (0, 1). G is increasing with G(0) ≤ G∗(0) (otherwise
they would not have the same mean) and G(1) ≥ G∗(1). Hence, there exists
one and only one x̃ such that G∗(x̃) = G(x̃). Then ∆(0) = 0, ∆(1) = 0 and
∆(α) decreases until x̃ and increases thereafter. Finally, ∆(α) has two local
maxima and the function is always non-positive.
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Proof of Proposition 5. Within the class of log-concave distributions, Jia,
Harstad, and Rothkopf (2010) shows that if H is a Mean-Preserving Spread
of H ′, then Y n

(2)(H) − Y n
(1)(H) > Y n

(2)(H
′) − Y n

(1)(H
′), for any n. To see that

G∗(x) = p(n)1−x satisfies this condition, notice that this distribution is log-
linear and so, all other log-concave distribution G with the same mean, can
be written as a G = H(G∗) for some H concave. But then,∫ x

0

G(y)dy =

∫ x

0

H(G∗(y))dy ≤
∫ x

0

G∗(y)dy.

To show that that p(n) > 0 notice that the constraint in the minimization
problem can be written as

Y n
(2) − Y n

(1) = n(n− 1)

∫ 1

0

xG(x)(1−G(x))n−2dG(x)− n
∫ 1

0

x(1−G(x))n−1dG(x),

= n

∫ 1

0

x(1−G(x))n−2(nG(x)− 1)dG(x) ≥ nk.

But then the minimization problem can be written as

min

∫ G−1(0)

0

x(1−G(x))n−1dG(x) +

∫ 1

G−1(0)

x(1−G(x))n−1dG(x),

s.t. n

∫ G−1(0)

0

x(1−G(x))n−2(nG(x)− 1)dG(x)+,

n

∫ 1

G−1(0)

x(1−G(x))n−2(nG(x)− 1)dG(x) ≥ nk.

Notice that if G−1(0) > 0 the objective function increases and the LHS of the
constraint decreases. Thus, in the optimal distribution G(0) = p(n) ≥ 1

n
.

B Appendix

Proof of Proposition 6 . First note that any distribution of locations is im-
plementable by a conditionally independent signal structure in a Perfect
Bayesian Equilibrium. Let ηi be the length of the clockwise from θ to si.
Notice that ηi ∈ [0, 2] and define εi = ηi if ηi < 1 and εi = −(2−ηi) if ηi ≥ 1.
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If all other sellers follow their signals, seller i location given his signal si
satisfies

xi =
1

w(xi)

∫
εw(ε|xi)dF (ε)⇔ xi = 0. (9)

where w(xi) is the probability of winning the auction given the location xi,
and w(εi|xi) is the conditional probability of winning the auction if the noise
of the signal is εi given the location xi. Since the weighting function of
w(εi|xi) is symmetric around 0, a solution to this equation is x = 0.

Then, we show that the optimal distribution location for 2 sellers is
uniquely implementable with the following signal structure: F (x) = p if
x ∈ [0, 1) and F (x) = 1 if x = 1. And then we show for an arbitrary con-
tinuous location distribution can also be implemented, albeit perhaps not
uniquely.

If each seller mixed strategy location is G1(s) and G2(s) respectively, the
payoff of seller 1 is defined by

Π1(G1, G2) = p2
∫ 1

0

∫ x2

0

(x2 − x1)dG1dG2,

+(1− p)p
∫ 1

0

∫ 1

1−x2
(x2 − (1− x1))dG1dG2,

+p(1− p)
∫ 1

0

∫ 1−x2

0

(1− x2 − x1)dG1dG2,

+(1− p)2
∫ 1

0

∫ 1

x2

(1− x2 − (1− x1))dG1dG2.

We show that the seller 1 obtains a higher payoff if he changes the distri-
bution G1 to G̃1,

G̃1 =

{
α +G1(x) if x ≤ b,
1 if x > b.

(10)

where b := G−1(1− α). G̃1 reallocates a mass of α from high values of x to
x = 0.
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The gains from changing from G1 to G̃1 are

∆Π1 = p2
∫ 1

0

x2αdG2 − (1− p)p
∫ 1

0

x2αdG2 + p(1− p)
∫ 1

0

(1− x2)αdG2,

−(1− p)2
∫ 1

0

(1− x2)αdG2,

= α(2p− 1) ((2p− 1)E[G2] + 1− p) .

The losses are

∇Π1 = −(1− p)p
∫ 1

0

∫ 1

b

(x2 − (1− x1))dG1dG2,−(1− p)2
∫ 1

0

∫ 1

b

(x1 − x2)dG1dG2,

= (1− p)
[
−1 + (1− 2p)αE[G2] + b(1− α) +

∫ 1

b

G1dx1 + α p

]
.

As
∫ 1

b
G1dx1 ≥ (1−b)(1−α), then ∇Π1 ≥ α(1−p) [(1− 2p)E[G2]− (1− p)].

Consequently, gains are higher than losses if ∆Π1 ≥ −∇Π1,

α(2p− 1) ((2p− 1)E[G2] + 1− p) ≥ −α(1− p) [(1− 2p)E[G2]− (1− p)] , .
(2p− 1) ((2p− 1)E[G2] + 1− p) ≥ (1− p) [(2p− 1)E[G2] + (1− p)] ,

p ≥ 2

3
.

Therefore, for k ≤ 2
9

the optimal distribution can be fully implemented.

22


	Portada 142
	Borrador 142
	Introduction
	Related Literature

	Model
	Equilibrium
	Optimal Distribution of Locations with Two Sellers
	Optimal Distribution of Locations With Many Sellers

	Implementation of Location Distributions
	Extensions
	Commitment

	Conclusions
	Appendix 
	Appendix 


