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Abstract

Determining the distribution of disease prevalence among heterogeneous populations at

the national scale is fundamental for epidemiology and public health. Here, we use a combi-

nation of methods (spatial scan statistic, topological data analysis and epidemic profile) to

study measurable differences in malaria intensity by regions and populations of Colombia.

This study explores three main questions: What are the regions of Colombia where malaria

is epidemic? What are the regions and populations in Colombia where malaria is endemic?

What associations exist between epidemic outbreaks between regions in Colombia? Plas-

modium falciparum is most prevalent in the Pacific Coast, some regions of the Amazon

Basin, and some regions of the Magdalena Basin. Plasmodium vivax is the most prevalent

parasite in Colombia, particularly in the Northern Amazon Basin, the Caribbean, and munici-

palities of Sucre, Antioquia and Cordoba. We find an acute peak of malarial infection at 25

years of age. Indigenous and Afrocolombian populations experience endemic malaria (with

household transmission). We find that Plasmodium vivax decreased in the most important

hotspots, often with moderate urbanization rate, and was re-introduced to locations with

moderate but sustained deforestation. Infection by Plasmodium falciparum, on the other

hand, steadily increased in incidence in locations where it was introduced in the 2009-2010

generalized epidemic. Our findings suggest that Colombia is entering an unstable transmis-

sion state, where rapid decreases in one location of the country are interconnected with

rapid increases in other parts of the country.

1 Introduction

Malaria in Colombia has been studied from a variety of disciplines that describe disease pat-

terns with dimensions such as the diversity of the vector [1, 2], characteristics of the parasite

[3], social phenomena affecting disease transmission [4, 5], and physical phenomena such as

climate, weather and land use, [6–8], just to name some of the most important. Mainly,

national and local contexts are well understood for a country that presents unusual diversity of
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environments and social backgrounds (including vast cultural diversity), which, in turn, repre-

sent different characteristics of malaria transmission. In contrast with Sub-Saharan Africa,

where malaria is commonly a deadly disease affecting primarily children, Colombia is not con-

sidered particularly relevant in malarial disease studies given the relatively low mortality when

compared with Sub Saharan Africa. However, malaria in Colombia presents certain character-

istics that resemble those observed in Southeast Asia. Colombia was one of the first countries

where resistance to chloroquine-based treatment was reported. Varied malaria intensity

among segregated and diverse populations inhabiting different and unique environments

make Colombia one of the few cases where malaria is endemic and where disease patterns are

regionally inconsistent, in contrast to several countries that follow a consistent pattern of infec-

tion, or whose segregated vulnerable populations do not differ in their epidemic patterns

[9, 10]. This does not mean that other countries have a homogeneous experience of malaria

intensity across subpopulations or regions.

Malaria is a complex disease, and factors associated to disease severity and resistance have

been reported, yet genetic resistance to malaria is better understood than to any other human

infectious disease [11]. However, the strong geographical association between resistance to the

pathogen and disease severity remains a major challenge to assess the causality of human

genetic resistance [11]. We know from evolutionary theory that two critical factors for selec-

tion must occur: 1) a population with genetic diversity has to exist for selection to operate; 2)

the trait in question must confer a differential in reproductive value for adaptation to evolve.

Because African populations exhibit both high genetic diversity and experience severe malaria,

genetic resistance to the pathogen appears to have emerged independently in different foci

[12]. However, unlike Africa, Colombia has no record of de novo emergence of human genetic

resistance to malaria. On the contrary, the parasite appears to have developed resistance to

treatment. Until recently, it was unknown whether observed pathogen resistance was the result

of selection of adaptive mutant strains under drug pressure, or the spread of resistant strains

[13]. Genetic evidence suggests that resistant malaria emerged in at least 4 different geographi-

cal foci, consistent with the history of reports of resistant pathogens for Plasmodium falcipa-
rum in the Thailand-Cambodia border and Colombia in the 1950s, then spreading for two

decades to South America, Asia and India, and then to Africa in Kenya and Tanzania in the

late 1970s [14–16]. Resistant Plasmodium vivax was first reported in Papua-New Guinea in

1989, it is currently present in South East Asia, and South America [16].

Studies have found resistant Plasmodium vivax at a rate of 11% in representative samples of

all blood smears collected in two endemic geographical regions in Colombia: Llanos orientales
(Eastern Plains) and Urabá [17], while others have found no evidence of resistant Plasmodium
vivax forms in the Pacific Coast and the Amazon Basin [18]. However, therapeutic failure rates

of Plasmodium falciparum (for representative samples of all blood smears collected) have been

reported as high as 78% for these same regions [18], and 67% in Antioquia [19]. More recent

assessments of malaria prevalence in endemic areas also suggest that uncomplicated malaria

due to low parasitemia is one of the biggest challenges for malaria control strategies [5, 20, 21],

and studies indicate that the observed differences are not attributable to human genetic traits

that confer resistance [22].

Few studies have addressed the epidemiology of malarial infection by regions and popula-

tions to explore the role of intensity in the emergence of resistant forms of the parasite. How-

ever, the role of Colombia in the global epidemiological context of malaria indicates that the

country may present unique characteristics for disease transmission. Mainly, the presence,

absence, and most importantly, emergence of resistant forms of the parasite in different

regions suggests that isolated and distinct epidemic regions exist within the national bound-

aries, and such characteristics may play a distinctive role in the evolution of the parasite. Here

Malaria intensity in Colombia

PLOS ONE | https://doi.org/10.1371/journal.pone.0203673 September 12, 2018 2 / 28

contributions’ section. The first author would like to

thank Stanford University, the Zaffaroni family, and

the Morrison Institute for their financial support.

The second author acknowledges and thanks the

financial support of the grant P12.160422.004/01-

FAPA ANDRES ANGEL from Vicedecanatura de

Investigaciones de la Facultad de Ciencias de la

Universidad de los Andes, Colombia. The third

author acknowledges and thanks the financial

support of the grant Proyecto Semilla 2017-1 from

Vicedecanatura de Investigaciones de la Facultad

de Ciencias de la Universidad de los Andes,

Colombia. The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The funder Walmartlabs

provided support in the form of salaries for the

author Camilo Rivera, but did not have any

additional role in the study design, data collection

and analysis, decision to publish, or preparation of

the manuscript. This does not alter our adherence

to PLOS ONE policies on sharing data and

materials.

https://doi.org/10.1371/journal.pone.0203673


we address the intensity of malaria by regions and human populations in Colombia, and the

degree that the epidemic characteristics between regions affect each other.

One key aspect remains poorly understood about malaria dynamics in Colombia: how

many different epidemic regions exist, and how do subpopulations in these regions experience

malaria. During our research, we interacted with local health officials who conducted malaria

prevention programs at both local and national levels. Each public health official had knowl-

edge and expertise about epidemic dynamics in their specific territorial assignment. However,

a lack of systematic approaches hamper the ability to formalize such knowledge. Malaria inten-

sity and the social aspects that condition the transmission of the parasite drive public health

interventions. However, the regional designations are yet to be formalized based on analysis of

malaria dynamics. Decisions about prevention strategies, and how to target the most vulnera-

ble populations are made based primarily on the expertise of local health officials, as indicated

by the different authors [6, 23, 24].

Here we generate a systematic classification of the malarious regions and subpopulations of

Colombia, to characterize locations and subpopulations with epidemiological aspects of the

parasite. Here we address three basic questions surrounding the intensity of malarial infection

by ethnicity and region:

1. Is this population experiencing higher intensity of malarial infection than other regions of

the country?

2. Is the parasite persisting endemically within this population?

3. Are the epidemic characteristics of this subpopulation affecting other subpopulations?

Specifically, we analyze eight years of malarial case reports, they are examined for both

malaria intensity, synchrony and segregation by ethnicity. First, we employ an outbreak detec-

tion algorithm [25] widely used [26–28] to identify clusters in space with outbreaks of malaria.

Second, we apply methods from Topological Data Analysis (TDA) [29, 30] to visualize syn-

chronous outbreaks: areas that present similar time patterns of malarial epidemics. Finally,

regional case reports are explored with descriptive statistics to analyze the intensity of malaria

exposure by ethnicity.

2 Background

From John Snow’s seminal study of cholera in London, epidemiology has been a spatial disci-

pline [31]. Geographical disease patterns have been widely described for numerous pathogens

and regions. We use three methods to analyze malaria in Colombia: disease clustering, disease

visualization, and ecological analysis.

2.1 Importance of detecting endemicity

The production of good quality maps to understand and visualize risk of disease transmission

is recognized as one of the fundamental tools for malaria control strategies, specifically, under-

standing the relationship between malaria endemicity and the health impact of malaria [32].

Studies suggest that annual entomological inoculation rates (commonly computed as the prod-

uct of the daily human biting rate, the sporozoite rates from the caught mosquitoes, and the

days per year [33]) in Ghana (100-1000), Kenya (10-60) and Gambia (less than 10) are associ-

ated to prevention of all cause childhood mortality rates by insecticide treated bed nets, with

efficacy of 17%, 33%, and 63%, respectively [32]. These results suggest that public health poli-

cies should vary according to malaria endemicity, since bed nets have been the linchpin of

malaria prevention strategies since DDT was discontinued as a viable alternative. Yet, evidence
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suggests that there are several contexts in which bed nets are not efficient [32]. In locations

where malaria is intense, the use of bed nets is less efficient to prevent the burden of the

disease.

Due to the scarcity of multi-sited studies across different countries, variation of the relation-

ship between endemicity and overall health remains unknown [32]. However, within country

variation of malaria has been subject of numerous studies. One study that addresses such rela-

tionship is produced by Omumbo et al. [34], using GIS and malaria case reports to map

malaria intensity in Kenya. Their results also question the use of treated bed nets in regions

where malaria is intense, because in these communities, bednets are the most inefficient [34].

2.2 Analyzing malaria from a spatial point of view

Spatial descriptions of variation in malarial infection within countries has been addressed pro-

ducing maps of risk of contracting the disease using a variety of methods. For example, [35]

produced a more accurate visualization of risk of contracting malaria in Mali, by combining

regression analysis with “kriging” (i.e., an interpolation method similar to smoothing fitted val-

ues) to account for local responses to environmental conditions such as weather, population

and other topographic and sociological features. Using those methods, they are able to identify

regions where the risk is higher than represented in traditional maps [35]. A similar approach,

but based on entomological and demographic geo-coded records, is implemented with a GIS

analysis to describe local risk of infection based upon proximity to breeding sites and human

populations [36]. Beck [37] implemented a variation of these risk maps by integrating remote

sensing data to identify locations of high transmission based on human-vector interaction for

a region in Mexico, including variation by season.

Estimating the effect of migration on pathogen loads has been a growing interest of epide-

miologists in the past years, and multiple methods have been implemented to address such

interaction. A data-driven approach to examine the effect of human mobility on epidemics has

been the gravity model, used to evaluate measles outbreaks, both by age-classes and by urban

and rural settings [38–40]. The main finding of this approach was that population densities

were the main driver of outbreak seasonality across different environments [38–40]. Further-

more, the same group has used nighttime light imagery to estimate the effect of changing pat-

terns of population densities on disease outbreaks [41]. Unfortunately, few comparative

studies exist to determine which method is more effective under which conditions and for

which diseases. However, the method of nighttime light imagery provides good estimates of

mobility of populations without access to phone services, often the most vulnerable popula-

tions in terms of disease prevalence.

Although the gravity model has been mostly used for directly transmitted diseases, under-

standing the effect of human mobility on disease epidemics, and more generally how disease

disperses over space and time, has been one of the fundamental questions in contemporary

spatial epidemiology.

2.3 Malaria in the Americas

Contributing 42% of the cases of malaria in the region, Brazil is one of the most important

players of the disease in the Americas [8]. Contrary to the spectrum of infection in Colombia,

most cases of malaria in Brazil are both Amazonian and caused by Plasmodium vivax, with

challenges such as asymptomatic and submicroscopic infections, emergence of drug resistance,

and social and environmental factors driving risk of disease over a consistently decreasing area

of land [8, 42]. Brazil stands both as an example in terms of innovative and effective measures

for malaria control, on the one hand, and of policies that promoted malarial infection
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epidemics on the other [8, 42, 43]. A recent geospatial assesment in the Brazilian Amazon

found that malarial infection is more frequently observed in areas with greater forest cover

and close to gold mining, and the observed spatial heterogeneity of disease risk suggests that

the Acre region should be prioritized by public health interventions, highlighting the relevance

of spatial analysis to inform policy [44].

2.4 Synchrony in the disease outbreaks

Two approaches have been used to analyze synchrony of disease outbreaks over space and

time, controlling for seasonal and environmental variables. Spectral analysis has been used to

describe the association between aggravation of asthma symptoms and temperature or atmo-

spheric contamination levels [45, 46], and the association between air pollution and mortality

[46]. This technique has been used to study the effect of climatic variation on cholera [47, 48],

malarial epidemics [49], and the seasonality of sexually transmitted diseases (STDs) [50].

Some authors suggest that these methods have limitations, because they can only be used

for time-series data in which statistical proprieties do not change over time, yet, epidemic data

are inherently complex and non-stationary [46]. Furthermore, evidence suggests that epidemic

data characteristics do change over time [46, 51, 52].

The limitations of the spectral decomposition methods led to the implementation of the

second technique that is most widespread in understanding disease dynamics over space and

time, coupled with climatic and environmental conditions from a non-stationary perspective:

wavelets, a method used to show how time-series vary as a function of time and space [46, 53].

Wavelet analysis has been used to study geographical hierarchies of measles epidemics, and

the observed effect of vaccination policies over time [54]. Associations between dengue epi-

demics and El Niño Southern Oscillation (ENSO) have also been documented using this

method [55]. Kreppel [56] found an association between ENSO, Indian Ocean Dipole (IOD)

and plague dynamics in Madagascar, and [57] found similar effect of those two climatic phe-

nomena on infectious gastroenteritis in Japan. [58] documented that Buruli ulcer is affected by

short and long rainfall patterns in French Guiana, as well as stochastic events such as ENSO.

The relationship between ENSO and cutaneous leishmaniasis has also been documented for

Costa Rica [59]. Jose [60] have studied the changing patterns and seasonality of Australian

rotavirus epidemics comparing a multiplicity of methods including wavelet analysis, and

detected seasonal biannual and quinquennial periods, yet, a three year epidemic period was

also found to be dominant. Spectral analysis confirms that serotype harmonics interact in a

complex, non-linear fashion, yielding an observable overall pattern beyond the isolated

dynamics of each separate serotype, that is more than the sum of the parts, and inherent

dynamics remain unchanged but the amplitude of disease infection is modified [60].

2.5 Disease cluster identification

Spatial analysis methods have been applied in disease cluster identification. The main

approaches used are: K-cluster analysis, detects global clusters based on each case point [61];

the geographical machine [62] and the scan statistic [25], work by aggregating cases in differ-

ent areas and performing a hypothesis test based on a Bernoulli null model, with the advanta-

geous difference for the scan statistic that it can perform multiple tests simultaneously. We

present an implementation of the scan statistic in this case study. Small, isolated outbreaks of

malaria in specific communities have been identified as “discrete mini epidemics”, which rep-

resent disease severity by using space-time cluster identification [63]. Disease risk by geo-

graphical location has also been implemented as simple logistic regressions that include

altitude, and physical coordinates of each individual within a case-control study [64]. The scan
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statistic method has been used by [65] to identify disease clusters over space and time in a

South African region. [66] have also implemented the scan statistic method in China to iden-

tify clusters and suggest public health resource optimization. Faires [67] used this method to

identify clusters of Clostridium difficile over time in Ontario, Canada. Duczma [68] imple-

mented the scan statistic to study Chagas’ disease in Brazil, while [69] do the same for end-

stage renal disease (ESRD) in northen France. In Virginia, the increasing burden of Lyme dis-

ease was documented using spatiotemporal scan statistics [70]. In all cases, studies were able to

identify areas with more cases than expected, highlighting in many cases the relevance of

regions that did not present a comparatively higher incidence.

Globally, [71] have used maximum likelihood methods (i.e. a similar approach to the scan

statistic) to predict areas where malaria is likely to expand as a result of climate change.

A branch that can also be used for cluster identification is Topological Data Analysis

(TDA), which applies ideas from the mathematics area of topology to study high dimensional

data by obtaining invariants and useful representations of the shape of the data.

In recent years, TDA has been used to find subgroups of individuals with unique genetic

and prognostic profiles of breast cancer [30, 72], political alliances in the congress [30], profiles

of basketball players [30], pathogen persistence in soil [73], novel patterns in spinal and brain

injury [74], subgroups of individuals with different complications from type 2 diabetes [75],

among others. We use TDA to find synchronic outbreak clusters among the data.

3 Methods

The analysis for this study was generated from case reports based on active and passive detec-

tion methods compiled by the Colombian government. Reports of malaria cases are manda-

tory. Treatment is provided for free to each case, and a positive test is required to disburse the

medication. Data was accessed by requesting a user to query the Sispro database of reported

cases by the Ministry of Health.

All cases are laboratory confirmed and geocoded to municipality level. We included data

for 1,122 municipalities, that range in area from 1 to 65,786 km2; total area sampled was

1’144,385 km2. For each municipality, we also analyzed sex and ethnic membership of each

case, comprising 3,369 different populations. The ethnic denominations used by the Ministry

of Health are:

1. Indigenous.

2. Romani.

3. Raizal.

4. Palenquero.

5. Afro, which includes: black, mulatto, african-colombian and afrodescendant.

6. Other, which consists of predominantly mestizos.

Since the combined total cases with ethnic denomination Romani, Raizal or Palenquero are

less than the 0.3% of the database, they are excluded from our analysis.

The distribution of malaria cases and segmentation of the data summarized Table 1. See

also the section of additional figures.

3.1 Clustering

The two main objectives are to determine if malaria outbreaks exist in Colombia, and, if so, to

determine their location. To address these objectives, we apply scan statistics to perform a
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hypothesis test in each municipality, examining whether it presents an outbreak. These

approaches have been widely used in epidemiological studies [25], [77], and [78].

The approach to test hypothesis is mainly based on the Bernoulli model of the Kulldorff

Scan Statistic developed in [25] using the r-package Spatial-Epi [79].

Given the data aggregated by municipality for 2007-2015, each record is assigned to the

centroid of the municipality. Because the set of possible outbreaks (all possible aggregations of

neighboring municipalities) is almost unlimited in terms of shape and size, a solution is to

approximate this set. In this case, a grid G of N by N was overlaid onto Colombia’s jurisdic-

tional boundaries and then the set of possible outbreaks is limited to all the possible sub rectan-

gles within the grid.

Now, under the Bernoulli model we consider a measurement m for each rectangle R con-

tained in G, where m(R) corresponds to an integer and in our specific case, the number of indi-

viduals inside the given rectangle. This leads us to assume that there is a rectangle Z contained

in G such that each individual inside Z has a probability p of being infected, while the individuals

outside Z have a probability q. Let nR be the number of observed malaria cases inside R, so by

assuming a Bernoulli model and the following hypothesis for our unknown variables p and q:

H0 : p ¼ q ð1Þ

H1 : p > q ð2Þ

we have these possible distributions:

• Assuming H0:

nR � BinðmðRÞ; pÞ 8R � G ð3Þ

• Assuming H1:

nR � BinðmðRÞ; pÞ 8R � Z and nR � BinðmðRÞ; qÞ 8R � ZC ð4Þ

And hence, under H1, we have that Z is a region with potential malaria outbreak.

Lastly, the third and final step is to establish a measure of density for each subrectangle, in

this case the likelihood ratio. This measurement of density has desirable properties to compare

different sized rectangles [78]. So, [25] derives the formula for likelihood ratio of a generic

Table 1. Summary and segmentation of registered malaria cases in Colombia between the years 2007 and 2015. Although distribution of sexes among the Colombian

population is almost equal, registered malaria cases are predominantly men. Plasmodium vivax has a similar ethnic distribution to the Colombian population and as for

Plasmodium falciparum, the predominant cases are of afro denomination. [76]

Attribute Total Cases Percentage (%)

Sex Male 228075 63.33

Female 132075 36.67

Ethnicity Afro 110333 30.63

Indigenous 38199 10.60

Other 211618 58.75

Type of Malaria Plasmodium falciparum 115260 32.00

Plasmodium vivax 244890 67.99

Total 360150

https://doi.org/10.1371/journal.pone.0203673.t001
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region. The scan statistic (ss) is defined as the highest density measurements for all subrectan-

gles:

ss� ¼ max
R

ssðRÞ ð5Þ

ssðRÞ ¼ pnRð1 � pÞmðRÞ� nRqnG � nRð1 � qÞðmðGÞ� mðRÞÞ� ðnG � nRÞ ð6Þ

The local measurement ss(R) can be interpreted as the likelihood that subrectangle R is an

outbreak.

To test the hypothesis represented in Eq 1 a Monte Carlo simulation was used to obtain the

histogram of the statistic ss� under the null hypothesis. Finally, it assesses the value of ss� with

the observed data. If p is not greater than 0.05 under the null model, H0 is rejected and we

assume an outbreak.

3.2 Synchronous epidemic visualization

The main objectives are to determine whether abnormal behaviors are related across munici-

palities and finding, if a relationship exists, groups of them that have a similar temporal pat-

terns, independent of their geographical layout. To address these matters we turn to

Topological Data Analysis (as mentioned in section 2.5).

We apply the method Mapper, introduced in [29], that constructs a representation of the

data in the form a graph. This graph allows both the analysis and visualization of the data. The

vertices of the graph correspond to local clusters and the interactions between these clusters

are encoded on the edges of the graph.

Mapper detects phenomena that appear both at large and small scale better than other

methods, such as principal component analysis (PCA) and cluster algorithms. Mapper can be

considered a hybrid method that is doing partial clustering, the regions where the clustering is

done is guided by the filter. It is a refinement of clustering and scatterplot methods like PCA.

The input of the method Mapper is a collection of points with a notion of similarity and a

filter, a function defined on the collection of points. The filter is used to define pieces that

cover the collection of points. We apply a clustering algorithm to each piece to obtain a set of

local clusters. These are the vertices of the graph. Edges are added to the graph in the following

way: two local clusters are connected if they have points in common. Since each vertex and

edge correspond to subcollection of points, we can consider the graph to have weights.

Figs 1–3 give a visual road map through the Mapper algorithm applied to a set sampled from

the unitary circle.

In this study, we implement TDA on disease data in Colombia to find topological charac-

teristics that describe spatiotemporal patterns for both Plasmodium vivax and facliparum sepa-

rately. We constructed the three mapper algorithm’s inputs (collection of points, similarity

notion and filter function) as follows, for each incidence type independently:

• Collection of Points: For each one of the 1,122 municipalities we calculated an epidemic

occurrence vector consisting of binary values for each week from 2007 to 2015. The idea is

that each binary value indicates if there was a malaria epidemic on that municipality for the

given week. To construct each weekly entry, we executed a Kulldorf Scan Statistic procedure

(as explained in the previous section) among all municipalities, but only with data from the

given week. So a municipality k will have 1 on a certain entry if in the corresponding week it

suffered a malaria epidemic (i.e the obtained p value from the Kulldorf procedure is not

greater than 0.15) or 0 otherwise. We discard municipalities that never showed an outbreak,

leaving us with a total of 449 for Plasmodium vivax and 269 for Plasmodium falciparum.
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• Similarity notion: Since our collection of points is now a set of binary vectors of dimension

477 (the number of weeks between 2007 and 2015) that represent outbreaks, we computed

the similarity between records using the Wasserstein distance. In short, this distance mea-

sures the amount of effort required to transform a certain distribution X into another Y. So,

if we think of the binary vectors as distributions, this metric captures our intuitive similarity

notion among the epidemic records.

Fig 1. We start with a given data set (image A), for this example the points correspond to a sample of the unitary circle with a small amount of noise.

For convenience we will use the euclidean distance to calculate the distance between each pair of points. In the next step, we select the projection onto

the Y coordinate as our filter function and apply it to the data set (image B).

https://doi.org/10.1371/journal.pone.0203673.g001

Fig 2. We now divide the image of the data set (under the filter function) into evenly distributed overlapping intervals (image C) and compute

the corresponding points in their pre-image (image D). Notice how each pair of overlapping intervals, defines two different subsets of data that can

have elements in common.

https://doi.org/10.1371/journal.pone.0203673.g002
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Nevertheless, there is a small shortcoming of using only the Wasserstein metric. When com-

paring two binary vectors, the metric assumes that they distribute the same amount of mass

along all the dimensions, regardless of the amount of positive entries. This means that a

binary vector with a single positive entry holds a total m mass in that entry, whereas a binary

vector with n positive entries will hold m/n mass in each entry. This is a problem because

intuitively a binary vector with a single positive entry is very different form a vector with

numerous ones, and the mentioned metric does not capture this fact. We solved this prob-

lem by adding a factor of the difference of total positive entries among the vectors. Thus, if X
and Y are binary vectors, the similarity notion used in our experiments is:

dðX;YÞ ¼ wðX;YÞ þ

�
�
�
P

X �
P

Y
�
�
�

Z
ð7Þ

where w is the Wasserstein metric and

Z ¼ max
X;Y

X
X �

X
Y

• Filter Function: We used a dimension reduction technique called t-SNE [80]. This tech-

nique focuses on preserving the probability that points are chosen as neighbors (meaning

that they are similar to one another under some notion), while sending them into an euclid-

ean space of lower dimension. For our particular case, we used t-SNE to represent our binary

vectors in R3, scattered to preserve the Wasserstein metric.

The output of the Mapper algorithm is a graph where we select significant subgraphs by dis-

ease intensity and number of epidemic weeks. To further visualize the municipalities that

appear in the selected subgraphs, we make another graph were the nodes are now the

Fig 3. Inside every defined subset of data, we execute a clustering algorithm to detect isolated groups of points (image E). Each of the resulting groups

will correspond to a node on the output graph (image F). Notice how nodes are joined together by edges when their corresponding groups have points

of the data set in common. Also, the size of the node in the cluster corresponds to the amount of points in its corresponding group.

https://doi.org/10.1371/journal.pone.0203673.g003
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municipalities that appear in nodes of the Mapper output and draw connections between those

municipalities to visualize them over the Colombian territory.

3.3 Ethnicity

Case reports, collected by the national surveillance system and confirmed by laboratory,

include components of age and ethnicity in the notification form. This filled form is required

by law for every case reported in the country, and treatment to cure the disease is provided by

the government for each case. Ethnicity and age are self-reported, and should be interpreted

with caution (e.g. no genetic resistance can be inferred, for example). As mentioned before,

the three main ethnic groups that were used in this paper are: Indigenous, Afro and Other.
Data for age and ethnicity were displayed with descriptive statistics to develop patterns of

malaria intensity by population for the clusters identified with TDA analysis, and to identify

two patterns of intensity. First, the occupational hazard risk profile is characterized by a peak

within a particular age-group and contains a pronounced sex difference [42, 81]. Second, an

endemic risk profile is characterized by intense malaria exposure at young ages and reduced

malaria at later ages, due to overexposure [42, 81, 82].

3.4 Social and environmental change

To examine whether epidemic characteristics are associated with land use patterns and devel-

opment, we visualized deforestation and expansion of the anthropogenic transformation print.

To discuss the association between the patterns of malarial infection and deforestation, we plot

deforestation alerts published by the government office SIAC [83] for the years available (2013

and 2014). Anthropogenic change, measured using nighttime lights imagery, was visualized

using Google Earth Engine to calculate the difference (using map algebra, the difference

between two rasters) in stable lights between 1999 and 2013 using an average of 5 years for

each pixel for each layer. Mining activities were plotted using the data published by the the

United Nations Office on Drugs and Crime [84].

4 Results

4.1 Clustering

All significant outbreaks are highlighted in Fig 4. When considering all parasites, the method

detects significant outbreaks of malarial infection along the Pacific Coast, the Magdalena river

Basin, and the Amazon river Basin. For Plasmodium falciparum, significant clusters were

observed in municipalities along the Pacific Coast, the border with Panama, and Northen

Antioquia (the tertiary Cauca river Basin). The municipalities: Policarpa and Cumbitirá in

Nariño, El Retén in Magdalena and Calima in Valle del Cauca appear to be a hidden cluster for

this parasite, since they were not marked as epidemic when considering all malarial parasites.

And as for Plasmodium vivax, significant clusters were observed in municipalities of depart-

ments: Cordoba, Vichada and Antioquia. There are also hidden clusters, that appear when

only considering this parasite, including: Orito in Putumayo, Piamonte in Cauca and Achi in

Bolivar.

4.2 Synchronous epidemic visualization

TDA enabled us to find at least 11 groups of municipalities with similar temporal behaviors

(6 for Plasmodium falciparum and 5 for Plasmodium vivax) Figs 5 and 6. These groups where

selected by high overall disease intensity, defined as the number of cases with infants (age
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below 5 years) over the total number of cases, or high epidemic rate, understood as the average

amount of epidemic weeks among the municipalities in the group.

In the TDA graphs each node represents a group of municipalities. The size of each node

will be proportional to the number of municipalities in the group, and two nodes will have an

arch between them if they have at least one municipality in common.

Now, it is possible to visualize the municipalities appearing in the TDA graph geographi-

cally, to get a notion of the part of Colombia the corresponding cluster represents, as seen in

Fig 7.

Each of the colored small dots in the maps corresponds to a municipality, contained in

some node of the corresponding colored cluster. Notice there are arrows between some points

in the map, they represent connections between the municipalities (these connections are not

the same as the edges between nodes in the graph). Before we mention how these connections

are constructed, let us explain what centrality means for a municipality:

Given a certain municipality, its centrality corresponds to the number of nodes in the graph

in which it appears. This means that if we remove a municipality with high centrality, it is very

possible that the resulting graph will have less arches and in turn be disconnected.

Now, the connection scheme is as follows: Only municipalities that appear together in sev-

eral nodes in the TDA graph can have a connection. No municipality will be connected to

itself. Municipalities will be connected towards the municipalities in its node with the highest

centrality. Note that there could be municipalities with multiple outgoing connections.

Fig 4. Significant outbreaks of malaria in Colombia from 2007-2015, calculated using the scan statistic developed by [25] based on a likelihood ratio.

The significance threshold parameter was calculated using a Bernoulli model where cases were simulated for each municipality, and taking the maximum

value. The process was iterated many times and the distribution of the maximum values was calculated to determine the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0203673.g004
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Fig 5. Graph constructed using TDA and t-SNE component plot using the epidemic occurrence vectors, where selected groups have been

highlighted. These groups were selected by high overall disease intensity and high epidemic rate. Each cluster can be interpreted as a group of

municipalities with Plasmodium falciparum incidence that have similar temporal behavior. Notice how the colored dots in the component plot

are somewhat grouped together and since these represent municipalities with high epidemic rate, we have highlighted locations with several

positive entries in the occurrence vector distributing differently across time.

https://doi.org/10.1371/journal.pone.0203673.g005

Fig 6. Similar to Fig 5, highlighted groups where selected by high overall disease intensity and high epidemic rate for Plasmodium vivax.

https://doi.org/10.1371/journal.pone.0203673.g006
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We also identified significant municipalities with high centrality in the TDA graphs (Figs 5

and 6) and are reported in Tables 2 and 3. These municipalities are responsible for the connec-

tion among several nodes in their corresponding subgraphs appearing in overlapping zones of

the selected TDA filter.

4.3 Ethnicity

Fig 8 shows the histograms of age reports of malaria by ethnicity and cluster. Two distinctive

patterns consistently appearing throughout different regions of Colombia. First, an endemic

profile risk (higher density of cases at young ages) was observed for the indigenous populations

of clusters 3, 4 and 5 for Plasmodium vivax. Second, malarial infection suggesting occupational

hazard and intensity of infection among the Afrocolombian populations of clusters 1, 2 and 3

for Plasmodium falciparum. Occupational hazard is consistently described for the population

with no ethnic denomination across all clusters except cluster 4 for both parasites respectively.

In all cases, within the same cluster, we find both endemic and occupational hazard infection

patterns across populations segregated by ethnicity. In a histogram of case reports by age and

sex, an occupational risk hazard has a unique and characteristic signature: one age class, typi-

cally for only one sex, presents an outstanding number of cases compared to any other age

class. In the case of malaria in Colombia, we observed that men with no ethnic denomination

of ages 20-25 were contracting malaria far more often than any other class. From this simple

Fig 7. Selected municipalities by TDA over the Colombian territory for both parasites. As expected, the clusters follow some geographic pattern, since

the time series where constructed using a Kulldorf procedure that detects clusters geographically. For Plasmodium falciparum all clusters are concentrated

near the pacific coast and northern Antioquia. Unexpected results happen in cluster 5 for Plasmodium vivax, where the grouped municipalities belong to

two different geographic regions of the country. This means that the municipalities in this cluster from Chocó and Amazonas have similar time pattern,

regardless of their geographical distance.

https://doi.org/10.1371/journal.pone.0203673.g007
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observation, we inferred the following: first, men of this age class were engaging in activities

that posed a risk of contracting the disease. Second, women were not engaging in this activity,

nor were men in other age classes. Third, there was no household transmission once they

ceased to engage in the risky activity.

Most interestingly, our analysis identifies, without explicitly addressing it, locations where

the proportion of cases of Plasmodium falciparum to Plasmodium vivax changed over the past

few years Figs 9 and 10. This is one of the open questions in tropical malaria, and our imple-

mentation has findings: most of the reduction in Plasmodium vivax cases was seen in clusters 1

and 2, while in clusters 3-5 this type of malaria increased recently. Most of the increase in

Table 3. Plasmodium vivax: Selected central municipalities after executing TDA over the epidemic occurrence vectors. These are the municipalities responsible for the

connectivity among their respective groups and subgraphs. Cáceres, Nechı́ and Tadó appear among the top 10 municipalities with highest epidemic rate and Alto Baudo

and Medio San Juan among the top 10 municipalities with highest disease intensity.

Cluster Department Municipality Rural Pop. Urban Pop. Total Pop.

1 Antioquia Cáceres 22736 6209 28945

1 Antioquia Nechı́ 10228 10440 20668

1 Antioquia Valdivia 12442 4848 17290

1 Bolı́var Montecristo 9893 7080 16973

1 Chocó Istmina 5319 18320 23639

1 Chocó Tadó 6795 11246 18041

2 Antioquia Vegachi 4824 6469 11293

2 Córdoba Puerto Escondido 18252 3534 21786

3 Valle del Cauca Zarzal 12184 28799 40983

4 Chocó Alto Baudó 22739 6222 28961

5 Chocó Medio San Juan 8794 4233 13027

5 Amazonas La Pedrera 3711 0 3711

5 Amazonas Tarapacá 3775 0 3775

https://doi.org/10.1371/journal.pone.0203673.t003

Table 2. Plasmodium falciparum: Selected central municipalities after executing TDA over the epidemic occurrence vectors. These are the municipalities responsible

for the connectivity among their respective groups and subgraphs. Quibdó, El Cantón Del San Pablo, Istmina and Roberto Payán appear among the top 10 municipalities

with highest epidemic rate and Alto Baudó, Dabeiba and Atrato among the top 10 municipalities with highest disease intensity.

Cluster Department Municipality Rural Pop. Urban Pop. Total Pop.

1 Antioquia Dabeiba 15480 24084 39564

1 Chocó Atrato 5073 2488 7561

2 Chocó Quibdó 11752 101134 112886

2 Chocó Alto Baudó 22739 6222 28961

2 Chocó Bahia Solano 4864 4230 9094

2 Chocó Bojayá 5369 4572 9941

3 Nariño La Tola 2752 5656 8408

3 Nariño Roberto Payán 16029 863 16892

3 Nariño San Andres De Tumaco 75366 84668 160034

4 Chocó El Cantón Del San Pablo 3722 2491 6213

4 Chocó El Litoral Del San Juan 11186 1058 12244

4 Chocó Istmina 5319 18320 23639

5 Antioquia Amalfi 9589 10936 20525

5 Antioquia Santafe De Antioquia 9267 13636 22903

5 Cordoba Tierralta 45895 32875 78770

6 Cauca Guapi 12390 16273 28663

https://doi.org/10.1371/journal.pone.0203673.t002
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Plasmodium falciparum happened in clusters 1-4, in the Pacific Coast (although not explicitly

on the coastal areas, but rather in the lower-altitude Andes on the Pacific). Our findings also

suggest that the change in ratio of Plasmodium falciparum to Plasmodium vivax observed at

the whole country is comprised of different phenomena, and not just one single change in epi-

demic characteristics. First, infection by Plasmodium falciparum increased in locations where

it was not previously present or not persistent (clusters 1-4), while at the same time receding in

locations where it was previously a bigger burden (cluster 5, in the lower Cauca Basin). We

also find evidence that infection by Plasmodium vivax also experienced different epidemic

changes across Colombia. First, it receded in locations where it was consistently present (clus-

ters 1-2, lower Cauca Basin and the Caribbean), and increased in locations that did not report

cases before the 2009 epidemic (clusters 3-5, Pacific Coast and Amazon Basin). Thus, malarial

infection epidemiology in Colombia over the past years has seen the rate of Plasmodium falcip-
arum change, we suggest the following stages:

1. 2008-2012: An outbreak of both parasites that peaked in 2010, where Plasmodium vivax
became the most prevalent parasite, particularly in the lower Cauca Basin and the

Caribbean.

2. 2013-2014: A reduction in in the total cases of malarial infection in the whole country, with

acute redutions of Plasmodium vivax in the Caribbean and the lower Cauca Basin, and an

Fig 8. Malaria by parasite species, age, sex, ethnicity and cluster groups of human cases in Colombia. For all parasites, the indigenous ethnic group shows a

pattern of endemicity, with most cases being reported for the youngest ages, while people with no ethnic denomination and the Afrocolombian population

show a pattern consistent with occupational hazard risk. For Plasmodium falciparum, the indigenous and Afrocolombian populations in clusters 1, 2, 3 and 4

suggest that these populations experience intense exposure to malarial infection, with the Afrocolombian population showing occupational hazard

transmission. Histograms for the population with no ethnic denomination in all clusters except 4 suggest malarial infection is associated with occupational

hazard. And for Plasmodium vivax, the indigenous population in clusters 3, 4, and 5 suggest intense exposure to malarial infection among these populations.

The population with no ethnic denomination experiences malarial infection as an occupational hazard in all clusters, except 4.

https://doi.org/10.1371/journal.pone.0203673.g008
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increase of Plasmodium falciparum cases in the corridor that connects Acandı́ and Capur-

ganá with the central Pacific region.

3. 2015-2016: The re-emergence of malarial infection by Plasmodium vivax in the central

Pacific region and the Amazon.

In other words, the generalized outbreak of malarial infection in 2010 enabled Plasmodium
vivax to persist in the lower Cauca Basin and the Caribbean, and also introduced the same par-

asite at lower prevalences in the central Pacific and the Amazon. When the outbreak of Plas-
modium vivax infection was controlled where it was a bigger burden (lower Cauca Basin and

Caribbean), it re-emerged in locations that had not experienced intense malarial infection

since the 2010 epidemic (Amazon Basin and central Pacific).

5 Further exploration of the results

5.1 Deforestation and anthropogenic change

All the clusters identified for Plasmodium falciparum are located along the Pacific or the lower

Cauca Basin, where the human occupation pattern is observed to change little, in comparison

Fig 9. Total cases of Plasmodium falciparum by weeks, between the years 2007 and 2015.

https://doi.org/10.1371/journal.pone.0203673.g009
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to other parts of the country. We find evidence of a different pattern for Plasmodium vivax,

where clusters 1, 2, and 3 hold both municipalities with low or no change in anthropogenic

occupation, but also municipalities with rapid change (Fig 11).

Deforestation, on the other hand, happened at moderate and medium rates along the

Pacific (Fig 12), where clusters of both parasites were observed. Interestingly, the pattern of

deforestation along the Pacific is not observed to be the most intense in Colombia, but it is

widely spread at lower rates. This suggests that habitat transformation does not need to be

intense to harbor malaria transmission, and that a wide-spread moderate deforestation favors

the transmission of malaria, perhaps to a greater extent, than rapid deforestation in a single

location.

5.2 Gold exploitation

Our findings suggest a high correlation between gold exploitation and malaria occurrence.

Specifically, clusters 2, 3 and 4 for Plasmodium falciparum and 1 and 4 for Plasmodium vivax,

are located around medium and high gold exploitation areas in the country (Fig 13). Further-

more, all the central municipalities highlighted in Tables 3 and 2 (except for La Pedrera and

Tarapacá in Amazonas) are located in the departments: Antioquia, Bolı́var, Chocó, Córdoba,

Fig 10. Total cases of Plasmodium vivax by weeks, between the years 2007 and 2015.

https://doi.org/10.1371/journal.pone.0203673.g010
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Valle del Cauca, Cauca and Nariño, which are precisely where gold-mining is most prevalent

[85].

6 Discussion and conclusions

Malaria in Colombia was characterized by a different intensity, connectivity and segregation

in each region. While there was a general pattern of risk throughout the country associated

with occupational hazard, some populations experienced intense malaria exposure in endemic

pockets. Understanding the interaction of such pockets is fundamental for designing appropri-

ate malarial control strategies. Here we have produced a systematic approach that analyzes

malaria under three dimensions: Clustering, Synchrony and Ethnicity.

Our findings suggest that controlling the epidemic in the lower Cauca Basin and the Carib-

bean had significant effects throughout the country. The reduction of Plasmodium vivax was

followed by an increase of the same parasite, in connected clusters, in the Amazon Basin and

Fig 11. Anthropogenic change in Colombia, 1999-2013, using the nighttime lights dataset NOAA-DMSP-OLS. A

mean for 5-year periods was computed for each pixel, and then map algebra was used to calculate the difference

between the two periods. Very Rapid anthropogenic change was observed in the region of Bogotá and the Eastern

Plains. Rapid change was observed in proximity of the main urban areas along the Andes (Bogotá, Cali, Medellı́n, and

the Coffee Region, the urban areas of the Caribbean, and the Eastern Plains. Moderate and Medium anthropogenic

change was observed throughout the Andes and the Caribbean, and the lower Cauca Basin.

https://doi.org/10.1371/journal.pone.0203673.g011
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the Central Pacific region. The increase of Plasmodium vivax was observed in locations that

also experienced sustained and moderate deforestation throughout the territory. We find that

epidemic and endemic characteristics coexist in infection by Plasmodium vivax and Plasmo-
dium falciparum. While we did not study the effect of one population on the other, further

studies can explore if the reduction of cases in the Caribbean and lower Cauca Basin were first

experienced in the epidemic (“other”) or endemic (“indigenous”) populations. Similarly, it

would be interesting to explore if the increase in Plasmodium vivax and Plasmodium falcipa-
rum of the Pacific region was first experienced by the indigenous, Afrocolombian, or popula-

tion with no ethnic denomination. It is possible that the endemic indigenous population has

an asymptomatic parasite carriage which, as previous studies suggest [42], might contribute

strongly to malaria transmission and progression in the mentioned areas. Further studies,

including genetic samples, will confirm if these populations in fact show asymptomatic

behavior.

We also find that habitat transformation intensity harbors or reduces intensity of malarial

infection. In line with reports from other locations in Latin America [43], we find that

Fig 12. Deforestation alerts in Colombia for years 2013-14, as published by SIAC [83]. Moderate and medium rates

of deforestation were observed during the study period along the Pacific Coast, and throughout other parts of the

country but more scattered. Rapid deforestation rates were observed in the lower Cauca Basin. Very Rapid

deforestation rates were observed in Caquetá, the North Eastern Region of the Amazon Basin.

https://doi.org/10.1371/journal.pone.0203673.g012
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moderate deforestation fosters malarial infection of both parasites, and our findings suggest

that urbanization was associated with some of the most important reductions of Plasmodium
vivax infection in the Caribbean. Thus, malaria control strategies should pay particular atten-

tion to habitat transformation in the sense that slow and steady habitat transformation of large

territories may be conducive to increases in the burden of malarial infection, while a moderate

process of urbanization in hotspots, can have drastic effects not only within the region, but it

may also have both positive and negative effects elsewhere. These strategies could also contem-

plate gold exploitation as an incidence factor, since both our findings and several studies show

a correlation between gold-mining areas and malaria. [85] [44]

Our findings also suggest that the epidemic changes of malarial infection in Colombia are

complex, comprised of a multiplicity of interconnected trends by parasite and region. This is

consistent with the unstable transmission pattern exhibited in countries with rapid reductions

of malaria. We observe a 5 year period between peaks of transmission for Plasmodium vivax,

while epidemics of Plasmodium falciparum have been less intense, but more frequent (3 years).

Control strategies should not only aim to adapt and mitigate to current burdens of malarial

Fig 13. Density for evidence of alluvial gold exploitation in Colombia in 2016, as published by [84]. Three

categories are included: Low (less 1 habitant per square kilometer), Medium (between 1.1 and 5 habitants per square

kilometer) and High (more than 5 habitants per square kilometer). Evidence of intense mining activities was observed

in the lower Cauca and Magdalena Basins, and the the Central Pacific region. Scattered mining activities were observed

in the Southern Pacific, some parts of the Eastern Plains.

https://doi.org/10.1371/journal.pone.0203673.g013
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infection, but also be prepared for the re-introduction of malaria in locations where it was pre-

viously not endemic or epidemic. Such increases are to be expected in areas with sustained and

moderate deforestation and without dense human occupation.

Our findings have potential implications for malarial infection control. First, we found that

malaria in Colombia did present different, isolated pockets with distinctive epidemic charac-

teristics. These hotspots play an important role in malaria transmission and when targeted,

constitute an efficient way to reduce malaria intensity [86]. Furthermore, the magnitude of

such differences in epidemic characteristics is relevant in studying the pressure of anti-malar-

ials upon the parasite, since the emergence of resistance has been reported in the country. We

found that Plasmodium falciparum was particularly acute among the Afrocolombian popula-

tion of the Pacific region, while in the Cauca Basin, it constituted an isolated outbreak of the

population with no ethnic denomination, while in the Pacific, the outbreak was dispersed

among both the Afrocolombian and the indigenous populations.

Different parasite loads among ethnically and culturally distinct populations constitute the

quintessential mechanism of selective pressures that are ideal for the evolution of parasites.

The diversity of epidemic characteristics of malarial infection among the subpopulations of

Colombia account for an ideal environment for parasite evolution, where plasmodia persist

under different pressures of asymptomatic individuals, susceptible classes of ethnically distinct

populations, and public health interventions using different anti-malarial strategies. Such

diversity provides the necessary conditions, acting as isolated experiments, and then sharing

“successful” results, for the emergence of resistant parasites.

Second, the patterns of endemicity observed in these populations suggested that prevention

efforts should be population specific, and vary according to the epidemic characteristics exhib-

ited by the parasite in the targeted population. Demographic, social and population factors

confound studies limited to environmental factors and are also excluded from many studies

[87] and thus could hold important insight on malaria control. We are currently experiencing

an epidemic transition in malarial infection in Colombia, where parasite loads in populations

are being transformed (potentially as populations are also subject of change). To understand

such transitions, a systematic method to classify malarial infection in terms of vulnerability of

populations over space, and the variation of those epidemic characteristics over time is crucial

to implement public health strategies.

Therapeutic failures have been suggested to be correlated with high intestinal parasite loads

[19]. The effectiveness of bed nets has been reported to be low among populations that experi-

ence intense malaria exposure [32]. We have identified populations that experienced malaria

endemicity, where prevention efforts focused on the distribution of bed nets. Our findings,

combined with previous knowledge suggest that public health interventions should integrate

two aspects: 1) Diagnostic and treatment of asymptomatic malaria; and 2) Prevention strate-

gies for occupational hazard.

Third, prevention strategies focusing on populations with endemic malaria would yield a

reduction of occupational hazard malaria, since both types of epidemic characteristics exist in

the same clusters of malaria, and interact in ways that determine their spatio-temporal epi-

demic characteristics.

6.1 Limitations

Our study was constrained by data availability at the spatial and temporal resolutions we

observed for the epidemiological data. We are aware that it would have been ideal to include

variables that describe vector ecology, distribution and behavior, pathogen genetic informa-

tion, climatic variation during the study period, and other sociodemographic information.
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Further research will show whether including these variables alters our findings. It is possible

that such information will improve the ability of the model to correctly identify clusters, or

more interestingly, the overlapping of clusters and variables may shed light into ongoing

debates, such as vector displacement, for example. Our findings should be cautiously inter-

preted, but we are confident that they inform policy in a way that few other epidemiological

studies currently advise, and furthermore, our findings are complementary to vector, pathogen

and epidemic literature, to improve our understanding of malarial infection dynamics in

Colombia at a national level, and the way in which such dynamics interact at a regional level.

7 Additional figures

For completeness, we include the malaria incidence extracted from the data in Fig 14.
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Casabianca.

Writing – review & editing: Alejandro Feged-Rivadeneira, Andrés Ángel, Felipe González-
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23. Ruiz D, Poveda G, Vélez ID, Quiñones ML, Rúa GL, Velásquez LE, et al. Modelling entomological-cli-

matic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions:

contributions to a National Malaria Early Warning System. Malaria Journal. 2006; 5(1):66. https://doi.

org/10.1186/1475-2875-5-66 PMID: 16882349

24. Bouma M, Poveda G, Rojas W, Chavasse D, Quinones M, Cox J, et al. Predicting high-risk years for

malaria in Colombia using parameters of El Niño Southern Oscillation. Tropical Medicine & International

Health. 1997; 2(12):1122–1127. https://doi.org/10.1046/j.1365-3156.1997.d01-210.x

25. Kulldorf M. A Spatial Scan Statistic. Communications in Statistics: Theory and Methods. 1997; 6

(26):1481–1496. https://doi.org/10.1080/03610929708831995

26. Kulldorff M, Athas W, Feurer E, Miller B, Key C. Evaluating cluster alarms: a space-time scan statistic

and brain cancer in Los Alamos, New Mexico. American Journal of Public Health. 1998; 88

(9):1377–1380. https://doi.org/10.2105/AJPH.88.9.1377 PMID: 9736881

27. Hjalmars U, Kulldorff M, Gustafsson G, Nagarwalla N. Childhood leukaemia in Sweden: using GIS and

a spatial scan statistic for cluster detection. Statistics in Medicine. 1996; 15(7-9):707–715. https://doi.

org/10.1002/(SICI)1097-0258(19960415)15:7/9%3C707::AID-SIM242%3E3.0.CO;2-4 PMID: 9132898

Malaria intensity in Colombia

PLOS ONE | https://doi.org/10.1371/journal.pone.0203673 September 12, 2018 25 / 28

https://doi.org/10.1007/s00484-001-0119-6
https://doi.org/10.1007/s00484-001-0119-6
http://www.ncbi.nlm.nih.gov/pubmed/12135203
https://doi.org/10.1186/s12936-016-1335-1
http://www.ncbi.nlm.nih.gov/pubmed/27206924
https://doi.org/10.1590/S0124-00642006000300001
http://www.ncbi.nlm.nih.gov/pubmed/17269215
https://doi.org/10.1016/0035-9203(92)90282-H
http://www.ncbi.nlm.nih.gov/pubmed/1412635
http://www.ncbi.nlm.nih.gov/pubmed/15463389
https://doi.org/10.7883/yoken.65.465
http://www.ncbi.nlm.nih.gov/pubmed/23183197
https://doi.org/10.1016/S0140-6736(03)12951-0
https://doi.org/10.1086/322858
http://www.ncbi.nlm.nih.gov/pubmed/11517439
https://doi.org/10.4269/ajtmh.2001.65.90
http://www.ncbi.nlm.nih.gov/pubmed/11508397
https://doi.org/10.1590/S0074-02762002000400020
http://www.ncbi.nlm.nih.gov/pubmed/12118291
https://doi.org/10.1590/S0074-02762002000300022
http://www.ncbi.nlm.nih.gov/pubmed/12048572
https://doi.org/10.1186/s12936-015-0711-6
https://doi.org/10.1186/s12936-015-0711-6
http://www.ncbi.nlm.nih.gov/pubmed/25971594
https://doi.org/10.1590/S0074-02762011000900012
https://doi.org/10.1590/S0074-02762011000900012
http://www.ncbi.nlm.nih.gov/pubmed/21881762
https://doi.org/10.5897/IJGMB2014.0106
https://doi.org/10.1186/1475-2875-5-66
https://doi.org/10.1186/1475-2875-5-66
http://www.ncbi.nlm.nih.gov/pubmed/16882349
https://doi.org/10.1046/j.1365-3156.1997.d01-210.x
https://doi.org/10.1080/03610929708831995
https://doi.org/10.2105/AJPH.88.9.1377
http://www.ncbi.nlm.nih.gov/pubmed/9736881
https://doi.org/10.1002/(SICI)1097-0258(19960415)15:7/9%3C707::AID-SIM242%3E3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0258(19960415)15:7/9%3C707::AID-SIM242%3E3.0.CO;2-4
http://www.ncbi.nlm.nih.gov/pubmed/9132898
https://doi.org/10.1371/journal.pone.0203673


28. Burkom HS. Biosurveillance applying scan statistics with multiple, disparate data sources. Journal of

Urban Health. 2003; 80(1):i57–i65.

29. Singh G, Memoli F, Carlsson G. Topological Methods for the Analysis of High Dimensional Data Sets

and 3D Object Recognition. Prague, Czech Republic: Eurographics Association; 2007. p. 91–100.

30. Lum PY, Singh G, Lehman A, Ishkanov T, Vejdemo-Johansson M, Alagappan M, et al. Extracting

insights from the shape of complex data using topology. 2013; 3:1236 EP –.

31. Cameron D, Jones IG. John Snow, the Broad Street pump and modern epidemiology. International

Journal of Epidemiology. 1983; 12(4):393–396. https://doi.org/10.1093/ije/12.4.393 PMID: 6360920

32. Snow R, Marsh K, Le Sueur D. The need for maps of transmission intensity to guide malaria control in

Africa. Parasitology Today. 1996; 12(12):455–457. https://doi.org/10.1016/S0169-4758(96)30032-X

33. Kilama M, Smith DL, Hutchinson R, Kigozi R, Yeka A, Lavoy G, et al. Estimating the annual entomologi-

cal inoculation rate for Plasmodium falciparum transmitted by Anopheles gambiae s.l. using three sam-

pling methods in three sites in Uganda. Malaria journal. 2014; 13(1):111. https://doi.org/10.1186/1475-

2875-13-111 PMID: 24656206

34. Omumbo J, Ouma J, Rapuoda B, Craig M, Lesueur D, Snow R. Mapping malaria transmission intensity

using geographical information systems GIS: an example from Kenya. Annals of Tropical Medicine and

Parasitology. 1998; 92(1):7–21. https://doi.org/10.1080/00034989860120 PMID: 9614449

35. Kleinschmidt I, Bagayoko M, Clarke G, Craig M, Le Sueur D. A spatial statistical approach to malaria

mapping. International Journal of Epidemiology. 2000; 29(2):355–361. https://doi.org/10.1093/ije/29.2.

355 PMID: 10817136

36. Kitron U, Pener H, Costin C, Orshan L, Greenberg Z, Shalom U. Geographic information system in

malaria surveillance: mosquito breeding and imported cases in Israel, 1992. The American Journal of

Tropical Medicine and Hygiene. 1994; 50(5):550–556. https://doi.org/10.4269/ajtmh.1994.50.550

PMID: 8203702

37. Beck LR, Rodriguez MH, Dister SW, Rodriguez AD, Rejmankova E, Ulloa A, et al. Remote sensing as a

landscape epidemiologic tool to identify villages at high risk for malaria transmission. The American

Journal of Tropical Medicine and Hygiene. 1994; 51(3):271–280. https://doi.org/10.4269/ajtmh.1994.

51.271 PMID: 7943544

38. Bharti N, Xia Y, Bjornstad ON, Grenfell BT. Measles on the edge: coastal heterogeneities and infection

dynamics. PloS One. 2008; 3(4):e1941. https://doi.org/10.1371/journal.pone.0001941 PMID:

18398467

39. Ferrari M, Djibo A, Grais R, Grenfell B, Bjørnstad O. Episodic outbreak bias estimates of age-specific

force of infection: a corrected method using measles as an example. Epidemiology and Infection. 2010;

138(01):108–116. https://doi.org/10.1017/S0950268809990173 PMID: 19538818

40. Ferrari MJ, Djibo A, Grais RF, Bharti N, Grenfell BT, Bjornstad ON. Rural–urban gradient in seasonal

forcing of measles transmission in Niger. Proceedings of the Royal Society B: Biological Sciences.

2010; 277(1695):2775–2782. https://doi.org/10.1098/rspb.2010.0536 PMID: 20427338

41. Bharti N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT. Explaining seasonal fluctuations of mea-

sles in Niger using nighttime lights imagery. Science. 2011; 334(6061):1424–1427. https://doi.org/10.

1126/science.1210554 PMID: 22158822

42. da Silva-Nunes M, Moreno M, Conn JE, Gamboa D, Abeles S, Vinetz JM, et al. Amazonian malaria:

asymptomatic human reservoirs, diagnostic challenges, environmentally driven changes in mosquito

vector populations, and the mandate for sustainable control strategies. Acta Tropica. 2012; 121(3):281–

291. https://doi.org/10.1016/j.actatropica.2011.10.001 PMID: 22015425

43. Castro M, Monte-Mor R, Sawyer D, Singer B. Malaria Risk on the Amazon Frontier. Proceedings of the

National Academy of Sciences of the United States of America. 2006; 103(7):2452–2457. https://doi.

org/10.1073/pnas.0510576103 PMID: 16461902

44. Valle D, Lima JMT. Large-scale drivers of malaria and priority areas for prevention and control in the

Brazilian Amazon region using a novel multi-pathogen geospatial model. Malaria journal. 2014; 13

(1):443. https://doi.org/10.1186/1475-2875-13-443 PMID: 25412882

45. Bishop YM. Statistical methods for hazards and health. Environmental Health Perspectives. 1977;

20:149. https://doi.org/10.1289/ehp.7720149 PMID: 598347
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