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BRANCHING RANDOM MOTIONS, NONLINEAR HYPERBOLIC SYSTEMS
AND TRAVELLING WAVES

Nikita Ratanov
1

Abstract. A branching random motion on a line, with abrupt changes of direction, is studied. The
branching mechanism, being independent of random motion, and intensities of reverses are defined by
a particle’s current direction. A solution of a certain hyperbolic system of coupled non-linear equa-
tions (Kolmogorov type backward equation) has a so-called McKean representation via such processes.
Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside
terminal data to the travelling waves is discussed. The paper realizes the McKean’s program for the
Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
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1. Introduction

Travelling waves for the semilinear heat equation

∂u

∂t
=

1
2
∂2u

∂x2
+ f(u) (1)

have been extensively studied beginning from the classic papers by Kolmogorov-Petrovskii-Piskunov [22] and
Fisher [9] (see detailed review in [37]).

A travelling wave with velocity parameter a is a solution of equation (1) of the form u = wa(x − at). Here
function wa has the limits wa(−∞) = 0, wa(+∞) = 1 and, clearly, solves the ordinary equation

1
2
w′′
a + aw′

a + f(wa) = 0.

Basically, under certain assumptions on the nonlinearity term f(u) the existence and uniqueness of solution of
the initial value problem for (1) are well-known. Moreover, this solution (at least with Heaviside data) converges
to the travelling front. More precisely,

u(x+m(t), t) → wa∗(x), t→ ∞ (2)
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with a∗ =
√

2f ′(1) and with some centering term m = m(t).
Since McKean [25,26] (see also [3–5]) the connection between equation (1) and branching diffusion processes

is established and widely applied. This approach is motivated by the following representation. Let L(t) be
the position of the left-most particle of a branching Brownian motion and let g(u) be a probability generating
function of the branching rule. Then u = u(x, t) = P(L(t) < x) is a solution of equation (1) with Heaviside
initial conditions

u |t=0= θ(x) =

{
1, x > 0,
0, x ≤ 0

and with f(u) = λ(g(u) − u), where λ is the branching intensity.
Equation (1) arises in physics (especially in combustion theory), chemical kinetics and in a various biological

models for gene developments, population dynamics or nerve propagation (see, for instance, [15, 18, 19, 38, 39]
and references therein).

Nevertheless this approach has the evident shortages: diffusion particles have infinite velocities and so they
lack inertia, directions of their motion in separated time intervals are independent. To remedy these “unphysical”
features it is possible to introduce a similar model, which is based on a random motion with finite velocity.

This idea has recently been the object of renewed interest of physicists and mathematicians (see
[7, 8, 10, 12–17,23, 24, 28, 29, 32]). It is applied also to financial market models [6, 36].

To describe these treatments we begin with the so-called telegraph random motion (see [11, 20, 21, 38]). We
consider a particle, initially (at time t = τ) situated at point x ∈ (−∞, ∞), which moves on a line (−∞, ∞)
with constant velocity c. At time τ it chooses either initial direction with equal probability. Then it repeatedly
takes an opposite direction at random instants T1, T2, . . . , which form a Poisson flow. The state of the process
at time t is (X(t), σ(t)), where X(t) is the current particle’s position and σ(t) = ±c is its current velocity.

Further, we consider the particle, which commences the random motion (X, σ) for an exponentially dis-
tributed holding time S independent of X . At S, the particle splits into a random number of pieces (offsprings).
These new particles continue along independent paths of this random motion starting at X(S), and are subject
to the same splitting rule as the original particle. After an elapsed time t − τ we have n = n(t − τ) particles
located at X1(t), . . . , Xn(t), where n(t− τ) is stochastic.

Write P+,(x,τ) and P−,(x,τ) (with associated expectations E±,(x,τ)) for the laws of this process when it starts
at time τ forwards (+) and, respectively, backwards (−), from the initial position X(τ) = x.

Denote

u+(x, τ, t) = P+,(x,τ)(X1(t) > 0, . . . , Xn(t) > 0), (3)

u−(x, τ, t) = P−,(x,τ)(X1(t) > 0, . . . , Xn(t) > 0). (4)

Using a standard renewal arguments we prove (see Th. 3.1) that the probabilities u± = u±(x, τ, t) solve the
semilinear hyperbolic system

⎧⎪⎨
⎪⎩
−∂u+

∂τ − c∂u+
∂x = µ+(u− − u+) − λ+u+ + λ+F+(u+, u−),

−∂u−
∂τ + c∂u−

∂x = µ−(u+ − u−) − λ−u− + λ−F−(u+, u−),
τ < t (5)

with the terminal conditions

u+ |τ↑t= u− |τ↑t= θ(x). (6)

Here µ+ > 0 and µ− > 0 are the intensities of reverses, λ+ and λ− are the breeding rates of forward (+) and
backward (−) moving particle respectively;

F+(u+, u−) =
∑

j+l≥2, j,l≥0

β+
jlu

j
+u

l
−, F−(u+, u−) =

∑
j+l≥2, j,l≥0

β−
jlu

j
+u

l
−
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are probability generating functions of breeding rule; β+
jl (β−

jl ) denote the probability of j forward and l backward
moving offsprings of a particle, which has forward (backward) direction at a splitting time. We assume that

∑
j+l≥2, j,l≥0

jβ±
jl <∞,

∑
j+l≥2, j,l≥0

lβ±
jl <∞.

A weak solution of system (5)-(6) exists and it is unique (see Appendix B). Solution u±, u±(x, τ, t) ∈ [0, 1] has
discontinuities concentrated on characteristics l± = {x = ±c(t−τ)} only. The probabilistic interpretation (3)-(4)
motivates following properties of u±,

u− ≡ 0 for x ≤ −c(t− τ) and u− ≡ 1 for x > c(t− τ); (7)
u+ ≡ 0 for x ≤ −c(t− τ) and u+ ≡ 1 for x ≥ c(t− τ). (8)

Moreover, jump values vanish:

u−(−c(t− τ) + 0, τ, t) ≡ 0, u+(c(t− τ) − 0, τ, t) ≡ 1, (9)
u−(c(t− τ) − 0, τ, t) → 1, u+(−c(t− τ) + 0, τ, t) → 0, (10)

as τ ↓ −∞. The latter is proved in Section 3 (see Cor. 3.3).
System (5) is repeatedly obtained from both a phenomenological viewpoint and irreversible thermodynam-

ics arguments in the papers of Dunbar-Othmer [7], Dunbar [8], Horsthemke [16, 17], Mendez-Camacho [28],
Mendez-Compte [29], Othmer-Dunbar-Alt [32]. Many authors have studied the travelling wave-type solutions
of (5) emphasizing for stability properties (see review by Fort and Mendez [10] and references therein). Nev-
ertheless, convergence results of the form (2) are still unknown with exception of the very special case of
F+ = u2

+, F− = u2−. This nonlinearity corresponds to the following breeding rule. Particles, once born, live
forever. At each splitting time S each particle gives birth only to one offspring at its own current position X(S)
and of its own current velocity σ(S). The large time behaviour of solutions of the Cauchy problem for (5) (with
F+ = u2

+, F− = u2
−) researched in details in [23] from both probabilistic and analytic viewpoints (see also [24]).

In this paper we discuss much more general branching rules. The main objective is to study the asymptotic
behaviour of probabilistically represented solutions (3)-(4) of (5)-(6) keeping our treatment in the framework of
the following three-step McKean’s program [25]:

1) proof of existence of limits

u+(x+m+, τ, t) → w+(x), u−(x+m−, τ, t) → w−(x), τ ↓ −∞ (11)

for all x, t ∈ (−∞, ∞), where m± are the medians of u±;
2) stability properties of travelling fronts with respect to the velocity value;
3) identification of the limits in (11) as a travelling-wave solution of (5).
Notice that system (5) has two stationary solutions: u+ = u− ≡ 0 and u+ = u− ≡ 1. We assume that

(C1): there are no other stationary solutions of (5), i.e. the algebraic system

⎧⎪⎨
⎪⎩
µ+(y − x) + λ+ (F+(x, y) − x) = 0,

µ−(x− y) + λ− (F−(x, y) − y) = 0

has no solutions x, y, such that 0 ≤ x, y ≤ 1, excepting {0, 0} and {1, 1}.
The result of the first step is the following theorem.
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Theorem 1.1. Let parameters λ±, µ± and branching rules F± satisfy conditions C1. Then the limits in (11)
exist with the centering terms m± = m±(τ) which are defined so as to satisfy

u+(m+, τ, t) = u−(m−, τ, t) = 1/2. (12)

As it follows from assertions (7)-(10), the centering terms m± in (12) are well defined. Theorem 1.1 is proved
in Section 4.

We pass the second and the third steps assuming certain restrictions. To describe our assumptions we define
the following expected numbers of particles born in each splitting:

J11 =
∑

jβ+
jl , J12 =

∑
lβ+
jl , J21 =

∑
jβ−
jl , J22 =

∑
lβ−
jl .

Note that the matrix

J =

⎛
⎝ J11 J12

J21 J22

⎞
⎠ =

⎛
⎜⎝

∂F+
∂u+

∂F+
∂u−

∂F−
∂u+

∂F−
∂u−

⎞
⎟⎠

|u+=u−=1

represents the Jacobian of nonlinearity {F+(u+, u−), F−(u+, u−)} at {1, 1}.
Let

b11 = µ+ + λ+(1 − J11), b22 = µ− + λ−(1 − J22)

b12 = µ+ + λ+J12, b21 = µ− + λ−J21. (13)

We assume bij , i, j = 1, 2 satisfy the condition
(C2): b11 + b22 < 2

√
b12b21, b22 > 0.

A travelling wave solution to (5) is a solution of the form u+ = w+(x − a(t − τ)), u− = w−(x − a(t − τ)).
Define

a∗ = c
b211 − b222 + 4

√
b12b21(b12b21 − b11b22)

(b11 − b22)2 + 4b12b21
.

It can be proved that 0 < a∗ < c (see Prop. 5.1 below).
The following theorem is proved in Section 5.

Theorem 1.2. If conditions C1 and C2 hold and a ∈ [a∗, c), then there exists one and, modulo translation,
only one wave solution travelling with speed a.

In Section 6 we try to pass the third step of McKean’s program. We prove that the limits in (11) form a
properly shifted travelling-wave solution and we determine the value of this shift.

Theorem 1.3. Let conditions (C1) and (C2) hold and the limit

lim
τ↓−∞

(m−(τ) −m+(τ)) = β

exists. Then
lim
τ↓−∞

(−ṁ+(τ)) = lim
τ↓−∞

(−ṁ−(τ)) = a∗.

Moreover, if w+ = w+(x), w− = w−(x) are the limits in (11), then {w+ = w+(x), w∗
− = w−(x − β)}

(or {w∗
+ = w+(x + β), w− = w−(x)}) form a (modulo translation unique) wave solution travelling with the

velocity a∗.

Here ṁ+ and ṁ− denote a derivatives in τ .
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Remark 1.4. In this paper we explore the backward equations (5), but it is easy to transfer all results into
the results for the forward equation⎧⎪⎨

⎪⎩
∂u+
∂t − c∂u+

∂x = µ+(u− − u+) − λ+u+ + λ+F+(u+, u−),

∂u−
∂t + c∂u−

∂x = µ−(u+ − u−) − λ−u− + λ−F−(u+, u−),
t > τ. (14)

The unique weak solution of system (14) (with Heaviside initial condition u± |t↓τ= θ(x)) can be interpreted as

u±(x, τ, t) = P±,(0,τ)(X1(t) < x, . . . , Xn(t) < x).

Remark 1.5. Recently some results on travelling waves for the branching telegraph-like processes with variable
velocities (and for respective hyperbolic systems with variable coefficients c = c(x)) have been obtained (see
[35]). These results are heavily based on theorems 1.1-1.3.

2. Telegraph processes and Feynman-Kac connection

In this section we remind some properties of the telegraph process (see [21] or [38] for further details).
Let (Ω, F , P) be a complete probability space and let (X(t), σ(t)), t ≥ τ be a telegraph process with

alternating velocities ±c and intensities µ±, which is defined in introduction. Denote by f± and b± (generalized)
transition probability densities of Markov process (X(t), σ(t)), t ≥ τ , i.e. for any measurable A

P±,(x,τ)(X(t) ∈ A, σ(t) = +c) =
∫
A

f±(x, τ, y, t)dy,

P±,(x,τ)(X(t) ∈ A, σ(t) = −c) =
∫
A

b±(x, τ, y, t)dy,

and denote f = (f+ + f−)/2, b = (b+ + b−)/2, p+ = f+ + b+, p− = f− + b−, p = f + b = (p+ + p−)/2.
Observe that these functions contain Dirac component along characteristics (see e.g. [31]).

It is known that (f+, f−), (b+, b−) as well as (p+, p−) are solutions of the system

⎧⎪⎨
⎪⎩
−∂v+

∂τ − c∂v+∂x = µ+(v− − v+),

−∂v−
∂τ + c∂v−∂x = µ−(v+ − v−), τ < t.

(15)

To determine f±, b± or p± system (15) should be supplied with the following terminal conditions:

f+ |τ↑t = δ(x− y), f− |τ↑t = 0;
b+ |τ↑t = 0, b− |τ↑t = δ(x− y)

and
p+ |τ↑t = δ(x− y), p− |τ↑t δ(x− y).

Moreover, for any bounded left-continuous in y and continuous in t function g = g(y, σ, t), σ = ±c, t ≥ τ ,
y ∈ (−∞, ∞) the expectations

v±(x, τ, t) = E±,(x,τ)g(X(t), σ(t), t)
form the solution of system (15) with the terminal conditions

v+ |τ↑t = g+(x, t), v− |τ↑t = g−(x, t).
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Here and everywhere below we repeatedly use g+ for g( ·, +c, · ) and g− for g( ·, −c, · ).
In the particular case of µ+ = µ− = µ ≡ const, system (15) is equivalent to so-called telegraph equation:

∂2v

∂τ2
− 2µ

∂v

∂τ
= c2

∂2v

∂x2
, (16)

where v = (v+ + v−)/2. This transition is known as the Kac trick [21].
Solutions of equations (15) and (16) are well defined with δ-functions in terminal values (see e.g. [11], [31]

or [33]). For example, the exact expressions for f±, b± are well known (see (A.2)-(A.3) and cf. [2]):

f+ = e−µ+(t−τ)δ (x+ c(t− τ)) +E(x, τ, t)I1
(
µ∗
√

(t− τ)2 − x2/c2
) µ∗(t− τ − x/c)√

(t− τ)2 − x2/c2
,

f− = µ−E(x, τ, t)I0
(
µ∗
√

(t− τ)2 − x2/c2
)
, b+ = µ+E(x, τ, t)I0

(
µ∗
√

(t− τ)2 − x2/c2
)
,

b− = e−µ−(t−τ)δ (x− c(t− τ)) +E(x, τ, t)I1
(
µ∗
√

(t− τ)2 − x2/c2
) µ∗(t− τ + x/c)√

(t− τ)2 − x2/c2
,

where µ∗ = √
µ+µ−, E(x, τ, t) = 1

2ce
−(µ++µ−)(t−τ)/2+(µ+−µ−)x/(2c).

Under rescaling c → ∞, µ → ∞ such that c2/µ → const., equation (16) becomes backward Kolmogorov
equation for the standard diffusion. More precisely the random motion X = X(t) converges weakly to the
Brownian motion (see, for instance, [20] or [34]). This observation motivates us to exploit this random process
instead of Brownian motion.

We prove the existence of the limits in (11) by means of Feynman-Kac Lemma. To present this lemma in
hyperbolic context let us consider the following linear terminal-value problem:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂v+
∂τ − c∂v+∂x = µ+(x, τ)(v− − v+) + k+(x, τ)v+,

−∂v−
∂τ + c∂v−∂x = µ−(x, τ)(v+ − v−) + k−(x, τ)v−, τ < t

v+ |τ↑t= g+(x, t), v− |τ↑t= g−(x, t).

(17)

Here k± = k±(x, τ), µ± = µ±(x, τ), τ ≤ t, x ∈ (−∞, ∞) are functions with possible discontinuities
concentrated on characteristics x = ±c(t− τ); g± = g±(x, t) are bounded left-continuous in x and continuous
in t, t ≥ τ functions. As before we repeatedly unite by h( ·, σ, ·), σ = ±c both h+ and h− for all functions h
of this type.

A weak solution of (17) exists and it is unique (see e.g. [27]).
Let X = X(t), t ≥ τ be the telegraph process with parameters µ±, i.e. the transition probability densities

f± and b± of X satisfy (15). Let {v+, v−}, v± = v±(x, τ), τ < t, x ∈ (−∞, ∞) be a weak solution to (17).

Theorem 2.1 (Feynman-Kac connection). Let t, τ < t < t be a stopping time for X. Then v+, v− have the
representation

v+(x, τ) = E+,(x,τ)v(X(t), σ(t), t) exp

⎛
⎝ t∫
τ

k(X(s), σ(s), s)ds

⎞
⎠ , (18)

v−(x, τ) = E−,(x,τ)v(X(t), σ(t), t) exp

⎛
⎝ t∫
τ

k(X(s), σ(s), s)ds

⎞
⎠ . (19)
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Observe that for t = t = const. formulas (18)-(19) connect v±( · , τ) and v±( · , t) by means of the telegraph
process X = X(t). The original Feynman-Kac formula for the parabolic system exploits the Brownian motion
for the analogous connection.
Proof. At first, let stopping time t be a constant, t = t, t > τ , and fixed.

Lemma 2.2. Functions v± = v±(x, τ), which are defined by (18)-(19), satisfy the following system of integral
equations:

v+(x, τ) = v0
+(x, τ) +

t∫
τ

ds

∞∫
−∞

[f+(x, τ, z, s)k+(z, s)v+(z, s)

+b+(x, τ, z, s)k−(z, s)v−(z, s)] dz, (20)

v−(x, τ) = v0
−(x, τ) +

t∫
τ

ds

∞∫
−∞

[f−(x, τ, z, s)k+(z, s)v+(z, s)

+b−(x, τ, z, s)k−(z, s)v−(z, s)] dz, (21)

where
v0
±(x, τ) = E±,(x,τ)g(X(t), σ(t), t).

The proof of Lemma follows form the evident identity: for any integrable function Φ

exp

⎛
⎝ t∫
τ

Φ(s)ds

⎞
⎠ = 1 +

∫ t

τ

Φ(s) exp

⎛
⎝ t∫
s

Φ(r)dr

⎞
⎠ ds.

To finish the proof of Theorem 3.1 for a constant stopping time it is sufficient to apply − ∂
∂τ − c ∂∂x to (20) and

− ∂
∂τ + c ∂∂x to (21), exploiting (15) for v0

±, f± and b±. The passage to the general stopping time t is plain (see
e.g. [30]). �

3. Branching telegraph processes and McKean representation of solutions

of nonlinear hyperbolic systems

Let the process X = X(t) to be branching. Assume that the single particle starts at time t = τ from the point
x and performs the telegraph random motion. At exponentially distributed instant S > τ (with parameter λ+

for a forward moving particle and with λ− for a backward moving one) it splits into a several (random number)
particles. The descendants start to move from the point X(S) independently one from another. They in turn
split and reverse by the same rule.

Suppose that the forward moving particle splits on j forward and l backward moving parts with probability
β+
j, l, j + l ≥ 2. For the backward moving particle the respective probabilities are β−

j, l, j + l ≥ 2. Denote by
F+(u+, u−) =

∑
j+l≥2 β

+
j, lu

j
+u

l
− and F−(u+, u−) =

∑
j+l≥2 β

−
j, lu

j
+u

l
− the probability generating functions of

splitting rule.
As the result after an elapsed time t − τ > 0 we have n particles situated at X1(t), . . . , Xn(t) with the

velocities σ1(t), . . . , σn(t), n = n(t− τ).
Consider the expectations

u+(x, τ, t) = E+,(x,τ)

n∏
i=1

g(Xi(t), σi(t), t), (22)

u−(x, τ, t) = E−,(x,τ)
n∏
i=1

g(Xi(t), σi(t), t). (23)
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As before g = g(x, σ, t), x ∈ (−∞, ∞), σ = ±c, t > τ is a bounded left-continuous in x and continuous in t
function.

The following theorem is well-known (see [12] and cf. [25]).

Theorem 3.1. Let {u+, u−}, τ < t, x ∈ (−∞, ∞) be the unique bounded weak solution of system (5) with
terminal conditions

u+ |τ↑t= g+(x, t), u− |τ↑t= g−(x, t) (24)

(see Appendix B). Then u+, u− have representation (22)-(23).

Corollary 3.2. If L(t) = min
1≤i≤n

Xi(t) is the position of the left-most particle and u± = u±(x, τ, t) =

P±,(x,τ)(L(t) > 0), then u± form the solution of (5) with the Heaviside terminal conditions

u± |τ↑t= θ(x) =

{
1, x > 0,
0, x ≤ 0.

(25)

Corollary 3.3. The solution of problem (5), (25) satisfies the jump conditions (7)–(10).

Proof. Let us prove the assertion (10) for u+(−c(t− τ) + 0, τ, t) := ψ+(τ). From Corollary 3.2 it follows that

ψ+(τ − ∆τ) = (1 − µ+∆τ)(1 − λ+∆τ)ψ+(τ) + λ+∆τF+(ψ+(τ), 0) + o(∆τ), ∆τ → 0,

which implies the differential equation

dψ+

dτ
= (µ+ + λ+)ψ+ − λ+F+(ψ+, 0), τ < t, ψ+ |τ↑t= 1.

Hence ψ+(τ) ≤ e−(µ++λ+)(t−τ) → 0, as τ ↓ −∞. The complete proof is similar. �

Following Horsthemke [16, 17] we consider three main types of splitting rules.
1. Isotropic reaction walk
Let F+ = F− = F (u), where u = (u+ + u−)/2 and F (u) =

∑
k≥2 βku

k. This means that at breeding times
a particle splits onto k parts with the probability βk, which does not depend on the direction of motion. New
particles choose either direction with equal probability.

In the particular case of µ+ = µ− = µ(τ) and λ+ = λ− = λ (λ is a constant) one can obtain from (5)

⎧⎪⎨
⎪⎩
∂u
∂τ + c∂w∂x = −λ(F (u) − u),

∂w
∂τ + c∂u∂x = (2µ+ λ)w, τ < t,

(26)

w = (u+ − u−)/2. Eliminating w we have

∂2u

∂τ2
− 2(µ+ λ)

∂u

∂τ
= c2

∂2u

∂x2
− λ

∂F (u)
∂τ

+ (λ2 + 2µλ)(F (u) − u). (27)

Notice that (26) and (27) are equivalent to the reaction Cattaneo system and to the reaction telegraph equation
respectively (see [10, 13, 16, 17]). If F (u) = u2, the hyperbolic version of the classical Kolmogorov-Petrovskii-
Piskunov equation arises (see [22, 25]).



244 N. RATANOV

2. Direction independent reaction walk
Assume a particle does not die and at the exponentially distributed instant gives a birth to k new particles

(with probability βk). Daughter particles choose either direction with equal probability and move accordingly
with the same rule. In this case the nonlinearity of (5) has the form F+ = F (u)u+, F− = F (u)u−, where
F (u) =

∑
k≥1 βku

k. For the so-called branching-coalescence direction independent kinetic scheme [17] F (u) = u.
If µ+ = µ− = µ, λ+ = λ− = λ, then system (5) is equivalent to⎧⎪⎨

⎪⎩
∂u
∂τ + c∂w∂x = λu(F (u) − 1),

∂w
∂τ + c∂u∂x = (2µ+ λ)w − λF (u)w, τ < t.

No reaction telegraph equation can be obtained in this case.
3. Direction dependent reaction walk
Consider the previous regime, but with some significant modifications. We shall distinguish two main versions.

A. Suppose that each new particle starts strictly in the opposite direction to the direction of the maternal
particle. The generating functions are F+ = F (u−)u+, F− = F (u+)u−. In the particular case F (u) = u
(i.e. only one new particle arises) we have the branching-coalescence direction dependent kinetic scheme
(see [17]).

B. Assume that each new particle starts in the same direction the maternal particle currently moves. The
generating functions now are F+ = F (u+)u+, F− = F (u−)u−. The particular case of F+ = F− = u is
researched in details by Lyne [23] (see also [24]).

4. Kolmogorov-Petrovskii-Piskunov lemma for hyperbolic systems.

Proof of Theorem 1.1

The following proposition plays a key role in the further construction.

Proposition 4.1. Let {u+, u−} be the McKean solution of (5) with Heaviside terminal data (25) at fixed time
horizon t0:

u+ |τ↑t0= u− |τ↑t0= θ(x). (28)
Then functions u+(x +m+(τ), τ, t0) and u−(x +m−(τ), τ, t0) increase in τ , if x > 0, and decrease in τ , if
x < 0. Here m± = m±(τ) are defined by (12).

Proof. (cf. Sect. 4 of [25]). First, we need in the following lemma.

Lemma 4.2. Let {v+, v−} be the solution to the Feynman-Kac system (17) with fixed time horizon t0. If
v+(x0, τ0) > 0 or v−(x0, τ0) > 0, τ0 < t0, then there exists sample path X∗(x0, t), t ∈ [τ0, t0] of the telegraph
process, such that

v (X∗(x0, t), σ∗(x0, t), t) > 0 (29)
(here σ∗(x0, t) is the velocity of X∗(x0, t)).

Proof (of Lemma). Suppose contrariwise, that the existence of X∗ fails. Define the stopping time t so as to be
the first solution in t, t > τ0 of

v (X(x0, t), σ(x0, t), t) ≤ 0.
The expectations in the Feynman-Kac formula (18)-(19) (with x = x0, τ = τ0) are nonpositive, while
v+(x0, τ0) > 0 or v−(x0, τ0) > 0. This contradiction completes the proof. �

Now we prove Proposition 4.1 for u+. The proof for u− is similar.
Fix τ0 < t0 and α > 0. Denote x0 = m+(τ0), x1 = m+(τ0 − α). Set (omitting t0 from the notations)

V+(x, τ) = u+(x+ x1, τ − α) − u+(x + x0, τ),
V−(x, τ) = u−(x+ x1, τ − α) − u−(x+ x0, τ). (30)
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We must prove that

V+(x, τ0) ≤ 0 for any x > 0, (31)
V+(x, τ0) ≥ 0 for any x < 0. (32)

First notice that for any ū±, u± ∈ [0, 1]

F±(ū+, ū−) − F±(u+, u−) = k±1 · (ū+ − u+) + k±2 · (ū− − u−), (33)

where k±i , i = 1, 2 are some positive analytic functions of ū±, u±. By (5) and (33) functions V+, V− form the
solution of (17) with

M+ = µ+ + λ+k
+
2 , M− = µ− + λ−k−1

instead of µ+, µ−, and

K+ = λ+(k+
1 + k+

2 − 1), K− = λ−(k−1 + k−2 − 1)

instead of k+, k−.
From terminal conditions (28) it follows

V±(x, t0 − 0) ≤ 0, if x > −x0,

V±(x, t0 − 0) ≥ 0, if x < −x0. (34)

To prove (31) suppose, contrariwise, that V+(x∗, τ0) > 0 for some x∗ > 0.

Lemma 4.3. If V+(x, τ0) > 0, then there exists a sample path X∗ = X∗(x∗, t) of the telegraph process which
starts at (x∗, τ0) and passes to (x, t0) with some x < −x0, such that

V (X∗(x∗, t), −σ∗(x∗, t), t) > 0 (35)

for all t, τ0 ≤ t ≤ t0.

Proof. Consider the system⎧⎪⎨
⎪⎩
−∂V̄−

∂τ − c∂V̄−
∂x = M+ · (V̄+ − V̄−) +K+ · V̄−,

−∂V̄+
∂τ + c∂V̄+

∂x = M− · (V̄− − V̄+) +K− · V̄+, τ < t0

(36)

with the terminal conditions V̄+|τ↑t0 = V−|τ↑t0 , V̄−|τ↑t0 = V+|τ↑t0 . Thus V̄ (x, σ, t) ≡ V (x, −σ, t), t ∈
[τ0, t0], x ∈ (−∞, ∞). Since system (4.3) has the Feynman-Kac form, by Lemma 4.2 there exists the sample
path X∗ of the telegraph process with the property

V̄ (X∗, σ∗, t) = V (X∗, −σ∗, t) > 0. �

To finish the proof of Proposition 4.1 we fix the path X∗ and consider the telegraph process X = X(0, t), t ∈
[τ0, t0] with starting point at 0.

Let t ∈ [τ0, t0] be the first moment of intersection of X with X∗ = X∗(x∗, t), τ0 < t < t0. It is clear that at
the passage time t the trajectory X∗ continues backwards while X has the forward direction, i.e. σ∗(x∗ t) = −c,
σ(0, t) = +c. Applying Theorem 3.1 we have

V+(0, τ0) = E+,(0,τ0)V (X(t), σ(t), t) exp

⎛
⎝ t∫
τ0

K(X(s), σ(s), s)ds

⎞
⎠ . (37)
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By (35) the expectation in (37) is positive while by the definition (30) we have V+(0, τ0) = 0. This contra-
diction completes the proof. �

By Proposition 4.1 the following limits exist:

lim
τ↓−∞

u+(x+m+(τ), τ) = w+(x), (38)

lim
τ↓−∞

u−(x+m−(τ), τ) = w−(x), (39)

which completes the proof of Theorem 1.1.
Note that functions w± = w±(x) increase in x, w±(0) = 1/2 and by Lemma 4.1

∂u±
∂τ

(x+m±(τ), τ) ≤ 0 for x < 0; (40)

∂u±
∂τ

(x+m±(τ), τ) ≤ 0 for x > 0. (41)

Now we should establish a connection of w+ and w− with travelling-wave solutions of (5). Our plan follows the
strategy of McKean [25]. Firstly, we obtain some inequalities for possible velocities of travelling fronts (Sect. 5).
Secondly, the upper bound for medians m± is found (Sect. 6). Finally, the direct analytic treatment leads to
the main result.

5. Wave solutions. Proof of Theorem 1.2

In this section we study stability properties of travelling-wave solutions. We suppose here µ+, µ− to be
constant. The travelling-wave solution of system (5) is a solution of the form u±(x, τ, t) = w±(x− a(t − τ)).
Functions w+ and w− describe a travelling wave, if

⎧⎪⎨
⎪⎩
−(c+ a)w′

+ = µ+(w− − w+) − λ+w+ + λ+F+(w+, w−),

(c− a)w′− = µ−(w+ − w−) − λ−w− + λ−F−(w+, w−).
(42)

We are interested in probabilistic solutions of (42), i.e. 0 ≤ w± ≤ 1, lim
z→−∞w±(z) = 0, lim

z→+∞w±(z) = 1.

The states {0, 0} and {1, 1} are clearly equilibriums of system (42). According with assumption C1 there
are no other equilibrium points. We show in this section that condition C2 guarantees the point {0, 0} to be
unstable and the point {1, 1} to be stable.

More precisely, we should prove, that there exists a monotone wave solution travelling with the speed a,
a∗ ≤ a < c from {0, 0} to {1, 1}, where a∗ is some positive bound which depends on parameters bij , i, j = 1, 2
(see (13)). This solution {w+, w−} of (42) is modulo translation unique.

The proof splits onto the following parts.

5.1. Phase portrait at {0, 0}
A linearization of (42) at point {0, 0} has the form

⎧⎪⎨
⎪⎩
w′

+ = λ++µ+
c+a w+ − µ+

c+aw−,

w′
− = µ−

c−aw+ − λ−+µ−
c−a w−.

(43)
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Eigenvalues of (43) are the roots of the equation

ζ2 +
[
λ− + µ−
c− a

− λ+ + µ+

c+ a

]
ζ − λ+λ− + µ+λ− + µ−λ+

c2 − a2
= 0.

Clearly, if a2 < c2, the eigenvalues have opposite signs. After some easy algebra one can find that for a positive
ζ eigenvector e = (e1, e2) satisfies e1 > e2 > 0. Thus e is directed into {(w+, w−) : 0 < w− < w+}. Hence
{0, 0} is a saddle point with positive outgoing orbit.

5.2. Phase portrait at {1, 1}
The linear part of (42) at {1, 1} has the matrix

A =

⎛
⎝ b11

c+a − b12
c+a

b21
c−a − b22

c−a

⎞
⎠ ,

where bij , i, j = 1, 2 are defined in (13). Our aim is to show that if a∗ < a < c with a suitable a∗ > 0, then
assumption C2 imply the state {1, 1} to be a stable node. Moreover eigenvectors of A have positive entries.

To check this note that matrix A has two negative eigenvalues if and only if

⎧⎪⎨
⎪⎩

trA < 0,
detA > 0,
(trA)2 − 4 detA > 0.

(44)

Here trA is the trace and detA is the determinant of matrix A.
Inequalities (44) read in details as follows:

αB > b, (45)

4µ2
∗ > B2 − b2, (46)

f(α) ≡ α2(b2 + 4µ2
∗) − 2αbB +B2 − 4µ2

∗ > 0. (47)

Here we use the following notations: B = b11 + b22, b = b11 − b22, µ2
∗ = b12b21, α = a/c.

Proposition 5.1. Let condition C2 to be hold. Then (46) fulfilled and (47) is equivalent to α∗ < α < 1 with

α∗ =
bB + 4µ∗

√
µ2∗ − b11b22

b2 + 4µ2∗
· (48)

Furthermore, 0 < α∗ < 1 and inequality (45) holds for any α, α∗ < α < 1.

Proof. First note that C2 leads to (46): if B ≥ 0, then 4µ2
∗ > B2 by the first part of C2 and thus we have (46);

if B < 0, then (by b22 > 0) b2 > B2 and (46) is obviously fulfilled.
Now we study the intersection of parabola (47) and the horizontal axis. Notice that f(1) = 4b222 > 0 and

f(−1) = 4b211 ≥ 0 and, if bB 	= 0, then

f(b/B) = (B2 − b2)(B2 − b2 − 4µ2
∗)/B

2, (49)

f(B/b) = 4µ2
∗
(
B2/b2 − 1

)
. (50)

Furthermore, if b11 ≥ 0, then B2 ≥ b2, and by (46) and (49) we have f(b/B) ≤ 0; if b11 ≤ 0, then B2 ≤ b2, and
by (50) it leads to f(B/b) ≤ 0. Finally, in the case bB = 0 by (46) we have f(0) < 0.
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Summarizing, we conclude that inequality (47) is equivalent to

α∗ < α < 1, (51)

where α∗ is the greater root of the equation f(α) = 0, i.e. α∗ is defined by (48). Moreover, if b11 ≥ 0, then
α∗ > b/B, and if b11 ≤ 0, then α∗ > B/b.

From C2 it follows that α∗ > 0. Indeed, if B > 0, then f(0) = B2−4µ2∗ < 0 and thus α∗ is positive; if B ≤ 0,
then b < 0 and thus by (50) f(B/b) < 0, where 0 < B/b < 1. Hence α∗ > B/b > 0.

If condition C2 fails, then α∗ can be negative. This case is not considered in this paper and will be elsewhere
reported later.

To check (45) note that in the case b11 ≥ 0 we have B > 0, thus inequality (45) follows from α∗ > b/B. If
b11 < 0, then b < 0 and for B ≤ 0 we have 1 > α > α∗ > B/b. Then B > αb and thus αB > α2b > b, which is
required. The case b < 0, B > 0 is evident. �

Remark 5.2. It follows from our above explanations that as α∗ is the greater root of f(α) = 0,

B − α∗b = 2µ∗
√

1 − α2∗. (52)

It is important to note that an eigenvectors of A has the right entries.

Proposition 5.3. Let ζ be an eigenvalue of matrix A and e = {e1, e2} be an eigenvector with the eigenvalue ζ.
If C2 holds, then e1e2 > 0.

Proof. The entries e1, e2 of e satisfy the equation

b11e1 − b12e2
c+ a

= ζe1,

where

ζ =
trA±√

(trA)2 − 4 detA
2

=
1

2(1 − α2)c

[
b − αB ±

√
f(α)

]
.

Therefore [
B − αb±

√
f(α)

]
e1 = 2(1 − α)b12e2.

We can note that
B − αb > 0. (53)

Indeed, if b ≥ 0, then this inequality follows from (45). For b < 0 and B ≤ 0 we obtained (53) above (see the
last paragraph of the proof of Proposition 4.1). In the case b < 0 and B > 0 inequality (53) is evident. Hence
B − αb±√

f(α) = B − αb±√
(B − αb)2 − 4µ2∗(1 − α2) > 0 and the proposition follows from b12 > 0. �

If α = α∗, the negative double eigenvalue ζ = b−αB
2(1−α2)c < 0 arises. Clearly, as α decreases through α∗ the

two negative eigenvalues ζ1, ζ2 < 0 of A coalesce and, at least for α sufficiently close to α∗, become a complex
conjugate pair with negative real part. This corresponds to an eigenvector e = (e1, e2) with correct signs of
entries:

e2/e1 =
B − αb

2(1 − α)b12
> 0.

Notice that by the first equation of (42) one can see, that w′
+ |{0≤w+≤1,w−=0}> 0, w′

+ |{w+=1,0≤w−≤1}> 0,
w′

+ |{0≤w+=w−≤1}> 0. Hence the travelling wave solution can not leave the square [0, 1] × [0, 1].
This completes the proof of Theorem 1.2. �
It is interesting to interpret these results for the main examples which were introduced in Section 3.
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5.3. Examples

We suppose here that µ+ = µ− = µ > 0 and λ+ = λ− = λ > 0.
1. Isotropic reaction walk

Assume that F+ = F− = F (u), u = u++u−
2 . Let F ′(1) =

∑
kβk = q > 1 be the expected number of

descendants in a single birth. We have J11 = J12 = J21 = J22 = q/2 and b11 = b22 = µ + λ(1 − q/2),
b12 = b21 = µ+ λq/2.

In this example condition C2 reads

2µ > λ(q − 2)

(it disappears, if q ≤ 2) and the critical velocity value is

α∗ =

√
λ(2µ+ λ)(q − 1)
µ+ λq/2

· (54)

2. Direction independent reaction walk
The reaction terms are F+ = F (u)u+ and F− = F (u)u−. In this case J11 = J22 = 1 + q/2, J12 = J21 = q/2.

Here and below in the third example q = F ′(1) > 0 is the mean number of descendants (maternal particle is
not taking into account). So b11 = b22 = µ − λq/2, b12 = b21 = µ + λq/2 and thus C2 means 2µ > λq. The
critical velocity value is

α∗ =
√

2λµq
µ+ λq/2

· (55)

3. Direction dependent reaction walk
For the version A we supposed F+ = F (u−)u+ and F− = F (u+)u−. Hence J11 = J22 = 1, J12 = J21 = q.

Thus b11 = b22 = µ, b12 = b21 = µ+ λq. In this case we have

α∗ =

√
λq(2µ+ λq)
µ+ λq

· (56)

The critical values of velocities of travelling waves (54)–(56) coincide with respective estimations for similar
models due to Mendez et al. [28, 29] and Horsthemke [17].

For the version B (where F+ = F (u+)u+, F− = F (u−)u−, thus J11 = J221 + q, J12 = J21 = 0 and
b11 = b22 = µ− λq, b12 = b21 = µ) in the same manner as before one can obtain

µ > λq, α∗ =

√
λq(2µ− λq)

µ
(57)

(cf. Lyne [23]).

Remark 5.4. Observe that under the standard scaling

c, µ→ ∞, c2/µ→ 1

system (5) is equivalent to nonlinear heat equation (1). The critical wave speed in the case of (1) is α∗ =
√

2f ′(1)
[22]. In the McKean’s interpretation f ′(1) = λ(Q − 1), where λ is the intensity of the birth process, Q is the
expected number of descendants in a single birth.

In the hyperbolic model all four formulas (54)–(57) lead to the same result:

α∗c→
√

2λ(Q− 1).
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6. Upper bound for medians and convergence to travelling waves

Fix time horizon t. To obtain an upper bound of m±(τ) we use comparison arguments and the results of
Appendix A.

Theorem 6.1. Let condition C2 to be hold. Then functions m±(τ) satisfy the following inequalities

m±(τ) ≤ α∗c(t− τ) − γ ln(t− τ), (58)

where α∗ is defined by (48) and γ is some positive constant.

Proof. Functions u+ = P+,(x,τ)(L(t) > 0) and u− = P−,(x,τ)(L(t) > 0), where L(t) is the position of the
left-most particle, satisfy system (5) with Heaviside terminal conditions u± |τ↑t= θ(x). Hence ū± = 1 − u± =
P±,(x,τ)(L(t) ≤ 0) solve the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−∂ū+

∂τ − c∂ū+
∂x = −b11ū+ + b12ū− − λ+R+(ū+, ū−),

−∂ū−
∂τ + c∂ū−

∂x = b21ū+ − b22ū− − λ−R−(ū+, ū−),
τ < t, x ∈ (−∞, +∞)

(59)

with the terminal data
ū± |τ↑t= θ(−x), x ∈ (−∞, ∞).

Here bij , i, j = 1, 2 are defined in (13) and

R+(x, y) ≡ F+(1 − x, 1 − y) + J11x+ J12y − 1,

R−(x, y) ≡ F−(1 − x, 1 − y) + J21x+ J22y − 1.
Notice that, due to convexity of F± (see e.g. [1]), functions R±(x, y) ≥ 0 for (x, y) ∈ [0, 1] × [0, 1].

Let v̄± solve the respective linear system

⎧⎪⎨
⎪⎩
−∂v̄+

∂τ − c∂v̄+∂x = −b11v̄+ + b12v̄−,

−∂v̄−
∂τ + c∂v̄−∂x = b21v̄+ − b22v̄−, τ < t, x ∈ (−∞, +∞)

with the same terminal conditions.
Thus ū+ ≤ v̄+ and ū− ≤ v̄−. Now to finish the proof it is sufficient to note that from Proposition A.2 it

follows
v̄±(α∗c(t− τ) − γ ln(t− τ), τ, t) → 0

as τ ↓ −∞. �
Notice that (58) implies

lim sup
τ↓−∞

[−ṁ±] ≤ α∗c. (60)

Recall that here and everywhere below ṁ = dm/dτ .
Fix t ∈ (−∞, ∞) and consider functions U± and U∗

± of the following form:

U+(x, τ) = u+(x+m+, τ, t), U−(x, τ) = u−(x+m−, τ, t),

U∗
+(x, τ) = u+(x+m−, τ, t), U∗

−(x, τ) = u−(x+m+, τ, t).
Clearly, U+(0, τ) = U−(0, τ) = 1/2.
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In these notations system (5) leads to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂U+
∂τ − (c− ṁ+) ∂U+

∂x = µ+(U∗− − U+) + λ+(F+(U+, U
∗−) − U+),

−∂U−
∂τ + (c+ ṁ−) ∂U−

∂x = µ−(U∗
+ − U−) + λ−(F−(U∗

+, U−) − U−),

−∂U∗
+

∂τ − (c− ṁ−) ∂U
∗
+

∂x = µ+(U− − U∗
+) + λ+(F+(U∗

+, U−) − U∗
+),

−∂U∗
−

∂τ + (c+ ṁ+) ∂U
∗
−

∂x = µ−(U+ − U∗
−) + λ−(F−(U+, U

∗
−) − U∗

−).

(61)

The following theorem gives a simple sufficient condition for a convergence of U± and U∗± to travelling waves.
Denote ψ(τ) = m−(τ) −m+(τ).

Theorem 6.2. If the limit
lim
τ↓−∞

ψ(τ) = β (62)

exists, then there exist the limits

lim
τ↓−∞

(−ṁ+(τ)) = a+, lim
τ↓−∞

(−ṁ−(τ)) = a−,

a+ = a− and
lim
τ↓−∞

U∗
+(x, τ) = w+(x+ β), lim

τ↓−∞
U∗
−(x, τ) = w−(x− β).

Moreover, pair {w+(x), w−(x − β)} (and {w+(x+ β), w−(x)}) form a travelling-wave solution.

Proof. First note that by (38)-(39) and (62) the following limits exist

lim
τ↓−∞

U+(x, τ) = w+(x), lim
τ↓−∞

U−(x, τ) = w−(x),

lim
τ↓−∞

U∗
+(x, τ) = w+(x+ β), lim

τ↓−∞
U∗
−(x, τ) = w−(x− β).

Integrating the first two equations of (61) in τ from τ − 1 to τ and in x from 0 to x and passing to the limit as
τ ↓ −∞ we obtain ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(c+ a+)(w+(x) − 1/2) =
x∫
0

[µ+(w−(x′ − β) − w+(x′))

+λ+(F+(w+(x′), w−(x′ − β)) − w+(x′))] dx′,

(c− a−)(w−(x) − 1/2) =
x∫
0

[µ−(w+(x′ + β) − w−(x′))

+λ−(F−(w+(x′ + β), w−(x′)) − w−(x′))] dx′.
Similarly, from the last two equations of (61) it follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(c+ a−)(w+(x+ β) − w+(x0 + β)) =
x∫
x0

[µ+(w−(x′) − w+(x′ + β))

+λ+(F+(w+(x′ + β), w−(x′)) − w+(x′ + β))] dx′,

(c− a+)(w−(x− β) − w−(x0 − β)) =
x∫
x0

[µ−(w+(x′) − w−(x′ − β))

+λ−(F−(w+(x′), w−(x′ − β)) − w−(x′ − β))] dx′.
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Differentiating these two pairs of coupled equations we conclude that the pair {w+(x), w−(x − β)} forms a
travelling-wave solution with velocity a+, and the pair {w+(x+β), w−(x)} is a travelling wave with velocity a−.

From results of Section 5 (Prop. 5.1) it follows

a± ≥ α∗c.

From (60) we have
a± ≤ α∗c.

Therefore a+ = a− = α∗c and the theorem is proved. �

Remark 6.3. In general, the question whether the limit (62) really exists is still open. Nevertheless it is easy
to check (62) at least for isotropic reaction walk.

Proposition 6.4. Let µ+ = µ− = µ, λ+ = λ− = λ and J11 = J22 = J12 = J21. Then

lim
τ↓−∞

ψ(τ) =
2c

2µ+ λ
· (63)

Proof. Let S be the first breeding time. Notice that particles forget its original direction at the breeding time.
Hence variables m+(τ − S) +X+(S) and m−(τ − S) +X−(S) are identically distributed (for sufficiently large
−τ). Here X+ and X− are the telegraph processes initially moving forwards and backwards respectively. It is
easy to see that EX+(S) = −EX−(S) = c

λ+2µ . Hence

lim
τ↓−∞

ψ(τ) =
2c

2µ+ λ
·

�

Appendix A. Solutions of linear hyperbolic systems

The objective of this part is to propose the exact formulas for solutions to linear hyperbolic systems and to
obtain some inequalities desired in Section 6. The following proposition is well-known (cf. [13]).
Proposition A.1. Solution v± of the system

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−∂v+
∂τ − c∂v+∂x = −b11v+ + b12v−,

−∂v−
∂τ + c∂v−∂x = b21v+ − b22v−,

τ < t, x ∈ (−∞, +∞)

(A.1)

with terminal conditions v± |τ↑t= g±(x), x ∈ (−∞, ∞) has the form

v+ = e−b11(t−τ)g+(x+ c(t− τ)) +
1
2
e−B(t−τ)/2

t−τ∫
−(t−τ)

e−bs/2
[
b12g−(x+ cs)I0

(
µ∗
√

(t− τ)2 − s2
)

(A.2)

+µ∗g+(x+ cs)I1
(
µ∗
√

(t− τ)2 − s2
) t− τ + s√

(t− τ)2 − s2

]
ds
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and

v− = e−b22(t−τ)g−(x− c(t− τ)) +
1
2
e−B(t−τ)/2

t−τ∫
−(t−τ)

e−bs/2
[
b21g+(x+ cs)I0

(
µ∗
√

(t− τ)2 − s2
)

(A.3)

+µ∗g−(x+ cs)I1
(
µ∗
√

(t− τ)2 − s2
) t− τ − s√

(t− τ)2 − s2

]
ds.

Here B = b11 + b22, b = b11 − b22 and µ∗ =
√
b12b21; I0(z) =

∞∑
n=0

z2n

22n(n!)2 is the zero-order Bessel function of

imaginary argument, I1(z) = I ′0(z).
Corollary. For the Heaviside terminal conditions g± = θ(−x) formulas (A.2)-(A.3) take the form

v+ = e−b11(t−τ)θ(−x− c(t− τ)) +
1
2
e−B(t−τ)/2

min(−x/c,t−τ)∫
−(t−τ)

e−bs/2
[
b12I0

(
µ∗
√

(t− τ)2 − s2
)

+µ∗I1
(
µ∗
√

(t− τ)2 − s2
) t− τ + s√

(t− τ)2 − s2

]
dsθ(c(t− τ) − x) (A.4)

v− = e−b22(t−τ)θ(−x+ c(t− τ)) +
1
2
e−B(t−τ)/2

min(−x/c,t−τ)∫
−(t−τ)

e−bs/2
[
b21I0

(
µ∗
√

(t− τ)2 − s2
)

+µ∗I1
(
µ∗
√

(t− τ)2 − s2
) t− τ − s√

(t− τ)2 − s2

]
dsθ(c(t− τ) − x). (A.5)

Proposition A2. Let {v+, v−} be a solution of (A.1) with Heaviside terminal data v± |τ↑t= θ(−x). If condition
C2 holds, then as τ ↓ −∞

v±(α∗c(t− τ) − γc ln(t− τ), τ, t) → 0, (A.6)
where α∗ is defined by (48).
Proof. Keeping in mind formulas (A.4) and (A.5) it is sufficient to prove that for x(T ) = α∗T − γ lnT

V1(T ) =

−x(T )∫
−T

e−bs/2I0(µ∗
√
T 2 − s2)ds = o(eBT/2), (A.7)

V2(T ) =

−x(T )∫
−T

e−bs/2
∂

∂T
I0(µ∗

√
T 2 − s2)ds = o(eBT/2) (A.8)

as T → ∞.
We prove here (A.7) (for (A.8) a similar idea can be applied). We split integral V1(T ) into two parts:

V1(T ) = V11(T ) + V12(T ), where

V11(T ) =

−αT∫
−T

e−bs/2I0(µ∗
√
T 2 − s2)ds, V12(T ) =

−x(T )∫
−αT

e−bs/2I0(µ∗
√
T 2 − s2)ds.
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Here α ∈ (α∗, 1). First note that
I0(z) ≤ ez, z ∈ (−∞, ∞).

Thus

V11 ≤
−αT∫
−T

exp
(
−bs

2
+ µ∗

√
T 2 − s2

)
ds

=

−αT∫
−T

exp
(
µ∗T − bs

2
− µ∗s2

T +
√
T 2 − s2

)
ds

≤
−αT∫
−T

exp
(
µ∗T − bs

2
− µ∗s2

T (1 +
√

1 − α2)

)
ds

= exp
(
µ∗T +

b2T

16µ∗

(
1 +

√
1 − α2

)) β+∫
β−

exp

(
− µ∗s2

T
(
1 +

√
1 − α2

)
)

ds, (A.9)

where

β+ = −αT +
bT

4µ∗

(
1 +

√
1 − α2

)
, β− = −T +

bT

4µ∗

(
1 +

√
1 − α2

)
.

Note that, if α∗ < α < 1, then β+ < 0. Indeed, if b ≤ 0, then it is evident. In the case b > 0 the inequality
α∗ > b/B is hold (see the proof of Prop. 5.1), and thus by condition C2 (2µ∗ > B) we have

4µ∗α > 4µ∗α∗ > 4µ∗
b

B
> 2b > b

(
1 +

√
1 − α2

)
,

which is desired.
By the inequality

−A∫
−∞

e−x
2/2σ2

dx ≤ σ2

A2
e−A

2/2σ2
, A > 0

the right hand side of (A.9) can be estimated by

const · exp
(
bαT

2
+ µ∗T

√
1 − α2

)
= o(eBT/2) (A.10)

(see (47)).
To estimate V12 we apply the inequality

I0(z) ≤ ez√
2πz

, z → ∞.

Thus

V12 ≤ 1
(2πµ∗T )1/2(1 − α2)1/4

−α∗T+γ lnT∫
−αT

exp
(
−bs

2
+ µ∗

√
T 2 − s2

)
ds.

In the same way as before one can obtain

V12 ≤ const · T−1/2 exp
(
bα∗T

2
− bγ lnT

2
+ µ∗

√
T 2 − (−α∗T + γ lnT )2

)
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≤ const · T−1/2 exp

(
bα∗T

2
+ µ∗T

√
1 − α2∗ −

bγ lnT
2

+
µ∗α∗γ lnT√

1 − α2∗

)

= const · T−1/2+γ
(
−b/2+µ∗α∗/

√
1−α2∗

)
exp

(
bα∗T

2
+ µ∗T

√
1 − α2∗

)

= δT e
BT/2,

where δT = const · T−1/2+γ
(
−b/2+µ∗α∗/

√
1−α2∗

)
→ 0 for suitably chosen positive γ. In the last line above we

use (52). Consequently, property (A.7) follows from this and from (A.10). The proposition is proved. �

Appendix B. Existence and uniqueness results

We shall prove here the existence and uniqueness of the solution of system (5) with measurable terminal
data g±.

First notice that the linear system

⎧⎪⎨
⎪⎩
−∂v+

∂τ − c∂v+∂x = µ+(v− − v+) − λ+v+,

−∂v−
∂τ + c∂v−∂x = µ−(v+ − v−) − λ−v−

τ < t (B.1)

(with the terminal condition v± |τ↑t= g±, g± ∈ C1) has the unique solution in C1. Moreover this solution can
be represented in the Fenmann-Kac form (see Th. 2.1)

v±(x, τ, t) = E±,(x,τ)

⎡
⎣g(X(t), σ(t), t) exp

⎛
⎝−

t∫
τ

λσ(s)ds

⎞
⎠
⎤
⎦ := Uτ,t(g), (B.2)

where (X, σ) is the telegraph process with intensities µ±. Fix t, t ∈ (−∞, ∞). Solution v = Uτ,t(g), τ ≤ t
forms a semigroup acting on C1 × C1.

From (B.2) it follows the monotonicity of semigroup U : if f+ ≤ g+ and f− ≤ g−, then Uτ,t(f)(x, σ) ≤
Uτ,t(g)(x, σ), −∞ < x <∞, σ = ±. Moreover, if g(x, σ) ≤ C, then Uτ,t(g)(x, σ) ≤ CEσ exp

(
−

t∫
τ

λσ(s)ds
)

.

By the Riezs representation theorem semigroup Uτ,t, τ ≤ t has a canonical extension on B × B, the space
of bounded measurable functions. In particular, if function g is peace-wise continues, then the solution v =
v(x, σ, τ, t) = Uτ,t(g)(x, σ) has discontinuities propagating along characteristics.

We regard solution u of non-linear system (5) as a weak solution. It means that for τ < t and a test function
ϕ = ϕ(x, σ, τ), ϕ± ∈ C1

0 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t∫
τ

∫
u+(x, s, t)

[
∂ϕ+
∂s + c∂ϕ+

∂x + (µ+ + λ+)ϕ+

]
(x, s)dsdx − µ+

t∫
τ

∫
u−(x, s, t)ϕ+(x, s)dsdx

−λ+

t∫
τ

∫
F+(u+, u−)ϕ+(x, s)dsdx =

∫
u+(x, τ)ϕ+(x, τ)dx − ∫

g+(x, t)ϕ+(x, t)dx,

t∫
τ

∫
u−(x, s, t)

[
∂ϕ−
∂s − c∂ϕ−

∂x + (µ− + λ−)ϕ−
]
(x, s)dsdx− µ−

t∫
τ

∫
u+(x, s, t)ϕ−(x, s)dsdx

−λ−
t∫
τ

∫
F−(u+, u−)ϕ−(x, s)dsdx =

∫
u−(x, τ)ϕ−(x, τ)dx − ∫

g−(x, t)ϕ−(x, t)dx.

(B.3)
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Theorem B.1. If u is the solution of system (B.3), then u satisfies

u = Uτ,t(g) −
t∫
τ

Ut+τ−s,t(λF (u) |s)ds (B.4)

for for each τ < t and for almost every x.

Proof. Consider the system ⎧⎪⎨
⎪⎩
−∂ψ+

∂s + c∂ψ+
∂x = −(µ+ + λ+)ψ+ + µ−ψ−,

−∂ψ−
∂s − c∂ψ−

∂x = −(µ− + λ−)ψ− + µ+ψ+

s < t (B.5)

with the terminal condition ψ± |s↑t= ψ0
±, ψ

0
± ∈ C∞

0 .
Solution ψ±, ψ(x, s, t) = U∗

s,t(ψ0) of this system is defined by semigroup U∗
s,t dual to Us,t. By the statement

that Uτ,t and U∗
τ,t are dual we mean that for τ < t and bounded measurable functions g, ψ

∫
g(x, t) · U∗

τ,t(ψ)(x)dx =
∫
Uτ,t(g)(x) · ψ(x, t)dx,

where f · g = f+g+ + f−g−. To finish the of Theorem it is sufficient to substitute ϕ(x, s) = ψ(x, t+ τ − s) in
system (B.3). �

Notice that the solution of system (B.5) can be expressed by means of the reversed underlying telegraph
process X∗(s) = X(t− s). More precisely,

ϕ±(x, s) = E

⎡
⎣ψ0(X∗(s), σ∗(t), t) exp

⎛
⎝−

t∫
s

λσ∗(s′)ds′

⎞
⎠ ∣∣ σ∗(s) = ±, X∗(s) = x

⎤
⎦ .

Theorem B.2. Let 0 ≤ g± ≤ 1, g ∈ B × B. Then the solution u ∈ B × B, 0 ≤ u± ≤ 1 of equation (B.4) exists
and it is unique.

Proof. Define
u(0) = Uτ,t(g)

u(n) = Uτ,t(g) −
t∫
τ

Ut+τ−s,t(λF (u(n−1)) |s)ds, n ≥ 1.

Then, applying the usual contraction technique, one can prove the convergence u(n) → u uniformly on (τ, t],
which gives the exact solution of equation (B.4). �

Acknowledgements. The author is grateful to the remarks of two anonymous referees.

References

[1] K.B. Athreya and P.E. Ney, Branching processes. Dover Publ. Inc. Mineola, NY (2004).
[2] L. Beghin, L. Nieddu and E. Orsingher, Probabilistic analysis of the telegrapher’s process with drift by mean of relativistic

transformations. J. Appl. Math. Stoch. Anal. 14 (2001) 11–25.
[3] M. Bramson, Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978) 531–581.
[4] M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983)

iv+190.



BRANCHING RANDOM MOTIONS AND TRAVELLING WAVES 257

[5] B. Chauvin and A. Rouault, Supercritical branching Brownian motion and K-P-P equation in the critical speed-are. Math.
Nachr. 19 (1990) 41–59.

[6] A. Di Crescenzo and F. Pellerey, On prices’ evolutions based on geometric telegrapher’s process. Appl. Stoch. Models Business
Industry 18 (2002) 171–184.

[7] S.R. Dunbar, A branching random evolution and a nonlinear hyperbolic equation. SIAM J. Appl. Math. 48 (1988) 1510–1526.
[8] S.R. Dunbar and H.G. Othmer, On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching

random walks, in Nonlinear oscillations in biology and chemistry, (Salt Lake City, Utah, 1985). Lect. Notes Biomath. 66 (1986)
274–289.

[9] R.A. Fisher, The advance of advantageous genes. Ann. Eugenics 7 (1937) 335–369.
[10] J. Fort and V. Mendez, Wavefronts in time-delayed reaction-diffusion systems. Theory and comparison to experiment. Rep.

Prog. Phys. 65 (2002) 895–954.
[11] S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation. Quart. J. Mech. Apl. Math. 4 (1951)

129–156.
[12] K.P. Hadeler, Nonlinear propagation in reaction transport systems. Differential equations with applications to biology, Halifax,

NS, 1997, Fields Inst. Commun. 21 Amer. Math. Soc., Providence, RI (1999) 251–257.
[13] K.P. Hadeler, Reaction transport systems in biological modelling, In Mathematics inspiring by biology. Lect. Notes in Math.

1714 (1999) 95–150.
[14] K.P. Hadeler, T. Hillen and F. Lutscher, The Langevin or Kramer approach to biological modelling. Math. Mod. Meth. Appl.

Sci. 14 (2004) 1561–1583.
[15] T. Hillen and H.G. Othmer, The diffusion limit of transport equations derived from velocity-jump processes. SIAM J. Appl.

Math. 61 (2000) 751–775.

H.G. Othmer and T. Hillen, The diffusion limit of transport equations. II. Chemotaxis equations. SIAM J. Appl. Math. 62,
(2002) 1222–1250.

[16] W. Horsthemke, Spatial instabilities in reaction random walks with direction-independent kinetics. Phys. Rev. E 60 (1999)
2651–2663.

[17] W. Horsthemke, Fisher waves in reaction random walks. Phys. Lett. A 263 (1999) 285–292.
[18] D.D. Joseph and L. Preziosi, Heat waves. Rev. Mod. Phys. 61 (1989) 41–73.
[19] D.D. Joseph and L. Preziosi, Addendum to the paper “Heat waves”. Rev. Mod. Phys. 62 (1990) 375–391.
[20] M. Kac, Probability and related topics in physical sciences. Interscience, London (1959).
[21] M. Kac, A Stochastic model related to the telegraph equation. Rocky Mountain J. Math. 4 (1974) 497–509.

[22] A. Kolmogorov, I. Petrovskii and N. Piskunov, Étude de l’équation de la diffusion avec croissance de la quantité de la matière
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pp. x+319.
[31] E. Orsingher, Probability law, flow function, maximum distribution of wave governed random motions and their connections

with Kirchoff’s laws. Stoch. Proc. Appl. 34 (1990) 49–66.
[32] H.G. Othmer, S.R. Dunbar and W. Alt, Models of dispersal in biological systems. J. Math. Biol. 26 (1988) 263–298.
[33] M. Pinsky, Lectures on random evolution. World Scient. Publ. Co., River Edge, NY (1991).
[34] N.E. Ratanov, Telegraph processes with reflecting and absorbing barriers in inhomogeneous media. Theor. Math. Phys. 112

(1997) 857–865.
[35] N. Ratanov, Reaction-advection random motions in inhomogeneous media. Physica D 189 (2004) 130–140.
[36] N. Ratanov, Pricing options under telegraph processes. Rev. Econ. Ros. 8 (2005) 131–150.
[37] A.I. Volpert, V.A. Volpert and Vl.A. Volpert, Travelling wave solutions of parabolic systems. Translated from the Russian

manuscript by James F. Heyda. Translations of Mathematical Monographs. 140 Amer. Math. Soc. Providence, RI, (1994) pp.
xii+448.

[38] G.H. Weiss, Aspects and applications of the random walk. North-Holland, Amsterdam (1994).
[39] G.H. Weiss, Some applications of persistent random walks and the telegrapher’s equation. Physica A 311 (2002) 381–410.


