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Abstract 
 
Wavelet methods possess some features that make them a tool with great potential for financial 
research. The purpose of this thesis is to study the usefulness of wavelet methods in financial time 
series analysis, for which data from Colombian financial market has been used.  
 
In this thesis the wavelet theory is briefly presented, with a special focus on the Discrete Wavelet 
Transform and Daubechies wavelets. Then, a multiresolution decomposition is illustrated for two 
distinct log-returns series.  Finally, a wavelet-based prediction approach is presented, as well as a 
comparison between its results and those of a traditional prediction method. 
 
Keywords: Wavelet analysis, Discrete Wavelet Transform, financial time series, multiresolution 
decomposition, prediction. 
 
 
 
 
 

Resumen 
 
Los métodos wavelet poseen algunas características que los hacen una herramienta con gran 
potencial para la investigación financiera. El propósito de esta tesis es estudiar la utilidad que tienen 
los métodos wavelet en el análisis de series de tiempo financieras, para lo cual se han utilizado 
datos del mercado financiero colombiano.  
 
En esta tesis se presenta brevemente la teoría wavelet, con especial enfoque en la Transformada 
Discreta Wavelet y en las wavelets de Daubechies. Luego, se ilustra una descomposición 
multirresolución para dos series diferentes de log-retornos.  Finalmente, se presenta un método de 
predicción basado en wavelets, así como una comparación entre sus resultados y los de un método 
de predicción tradicional. 
 
Palabras clave: Análisis wavelet, Transformada Discreta Wavelet, serie de tiempo financiera, 
descomposición multirresolución, predicción. 
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Notations 

 
𝛹(𝑡)    Wavelet function. 

𝛹𝑎,𝑏(𝑡)  Wavelet function at scale 𝑎 and location 𝑏. 

𝛹𝑚,𝑛(𝑡)   Discretized wavelet function. 

𝛹0,0(𝑡)   Mother wavelet function. 

𝑥(𝑡)    Signal. 

𝑡   Time variable. 

𝑁   Length of the discrete input signal. 

𝑀   Number of iterations of wavelet decomposition. 

𝑎   Dilation parameter. 

𝑏   Translation parameter. 

𝑚   Discrete dilation parameter. 

𝑛   Discrete translation parameter. 

𝑎𝑜   Fixed dilation step parameter. 

𝑏𝑜   Fixed location step parameter. 

𝐶𝜓   Wavelet admissibility condition. 

𝛹̂(𝑓)    Fourier transform of the wavelet function. 

𝜄   Imaginary number. 

𝐸    Fourier energy spectrum. 

𝑇𝑚,𝑛    Wavelet (or detail) coefficient. 

𝜙(𝑡)   Scaling function. 

𝜙𝑚,𝑛(𝑡)  Discretized scaling function. 

𝜙0,0(𝑡)   Father wavelet function. 

𝑆𝑚,𝑛   Approximation coefficient. 

𝑥𝑚(𝑡)   Approximation of the signal at scale index m. 

𝑑𝑚(𝑡)   Signal detail at scale index m. 

𝑐𝑘   Scaling coefficient. 

𝑏𝑘   Reconfigured version of the scaling coefficients . 

𝑁𝑘   Number of scaling coefficients. 

𝑊𝑚   Wavelet transform vector at scale index m. 

𝑟𝑡   Log-return at time t. 

𝑝𝑡   Price at time t. 
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Introduction 
 
A wavelet is a function that may be described as a localized wavelike function , and it is 
used to transform a signal under analysis into another representation which exhibits the 
signal information in a more useful way. This transformation of a signal through a wavelet 
function is known as the wavelet transform and from a mathematical perspective may be 
interpreted as a convolution of the signal with a wavelet function. In a financial time series 
analysis context, wavelet transform may be viewed as a time-frequency decomposition tool 
for data analysis. 
 
Likewise, wavelet analysis provides insight into the dynamics of financial time series 
beyond traditional methodologies. An observed financial time series may contain sev eral 
structures each occurring on different time scales, and through wavelet methods these 
structures may be identified and then analyzed with traditional time series tools. 
 
Furthermore, wavelets methods have some additional advantages over other closely 
related methods; Fourier methods. The main advantage of wavelet methods is that, unlike 
Fourier methods, have the ability to conserve both time and frequency information which 
make them a more suitable tool for financial research. Additionally, wavelet methods 
provide a natural platform to deal with the time-varying characteristics, present in most 
real-world financial time series, and thus the stationarity assumption could be avoided. 
 
The purpose of this thesis is twofold. First, to introduce briefly the discrete wavelet 
transform (DWT) theory. Second, to show some of the wavelet analysis benefits, through 
applications in finance, using Colombian financial market data. Therefore, this thesis has 
been structured in four main chapters as follow: in the first chapter, the discrete wavelet 
transform theory is presented including, among others, the scaling function, scaling 
equation, wavelet equation and the fast wavelet transform; in the second chapter, 
fundamental characteristics of the Daubechies wavelets family are presented, since these 
are the type of wavelets used in subsequent chapters ; in the third chapter, the wavelet 
multiresolution decomposition using two different mother wavelets is performed for two 
distinct kinds of financial assets; in the fourth and final chapter, a wavelet-based approach 
for financial time series prediction is performed for the two series analyzed in chapter 
three, which is based on the work of Nguyen and He (2015). In addition, some concluding 
remarks, ideas for future work and python scripts are given in final sections.  
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I. The Discrete Wavelet Transform 
 
This chapter covers the basic theory of the discrete wavelet transform (DWT). A w avelet is 

a function of time 𝛹(𝑡), in 𝐿2(ℝ) space, that may be described as a localized wavelike 
function, and is used to transform a signal 𝑥(𝑡) under analysis into another representation 
which exhibits the signal information in a more useful way. This transformation of a signal 
through a wavelet function is known as the wavelet transform.  As will be shown later, the 
DWT has some qualities that make it a useful method for analyzing  financial time series. 
 
 
Some examples of wavelet functions which may be used to transform a signal as 
mentioned above are presented in figure 1. There are two basic ways in which a wavelet 
can be manipulated: the first one is the translation of the wavelet, and the second one is 
the scaling of the wavelet. The translation is referred to movements along the time axis 
and the scaling is referred to the spreading out of the wavelet . These two basic 
manipulations are used in the discrete wavelet transform of the signal , which means that 
the DWT is implemented at several locations of the signal, and for several scales of the 
wavelet, with the purpose to capture features that are local in time and local in frequency . 
 
Figure 1 Some wavelets 
 

 
 
It can be seen from the previous figure that wavelets have the form of a small wave, 
localized on the time axis. All these wavelets (and many others) may be used for analyzing 
financial data, and should be chosen depending on both the nature of the observed signal 
of interest and the aim of the analysis. The following are the conditions that a function 
must satisfy to be a wavelet: 
 

 The admissibility condition: 

 𝐶𝜓 = ∫
|𝛹̂(𝑓)|2

𝑓
𝑑𝑓 < ∞

∞

0
     (1.1) 

Where, 𝑓 is the frequency and 𝛹̂(𝑓) is the Fourier transform of the wavelet function 
𝛹(𝑡) and is given by: 

𝛹̂(𝑓) = ∫ 𝛹(𝑡)𝑒−𝜄(2𝜋𝑓)𝑡
∞

−∞
𝑑𝑡    (1.2) 

 Where, 𝜄 is the imaginary number defined as 𝜄 = √−1 
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 Integration to zero: 

 ∫ 𝛹(𝑡)𝑑𝑡 = 0
∞

−∞
      (1.3) 

 This condition is equivalent to1 𝛹̂(0) = 0 
 

 Unit energy2: 

 𝐸 = ∫ |𝛹(𝑡)|2𝑑𝑡 = 1
∞

−∞
     (1.4) 

 
The wavelet function at scale 𝑎 and location 𝑏 is defined as: 
 

 𝛹𝑎,𝑏(𝑡) =
1

√𝑎
𝛹 (

𝑡−𝑏

𝑎
)      (1.5) 

Where, 𝑎 and 𝑏 are the dilation (or scale) and translation (or shifting) parameters 
respectively.  
 

If discrete values of parameters  𝑎 and 𝑏 are considered, the wavelet function may be 
rewritten by using a logarithmic discretization of the 𝑎 scale, and making location 𝑏 

proportional to that 𝑎 scale. This modification leads to a discretized version of the wavelet 
function which has the form: 
 

 𝛹𝑚,𝑛(t) =
1

√𝑎0
𝑚𝛹 (

𝑡−𝑛𝑏𝑜𝑎0
𝑚

𝑎0
𝑚 )     (1.6) 

Where, 

𝑚 ∈ ℤ: is the discrete dilation parameter 
𝑛 ∈ ℤ: is the discrete translation parameter  
𝑎𝑜: is a fixed dilation step parameter  

𝑏𝑜: is a fixed translation step parameter  
 

Parameters 𝑚 and 𝑛 are contained in the set of integers ℤ. Parameter 𝑎0 must be greater 
than 1 because of the stability of 𝛹𝑚,𝑛(𝑡) (as 𝑚 → ∞ then 𝑎0

𝑚 → 0 and 𝛹𝑚,𝑛(t) → ∞), and 

parameter 𝑏0 must be greater than 0, since otherwise no wavelet translations could be 
performed. In addition, note that the size of the translation steps is proportional to the 

wavelet scale 𝑎0
𝑚 through the relationship ∆𝑏 = 𝑏0𝑎0

𝑚. 
 

Setting 𝑎𝑜 = 2 and 𝑏𝑜 = 1 in equation 1.6, leads to an arrangement known as the dyadic 
grid, which is a power-of-two arrangement for both the dilation and translation steps, and is 
given by: 
 

 𝛹𝑚,𝑛(𝑡) =
1

√2𝑚
𝛹 (

𝑡−𝑛2𝑚

2𝑚
)     (1.7) 

Where, 𝛹0,0(𝑡) = 𝛹(𝑡) is known as the mother wavelet function3. 

                                                           
1 This is obtained using the Fourier transform of 𝛹(𝑡) defined in equation 1.2 as follow: 

𝛹̂(0) = ∫ 𝛹(𝑡)𝑒−𝜄2𝜋(0)𝑡𝑑𝑡
∞

−∞
= ∫ 𝛹(𝑡)𝑑𝑡

∞

−∞
= 0  

2 The energy functional is defined as the squared norm integrated over its domain. 
3 The equality 𝛹0,0(𝑡) = 𝛹(𝑡) is obtain through equation 1.7 as follow: 

𝛹0,0(𝑡) =
1

√20
𝛹 (

𝑡−(0)20

20
) = 𝛹(𝑡)  
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The dyadic grid arrangement lends itself to the construction of an orthonormal wavelet 

basis in the 𝐿2(ℝ) space4, that is, a set of vectors which are perpendicular to each other 
and can completely define a signal 𝑥(𝑡).  
 
The discrete wavelet transform (DWT) of a discrete signal 𝑥(𝑡) using discrete wavelets 
as defined in (1.7) is given by: 
 

 𝑇𝑚,𝑛 = ∑ 𝑥(𝑡)
1

√2𝑚
𝛹 (

𝑡−𝑛2𝑚

2𝑚
)𝑁−1

𝑡=0 ∶= 〈𝑥,𝛹𝑚,𝑛〉  (1.8) 

Where,  

𝑁: is the length5 of the discrete signal 𝑥(𝑡) 
𝑇𝑚,𝑛: are the wavelet (or detail) coefficients, that is, the discrete wavelet transform values 

for a scale-location grid of index m,n 
 

The DWT may be viewed as the convolution of the signal 𝑥(𝑡) with dilated and translated 
versions of the mother wavelet, by which the wavelet coefficients 𝑇𝑚,𝑛 at all scale-location 

indices m,n can be obtained. In addition, note that the wavelet coefficients may be 

expressed as the inner product in 𝐿2(ℝ), between the signal and the wavelet function (as it 
is represented in the right side of equation 1.8). 
 

Likewise, the original signal 𝑥(𝑡) can be reconstructed through the wavelet coefficients 
𝑇𝑚,𝑛, using the inverse discrete wavelet transform  which is defined as: 

 

 𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛
2𝑀−1
𝑛=0 𝛹𝑚,𝑛

𝑀
𝑚=1 (𝑡)    (1.9) 

Where, 

𝑀 =
𝑙𝑛⁡(𝑁)

𝑙𝑛⁡(2)
: is the number of iterations that can be computed 

𝑁 = 2𝑀: is the length of the discrete input signal 𝑥(𝑡) 
 
Equations (1.8) and (1.9) may be described as a decomposition-reconstruction process 
summarized as follow: 
 

Decomposition process: 𝑥(𝑡) ⟶ 〈𝑥,𝛹𝑚,𝑛〉 ⟶ 𝑇𝑚,𝑛 

Reconstruction process: 𝑥(𝑡) ⟵ ∑ ∑ 〈𝑥,𝛹𝑚,𝑛〉
2𝑀−1
𝑛=0 𝛹𝑚,𝑛

𝑀
𝑚=1 (𝑡) ⟵ 𝑇𝑚,𝑛 

 

I.I. The scaling function 
 
Orthonormal dyadic discrete wavelets are associated with scaling functions which are 
related with the smoothing of a signal. The scaling function is defined as: 
 

 𝜙𝑚,𝑛(𝑡) =
1

√2𝑚
𝜙 (

𝑡−𝑛2𝑚

2𝑚
)     (1.10) 

 
 

                                                           
4 Since wavelet functions are square-integrable, they are in the 𝐿2(ℝ) space. 
5 This length must be an integer power of 2, because of the dyadic grid arrangement. 
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Where, 𝜙0,0(𝑡) = 𝜙(𝑡) is known as the father wavelet function6. 

  
Note that the scaling function (equation 1.10) has the same form as the wavelet function 
(equation 1.7). As seen later in this chapter, the scaling function is used in the smoothens 
of the signal, while the wavelet function is used to extract the high signal frequencies.  
 
Furthermore, the scaling function has the following property:  
 

 ∫ 𝜙0,0(𝑡)
∞

−∞
𝑑𝑡 = 1      (1.11) 

 
Figure 2 shows the same wavelets presented in figure 1 (blue line) , together with their 
respective scaling functions (yellow line).  
 
Figure 2 Some wavelets and their associated scaling functions  
 

 
 
Analogously to the process to obtain the wavelet coefficients 𝑇𝑚,𝑛 (equation 1.8), the 

signal 𝑥(𝑡) can be convolved with dilated and translated versions of the father wavelet , to 

obtain the approximation coefficients 𝑆𝑚,𝑛 at all scale-location indices m,n as follow: 

 

 𝑆𝑚,𝑛 = ∑ 𝑥(𝑡)
1

√2𝑚
𝜙 (

𝑡−𝑛2𝑚

2𝑚
)2𝑀−1

𝑡=0 ∶= 〈𝑥, 𝜙𝑚,𝑛〉  (1.12)  

Where, 𝑆𝑚,𝑛 is the approximation coefficient for a scale-location grid of index m,n. 

 
Note that the approximation coefficients may be expressed as the inner product between 
the signal and the scaling function (right side of equation 1.12). Moreover, the 
approximation coefficients, at a particular scale index m, are collectively known as the 
discrete approximation of the signal at  scale index m. Likewise, summing a sequence of 
scaling functions at a particular scale index m, factored by the approximation coefficients, 
generates an approximation of the signal at scale index m as follow: 
 

 𝑥𝑚(𝑡) = ∑ 𝑆𝑚,𝑛
2𝑀−𝑚−1
𝑛=0 𝜙𝑚,𝑛(𝑡)    (1.13) 

                                                           
6 The equality 𝜙0,0(𝑡) = 𝜙(𝑡) is obtain through equation 1.10 as follow: 

𝜙0,0(𝑡) =
1

√20
𝜙 (

𝑡−(0)20

20
) = 𝜙(𝑡)  
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Where, 𝑥𝑚(𝑡) is a smooth version of the signal 𝑥(𝑡) at scale index m. The smaller the 

scale index m, the closer the smooth version 𝑥𝑚(𝑡) to the signal 𝑥(𝑡). 
 

I.II. The multiresolution representation 
 
The signal 𝑥(𝑡) can be represented using both the wavelet and the approximation 
coefficients (equations 1.9 and 1.13), as shown in the following equation: 
 

 𝑥(𝑡) = 𝑥𝑚0
(𝑡) + ∑ 𝑑𝑚(𝑡)

𝑚0
𝑚=1     (1.14) 

Where, 

𝑚0: is an arbitrary scale index 

𝑥𝑚0
(𝑡) = ∑ 𝑆𝑚0,𝑛

2𝑀−𝑚0−1
𝑛=0 𝜙𝑚0,𝑛

(𝑡): is the approximation of the signal at scale index 𝑚0 

𝑑𝑚(𝑡) = ∑ 𝑇𝑚,𝑛
2𝑀−𝑚−1
𝑛=0 𝛹𝑚,𝑛(𝑡): is the signal detail at scale index m 

 
Equation 1.14 leads to the multiresolution representation of the signal, that is, the signal at 
an arbitrary scale index m expressed as the sum of the signal approximation and the signal 
detail at the next scale index m+1 as follow: 
 

 𝑥𝑚(𝑡) = 𝑥𝑚+1(𝑡) + 𝑑𝑚+1(𝑡)    (1.15) 
 

I.III. The scaling and wavelet equations 
 
The scaling function can be built from contracted and shifted versions of itself through the 
scaling equation as follow: 
 

 𝜙(𝑡) = ∑ 𝑐𝑘𝜙(2𝑡 − 𝑘)
𝑁𝑘−1
𝑘=0       (1.16) 

Where, 

𝜙(2𝑡 − 𝑘): is a contracted version of 𝜙(𝑡) shifted by a step 𝑘 
𝑐𝑘: are the scaling coefficients of the scaling function associated to a particular wavelet 
function of compact support7 

𝑁𝑘: is the number of scaling coefficients 
 

In order to ensure an orthogonal system, the scaling coefficients 𝑐𝑘 must satisfy the 
following conditions: 
 

 ∑ 𝑐𝑘 = 2
𝑁𝑘−1
𝑘=0          (1.17) 

 ∑ 𝑐𝑘𝑐𝑘+2𝑘′
𝑁𝑘−1
𝑘=0 = {

2⁡𝑖𝑓⁡𝑘′ = 0
0⁡𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (1.18) 

 ∑ (−1)𝑘𝑐𝑘𝑘
𝑚 = 0

𝑁𝑘−1
𝑘=0 , for integers8 𝑚 = 0,1,… ,𝑁𝑘/2 − 1  (1.19) 

                                                           
7 The word “support” is used to denote a closed set outside of which 𝛹(𝑡) = 0. Compact support means that this closed 
set is bounded, and the wavelet function is zero outside a bounded interval. Hence, wavelets functions of compact 
support have sequences of non-zero scaling coefficients which are of finite length. 
8 These integers m are associated with the moment condition, that is, the wavelets can eliminate parts of the signal which 

are polynomial up to degree 𝑁𝑘/2 − 1. This condition is required for any of the Daubechies wavelet family. 
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Similar to the scaling function, the wavelet function can be built from contracted and 
shifted versions of its scaling function through the wavelet equation as follow: 
 

 𝛹(𝑡) = ∑ 𝑏𝑘𝜙(2𝑡 − 𝑘)
𝑁𝑘−1
𝑘=0       (1.20) 

Where, 

𝑏𝑘 = (−1)𝑘𝑐𝑁𝑘−1−𝑘: are the reconfigured version of the scaling coefficients 

 
In addition, from equations 1.10 and 1.16, a recursive equation for the scaling function can 
be deduced and is given by: 
 

 𝜙𝑚+1,𝑛(𝑡) =
1

√2
∑ 𝑐𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0    (1.21) 

 
Analogously for the wavelet function, from equations 1.7 and 1.20 a recursive equation can 
be obtained and is given by: 
 

 𝛹𝑚+1,𝑛(𝑡) =
1

√2
∑ 𝑏𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0    (1.22) 

 

I.IV. The Fast Wavelet Transform 
 
The approximation and wavelet coefficients may be calculated through recursive equations 
as explained below, by means of the recursive scaling and wavelet equations presented in 
the previous section. From the definition of the approximation coefficients given in 
equation 1.12 and the expression deduced for the scaling function in equation 1.21, the 
following recursive equation9 for the approximation coefficients can be found: 
 

 𝑆𝑚+1,𝑛 =
1

√2
∑ 𝑐𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0     (1.23) 

With the initial vector of approximation coefficients given by: 𝑆0,𝑛 = 𝑥𝑛 = 𝑥(𝑡). 
 
In a similar way as for the approximation coefficients found in equation 1.20, from 
equations 1.8 and 1.22 the following recursive equation10 for the wavelet coefficients can 
be obtained: 
 

 𝑇𝑚+1,𝑛 =
1

√2
∑ 𝑏𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0     (1.24) 

                                                           
9 This equation is obtained by first substituting equation 1.21 in 1.12 as follow: 

𝑆𝑚+1,𝑛 = ∑ 𝑥(𝑡) [
1

√2
∑ 𝑐𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0 ] =

1

√2
∑ 𝑐𝑘[∑ 𝑥(𝑡)𝜙𝑚,2𝑛+𝑘(𝑡)

∞
𝑡=0 ]

𝑁𝑘−1
𝑘=0

∞
𝑡=0   

Finally, note that the expression in brackets is equal to the approximation coefficients at the previous smaller scale and at 

location 2𝑛 + 𝑘, which leads to: 

𝑆𝑚+1,𝑛 =
1

√2
∑ 𝑐𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0   

10 This equation is obtained by first substituting equation 1.22 in 1.8 as follow: 

𝑇𝑚+1,𝑛 = ∑ 𝑥(𝑡) [
1

√2
∑ 𝑏𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0 ] =

1

√2
∑ 𝑏𝑘[∑ 𝑥(𝑡)𝜙𝑚,2𝑛+𝑘(𝑡)

∞
𝑡=0 ]

𝑁𝑘−1
𝑘=0

∞
𝑡=0   

Finally, note that the expression in brackets is equal to the approximation coefficients at the previous smaller scale and at 
location 2𝑛 + 𝑘, which leads to: 

𝑇𝑚+1,𝑛 =
1

√2
∑ 𝑏𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0   
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With the initial vector of approximation coefficients given by: 𝑆0,𝑛 = 𝑥𝑛 = 𝑥(𝑡). 
 
Equations 1.23 and 1.24 represent the multiresolution decomposition algorithm and 
constitute the first half of the fast wavelet transform (FWT). 
 
Furthermore, note that from equations 1.23 and 1.24 is evident that approximation 

coefficients 𝑆𝑚0,𝑛 are the only requirement to calculate the approximation and wavelet 

coefficients at all subsequent scales to 𝑚0. Figure 3 illustrates this process for an arbitrary 
input signal vector of length 𝑁 = 16 which implies that 𝑀 = 4 iterations11 can be 
performed. After the full decomposition, the wavelet transform vector has the form 

𝑊(𝑀=4) = (𝑆4,0, 𝑇4,0, 𝑇3,𝑛, 𝑇2,𝑛, 𝑇1,𝑛) which has 16 components as can be seen at the 

bottom of figure 3, like the original signal12 and all the other transform vectors 𝑊(𝑚) at 

scale indices 𝑚 = 1,2,3. 
 
Figure 3 Illustration of the multiresolution decomposition algorithm 

 

 
Likewise, when iterating equations 1.23 and 1.24 to perform multiresolution decomposition 

algorithm, a highpass and lowpass filtering process 13 of the inputs 𝑆𝑚,2𝑛+𝑘 to generate the 

outputs 𝑆𝑚+1,𝑛 and 𝑇𝑚+1,𝑛 is implemented. The highpass filter is given by the vector 

                                                           
11 The number of iterations is obtained as follow: 

𝑀 =
𝑙𝑛⁡(𝑁)

𝑙𝑛⁡(2)
=

𝑙𝑛⁡(16)

𝑙𝑛⁡(2)
= 4  

12 The original input signal is the transform vector at scale index zero 𝑊(𝑚=0). 
13 The highpass filter lets through the high signal frequencies corresponding to the signal details 𝑑𝑚(𝑡), while the 

lowpass filter lets through the low signal frequencies and hence a smoothed version of the signal 𝑥𝑚(𝑡). 



9 
 

containing the sequences 
1

√2
𝑏𝑘 in equation 1.24, and the lowpass filter is given by the 

vector containing the sequences 
1

√2
𝑐𝑘 in equation 1.23. 

 
The second half of the fast wavelet transform is the reconstruction algorithm  and is defined 
as: 
 

𝑆𝑚−1,𝑛 =
1

√2
[∑ 𝑐𝑛−2𝑘𝑆𝑚,𝑘

2𝑀−𝑚−1−1
𝑘=0 + ∑ 𝑏𝑛−2𝑘𝑇𝑚,𝑘

2𝑀−𝑚−1−1
𝑘=0 ]  (1.25) 

 

Hence, the approximation coefficients at scale index 𝑚− 1 can be calculated from the 
approximation and wavelet coefficients at the next scale index 𝑚. Moreover, note that the 

scaling coefficients 𝑐𝑛−2𝑘 and the reconfigured version of the scaling coefficients 𝑏𝑛−2𝑘 

have non-zero values only when in the range [0, … ,𝑁𝑘 − 1].  
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II. Haar and Daubechies wavelets 
 
Since the Haar and Daubechies wavelets are the type of wavelets used in subsequent 
chapters, some fundamental characteristics of the Daubechies wavelets are presented  in 
this chapter, including the Haar wavelet which is, as shown below, the simplest of the 
Daubechies wavelets.  
 

II.I. Haar wavelet 
 
The Haar wavelet is the simplest orthonormal wavelet  and has only two non-zero scaling 

coefficients (𝑁𝑘 = 2) 𝑐0 = 𝑐1 = 1, obtained by solving simultaneously equations 1.17 and 
1.18. As seen in previous chapter, the wavelet function can be built from contracted and 
shifted versions of its scaling function through the wavelet equation (given in equation 
1.20). Hence, before introducing the Haar wavelet, the Haar scaling equation is presented 
in the following, which is obtained by substituting its two scaling coefficients into equation 
1.16 as follow: 
 

 𝜙(𝑡) = 𝜙(2𝑡) + 𝜙(2𝑡 − 1)      (2.1) 
 
And its solution leads to the Haar scaling function which is given by: 

 𝜙(𝑡) = {
1 0 ≤ 𝑡 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

      (2.2) 

 
Figure 4 illustrates the Haar scaling function in terms of  contracted and shifted versions of 
itself, that is, its scaling equation given by equation 2.1.   
 
Figure 4 Haar scaling function 
 

 
 
In a similar way to the scaling equation, the Haar wavelet equation is obtained by 
substituting its two scaling coefficients into equation 1.20 as follow: 
 

 𝛹(𝑡) = 𝜙(2𝑡) − 𝜙(2𝑡 − 1)      (2.3) 
 
And its solution leads to the Haar wavelet function which is given by:  
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 𝛹(𝑡) = {
1 0 ≤ 𝑡 < 0.5
−1 0.5 ≤ 𝑡 < 1
0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

      (2.4) 

 
Figure 5 illustrates the Haar wavelet function in terms of  contracted and shifted versions of 
its scaling function, that is, its wavelet equation given by equation 2.3. 
 
Figure 5 Haar wavelet function 
 

 
 
In addition, note that the Haar wavelet has compact support because of it has a finite 
number of scaling coefficients 𝑁𝑘 = 2 and, therefore, a support length of 1. The support 
length of the Haar and the other Daubechies wavelets is given by their number of scaling 
coefficients minus one, that is: 𝑠𝑢𝑝𝑝𝑜𝑟𝑡⁡𝑙𝑒𝑛𝑔𝑡ℎ = 𝑁𝑘 − 1. 
 

II.II. Daubechies wavelets 
 
As it can be seen from the previous section, the Haar is a very simple wavelet in the sense 
that only has two scaling coefficients and both are equal to unity. This section introduces a 
family of discrete wavelets whose simplest member is the Haar wavelet . These wavelets 
are known as Daubechies wavelets and, as shown below, satisfy conditions given by 
equations 1.17 to 1.19. 
  
Likewise, Daubechies wavelets have 𝑁𝑘/2 vanishing moments which means that can 

eliminate segments of the signal which are polynomial up to degree 𝑁𝑘/2 − 1 and hence 
are very good representing polynomial behavior within the signal . In other words, the more 

scaling coefficients 𝑁𝑘 the wavelet has, the higher the number of its vanishing moments 

𝑁𝑘/2 and hence the higher the degree 𝑁𝑘/2 − 1 of polynomial it can eliminate. However, 
the more scaling coefficients 𝑁𝑘 the wavelet has, the larger its support length 𝑁𝑘 − 1, and 
hence, the less localized it becomes in the time domain, which makes it less able to isolate 
singularities of the signal. This is the trade-off that should be considered when choosing 
the best wavelet for a particular data analysis  (see [2] for details).  
 
Daubechies wavelets are usually named with a “D” followed by the number of non -zero 

scaling coefficients 𝑁𝑘 it has, for example, the D10 wavelet is a Daubechies wavelet with 
𝑁𝑘 = 10 non-zero scaling coefficients, the D20 wavelet is a Daubechies wavelet with 𝑁𝑘 =
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20 non-zero scaling coefficients and so on. The calculation for Daubechies scaling 
coefficients is not trivial; henceforth these are obtained by numerical methods. Table 1 
contains the values of the scaling coefficients for Daubechies wavelets up to D20.   
 
Table 1 Daubechies scaling coefficients up to D20 
 

𝒄𝒌 
D2 

(Haar) 
D4 D6 D8 D10 D12 D14 D16 D18 D20 

0 1 0.68301 0.47047 0.32580 0.22642 0.15774 0.11010 0.07696 0.05385 0.03772 

1 1 1.18301 1.14112 1.01095 0.85394 0.69950 0.56079 0.44247 0.34483 0.26612 

2 
 

0.31699 0.65037 0.89220 1.02433 1.06226 1.03115 0.95549 0.85535 0.74558 

3 
 

-0.18301 -0.19093 -0.03958 0.19577 0.44583 0.66437 0.82782 0.92955 0.97363 

4 
  

-0.12083 -0.26451 -0.34266 -0.31999 -0.20351 -0.02239 0.18837 0.39764 

5 
  

0.04982 0.04362 -0.04560 -0.18352 -0.31684 -0.40166 -0.41475 -0.35334 

6 
   

0.04650 0.10970 0.13789 0.10085 0.00067 -0.13695 -0.27711 

7 
   

-0.01499 -0.00883 0.03892 0.11400 0.18208 0.21007 0.18013 

8 
    

-0.01779 -0.04466 -0.05378 -0.02456 0.04345 0.13160 

9 
    

0.00472 0.00078 -0.02344 -0.06235 -0.09565 -0.10097 

10 
     

0.00676 0.01775 0.01977 0.00035 -0.04166 

11 
     

-0.00152 0.00061 0.01237 0.03162 0.04697 

12 
      

-0.00255 -0.00689 -0.00668 0.00510 

13 
      

0.00050 -0.00055 -0.00605 -0.01518 

14 
       

0.00096 0.00261 0.00197 

15 
       

-0.00017 0.00033 0.00282 

16 
        

-0.00036 -0.00097 

17 
        

0.00006 -0.00016 

18 
         

0.00013 

19 
         

-0.00002 

 
In order to verify that these Daubechies scaling coefficients lead to an orthogonal system, 
next, a test of the conditions given by equations 1.17 to 1.19 is illustrated for the D4 
wavelet:  
 

 Test of condition in equation 1.17 for D4 scaling coefficients 

∑ 𝑐𝑘 =
𝑁𝑘−1
𝑘=0 𝑐0 + 𝑐1 + 𝑐2 + 𝑐3  

= 0.68301 + 1.18301 + 0.31699 − 0.18301  
= 𝟐  
 

 Test of condition in equation 1.18 for D4 scaling coefficients 

∑ 𝑐𝑘
2 =

𝑁𝑘−1
𝑘=0 𝑐0

2 + 𝑐1
2 + 𝑐2

2 + 𝑐3
2  

= (0.68301)2 + (1.18301)2 + (0.31699)2 + (−0.18301)2  
= 𝟐  
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 Test of condition in equation 1.19 for D4 scaling coefficients 

∑ (−1)𝑘𝑐𝑘𝑘
𝑚 = 0

𝑁𝑘−1
𝑘=0 , for integers 𝑚 = 0,𝑁𝑘/2 − 1 = 1 

o For 𝑚 = 0 

∑ (−1)𝑘𝑐𝑘𝑘
0𝑁𝑘−1

𝑘=0 = (−1)0𝑐00
0 + (−1)1𝑐11

0 + (−1)2𝑐22
0 + (−1)3𝑐33

0  

= (1)0.68301 + (−1)1.18301 + (1)0.31699 + (−1)(−0.18301)  
= 𝟎  

o For 𝑚 = 1 

∑ (−1)𝑘𝑐𝑘𝑘
1 =

𝑁𝑘−1
𝑘=0 (−1)0𝑐00

1 + (−1)1𝑐11
1 + (−1)2𝑐22

1 + (−1)3𝑐33
1  

= (−1)1.18301(1) + (1)0.31699(2) + (−1)(−0.18301)(3)  
= 𝟎  

 
Daubechies scaling and wavelet functions have no explicit formula except for the D2 
(Haar) as seen in the previous section. However, a discrete approximation of Daubechies 
scaling and wavelet functions can be generated through the reconstruction algorithm 
(equation 1.25). For the scaling function, the approximation can be generated by setting all 

the values of the transform vector 𝑊(𝑀) to zero except the first scaling coefficient 𝑆𝑀,0 

which is set to unity, and then, passing this vector repeatedly through the reconstruction 
algorithm. This is illustrated in figure 6 which shows, respectively, the initial transform 

vector 𝑊(𝑀) = [𝑆𝑀,0 = 1,0,0, … ,0], vector after one iteration, vector after two iterations 

and vector after seven iterations which corresponds to the highest resolution discrete 
approximation within the presented in the figure for the D4 scaling function.  
 
Figure 6 Discrete approximation of the D4 scaling function 
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In a similar way, the approximation of the wavelet function can be generated by setting all 

the values of the transform vector 𝑊(𝑀) to zero except the first detail coefficient 𝑇𝑀,0 

which is set to unity, and then, passing this vector repeatedly through the reconstruction 
algorithm. This is illustrated in figure 7 which shows, respectively, the initial transform 

vector 𝑊(𝑀) = [0,0, … , 𝑇𝑀,0 = 1,0, … ,0], vector after one iteration, vector after two 

iterations and vector after seven iterations which corresponds to the highest resolution 
discrete approximation within the presented in the figure for the D4 wavelet function. 
 
Figure 7 Discrete approximation of the D4 wavelet function 

 
 
Note from figures 6 and 7 that the more iterations used, the higher the resolution and 
hence the better the approximation of the Daubechies scaling and wavelet functions. 
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III. Wavelet multiresolution decomposition of 
financial time series 

 
In this chapter, two distinct kinds of financial assets are considered for the wavelet 
multiresolution decomposition analysis: USD-COP’s exchange rate14 and Ecopetrol’s stock. 
Likewise, the Haar and D4 wavelets are used to decompose each one of these series  
  
As seen in chapter one, equations 1.23 and 1.24 represent the multiresolution 
decomposition algorithm (first half of the fast wavelet transform) and equation 1.25 
represents the reconstruction algorithm (second half of the fast wavelet transform). Hence, 

these set of equations are employed to calculate the wavele t transform vector 𝑊 at each 
scale index 𝑚 and to reconstruct the original signal from the wavelet transform vector after 

the full decomposition (i.e. 𝑊𝑀). Likewise, the approximation of the signal 𝑥𝑚(𝑡) and the 

signal detail 𝑑𝑚(𝑡) are computed for each scale index 𝑚 through the multiresolution 
representation of the signal given by equation 1.14.  
 

III.I. Multiresolution decomposition using a Haar wavelet  
 
As mention above, two distinct discrete input signals are considered for the wavelet 
multiresolution decomposition analysis: USD-COP’s exchange rate and Ecopetrol’s stock 

daily log-returns15 𝑟𝑡. The length of the two log-returns series is 𝑁 = 256 which implies 
that 𝑀 = 8 iterations16 can be performed. The period for USD-COP’s exchange rate goes 
from June 15, 2017 to June 14, 2018 and for Ecopetrol’s stock goes from May 23, 2017 to 
June 14, 2018. 
 
Figure 8 USD-COP’s exchange rate and Ecopetrol’s stock daily log-returns 

 

                                                           
14 The series of this asset was downloaded from Bloomberg. 
15 Log return 𝑟𝑡 at time 𝑡 is calculated trough the following formula: 

𝑟𝑡 = 𝑙𝑛 (
𝑝𝑡+1

𝑝𝑡
), where, 𝑝𝑡  is the price at time 𝑡. 

16 The number of iterations is obtained as follow: 

𝑀 =
𝑙𝑛⁡(𝑁)

𝑙𝑛⁡(2)
=
𝑙𝑛⁡(256)

𝑙𝑛⁡(2)
= 8 
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Figure 8 shows the USD-COP’s exchange rate (blue line) and Ecopetrol’s stock (orange 
line) daily log-returns series. From these two charts, an evident difference in the behavior 
of the two assets under analysis is observed. The variance in the returns for USD-COP’s 
exchange rate remains at a relatively low level, while for Ecopetrol’s stock there is an 
important increase in returns variance as from the second third of the series; the variance 
for USD-COP’s exchange rate is 0.4338 while for Ecopetrol’s stock is 4.0507 for the full 
series, 1.1860 for the first third and 5.4389 for the last two thirds of the series. 
 
Before implementing the fast wavelet transform (FWT) note that s ince the Haar wavelet 
has only two scaling coefficients and both are equal to unity, the recursive equation for the 
approximation coefficients (equation 1.23) becomes:  
 

 𝑆𝑚+1,𝑛 =
1

√2
(𝑆𝑚,2𝑛 + 𝑆𝑚,2𝑛+1)    (3.1) 

 
Analogously, the recursive equation for the wavelet coefficients (equation 1.24) becomes:  
 

 𝑇𝑚+1,𝑛 =
1

√2
(𝑆𝑚,2𝑛 − 𝑆𝑚,2𝑛+1)    (3.2) 

 
So, through equations 3.1 and 3.2 the Haar wavelet decomposition can be performed.  Let 
𝑦𝑛 be the vector containing the Ecopetrol’s stock daily log-returns series and 𝑧𝑛 be the 
vector containing the USD-COP’s exchange rate daily log-returns series. Likewise, as seen in 
chapter one, to calculate the approximation and wavelet coefficients for 𝑚 > 0, it is 

necessary to know the values of the approximation coefficients  at scale 𝑚 = 0, that is, 𝑦𝑛 
and 𝑧𝑛 respectively. In the following it is illustrated how to calculate the first two 
approximation and wavelet coefficients at scale index 𝑚 = 1 for Ecopetrol’s stock daily 
log-returns series (i.e. 𝑦𝑛): 
 

𝑆1,0 =
1

√2
(𝑆0,0 + 𝑆0,1) =

1

√2
(−0.3514 − 1.0619) = −0.9994  (3.3)  

𝑆1,1 =
1

√2
(𝑆0,2 + 𝑆0,3) =

1

√2
(−1.0733 + 0.3590) = −0.5050   (3.4) 

𝑇1,0 =
1

√2
(𝑆0,0 − 𝑆0,1) =

1

√2
(−0.3514 + 1.0619) = 0.5023   (3.5) 

𝑇1,1 =
1

√2
(𝑆0,2 − 𝑆0,3) =

1

√2
(−1.0733 − 0.3590) = −1.0128   (3.6) 

 
So, the transform vector after the first iteration is given by:  
 

𝑊(𝑚=1) = [𝑆1,0, 𝑆1,1, … , 𝑆1,127, 𝑇1,0, 𝑇1,0, … , 𝑇1,127]     

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= [−0.9994, −0.5050,… , 𝑆1,127, 0.5023, −1.0128,… , 𝑇1,127] (3.7) 

 

The Haar decomposition vector (i.e. the vector after the full decomposition , 𝑊(𝑀=8)) of the 
USD-COP’s and Ecopetrol log-returns series are shown in the lower part of figure 9 and, to 
facilitate comparison, the vertical axis of each chart in figure is exactly at the same scale17. 
  

                                                           
17 The range of the vertical axis of each chart corresponds to the interval [−10%, 10%]. 
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Figure 9 Haar decomposition of USD-COP and Ecopetrol log-returns 

 
 

Each of the two vectors after the full decomposition (i.e. 𝑊(𝑀=8)) contains 256 
components (255 wavelet coefficients and a signal mean coefficient).  Table 2 illustrates 
the composition of the two Haar decomposition vectors shown in figure 9, which can be 
deduced from figure 3. 
 
Table 2 Structure of the Haar decomposition vectors shown in figure 9 

Sub-vectors of 

𝑾(𝑴=𝟖) 
sub-vector length Description 

𝑺𝟖,𝟎 2𝑀−𝑚 = 20 = 1 
Approximation coefficient for a scale-location grid of index 8,0 

(signal mean coefficient at scale index  𝑀 = 8) 

𝑻𝟖,𝟎 2𝑀−𝑚 = 20 = 1 Wavelet coefficient for a scale-location grid of index 8,0 

𝑻𝟕,𝒏 2𝑀−𝑚 = 21 = 2 Wavelet coefficients for a scale-location grid of index 7,n 

𝑻𝟔,𝒏 2𝑀−𝑚 = 22 = 4 Wavelet coefficients for a scale-location grid of index 6,n 

𝑻𝟓,𝒏 2𝑀−𝑚 = 23 = 8 Wavelet coefficients for a scale-location grid of index 5,n 

𝑻𝟒,𝒏 2𝑀−𝑚 = 24 = 16 Wavelet coefficients for a scale-location grid of index 4,n 

𝑻𝟑,𝒏 2𝑀−𝑚 = 25 = 32 Wavelet coefficients for a scale-location grid of index 3,n 

𝑻𝟐,𝒏 2𝑀−𝑚 = 26 = 64 Wavelet coefficients for a scale-location grid of index 2,n 

𝑻𝟏,𝒏 2𝑀−𝑚 = 27 = 128 Wavelet coefficients for a scale-location grid of index 1,n 

 
As seen in chapter one, the reconstruction algorithm (second half of the fast wavelet 
transform) given by equation (1.25) is used to bring back the original discrete input signals 
𝑦𝑛 and 𝑧𝑛 from the Haar decomposition vectors.  In the following is illustrated how to return 
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from the approximation 𝑆1,𝑛 and wavelet 𝑇1,𝑛 coefficients at scale index 𝑚 = 1 (obtained in 

equation 3.7), to the first four observations of the original signal input 𝑦𝑛 (i.e. Ecopetrol’s 
stock daily log-returns series): 
 

𝑆0,0 =
1

√2
[∑ 𝑐0−2𝑘𝑆1,𝑘

27−1
𝑘=0 + ∑ 𝑏0−2𝑘𝑇1,𝑘

27−1
𝑘=0 ]     

⁡⁡⁡⁡⁡⁡⁡⁡=
1

√2
[𝑆1,0 + 𝑇1,0] =

1

√2
[−0.9995 + 0.524] = −0.3514  (3.8) 

𝑆0,1 =
1

√2
[∑ 𝑐1−2𝑘𝑆1,𝑘

27−1
𝑘=0 + ∑ 𝑏1−2𝑘𝑇1,𝑘

27−1
𝑘=0 ]     

⁡⁡⁡⁡⁡⁡⁡⁡=
1

√2
[𝑆1,0 + (−1)𝑇1,0] =

1

√2
[−0.9995 − 0.524] = −1.0619  (3.9) 

𝑆0,2 =
1

√2
[∑ 𝑐2−2𝑘𝑆1,𝑘

27−1
𝑘=0 + ∑ 𝑏2−2𝑘𝑇1,𝑘

27−1
𝑘=0 ]     

⁡⁡⁡⁡⁡⁡⁡⁡=
1

√2
[𝑆1,1 + 𝑇1,1] =

1

√2
[−0.5051 − 1.0129] = −1.0733  (3.10) 

𝑆0,3 =
1

√2
[∑ 𝑐3−2𝑘𝑆1,𝑘

27−1
𝑘=0 + ∑ 𝑏3−2𝑘𝑇1,𝑘

27−1
𝑘=0 ]     

⁡⁡⁡⁡⁡⁡⁡⁡=
1

√2
[𝑆1,1 + (−1)𝑇1,1] =

1

√2
[−0.5051 + 1.0129] = 0.3590  (3.11) 

 
So, in this way and through the second half of the fast wavelet transform the original signal 

inputs 𝑦𝑛 and 𝑧𝑛 can be completely recovered without loss of information. Likewise, from 
the Haar decomposition vectors at each scale 𝑚, the corresponding approximations 𝑥𝑚(𝑡) 
and details 𝑑𝑚(𝑡) of the signal can be constructed for each scale 𝑚 through the 
multiresolution representation of the signal (equation 1.14) and the Haar scaling (equation 
2.2) and wavelet (equation 2.4) functions. 
 
Figure 10 Haar multiresolution decomposition of the USD-COP’s log-returns series  

 
Figure 10 shows the original signal 𝑧𝑛 (at the top) and the approximations 𝑥𝑚(𝑡) and 

details 𝑑𝑚(𝑡) of the USD-COP’s log-returns series at all scale indices from 𝑚 = 1 to 𝑀 =
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8, using a Haar wavelet for the multiresolution decomposition . Adding together all the 

details from 𝑑1(𝑡) to 𝑑8(𝑡) plus the signal approximation at scale 𝑀 = 8 (which 
corresponds to signal’s mean) results in the original signal. In addition, note from equation 
1.15 that the original signal can also be obtained by adding the approximation and detail 
signal at scale index 𝑚 = 1, that is, 𝑥0(𝑡) = 𝑥1(𝑡) + 𝑑1(𝑡). In fact, the approximations of 

the signal at any scale index from 𝑚 = 1 to 𝑚 = 7 can be obtained in this way. 
 
Furthermore, remember from chapter one that when performing equation 1.14, a lowpass 

and highpass filtering process is implemented through the sequences 
1

√2
𝑐𝑘 and 

1

√2
𝑏𝑘. As 

illustrated in figure 10, the lowpass filter let through the low signal frequencies and hence  
results in a smoothed version of the signal 𝑥𝑚(𝑡), while the highpass filter let through the 

high signal frequencies corresponding to the signal details 𝑑𝑚(𝑡). Note that according to 
the signal details, the largest fluctuations in USD-COP’s exchange rate log-returns occur 
across the first three scales.  
 
Figure 11 Haar multiresolution decomposition of the Ecopetrol’s log-returns series 
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Figure 11 shows the same multiresolution decomposition performed for the USD-COP’s 

log-returns but instead for the Ecopetrol log-returns. The original signal 𝑦𝑛 is plot at the top 
of the figure and below it, the approximations 𝑥𝑚(𝑡) and details 𝑑𝑚(𝑡) of the Ecopetrol 
log-returns series at all scale indices from m = 1 to M = 8. Two things are noticeable 
from the figure: the first one is that there is a large group of rapidly fluctuating returns as 
from the second third of the series and according to the signal details the large fluctuations 
in Ecopetrol’s stock log-returns occur across the first four scales towards the days 100  to 
256 (i.e. from August 10, 2017 to June 14, 2018). The second one is that, as expected, the 
highest frequency oscillations are captured at the smallest scales.  
 

III.II. Multiresolution decomposition using a D4 wavelet 
 
In this section, the same multiresolution decomposition is performed using a D4 wavelet. 
Since the Daubechies D4 wavelet has more scaling coefficients than the Haar, its support 
length is larger and hence is less localized in the time domain  and thus less able to isolate 
singularities in the signal. However, as seen in chapter two, Daubechies D4 wavelet is 
better than the Haar at representing polynomial behavior within the signal because of it 
has more vanishing moments18. 
 
Figure 12 D4 wavelet decomposition of USD-COP and Ecopetrol log-returns 
 

 
 

                                                           
18 The Daubechies D4 has 

𝑁𝑘

2
= 2 vanishing moments which means that can eliminate segments of the signal which are 

polynomial up to degree 
𝑁𝑘

2
− 1 = 1 versus the Haar wavelet that has just 1 vanishing moment. 
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The D4 decomposition vectors (i.e. the vectors after the full decomposition 𝑊(𝑀=8)) of the 
USD-COP’s and Ecopetrol log-returns series are shown in the lower part of figure 12 and, 
to facilitate comparison, the vertical axis of each chart in figure is exactly at the same 

scale as in figure 9. Each of the two vectors after the full decomposition (i.e. 𝑊(𝑀=8)) 
contains 256 components (255 wavelet coefficients and a signal mean coefficient).  Note 
from this figure that for large oscillations of the signals under analysis , the D4 wavelet 
coefficients reach larger values than those presented in figure 9 for the Haar wavelet, 
which means that captures the high frequency oscillations of the signal s better than the 
Haar wavelet as seen in subsequent charts.  
 
Figure 13 D4 multiresolution decomposition of the USD-COP’s log-returns series 
 

 
 

Figure 13 shows the original signal 𝑧𝑛 (at the top) and the approximations 𝑥𝑚(𝑡) and 
details 𝑑𝑚(𝑡) of the USD-COP’s log-returns series at all scale indices from 𝑚 = 1 to 𝑀 =
8, using a D4 wavelet for the multiresolution decomposition. The difference in shapes 
between the charts in this figure and those in figure 10 is explained by the particular 

mother wavelet used for the decomposition in each case; the approximations 𝑥𝑚(𝑡) and 
details 𝑑𝑚(𝑡) of the USD-COP’s log-returns series at each scale indices from 𝑚 = 1 to 
𝑀 = 8 are composed of piecewise wavelet functions (i.e. D4 or Haar wavelet basis 
functions). Likewise, the signal is smoothed faster using a D4 wavelet than using a Haar 
wavelet because the first one is relatively smoother. In addition, note also that, as 
expected, the highest frequency oscillations are captured at the smallest scales  and 
according to the signal details the largest fluctuations in USD-COP’s exchange rate log-
returns occur across the first three scales. 
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Figure 14 D4 multiresolution decomposition of the Ecopetrol ’s log-returns series 
 

 
 
The same D4 multiresolution for Ecopetrol’s log-returns is shown in figure 14. The original 

signal 𝑦𝑛 is plotted at the top of the figure and below it, the approximations 𝑥𝑚(𝑡) and 

details 𝑑𝑚(𝑡) of the Ecopetrol log-returns series at all scale indices from 𝑚 = 1 to 𝑀 = 8. 
Three things are noticeable from this figure: first, according to the signal details the large 
fluctuations in Ecopetrol’s stock log-returns occur across the first three scales towards the 
days 100 to 256 (i.e. from August 10, 2017 to June 14, 2018). Second, the different shapes 
of the charts in this figure versus those in figure 10 are caused by the particular mother 
wavelet used for the decomposition in each case. Third, the signal is smoothe ns faster 
using a D4 wavelet than using a Haar wavelet because the first one is smoother.  
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IV. Financial time series prediction based on the 
Discrete Wavelet Transform 

 
In this chapter, a wavelet-based approach for financial time series prediction is performed 
for both: the USD-COP’s exchange rate and the Ecopetrol’s stock daily log-returns. The 
mentioned approach is based on the work of Nguyen and He (2015) and may be 
summarized by figure 15. 
 
Figure 15 Wavelet-based approach for financial time series prediction 
 

 
 
According to this figure, the wavelet-based approach proposed for time series prediction is 
implemented in three steps (gray boxes). First, performing the discrete wavelet transform 
to decompose original series to obtain the approximation and wavelet coefficients at the 

first scale index, that is, 𝑊𝑚=1 = [𝑆1,0, … , 𝑆1,𝑛, 𝑇1,0, … , 𝑇1,𝑛]. Second, fitting an 

Autorregresive Integrated Moving Average Model, denoted as ARIMA(p,d,q)19, for both 

sub-series (the approximation coefficients 𝑆1,𝑛 and the wavelet coefficients 𝑇1,𝑛) to predict 

one data point forward into the future, that is, to obtain 𝑆1,𝑛+1 and 𝑇1,𝑛+1 respectively. 

Third, applying the inverse discrete wavelet transform to the new vector of approximation 

and wavelet coefficients (including the forecasted values 𝑆1,𝑛+1 and 𝑇1,𝑛+1) to obtain the 

forecast of the original series for two steps forward into the future20. Note that the wavelet-
based approach proposed can be performed using another forecasting method instead of 
an ARIMA(p,d,q) model like, for instance, a neural network.  

 

IV.I Implementing the wavelet-based prediction approach 
 

 First step: obtain the approximation and wavelet coefficients at the first scale 
index. The analyzed period for USD-COP’s exchange rate goes from March 16, 2018 to 

                                                           
19 Parameters p, d and q represent, respectively, the number of lag observations included in the model, the number of 
times the data have had past values subtracted (degree of differencing) and the size of the moving average window.  
20 Since the length of the new vector of approximation and wavelet coefficients is larger than the length of the original 

vector (i.e. 𝑊𝑚=1) in two data points (i.e. 𝑆1,𝑛+1 and 𝑇1,𝑛+1), the first approximation and wavelet coefficients (i.e. 𝑆1,0 

and 𝑇1,0) are eliminated before performing the inverse discrete wavelet transform in order to guarantee the dyadic grid 

structure, as explained in chapter one. 



24 
 

June 14, 2018 and for Ecopetrol’s stock goes from March 8, 2018 to June 14, 2018. Hence, 

the length of each log-returns series is 𝑁 = 64 which leads, after the first wavelet 

decomposition iteration (i.e. 𝑊𝑚=1) to four length 𝑁 = 32 sub-series 

(𝑆1,𝑛
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙 ⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
). The mother wavelet used in the 

decomposition was the Daubechies D2 (Haar) wavelet. 
 

 Second step: predict one data point forward into the future for the four sub-
series. In order to fit an ARIMA(p,d,q) model for each sub-series of the USD-COP’s 
exchange rate and the Ecopetrol’s stock daily log-returns (i.e. 

⁡𝑆1,𝑛
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
), in the following is explained the 

procedure used to obtain the optimal order (p,d,q) for each case. There are several 
alternatives to obtain that optimal order and for this thesis a two-parts procedure has been 
followed; the first part consists in evaluating an ARIMA model and the second one in 
evaluating for different sets of order parameters (p,d,q), and choosing the best one 
according to the mean squared error (MSE). This was performed through the python’s 
library “statsmodels” as shown in the appendix. 
 
The first part of the procedure (evaluate an ARIMA model) is implemented in three steps. 
The first step is to split the dataset into two: two thirds for the initial training (i.e. fitting) 
dataset and the remaining third for the test dataset. The second step consists on making 
one-step predictions of the test dataset (i.e. the last third of the initial dataset) and stored 
them. The step three is to calculate the mean squared error (MSE), which is performed 
from comparing the prediction for each time-step versus its corresponding real value in the 
test dataset.  
 
The second part of the procedure (evaluate a set of parameters)  consists in evaluate, as in 
the first part of the procedure, ARIMA models with different combinations of parameters 
(p,d,q) from a predefined set of values for each one. Then, the optimal order (p,d,q) 
corresponds to the one of the ARIMA model with the lower mean squared error.  
 

Table 3 Optimal ARIMA(p,d,q) model for sub-series 𝑺𝟏,𝒏 and 𝑻𝟏,𝒏 

 

 
USD-COP’s sub-series MSE Ecopetrol sub-series MSE 

Order (p,d,q) 
Approximation 

𝑺𝟏,𝒏
𝑪𝑶𝑷−𝑼𝑺𝑫 

Wavelet 

𝑻𝟏,𝒏
𝑪𝑶𝑷−𝑼𝑺𝑫 

Approximation 

𝑺𝟏,𝒏
𝑬𝒄𝒐𝒑𝒆𝒕𝒓𝒐𝒍

 

Wavelet 

𝑻𝟏,𝒏
𝑬𝒄𝒐𝒑𝒆𝒕𝒓𝒐𝒍

 

(0,0,0) 0.327 0.845 4.484 5.955 

(0,0,1) 0.341 0.901 8.272 5.175 

(0,0,2) 0.389 0.979 - 5.320 

(0,0,3) 0.403 1.589 - 5.042 

(0,0,4) 0.442 0.965 - 7.052 

(0,1,0) 0.718 1.732 7.911 18.239 

(0,1,1) 0.484 0.897 4.290 6.519 
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USD-COP’s sub-series MSE Ecopetrol sub-series MSE 

Order (p,d,q) 
Approximation 

𝑺𝟏,𝒏
𝑪𝑶𝑷−𝑼𝑺𝑫 

Wavelet 

𝑻𝟏,𝒏
𝑪𝑶𝑷−𝑼𝑺𝑫 

Approximation 

𝑺𝟏,𝒏
𝑬𝒄𝒐𝒑𝒆𝒕𝒓𝒐𝒍

 

Wavelet 

𝑻𝟏,𝒏
𝑬𝒄𝒐𝒑𝒆𝒕𝒓𝒐𝒍

 

(0,2,0) 2.274 5.331 22.794 65.157 

(0,2,1) 0.809 1.912 8.735 19.798 

(1,0,0) 0.358 0.921 6.039 5.359 

(1,0,1) - - 9.409 5.307 

(1,1,0) 0.758 1.326 6.789 11.167 

(1,1,1) 0.586 0.944 - - 

(1,2,0) 1.774 3.306 12.873 32.595 

(2,0,0) 0.413 0.981 7.584 5.192 

(2,0,1) - - 9.275 5.212 

(2,0,2) - - - 4.399 

(2,1,0) 0.685 1.323 7.928 6.944 

(2,1,1) 0.604 1.540 6.318 6.374 

(2,2,0) 1.371 3.476 12.149 16.637 

(2,2,1) - - 9.139 7.839 

(3,0,0) 0.425 1.069 8.327 5.242 

(3,0,1) 0.431 - - 5.287 

(3,1,0) 0.651 0.944 8.425 6.907 

(3,1,1) 0.680 - 6.773 7.101 

(3,2,0) 1.365 1.858 - 14.907 

(3,2,1) - - 9.657 7.719 

(4,0,0) 0.436 0.880 8.293 5.563 

(4,0,1) 0.436 - 9.003 5.860 

(4,1,0) 0.451 1.108 - 6.348 

(4,1,1) 0.757 - 5.798 6.847 

(5,0,0) 0.423 1.062 8.056 5.953 

(5,1,0) 0.647 1.456 - 6.267 

 
Table 3 contains, for each one of the analyzed sub-series (i.e. 

𝑆1,𝑛
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
), the mean squared error (MSE) for 

different combinations of parameters (p,d,q) in the ranges of values 𝑝 = [0,1,2,3,4,5], 𝑑 =
[0,1,2]⁡𝑎𝑛𝑑⁡𝑞 = [0,1,2,3,4], and the optimal order for each case is represented as a 
highlighted boxes. The optimal ARIMA(p,d,q) models for the sub-series 

𝑆1,𝑛
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
 are, respectively: ARIMA(0,0,0), 

ARIMA(0,0,0), ARIMA(0,1,1) and ARIMA(2,0,2).   
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With the optimal ARIMA(p,d,q) models defined, the prediction can be performed for each 

sub-series, 𝑆1,𝑛
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
, to obtain their respective 

prediction, that is: 𝑆1,𝑛+1
𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑇1,𝑛+1

𝐶𝑂𝑃−𝑈𝑆𝐷 , 𝑆1,𝑛+1
𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙⁡𝑎𝑛𝑑⁡⁡𝑇1,𝑛+1

𝐸𝑐𝑜𝑝𝑒𝑡𝑟𝑜𝑙
. The lower part of 

figures 16 and 17 shows, respectively, the one-step prediction for sub-series of both USD-
COP’s exchange rate and Ecopetrol’s stock. 
 

 Third step: forecast of original series through the inverse discrete wavelet 
transform. Once performed the prediction for the sub-series of both USD-COP’s exchange 
rate and Ecopetrol’s stock, the inverse discrete wavelet transform should be applied to 
obtain the two-step prediction for the original data. Since Daubechies D2 (Haar) was the 
mother wavelet used in the wavelet decomposition, this wavelet was also used to 
reconstruct the original series and hence to obtain the prediction. The upper part of figures 
16 and 17 shows the two-step prediction for both log-returns series: USD-COP’s exchange 
rate and Ecopetrol’s stock. 
 
Figure 16 Wavelet-based prediction of USD-COP’s exchange rate log-returns 

 
 
From the wavelet-based prediction of USD-COP’s exchange rate log-returns, a near-zero 
return for the next two days (i.e. June 15 and 16, 2018) is expected, which can be better 
appreciated in the zoomed chart (upper right side) . 
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Figure 17 Wavelet-based prediction of Ecopetrol’s stock log-returns  

 
 
From the wavelet-based prediction of Ecopetrol’s stock log-returns, a negative return for 
the next day (i.e. June 15, 2018) is expected, but a positive one two days ahead (i.e. June 
16, 2018), which can be better appreciated in the zoomed chart (upper right side) . 
 

IV.II Test of the wavelet-based prediction approach 
 
The wavelet-based approach for prediction was performed as in previous section, and 
using moving 64-length windows of real data, to obtain 64 one-step predictions for both 
USD-COP’s exchange rate and Ecopetrol’s stock log-returns series. Likewise, a traditional 
ARIMA model was used to obtain 64 one-step predictions for the same both series. These 
one-step predictions are shown in f igures 18 and 19 together with its respective squared 
error (SE) and mean squared error (MSE).  
 
The results obtained suggest that traditional ARIMA model is slightly superior in prediction 
than the wavelet-based approach. The mean squared error of wavelet-based prediction for 
USD-COP’s exchange rate log-returns is 0.8444 versus 0.6545 of traditional ARIMA model.  
Likewise, the mean squared error of wavelet-based prediction for Ecopetrol’s stock log-
returns is 5.1941 versus 4.6479 of traditional ARIMA model.  Furthermore, looking at 
movement-direction prediction for USD-COP’s exchange rate log-returns, the wavelet-
based approach fails in 66% of days (42/64) versus 50% (32/64) of traditional ARIMA 
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model. However, for Ecopetrol’s stock log-returns, the wavelet-based approach fails in 
39% of days (25/64) versus 41% (26/64) of traditional ARIMA model.  
 
Figure 18 One-step prediction of USD-COP’s exchange rate log-returns 

 
 
 
Figure 19 One-step prediction of Ecopetrol's stock log-returns 
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Concluding remarks 
 

 The two basic ways in which a wavelet can be manipulated are by translation and 
scaling. Translation is referred to movements along the time axis and scaling is 
referred to the spreading out of the wavelet.  
 

 The wavelet coefficients may be expressed as the inner product in the 𝐿2(ℝ) space 
between the signal and the wavelet function, while the scaling coefficients may be 
expressed as the inner product between the signal and the wavelet function.  
 

 The multiresolution representation refers to a representation of the signal 
expressed as the sum of the signal approximation and the signal detail at the next 
larger scale. 
 

 The wavelet and scaling equations express, respectively, the wavelet and scaling 
function in terms of dilated and shifted versions of the associated scaling function. 
 

 The wavelet and scaling equations lead to recursive equations for the 
approximation and wavelet coefficients which constitute the first half of the Fast 
Wavelet Transform also known as the multiresolution decomposition algorithm. In a 
similar way, the second half of the Fast Wavelet Transform is known as the 
reconstruction algorithm. 
 

 The Haar is the simplest member of a family of discrete orthonormal wavelets 
known as the Daubechies wavelets. These wavelets satisfy the conditions required 
to build an orthogonal system and are very good representing polynomial behavior 
within a particular signal. 
 

 The trade-off that should be considered when choosing the best wavelet for a 
particular data analysis is related to the number of scaling coefficients versus the 
support length of the wavelet.  
 

 Daubechies scaling and wavelet functions have no explicit formulae except for t he 
D2 (Haar). However, a discrete approximation of Daubechies scaling and wavelet 
functions can be generated through the reconstruction algorithm.  
 

 Through the second half of the fast wavelet transform, the USD-COP’s and 
Ecopetrol log-returns series can completely be recovered without losing 
information. 
 

 The highest frequency oscillations are captured at the smallest scales and 
according to the signal details the largest fluctuations in USD-COP’s exchange rate 
log-returns occur across the first three scales. Likewise, according to the signal 
details the largest fluctuations in Ecopetrol’s stock log-returns occur across the first 
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four scales towards the days 100 to 256 (i.e. from August 10, 2017 to June 14, 
2018). 
 

 For large oscillations of the analyzed signals, the D4 wavelet coefficients reach 
larger values than those reached using the Haar wavelet, which means that 
captures the high frequency oscillations of the signals better than the Haar wavelet.  
 

 By using the D4 wavelet in the multiresolution decomposition, the signals are 
smoothed faster than by using the Haar wavelet because of the first one is 
relatively smoother. 
 

 The wavelet-based approach presented in chapter IV predicts a near-zero return for 
the next two days (i.e. June 15 and 16, 2018) for USD-COP’s exchange rate, and 
for Ecopetrol’s stock, a negative return for the next day (i.e. June 15, 2018), but a 
positive for two days ahead (i.e. June 16, 2018).  
 

 The traditional ARIMA model seems to be slightly superior in prediction than the 
wavelet-based approach. The mean squared error of wavelet -based prediction is 
larger than that one of traditional ARIMA model. Furthermore, looking at movement -
direction prediction, the wavelet-based approach fails in more days than traditional 
ARIMA model for USD-COP’s exchange rate but not for Ecopetrol’s stock. 
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Ideas for future work 
 

 Perform the wavelet-based approach proposed in chapter IV using another 
forecasting method instead of an ARIMA(p,d,q) model like  a neural network, and 
compare its results with those obtained in here. 
 

 Perform the wavelet-based approach proposed in chapter IV using another mother 
wavelet instead of a Daubechies D2 (Haar) like, for instance, a Daubechies D20, a 
Symmlet or a Coiflet and compare its results with those obtained in here. 

 

 Explore others wavelet-based forecasting methods such as wavelet networks and 
compare its results with those obtained in here. 
 

 Explore others wavelet-based methods to analyze financial time series such as 
static and dynamic correlations, causality relationships and contagion. 
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Appendix: Python scripts 
 

#Wavelet function:  

#𝛹𝑚,𝑛(t) =
1

√𝑎0
𝑚𝛹 (

𝑡−𝑛𝑏𝑜𝑎0
𝑚

𝑎0
𝑚 )       (1.6) 

 

 

#Wavelet coefficients for a scale-location grid of index m,n: 

#𝑇𝑚,𝑛 = ∑ 𝑥(𝑡)
1

√2𝑚
𝛹 (

𝑡−𝑛2𝑚

2𝑚
)𝑁−1

𝑡=0 = 〈𝑥,𝛹𝑚,𝑛〉     (1.8) 

 

 

#Reconstruction formula (inverse discrete wavelet transform): 

#𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛
2𝑀−1
𝑛=0 𝛹𝑚,𝑛

𝑀
𝑚=1 (𝑡)      (1.9) 

 

 

#Scaling function 

#𝜙𝑚,𝑛(𝑡) =
1

√2𝑚
𝜙 (

𝑡−𝑛2𝑚

2𝑚
)       (1.10) 

 

 

#Approximation coefficients for a scale-location grid of index m,n 

#𝑆𝑚,𝑛 = ∑ 𝑥(𝑡)
1

√2𝑚
𝜙 (

𝑡−𝑛2𝑚

2𝑚
)2𝑀−1

𝑡=0 = 〈𝑥, 𝜙𝑚,𝑛〉    (1.12)  
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#Continuous approximation (smooth version) of the signal at scale index m  

#𝑥𝑚(𝑡) = ∑ 𝑆𝑚,𝑛
2𝑀−𝑚−1
𝑛=0 𝜙𝑚,𝑛(𝑡)      (1.13) 

 

 

#Signal detail at scale index m 

#𝑑𝑚(𝑡) = ∑ 𝑇𝑚,𝑛
2𝑀−𝑚−1
𝑛=0 𝛹𝑚,𝑛(𝑡)       (1.14) 

 

 

#Scaling or dilation equation 

#𝜙(𝑡) = ∑ 𝑐𝑘𝜙(2𝑡 − 𝑘)
𝑁𝑘−1
𝑘=0        (1.16) 

 

 

#Wavelet equation 

#𝛹(𝑡) = ∑ 𝑏𝑘𝜙(2𝑡 − 𝑘)
𝑁𝑘−1
𝑘=0        (1.20) 
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#Scaling function in terms of shifted and dilated versions of itself  

#𝜙𝑚+1,𝑛(𝑡) =
1

√2
∑ 𝑐𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0      (1.21) 

 

 

#Wavelet function in terms of shifted and dilated versions of its scaling function  

#𝛹𝑚+1,𝑛(𝑡) =
1

√2
∑ 𝑏𝑘𝜙𝑚,2𝑛+𝑘(𝑡)
𝑁𝑘−1
𝑘=0      (1.22) 

 

 

#First half of the FWT: multiresolution decomposition algorithm  

##Recursive method for approximations coefficients for a scale -location grid of index m,n 

##𝑆𝑚+1,𝑛 =
1

√2
∑ 𝑐𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0       (1.23) 

 

##Recursive method for wavelet coefficients for  a scale-location grid of index m,n 

##𝑇𝑚+1,𝑛 =
1

√2
∑ 𝑏𝑘𝑆𝑚,2𝑛+𝑘
𝑁𝑘−1
𝑘=0       (1.24) 
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#Second half of the FWT: reconstruction algorithm 

#𝑆𝑚−1,𝑛 =
1

√2
[∑ 𝑐𝑛−2𝑘𝑆𝑚,𝑘

2𝑀−𝑚−1−1
𝑘=0 + ∑ 𝑏𝑛−2𝑘𝑇𝑚,𝑘

2𝑀−𝑚−1−1
𝑘=0 ]  (1.25) 

 

 

#Evaluating an ARIMA(p,d,q) model 

 


