
ALEA, Lat. Am. J. Probab. Math. Stat. 14, 445–471 (2017)

Self-exciting piecewise linear processes

Nikita Ratanov

Facultad de Economı́a, Universidad del Rosario,
Calle 12c, No.4-69
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Abstract. The paper concerns a piecewise linear process controlled by the set of
velocities {cn}n≥0 consecutively switched after exponentially distributed, Exp(λn),
n ≥ 0, time intervals. The distribution of such process is studied in detail, including
the distribution of the first passage time through the constant boundary.

The processes which moves by alternating patterns and with a double jump
component are also studied.

1. Introduction

A class of random processes with excitation at random times is studied for a
long time in various aspects. The main example of the process of that manner
of modeling is the telegraph process. On the physical parlance such process is
also called “steady-state random walks”. The telegraph processes describing non-
interacting particles, which move with finite constant velocities switchable over an
exponentially distributed random time intervals have been studied by many authors
beginning with Taylor (1922).

This model with the alternating velocities ±c has been later developed by Gold-
stein (1951) in connection with hyperbolic partial differential equations. In 1956
Mark Kac began to study the telegraph model in detail, see Kac (1974). The distri-
bution density p = p(x, t) of the particles’ positions follows the telegraph (damped
wave) equation

∂2p

∂t2
+ 2λ

∂p

∂t
= c2

∂2p

∂x2
, (1.1)

where λ is the switching intensity.
Afterwards, the telegraph process has been studied in great detail with many

generalisations. In particular, the motions with the velocities alternating in gamma-
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or Erlang-distributed random intervals have been studied many times, see e. g.
Di Crescenzo (2001); Zacks (2004); Di Crescenzo and Martinucci (2010). Motions
characterised by more then two possible deterministic velocities (Orsingher and
Bassan, 1992; Kolesnik, 1998; Samŏılenko, 2002) or random velocities (Stadje and
Zacks, 2004; López and Ratanov, 2012) have been also considered.

Here we present the similar processes L = L(t), t ≥ 0, with the sequential
velocities, {cn}n≥0, switched by the successive intensities {λn}n≥0. The model
is based on piecewise-deterministic Markov processes which originally have been
designed for queueing theory, see Gnedenko and Kovalenko (1968). These models
are used in various fields, see Costa and Davis (1989); Davis (1984); de Saporta and
Dufour (2012). Instead of PDE (1.1), by conditioning on the first switching one can
easily get integral equations for distributions of these processes, see equations (2.10)
and (3.13). However, a detailed analysis of the distributions of these processes still
was not done.

These processes can be considered as an example of self-exciting Hawkes pro-
cesses well-studied before, beginning with the seminal paper by Hawkes (1971).
Recently the Hawkes processes are intensively applied in finance, see e.g. Em-
brechts et al. (2011). See also an overview by Bacry et al. (2015). In the context of
market model based on Hawkes processes the optimal execution problem is solved
explicitly by Alfonsi and Blanc (2016).

This presentation continues the author’s paper Ratanov (2014), where the ex-
plicit formula for the moment generating function of the piecewise linear process
L(t), t > 0, was given. The distributions of these processes are studied in Section
2, including the distribution of the first passage time T (x) (for the process with
positive velocities, where the level x is also positive, see Section 2.2). In Section 2.3
we derive explicit formulae for the expectations of L(t) with jumps rn, occurring
after each velocity switching.

Section 3 presents the piecewise linear processes, which are developing in ac-
cordance with alternately changing patterns. These processes are supplied with a
double jump component. First, there is a jump immediately after each velocity
switching (during the current pattern). Second, a jump accompanies the patterns
changing. In the latter case a jump amplitude depends on the number of the ve-
locity switchings during the current pattern. The system of integral equations for
expectations of such process X = X(t) is obtained. Further, there are described
martingales of this form.

Telegraph-like processes have multiple applications including the applications to
financial market modelling, see Di Mazi et al. (1994), and then, Ratanov (1999);
Di Crescenzo and Pellerey (2002). Nowadays, these applications became the theory
of Markov-modulated market models based on telegraph processes with alternating
velocities, see e. g. Ratanov (2007, 2010); López and Ratanov (2014) (see also the
survey in Kolesnik and Ratanov, 2013).

It has long been clear that for the purpose of financial modelling a simple replace-
ment of a Wiener process on a telegraph usually produces arbitrage opportunities
since the (stochastic) exponential of a telegraph process is not a martingale. To
resolve the problem, one can study the model with jump and/or diffusion compo-
nent, Kolesnik and Ratanov (2013); Ratanov (2010). However, erroneous models
based only on the telegraph process continue to appear in publications, see e.g.
De Gregorio (2016, Section 4).
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A sketch of the financial market model based on the double-jump process with
alternately changing piecewise linear patterns is presented in Section 4. This model
involves switching tendencies (accompanied by jumps of random amplitude) due
to the internal market forces (small investors). Meanwhile, switching between the
patterns is determined by a regulator policy (or an institutional/strategic investor).
It turns out that a certain policy of the strategic investor could provoke arbitrage.

2. Jump-telegraph processes with distinct parameters

We repeatedly use the following notations.

Let ~c = {cn}n≥0 and ~λ = {λn}n≥0 be two numerical sequences. Assume that all
pairs 〈cn, λn〉, n ≥ 0, are distinct, i. e., if for l 6= k, cl = ck, then λl 6= λk. The
products

κn,k(~c, ~λ) =
n∏

l=0, cl 6=ck

(cl − ck)−1 ×
n∏

l=0, cl=ck
l 6=k

(λl − λk)−1, (2.1)

n ≥ 1, 0 ≤ k ≤ n,
are well-defined; κ0,0 = 1. If all cn are distinct, ck 6= cn for k 6= n, then we use the
shortened notation,

κn,k(~c) =

n∏
j=0, j 6=k

(cj − ck)−1, n ≥ 1, 0 ≤ k ≤ n. (2.2)

Note that due to the known Vandermonde properties, for n ≥ 1
n∑
k=0

κn,k(~c)
cmk

(z + ck)
=

zm

Πn(z)
, 0 ≤ m ≤ n, (2.3)

(if ck 6= cn for k 6= n), where Πn(z) = Πn(z;~c) =
∏n
k=0(z + ck). Hence,

n∑
k=0

κn,k(~c)cmk = 0, 0 ≤ m ≤ n− 1.

Moreover,
n∑
k=0

κn,k(~c)cnk = (−1)n,

Kuznetsov (2003, p.11), see also Ratanov (2014, Remark 1 and (2.8)-(2.9)).
In what follows we assume

∑
A · = 0 and

∏
A · = 1 if A = ∅.

2.1. Piecewise linear process. In this paper we study the continuous piecewise linear
process L = L(t), t ≥ 0,

L(t) =

∫ t

0

cN(u)du =

N(t)−1∑
n=0

cnτn + cN(t)(t− τ+,N(t))

=

N(t)−1∑
n=0

(cn − cN(t))τn + cN(t)t,

(2.4)

which corresponds the position of a particle moving with successive velocities cn,
switching after elapsed times τn. Here τ+,n denotes the switching instants, τ+,n =∑n−1
k=0 τk, n ≥ 1, τ+,0 = 0, and N = N(t) is the corresponding counting process.
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Let π(t;n), n ≥ 0, be the probability mass function, π(t;n) = P{N(t) = n}.
The expectation of L(t), t ≥ 0, can be expressed by

E[L(t)] =

∫ t

0

E[cN(u)]du =

∞∑
n=0

cn

∫ t

0

π(u;n)du, (2.5)

if the series converges.
Let τn be independent and exponentially distributed, τn ∼ Exp(λn), λn > 0,

n ≥ 0.
The probability mass functions π(t;n) = P{N(t) = n} satisfy the system,

dπ(t;n)

dt
= −λnπ(t;n) + λn−1π(t;n− 1), t > 0; n ≥ 1 (2.6)

and π(t; 0) = e−λ0t, t ≥ 0, see Feller (1950).
Random variables τ+,n, n ≥ 1, are Erlang-distributed. If all λ′s are distinct,

then the density function ϕn(t) of τ+,n is given by

ϕn(t) = Λn

n−1∑
k=0

κn−1,k(~λ)e−λkt1{t>0}, n ≥ 1, (2.7)

Here Λn = Πn−1(0;~λ) =
∏n−1
k=0 λk, n ≥ 1, Λ0 = 1, and κn−1,k(~λ) are defined by

(2.2). The usual modifications can be applied if two or more λk are equal. For

instance, ϕn(t) =
λntn−1

(n− 1)!
e−λt1{t>0}, if λn ≡ λ, n ≥ 0.

If all λ′s are distinct, then by (2.7) the probability mass function of N(t), t > 0,
is given by

π(t;n) = P{N(t) = n} =P{τ+,n+1 > t} − P{τ+,n > t}

=Λn

n∑
k=0

κn,k(~λ)e−λkt, n ≥ 0,
(2.8)

with the usual modifications, if some of λk are equal. Cf. Ratanov (2014, (2.4)).
It’s known that process N is non-explosive, P{limn→∞ τ+,n = ∞} = 1, if and

only if ∑
n≥0

λ−1
n =∞, (2.9)

see Feller (1950, XVII.4). Examples of explosive processes can be found e.g. in
Snyder and Miller (1991), see Example 6.3.1 with λn = (n+ 1)2.

Let 〈cn, λn〉, n ≥ 0, be the sequence of states of the process L = L(t).
We find an explicit formula for the density function p = p(x, t) of L(t) in the

form

p(x, t) =

∞∑
n=0

pn(x, t), x ∈ (−∞,∞), t ≥ 0.

Here pn(·, t) are the density functions of L(t)1{N(t)=n}, which are determined by
the set of n+ 1 states {〈ck, λk〉 | k = 0, . . . , n}.

Note that if there are no switchings, N(t) = 0, L(t) = c0t, then the distribution
of L(t)1{N(t)=0} corresponds to Dirac’s δ-measure located at c0t (with probability
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π(t; 0) = e−λ0t), i. e., p0(x, t) = e−λ0tδ(x− c0t). Moreover, functions pn follow the
set of integral equations, n ≥ 1

pn(x, t) = λ0

∫ t

0

e−λ0up̃n−1(x− c0u, t− u)du, (2.10)

where p̃n−1 are determined by the set parameters {〈ck, λk〉 | k = 1, . . . , n}, begin-
ning with 〈c1, λ1〉.

The detailed properties and the explicit formulae for the distributions of L(t),
t ≥ 0, with the states 〈c0, λ0〉 and 〈c1, λ1〉, alternating at times τ+,n, n ≥ 0, are
known. The density functions pn(x, t) of L(t)1{N(t)=n}, n ≥ 1, are given by

pn(x, t) =
λ

[(n+1)/2]
0 λ

[n/2]
1

[n/2]! [(n− 1)/2]!
τ∗

[n/2](t− τ∗)[(n−1)/2]

× exp(−λ0τ∗ − λ1(t− τ∗))
c0 − c1

1{0<τ∗<t},

where τ∗ =
x− c1t
c0 − c1

, t − τ∗ =
c0t− x
c0 − c1

, [·] denotes the integer part and the initial

state is 〈c0, λ0〉. See Kolesnik and Ratanov (2013, Chapter 4), where system (2.10)
is solved for the case of alternating states.

This result can be also obtained by using the moment generating functions

ψn(z, t) = E{ezL(t)1{N(t)=n}}, n ≥ 1.

The explicit formulae for ψn see in López and Ratanov (2014, Theorem 2.1).
In this paper we study the distribution of L(t), when all states 〈cn, λn〉, n ≥ 0,

are distinct. By Ratanov (2014, Theorem 3.1) in this case the moment generating
functions are

ψn(z, t) = E{ezL(t)1{N(t)=n}} = Λn

n∑
k=0

κn,k(λ̃)e−λ̃kt, n ≥ 1. (2.11)

Here the linear functions λ̃k = λ̃k(z) = λk − ckz, 0 ≤ k ≤ n, are distinct, and |z| is
sufficiently small, such that all λ̃k(z) remain to be positive, λ̃k(z) > 0, 0 ≤ k ≤ n.
The latter means that

if ck > 0, then z < λk/ck; if ck < 0, then z > λk/ck, 0 ≤ k ≤ n. (∗)

If some of states are equal, formula (2.11) can be modified.
It is easy to see that

κn,k(λ̃) =

n∏
j=0, j 6=k

(λj − λk − z(cj − ck))
−1

= κn,k(~c, ~λ) ·
n∏
j=0

cj 6=ck

(bj,k − z)−1,

where κn,k(~c, ~λ) are defined by (2.1) and bj,k =
λj − λk
cj − ck

, if cj 6= ck. Hence, by

(2.11)

ψn(z, t) = Λn

n∑
k=0

κn,k(~c, ~λ)e−λkt × ezckt∏n
j=0, cj 6=ck(bj,k − z)

(2.12)

for z satisfying condition (*). The distribution of L(t) can be obtained by in-
verse Laplace transformation of (2.12), i. e., one can find the density function pn
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satisfying the equation ∫ ∞
−∞

ezxpn(x, t)dx = ψn(z, t).

Throughout the paper we will use the notations:

Bj,k = −bj,kck + λk =
λkcj − λjck
cj − ck

, and τj,k = τj,k(x, t) =
x− ckt
cj − ck

, (2.13)

cj 6= ck, j, k ≥ 0.

Notice that bj,k = bk,j , Bj,k = Bk,j , τj,k(x, t) + τk,j(x, t) ≡ t and

λjτj,k(x, t) + λkτk,j(x, t) ≡ bj,kx+Bj,kt ≡ bj,k(x− ckt) + λkt, (2.14)

cj 6= ck, j, k ≥ 0.

We will consider two cases:

A1: all bj,k are distinct, if they are defined:
bl,k 6= bj,k ( for all l 6= j, cl 6= ck, cj 6= ck);

B1: all bj,k are identical, bj,k = β, 0 ≤ j, k ≤ n (for cj 6= ck).

By applying (2.3) one can notice that in case A1 the moment generating function
ψn, (2.12), becomes

ψn(z, t) = Λn

n∑
k=0

κn,k(~c, ~λ)e−λkt ×
n∑
j=0

cj 6=ck

κn,j(~bk)
ezckt

bj,k − z
. (2.15)

Here κn,j(~bk) is defined similarly to (2.2),

κn,j(~bk) =

n∏
l=0, l6=j,

cl 6=ck,cj 6=ck

(bl,k − bj,k)−1. (2.16)

Note that in case B1 functions

λjτj,k(x, t) + λkτk,j(x, t) ≡ λkt+ β(x− ckt), j ∈ {0, . . . , n},
do not depend on j, see (2.14). Moreover, in this case by (2.12) ψn(z, t) becomes

ψn(z, t) = Λn

n∑
k=0

κn,k(~c, ~λ)e−λkt × ezckt

(β − z)m
(2.17)

The following theorem proposes some explicit formulae for the density functions
pn = pn(x, t) of L(t)1{N(t)=n}, t > 0, n ≥ 1.

Theorem 2.1. • In case A1:

pn(x, t) = Λn

n∑
k,j=0,

cj 6=ck

φckt,bj,k(x)κn,k(~c, ~λ)κn,j(~bk) · exp(−λjτj,k(x, t)− λkτk,j(x, t)).

(2.18)
• In case B1:

pn(x, t) = Λn

n∑
k=0

φckt,β(x)κn,k(~c, ~λ) · (x− ckt)m

m!
exp(−λkt− β(x− ckt)). (2.19)

Here for each k, k ∈ {0, . . . , n}, we denote by m = mn,k the number of j,
j ∈ {0, . . . , n}, such that cj 6= ck.
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Function φa,b(x) is defined in Appendix,

φa,b(x) =

{
1{x>a}, if b > 0,

−1{x<a}, if b < 0.

Proof : In cases A1 and B1 we apply the inverse Laplace transform to functions
ψn(·, t), defined by (2.15) and (2.17) respectively. Formulae (2.18)-(2.19) follow by
Proposition 1 of Appendix.

If all bj,k are distinct, then by (2.15) and formula (1) of Appendix we obtain

pn(x, t) = Λn

n∑
k,j=0,

cj 6=ck

κn,k(~c, ~λ)e−λktφckt, bj,k(x)κn,j(~bk) exp (−bj,k(x− ckt)) . (2.20)

Moreover, bj,k(x− ckt) + λkt = bj,kx+Bj,kt ≡ λjτjk(x, t) + λkτkj(x, t).
Similarly, (2.19) follows from (2.17) and formula (1) of Appendix. �

Remark 2.2. In a situation comprised between the extreme cases A1 and B1 similar
formulae can also be obtained. This is the usual modifications based on partial
fraction decomposition of ψn, which can be applied if some (not all) of bj,k are
equal.

Remark 2.3. By definition (2.4) after n steps the support of random variable L(t)
is compact. If N(t) = n, then

L(t) ∈ [ant, Ant], ∀t, t > 0, n ≥ 1.

Here an = min
0≤k≤n

{ck}, An = max
0≤k≤n

{ck}.

By using representation (2.18) one can also show

P{L(t) ∈ [ant, Ant] | N(t) = n} = 1, t > 0, n ≥ 1, (2.21)

(in the case of distinct bj,k). Indeed, it is easy to see that

κn,k(~c, ~λ)κn,j(~bk) + κn,j(~c, ~λ)κn,k(~bj) = 0, j, k ∈ {0, . . . , n}, j 6= k, n ≥ 1.

Therefore, (2.18) can be transformed to

pn(x, t) = Λn

n∑
k,j=0

k<j, cj 6=ck

|κn,k(~c, ~λ)κn,j(~bk)|ej,k(x, t),

where

ej,k(x, t) ≡ ek,j(x, t) = exp(−λjτj,k(x, t)− λkτk,j(x, t))1{x is between cjt and ckt}.

This gives (2.21).
Further, by the definition we have∫ ∞

−∞
pn(x, t)dx = π(t;n) = P{N(t) = n}, n ≥ 1.
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This also follows by integrating in (2.18) and (2.19). Indeed, if all bj,k are distinct,

by (2.20) and (2.3) (with ~bk instead of ~c) one can obtain∫ ∞
−∞

pn(x, t)dx =Λn

n∑
k,j=0, cj 6=ck

e−λktκn,k(~c, ~λ)κn,j(~bk)b−1
j,k

=Λn

n∑
k=0

e−λktκn,k(~c, ~λ)

 n∏
j=0, cj 6=ck

b−1
j,k

 = Λn

n∑
k=0

κn,k(~λ)e−λkt

=π(t;n).

In the case of identical bj,k the same observations similarly follow from (2.19).

Figure 2.1. Density functions p(x, t) with cn = 1+(−1)n ln(n+1)
and λn = 2 and t = 1, 2, 3 (from left to right).

Figure 2.1 displays the density functions in the case of slowly accelerating move-
ment with reversals, cn = (−1)n ln(n+ 1) (the switching intensity is constant).

Next, we present some other examples.

Example 2.4. Consider an accelerating movement with linearly increasing velocities
and switching intensities.

Let cn = c(n+ 1) and λn = λ(n+ 1), n ≥ 0.
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Figure 2.2. Density functions p(x, t) with cn = n + 1 and λn =
n+ 1 and t = 1, 1.5, 2 (from left to right).

In this case bj,k ≡ λ/c, Bj,k ≡ 0, κn,k(~c) =
(−1)k

cnk!(n− k)!
, Λn = λnn! and by

(2.19)

pn(x, t) = n(λ/c)ne−λx/c
n∑
k=0

(−1)k(x− ckt)n−1

k!(n− k)!
1{x>ckt}, n ≥ 1.

Therefore, the absolutely continuous part of the distribution of L(t) can be simpli-
fied by

∞∑
n=1

pn(x, t) = e−λx/c
∞∑
n=1

n(λ/c)n
n∑
k=0

(−1)k(x− ckt)n−1

k!(n− k)!
1{x>ckt}

=
λ

c
e−λt1{x>ct}+e−λx/c

∞∑
k=1

(−1)k

k!
1{x>ckt}

[ ∞∑
n=k

n
(λ/c)n

(n− k)!
(x− ckt)n−1

]

=
λ

c
e−λt1{x>ct}+

λ

c
e−λx/c

∞∑
k=1

(−1)k

k!
ηk(x, t)k−11{x>ckt}

∞∑
n=0

(n+ k)
ηk(x, t)n

n!
,

where ηk(x, t) = λ(x− ckt)/c.
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By summing up in the latter series one can obtain the density function p = p(x, t)
of L(t),

p(x, t) = e−λt

[
δ(x− ct) +

λ

c

∞∑
k=0

(−1)kηk(x, t)k−1

k!
(k + ηk(x, t)) e−kλt1{x>ckt}

]
.

(2.22)
Notice that for fixed x and t the sum in (2.22) is of finite number of terms. Figure

2.2 shows the absolutely continuous part of the density function p(x, t) defined by
(2.22).

Example 2.5. Consider an accelerating movement with linearly increasing velocities
and constant intensities.

Figure 2.3. Density functions p(x, t) with cn = n+ 1 and λn = 1
and t = 1, 1.5, 2 (from left to right).

Let cn = c(1 + n), c > 0, and λn ≡ λ, n ≥ 0. In this case the density function
p = p(x, t) =

∑∞
n=0 pn(x, t) of L(t), t > 0, can be simplified up to

p(x, t) = e−λt

[
δ(x− c0t)

+
λ

c

∞∑
k=0

(−1)kηk(x, t)(k−1)/2

k!
Ik−1

(
2
√
ηk(x, t)

)
1{x>ckt}

]
,

(2.23)

where Iν = Iν(z) =
∑∞
n=0

(z/2)ν+2n

n!Γ(ν+n+1) , ν ≥ 0; I−1 = I1 are modified Bessel func-

tions; ηk(x, t), k ≥ 0, are defined in Example 2.4.
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Indeed, by (2.19) the functions pn, n ≥ 1, become

pn(x, t) =
(λ/c)n

(n− 1)!
e−λt

n∑
k=0

(−1)k(x− ckt)n−1

k!(n− k)!
1{x>ckt}.

Therefore,

p(x, t) =

∞∑
n=0

pn(x, t)

=e−λt
[
δ(x− c0t) +

∞∑
n=1

(λ/c)n

(n− 1)!

n∑
k=0

(−1)k(x− ckt)n−1

k!(n− k)!
1{x>ckt}

]
=e−λt

[
δ(x− c0t) +

∞∑
n=1

(λ/c)n

(n− 1)!n!
(x− ct)n−11{x>ct}

+

∞∑
k=1

(−1)k

k!
1{x>ckt}

∞∑
n=k

(x− ckt)n−1

(n− 1)!(n− k)!
(λ/c)n

]
,

(2.24)

which by definition of Iν gives (2.23).
Notice that for fixed x and t the sum in (2.23) is of finite number of terms. Figure

2.3 represents the absolutely continuous part of the density functions expressed by
(2.24).

Example 2.6. Let L = L(t) be a process with alternating velocities c2n = c, c2n+1 =
−v, n ≥ 0, and with switching intensities, λ2n = λ(1 + n), λ2n+1 = µ(1 + n),
λ, µ > 0. This example has been analysed in detail by Di Crescenzo and Martinucci
(2010).

Formulae (2.18) enable to repeat their result and, moreover, solve the unsolved
PDEs, written at the beginning of Section 3 in Di Crescenzo and Martinucci (2010).

One can see that in this case the coefficients in (2.18) are given by

Λ2n =λnµn(n!)2, Λ2n+1 = λn+1µnn!(n+ 1)!

τ2k,2j+1 =
x+ vt

c+ v
, τ2j+1,2k = t− τ2k,2j+1 =

ct− x
c+ v

,

b2j,2k+1 =
λ(1 + j)− µ(1 + k)

c+ v
,

b2j+1,2k =
λ(1 + k)− µ(1 + j)

c+ v
,

κ2n,2k(~c, ~λ) =(−1)n+k(c+ v)−nλ−n[k!(n− k)!]−1,

κ2n,2k+1(~c, ~λ) =(−1)k(c+ v)−n−1µ−n+1[k!(n− k − 1)!]−1,

κ2n+1,2k(~c, ~λ) =(−1)n+k(c+ v)−n−1λ−n[k!(n− k)!]−1,

κ2n+1,2k+1(~c, ~λ) =(−1)k(c+ v)−n−1µ−n[k!(n− k)!]−1,

κ2n,2j+1(~b2k) =(−1)n−j−1(c+ v)n−1µ−n+1[j!(n− j − 1)!]−1,

κ2n+1,2j+1(~b2k) =(−1)n−j(c+ v)nµ−n[j!(n− j)!]−1,

κ2n,2j(~b2k+1) =κ2n+1,2j(~b2k+1) = (−1)j(c+ v)nλ−n[j!(n− j)!]−1,

(2.25)

for n, k, j ∈ {0, . . . , n}.
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By summing up in (2.18) with (2.25) we get, for −vt < x < ct

p2n(x, t) =
nµ

c+ v
e−λτ∗−µ(t−τ∗)(1− e−λτ∗)n(1− e−µ(t−τ∗))n−1, n ≥ 1, (2.26)

p2n+1(x, t) =
(n+ 1)λ

c+ v
e−λτ∗−µ(t−τ∗)(1− e−λτ∗)n(1− e−µ(t−τ∗))n, n ≥ 0. (2.27)

Here τ∗ =
x+ vt

c+ v
.

Furthermore, functions p2n = fn(x, t | c) and p2n+1 = bn(x, t | c) defined by
(2.26)-(2.27) solve PDEs of Di Crescenzo and Martinucci (2010, p.88). Functions
fn(x, t | − v) and bn(x, t | − v) can be written similarly.

Formulae Di Crescenzo and Martinucci (2010, (3.5)-(3.6)) for the density func-
tions f(x, t | c) =

∑∞
n=1 p2n(x, t) and b(x, t | c) =

∑∞
n=0 p2n+1(x, t) easily follow

from (2.26) and (2.27). Multiple plots depicting the density functions p = p(·, t)
with different λ, µ and t are as well presented by Di Crescenzo and Martinucci
(2010).

Figure 2.4. Density functions p(x, t) with cn = (−2/3)n and
λn = 3 and t = 1, 2, 3 (from top to bottom).

Example 2.7. Consider the fading case, cn = (−a)n, 0 < a < 1, and λn ≡ λ,
λ > 0, n ≥ 0. By (2.19) we have

pn(x, t) =
λne−λt

(n− 1)!

n∑
k=0

κn,k(~c)(x− ckt)n−11{x > ckt}, n ≥ 1. (2.28)
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In this case by “three-series theorem” L(t) converges a. s., as t → ∞. The distri-
bution of L(∞) is given by

P{L(∞) < x} =

∫ ∞
0

[
1− F

(
y − x
a

)]
dF (y),

where

F (x) =

[
1− s−1

∞∑
n=0

(−1)nAne−λx/a
2n

]
1{x≥0}, s =

∞∑
n=0

(−1)nAn.

Here An =
an(n+1)

(1− a2)n(n+1)/2
, cf Samŏılenko (2002).

Figure 2.4 displays the absolutely continuous part of the density functions of the
fading movement, defined by (2.28).

2.2. First passage time. Let x, x > 0, and T = T (x) be the first passage time

T (x) = inf{t ≥ 0 | L(t) = x}. (2.29)

In the case of alternating parameters, cn ∈ {c0, c1}, λn ∈ {λ0, λ1}, c0 > 0 >
c1, the distribution of T (x) is well-studied. See Foong (1992), Foong and Kanno
(1994), Orsingher (1995) and Pinsky (1991) for symmetric processes, (λ0 = λ1

and c0 = −c1), Stadje and Zacks (2004) and López and Ratanov (2014, Theorem
3.1) in the asymmetric case. The case of alternating velocities c, −v with linearly
increasing reversal rates is studied by Di Crescenzo and Martinucci (2010).

Here we study the distribution of T (x) assuming all velocities cn to be positive.
Under the non explosion condition, see (2.9),

∞∑
n=0

cn
λn

=∞, (2.30)

we have T (x) <∞, a.s. Notice that cnτn is exponentially distributed, Exp(λn/cn),
n ≥ 0.

The distribution of T (x) possesses an atom at x/c0,

P{T (x) = x/c0} = e−λ0x/c0 .

We compute the absolutely continuous part of the distribution in the following two
cases:

A2: all Bj,k are distinct, if they are defined:
Bl,k 6= Bj,k ( for all l 6= j, cl 6= ck, cj 6= ck);

B2: all Bj,k are identical, Bj,k = B, 0 ≤ j, k ≤ n (for cj 6= ck).

Here Bj,k are defined by (2.13).
It is easy to see, that in the case B2 all bj,k are also equal: bj,k ≡ β.
Let gn(t;x) be the density function of the random variable T (x)1{N(T (x))=n},

n ≥ 1.

Theorem 2.8. Let cn > 0 ∀n, and condition (2.30) be hold. The density functions
gn(t;x) are given by

• in case A2:

gn(t;x) = −Λncn

n∑
k,j=0

cj 6=ck

cm−1
k κn,k(~c, ~λ)κn,j(− ~Bk)e−(Bj,kt+bj,kx)1{ckt>x}, (2.31)
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where coefficients κn,j( ~Bk) are defined by (2.16);
• in case B2:

gn(t;x) = −Λncne−(Bt+βx)
n∑
k=0

κn,k(~c, ~λ)
(x− ckt)m−1

(m− 1)!
1{ckt>x}. (2.32)

Here, as in Theorem 2.1, for each k, k ∈ {0, . . . , n}, we denote by m = mn,k

the number of j, j ∈ {0, . . . , n}, such that cj 6= ck.

Proof : Let N(T (x)) = n, n ≥ 1. Under this condition we have

τ+,n ≤ T (x) < τ+,n+1, n ≥ 1,

which is equivalent to

n−1∑
k=0

ckτk ≤ x, cnτn > x−
n−1∑
k=0

ckτk, (2.33)

where τk are independent exponentially distributed, τk ∼ Exp(λk), random vari-
ables.

In this case by definition (2.4) we have

x = L(T (x)) =

n−1∑
k=0

(ck − cn)τk + cnT (x).

This equation gives

T (x) =
x−

∑n−1
k=0(ck − cn)τk
cn

=
x

cn
−
n−1∑
k=0

(
1

cn
− 1

ck

)
ξk,

where ξk = ckτk ∼ Exp(λk/ck), k ≥ 0, are independent.
Therefore by (2.33) we have

E
[
ezT (x)1{N(T (x))=n}

]
= exp{zx/cn}E

[
exp

{
−z

n−1∑
k=0

(
1

cn
− 1

ck

)
ξk

}
1{ξ+,n≤x, ξn>x−ξ+,n}

]
.

Here ξ+,n =
∑n−1
k=0 ξk.

Applying formula Ratanov (2014, (2.5)) for the joint distribution of (ξ0, . . . , ξn−1)
we obtain

E
[
ezT (x)1{N(T (x))=n}

]
= ΛnC

−1
n e−(λn−z)x/cn

∫
Πn(x)

exp

{
−
n−1∑
k=0

yk

(
z

(
1

cn
− 1

ck

)
+

(
λk
ck
− λn
cn

))}
d~y

= ΛnC
−1
n exp{−αn(z)x}

∫
Πn(x)

exp

{
−
n−1∑
k=0

yk (αk(z)− αn(z))

}
d~y, n ≥ 1,

(2.34)
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Figure 2.5. Density functions g(t;x) with cn = n + 1 and λn =
n+ 1, n ≥ 0, and x = 1, 2, 3 (from left to right).

where Cn =
n−1∏
k=0

ck, αn = αn(z) =
λn − z
cn

, z < λn, ∀n, and

Πn(x) =

{
~y = (y0, . . . , yn−1) | y(+,n) =

n−1∑
i=0

yi < x

}
.

By integrating in (2.34), see Proposition 3 (Appendix), we get∫ ∞
0

eztgn(t;x)dt = E
[
ezT (x)1{N(T (x))=n}

]
= ΛnC

−1
n

n∑
k=0

κn,k(~α(z))e−xαk(z).

Note that

αj − αk = −λkcj − λjck
cjck

+
cj − ck
cjck

z =
cj − ck
cjck

(−Bjk + z).

Since

κn,k(~α) =

n∏
j=0

cj 6=ck

(z −Bj,k)−1 ×
n∏
j=0

cj 6=ck

[
(cj − ck)−1cjck

]
×

n∏
j=0

cj=ck, j 6=k

[
(λj − λk)−1cj

]

=Cn+1c
mn,k−1
k κn,k(~c, ~λ)

n∏
j=0

cj 6=ck

(−Bj,k + z)−1, n ≥ 1, 0 ≤ k ≤ n,
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Figure 2.6. Density functions g(t;x) with cn = n + 1 and λn =
λ(n+ 1), n ≥ 0, x = 1 and λ = 7, 5, 3, 1 (from left to right).

we get

E
[
ezT (x)1{N(T (x))=n}

]
= Λncn

n∑
k=0

c
mn,k−1
k κn,k(~c, ~λ)e−λkx/ck

ezx/ck
n∏
j=0

cj 6=ck

(−Bj,k + z)
.

Here and below m = mn,k are defined as above, see Theorem 2.1.
If all Bj,k are distinct (case A2), this expression can be simplified as (2.15):

E
[
ezT (x)1{N(T (x))=n}

]
=Λncn

n∑
k=0

cm−1
k κn,k(~c, ~λ)e−λkx/ck ×

n∑
j=0

cj 6=ck

κn,j(− ~Bk)
ezx/ck

(−Bj,k + z)
.

In case B2 we have

E
[
ezT (x)1{N(T (x))=n}

]
= Λncn

n∑
k=0

cm−1
k κn,k(~c, ~λ)e−λkx/ck

ezx/ck

(−B + z)m
.

By applying the inverse Laplace transform, formulae (2.31)-(2.32) follow from
Proposition 2 (see Appendix) and from the identity Bj,k = −bj,kck+λk, j 6= k (see
(2.13)). �
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The absolutely continuous part of the distribution of T (x) is given by

g(t;x) =

∞∑
n=1

gn(t;x).

In the case of Example 2.4 the plots of g(t;x) are presented in Fig. 2.5 and Fig.
2.6.

One can easily write the distribution of number of switchings till the first hitting
of level x.

Corollary 2.9. Let x > 0, all cn be positive, cn > 0, n ≥ 0, and T = T (x) be the
first crossing time of the level x, (2.29).

• If λ0/c0, λ1/c1, . . . , λn/cn are distinct, then

P{N(T ) = n} = Λn/Cn

n−1∑
k=0

κn,k( ~λ/c)e−λkx/ck . (2.35)

• If λk/ck = a, k ∈ {0, . . . , n}, then

P{N(T ) = n} =
(ax)n

n!
e−ax. (2.36)

Proof : By (2.34) one can get

P{N(T ) = n} =
Λn
Cn

e−λnx/cn
∫

Πn(x)

exp

(
−
n−1∑
k=0

yk

(
λk
ck
− λn
cn

))
d~y.

Formula (2.35) follows by integrating, see Proposition A3 (Appendix).
If all λk/ck = a are equal, then

P{N(T ) = n} = ane−axV |Πn(x)| ,
which gives (2.36). �

2.3. Jumps are added. Let {rn}n≥0 be the set of independent random variables
which are independent of the driving Poisson process N . Let

r(t) =

∫ t

0

rN(u−)dN(u) =

N(t)−1∑
n=0

rn, t > 0. (2.37)

be the compound Poisson process accompanying L = L(t): jumps occur at times
of the velocity’s switchings.

Process L(t) + r(t), t ≥ 0, generalises well-known jump-telegraph processes. For
the case of the alternating deterministic parameters cn ∈ {c0, c1}, rn ∈ {h0, h1}
process L(t) + r(t), t ≥ 0, is studied by Kolesnik and Ratanov (2013, Chapter 4).

In general, the distribution of [L(t) + r(t)] · 1{N(t)=n} is given by the density
function

qn(x, t) :=

∫ ∞
−∞

pn(x− y, t)η∗,n(dy),

which is the convolution of the density pn(x, t) of L(t) (see (2.18)-(2.19)) and the
n-fold convolution of jumps’ distributions ηk(dx), 0 ≤ k ≤ n − 1. The density
function φL+r(x, t) of L(t) + r(t), t > 0, is given by

φL+r(x, t) = e−λ0tδ(x− c0t) +

∞∑
n=1

qn(x, t), (2.38)
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if the series converges.
Denote by rn the expected jump amplitude, rn =

∫∞
−∞ xηn(dx), n ≥ 0, and let

ρn =
∑n−1
k=0 rk, n ≥ 1.

Assume that the series uniformly converges:

α(t) :=

∞∑
n=0

(cn + λnrn)π(t;n) <∞, t ∈ [0, T ], (2.39)

where π(t;n) = P{N(t) = n}. Moreover, let

(cn − λnρn)π(t;n) ⇒ 0, t ∈ [0, T ], (2.40)

as n→∞.

Theorem 2.10. Under conditions (2.39)-(2.40) the expectation of L(t) + r(t), t ≥
0, is given by

E[L(t) + r(t)] =

∫ t

0

α(u)du. (2.41)

Proof : By definitions (2.4), (2.37) and equations (2.5), (2.6) we have

d

dt
E[L(t) + r(t)]

= c0π(t; 0) + lim
N→∞

N∑
n=1

(cnπ(t;n) + ρn[−λnπ(t;n) + λn−1π(t;n− 1)])

= lim
N→∞

[
N−1∑
n=0

(cn + λnrn)π(t;n) + (cN − λNρN )π(t;N)

]
, t ∈ [0, T ],

where the limit is uniform in t ∈ [0, T ]. Therefore,

d

dt
E[L(t) + r(t)] =

∞∑
n=0

(cn + λnrn)π(t;n) = α(t). (2.42)

Equation (2.41) follows from (2.42). �

Corollary 2.11. Let conditions (2.39)-(2.40) hold.

• If all λ are distinct, λk 6= λn, k 6= n, then

E[L(t) + r(t)] =

∞∑
n=0

(cn + λnrn)Λn

n∑
k=0

κn,k(~λ)λ−1
k (1− e−λkt). (2.43)

• If λn ≡ λ, n ≥ 0, then (by using the incomplete gamma-function γ)

E[L(t) + r(t)] =

∞∑
n=0

(cn/λ+ rn)γ(n+ 1, λt)

=

∞∑
n=0

(cn/λ+ rn)

[
1− e−λt

n∑
k=0

(λt)k

k!

]
.

(2.44)

Proof : Equations (2.43)-(2.44) follows from (2.41) by integration of α(t). For (2.43)
one can use (2.8), equation (2.44) follows by

α(t) =

∞∑
n=0

(cn + λnrn)
(λt)n

n!
exp(−λt), t > 0.
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�

Remark 2.12. Formulae (2.41)-(2.44) seem more simple, than formula Ratanov
(2014, (3.8)), which has been derived by differentiation of the corresponding mo-
ment generating function.

Corollary 2.13. Let
cn + λnrn = 0, ∀n ≥ 0. (2.45)

The process with jumps, L(t) + r(t), t ≥ 0, is the martingale.

Proof : If (2.45) holds, then (see (2.41) and (2.39)) the expectation is zero,

E[L(t) + r(t)] ≡ 0.

The proof follows from renewal character of the process. �

3. Processes of alternating patterns with a double jump component

Consider the sequence {Tm}m≥0 of nonnegative independent random variables
having distributions with the alternating density functions f0(t) and f1(t), t ≥ 0.
Consider the flow of time instants T+,m = T0 + . . .+ Tm−1, m ≥ 1, T+,0 = 0.

Let M = M(t) be the counting process,

M(t) = max{m ≥ 0 | T+,m ≤ t}, t > 0. (3.1)

The current state εi(t), t ≥ 0, of the model is defined by

ε0(t) =
1− (−1)M(t)

2
, ε1(t) =

1 + (−1)M(t)

2
, (3.2)

such that εi(0) = i, i ∈ {0, 1}.
Denote by f

(m)
0 (t), f

(m)
1 (t) the conditional density functions of T+,m under the

initial states ε(0) = 0 and ε(0) = 1 respectively. Functions f
(m)
i , i ∈ {0, 1}, are

defined by consecutive convolutions of densities f0 and f1 (beginning with fi).
If the variables Tm are i.i.d. exponentially distributed, f0(t) ≡ f1(t) =

e−µt1{t>0}, µ > 0, the sum T+,m is Erlang-m distributed with the density function

f (m)(t) =
µmtm−1

(m− 1)!
e−µt, t > 0.

In the case when Tm are exponentially distributed and independent (with alter-

nating intensities µ0 and µ1) the distributions f
(m)
i (t), t > 0, are also known:

f
(m)
0 (t) =µ

(×,m)
0 · tm−1

(m− 1)!
exp(−µ0t)Φ([m/2];m; (µ0 − µ1)t),

f
(m)
1 (t) =µ

(×,m)
1 · tm−1

(m− 1)!
exp(−µ1t)Φ([m/2];m; (µ1 − µ0)t),

where Φ(·; ·; z) is the confluent hypergeometric Kummer function. Here [·] denotes

the integer part and µ
(×,m)
i is the consecutive product of µi and µ1−i beginning

with µi, see Ratanov (2015, Proposition 2.1).
In this section we examine the jump-telegraph process L(t) + r(t), t ≥ 0, which

successively follows two alternating patterns during exponentially distributed time
epochs Tm, i. e., for t ∈ [T+,m, T+,m + Tm), m ≥ 0,

L(t) = Lm(t), r(t) = rm(t), (3.3)
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where Lm, rm, m ≥ 0, are independent processes, defined by (2.4) and (2.37)
respectively.

More precisely, we consider the sequence τm,n, m, n ≥ 0, of independent expo-
nentially distributed, Exp(λm,n), λm,n > 0, random variables. Let Nm(t), t ≥ 0,
m ≥ 0, be (independent) Poisson processes, counting the arrivals of τm,k, k ≥ 0,

Nm(t) = max

{
n |

n−1∑
k=0

τm,k ≤ t

}
. (3.4)

Consider the continuous,

L(t) =

M(t)−1∑
m=0

Lm(Tm) + LM(t)(t− T+,M(t)), (3.5)

and compound Poisson,

r(t) =

M(t)−1∑
m=0

rm(Tm) + rM(t)(t− T+,M(t)), (3.6)

random processes. Here

Lm(t) =

∫ t

0

cm,Nm(u)du =

Nm(t)−1∑
n=0

cm,nτm,n + cm,Nm(t)(t− τ+,Nm(t)
m )

and

rm(t) =

∫ t

0

rm,N(u)dNm(u) =

Nm(t)−1∑
n=0

rm,n, t ≥ 0,

where cm,n are constants, and rm,n are independent random variables. The sums
in (3.5) and (3.6) can be considered as compound Poisson processes with Poisson
subordinators studied by Di Crescenzo et al. (2015).

The process performs additional jumps that occur when changing patterns. Sup-
pose that the jump amplitude depends on the number of switchings during the
current pattern. So, the jump process R = R(t) is defined by

R(t) =

M(t)∑
m=1

Rm(Nm(Tm)), (3.7)

Here Rm(n) are independent random variables, independent of the counting pro-
cesses N and M .

Assume that the patterns are changing alternately, i. e., for the initial state
i, i ∈ {0, 1}, i = ε(0), let

λ2m,n = λin, λ2m+1,n = λ1−i
n ;

c2m,n = cin, c2m+1,n = c1−in ;

R2m(n)
D
= Ri(n), R2m+1(n)

D
= R1−i(n);

r2m,n
D
= rin, r2m+1,n

D
= r1−i

n ;

m ≥ 0, n ≥ 0.

(3.8)
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Here
D
= denotes the equality in distribution. The distributions of all processes

depending on the initial state could be expressed in terms of parameters introduced
by (3.8).
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Figure 3.7. Sample path of X = L(t) + r(t) +R(t).

We study the distribution of the sum

X(t) = L(t) + r(t) +R(t), t ≥ 0. (3.9)

Denote by Pi and Ei the conditional probability and the corresponding condi-
tional expectation, if the initial pattern is given, i = ε(0). The probability mass
functions πi(t;n) = P{N(t) = n | ε(0) = i}, t ≥ 0, i ∈ {0, 1}, follow equations
(2.6),

d

dt
πi(t;n) = −λinπi(t;n) + λin−1π

i(t;n− 1), i ∈ {0, 1}. (3.10)

By Theorem 2.10 we have

αi(t) :=
d

dt
E[L(t) + r(t) | ε(0) = i] =

∞∑
n=0

(cin + λinr
i
n)πi(t;n). (3.11)

Let

ai(t) = E[Ri(N(t)) | ε(0) = i] =

∞∑
n=0

Ri(n)πi(t;n), i ∈ {0, 1}, t ≥ 0, (3.12)

assuming that the series in (3.11)-(3.12) converge. Here

rin = E[rin], Ri(n) = E[Ri(n)], i ∈ {0, 1},
are the expectations of the jump amplitudes.

The (conditional) density functions pX = pXi (x, t;m) of X(t) · 1{M(t)=m} follow
the integral equations

pXi (x, t;m) =

∫ t

0

fi(u)

[∫ ∞
−∞

pX1−i(x− y − ai(u), t− u;m− 1)φi(y;u)dy

]
du,

(3.13)
t > 0, i ∈ {0, 1},m ≥ 1,

where φi is the density function of Li(t) + ri(t) defined by (2.38). For m = 0
the density function is already known, pXi (x, t; 0) = Fi(t)φ

i(x, t), where Fi(u) =∫∞
u
fi(s)ds are the survival functions of Tm.

Let
Mi(t) := Ei[X(t)] = E[X(t) | ε(0) = i], i ∈ {0, 1}, (3.14)
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be the expectations of X(t) under the fixed initial state ε(0) = i.
Assume conditions (2.39)-(2.40) to be hold:

∞∑
n=0

(cin + λinr
i
n)πi(t;n) <∞ t ≥ 0, (3.15)

and

(cin − λinρin)πi(t;n) ⇒ 0, t ≥ 0, (3.16)

as n→∞; i ∈ {0, 1}.

Theorem 3.1. Functions Mi(t), i ∈ {0, 1}, satisfy the following integral equations,

M0(t) = A0(t) +

∫ t

0

f0(u)M1(t− u)du, (3.17)

M1(t) = A1(t) +

∫ t

0

f1(u)M0(t− u)du, (3.18)

where

Ai(t) =

∫ t

0

[
Fi(u)αi(u) + fi(u)ai(u)

]
du, i ∈ {0, 1}. (3.19)

See the definitions of αi and ai in (3.11) and (3.12).

Proof : By conditioning on the first pattern’s switching one can obtain

M0(t) =F0(t)E{L0(t) + r0(t) | ε(0) = 0} (3.20)

+

∫ t

0

f0(u)
[
E{L0(u) + r0(u) +R0(N(u)) | ε(0) = 0}+ M1(t− u)

]
du,

M1(t) =F1(t)E{L0(t) + r0(t) | ε(0) = 1} (3.21)

+

∫ t

0

f1(u)
[
E{L0(u) + r0(u) +R0(N(u)) | ε(0) = 1}+ M0(t− u)

]
du.

Integrating by parts we get

M0(t) =

∫ t

0

F0(u)
d

du
E0{L0(u) + r0(u)}du+

∫ t

0

f0(u)a0(u)du (3.22)

+

∫ t

0

f0(u)M1(t− u)du,

M1(t) =

∫ t

0

F1(u)
d

du
E1{L0(u) + r0(u)}du+

∫ t

0

f1(u)a1(u)du (3.23)

+

∫ t

0

f1(u)M0(t− u)du.

This gives (3.17)-(3.18). �

Theorem 3.2. Let function αi and ai be defined by (3.11)-(3.12).

• Let ai 6= 0,
αi(t)

ai(t)
< 0, ∀t > 0, and∫ ∞

0

αi(t)

ai(t)
dt = −∞.
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If the alternating distributions of Tm are defined by the survival functions

Fi(t) = exp

(∫ t

0

αi(u)

ai(u)
du

)
, t ≥ 0, i ∈ {0, 1}, (3.24)

then X = X(t) is the martingale.

• Let Ri(n) ≡ 0 and cin/r
i
n < 0, ∀n, i ∈ {0, 1}.

If the velocity switchings occur with the intensities λin = −cin/rin, ∀n,
i ∈ {0, 1}, then X = X(t) is the martingale.

Proof : Due to (3.17)-(3.18) the renewal process X is the martingale if and only if
Ai(t) ≡ 0, i ∈ {0, 1}, see (3.19).

If ai(t) 6= 0, t > 0, then Ai ≡ 0 is equivalent to the set of identities

fi(t)

Fi(t)
= −αi(t)

ai(t)
, t ≥ 0, i ∈ {0, 1}.

By definition we have Fi
′
(t) = −fi(t), Fi(0) = 1. Hence (3.24) holds.

If Ri(n) ≡ 0 and cin/r
i
n < 0, ∀n, then Ai ≡ 0, i ∈ {0, 1}, is equivalent to

αi ≡ 0, i ∈ {0, 1}. The latter means that λin = −cin/rin i ∈ {0, 1}, n ≥ 0. �

Corollary 3.3. Let the elapsed time Tm be exponentially distributed with parame-
ters µ0, µ1 > 0, and cin + λinr

i
n + µiRin = 0, i ∈ {0, 1}.

Then process X = X(t) is the martingale.

4. Market model

Let process X = Xi be defined by (3.9) and the initial state is given, ε(0) = i.
Let Tm, m ≥ 0, be elapsed times having exponential distributions with alternating
parameters µ0 and µ1.

Assume that the market follows two possible (alternating) patterns,
〈c0n, r0

n, λ
0
n〉n≥0 and 〈c1n, r1

n, λ
1
n〉n≥0, during the consecutive elapsed times Tm. The

price of risky asset is given by stochastic exponential of X, Si(t) := Et(X), t ≥ 0,

Si(t) = Et(X) = S0 exp(L(t))

N(t)∏
n=0

(1 + rin)×
M(t)∏
m=1

(1 +Rim(Nm(Tm))). (4.1)

The dynamics defined by (4.1) generalises the well-studied jump-telegraph model,
Kolesnik and Ratanov (2013).

Model (4.1) can be interpreted as follows. Between time instants T+,m, m ≥ 1,
market operates in the usual way. Further, at random times T+,m, m ≥ 1, a strate-
gic investor (or regulator) provokes a price impact (of the amplitude Rm(Nm(Tm)))
accompanying by a pattern’s switching. The amplitudes of jumps are assumed de-
pending on the regulatory policy, as well as from the historical behaviour of the
current pattern. Such behaviour of the strategic investor can be interpreted as a
price manipulation strategy.

Note that if the regulator does not produce jumps of asset price, then the market
able to hedge all risks; if Rim ≡ 0 and

cin + λinr
i
n = 0, n ≥ 0, i ∈ {0, 1}, (4.2)

then S(t) is the martingale, see Theorem 3.2. Hence, the risk-neutral measure
exists.
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In the case when the prices jump on Ri(n) after regulation, where the jump
amplitudes satisfy the inequality

µiRi(n) + cin

rin
< 0, n ≥ 0, i ∈ {0, 1}, (4.3)

then the market is still free of arbitrage, see Theorem 3.2, and cf Kolesnik and
Ratanov (2013).

If inequality (4.3) does not hold, then the risk-neutral measures do not exist and
the risk of such behaviour should be considered as an inherent risk.

A certain policy of the strategic investor could trigger the arbitrage.

Appendix

The following easy results are used in the proofs of Theorem 2.1 and Theorem
2.8.

Let functions

ψn(z) =
eAz

(B − z)n+1
, n ≥ 0,

where A, B are real numbers, be defined in the neighbourhood of 0, |z| < ε. Hence,
if B > 0 we assume z < B, and if B < 0, function ψn is considered for z > B.

Proposition 1. The inverse Laplace transform pn = pn(x) of ψn, defined by∫ ∞
−∞

ezxpn(x)dx = ψn(z), |z| < ε,

can be expressed as

pn(x) = φA,B(x)
(x−A)n

n!
eB(A−x). (1)

Here

φA,B(x) =

{
1{x>A}, if B > 0,

−1{x<A}, if B < 0.

Proof : Formula (1) follows from∫ ∞
A

ezx(x−A)neB(A−x)dx =eAzn!(B − z)−n−1, B − z > 0, B > 0;

−
∫ A

−∞
ezx(x−A)neB(A−x)dx =eAzn!(B − z)−n−1, B − z < 0, B < 0;

for n ≥ 0. �

Let functions

ψm(z) =
eAz

(B + z)m+1
, m ≥ 0,

be defined for z < −B and A > 0.
Proposition 2. The inverse Laplace transform gm(t), defined by∫ ∞

0

eztgm(t)dt = ψm(z),

can be expressed as

gm(t) = − (A− t)m

m!
eB(t−A)1{t>A}. (2)
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Proof : The proof is similar to the proof of Proposition A1. It is based on the
equality

−
∫ ∞
A

ezt(A− t)meB(t−A)dt = eAzm!(B + z)−m−1, B + z < 0.

�

Proposition 3. Let Πn(x) :=
{
~y = (y0, . . . , yn−1) |

∑n−1
i=0 yi < x

}
⊂ Rn and

α0, . . . αn are positive and distinct constants. Therefore,∫
Πn(x)

exp

(
−
n−1∑
k=0

yk(αk − αn)

)
d~y = eαnx

n∑
k=0

κn,k(~α)e−αkx.

Proof : See Ratanov (2014, (3.5)). �
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Geofiziki, Novosibirsk (2003). MR2031223.
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