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and CD44 in a Multiethnic Study
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Systemic lupus erythematosus (SLE) is considered to be the prototypic autoimmune disease, with a complex genetic architecture influ-

enced by environmental factors. We sought to replicate a putative association at 11p13 not yet exceeding genome-wide significance

(p < 5 3 10�8) identified in a genome-wide association study (GWAS). Our GWA scan identified two intergenic SNPs located between

PDHX and CD44 showing suggestive evidence of association with SLE in cases of European descent (rs2732552, p ¼ 0.004, odds ratio

[OR] ¼ 0.78; rs387619, p ¼ 0.003, OR ¼ 0.78). The replication cohort consisted of >15,000 subjects, including 3562 SLE cases and

3491 controls of European ancestry, 1527 cases and 1811 controls of African American (AA) descent, and 1265 cases and 1260 controls

of Asian origin. We observed robust association at both rs2732552 (p ¼ 9.03 3 10�8, OR ¼ 0.83) and rs387619 (p ¼ 7.7 3 10�7, OR ¼
0.83) in the European samples with pmeta ¼ 1.82 3 10�9 for rs2732552. The AA and Asian SLE cases also demonstrated association at

rs2732552 (p ¼ 53 10�3, OR ¼ 0.81 and p ¼ 4.33 10�4, OR ¼ 0.80, respectively). A meta-analysis of rs2732552 for all racial and ethnic

groups studied produced pmeta ¼ 2.363 10�13. This locus contains multiple regulatory sites that could potentially affect expression and

functions of CD44, a cell-surface glycoprotein influencing immunologic, inflammatory, and oncologic phenotypes, or PDHX, a subunit

of the pyruvate dehydrogenase complex.
Systemic lupus erythematosus (SLE [MIM 152700]) is

a chronic, heterogeneous autoimmune disorder character-

ized by inflammation, loss of tolerance to self-antigens,

and dysregulated interferon responses. Defining features

of the disease are infiltration of lymphocytes into organs
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The A
such as the kidney and skin, as well as autoantibody

production. Both environmental and genetic (sibling risk

ratio, ls z 30) factors are important in SLE etiology,

though much remains to be learned. Candidate gene

studies and, more recently, genome-wide association
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Table 1. Summary of Samples Genotyped

Populations Number of Samples Case Control Unknown Disease Status Male Female Unknown Gender

African Americans 3462 1569 1893 0 723 2733 6

Asians 2676 1328 1348 0 296 2380 0

Europeans 8066 4248 3818 0 1642 6403 21

Gullah 286 155 131 0 34 252 0

Hispanics 1383 1033 350 0 160 1222 1

Amerindians 1126 589 537 0 67 1,057 2

Unknown 4 0 0 4 0 4 0

Total 17,003 8922 8077 4 2922 14,051 30
studies (GWAS), have begun to elucidate the complex

genetic architecture of SLE with identification of >30 risk

loci.1 These studies have collectively established the

importance of several pathways in SLE, including innate

immune responses, activation of lymphocytes, and

immune complex clearing.1

Althoughmany new loci have been identified as contrib-

uting to the pathogenesis of SLE, they collectively do not

explain all the risk contributed by heritable factors. For

example, recessive effects remain a challenge to detect in

the studies conducted to date. Much larger sample sizes

(>10,000 cases and 10,000 controls) are needed to detect

such effects. Rare or private mutations are also difficult to

detect under recently used study designs. The majority of

established genetic effects to date have been identified

through studies in cohorts of European descent. There

are distinct clinical differences between racial groups,

including higher risk in African Americans and Asians for

developing more severe disease. Previous studies have

also suggested that risk haplotypes between groups differ,

as illustrated by ITGAM (MIM 120980), in which the differ-

ences in haplotype structure were used to identify the

causal variant.2

In this study, we sought to replicate a suggestive associa-

tion at 11p13 not reaching genome-wide significance (p <

5 3 10�8) in our previous GWAS3 that had also been iden-

tified in a linkage study of SLE when evaluating multiplex

pedigrees with thrombocytopenia.4 This region contains

a gene, CD44 (MIM 107269), that has been well studied

at the protein level in relation to SLE risk, as well as

many other inflammatory conditions. Here we replicate

association with two SNPs identified in the GWAS just telo-

meric to CD44.

The initial GWAS was performed with the Affymetrix

Genome-wide Human SNP array 5.0 with a sample size

of 431 European SLE cases and 2,155 European controls,

as described in Graham et al., 2008.3 Themultiethnic repli-

cation study consisted of 17,003 total samples (8,922 SLE

cases and 8,077 controls), which included self-reported

African Americans, Asians, Europeans, Gullahs, Hispanics,

and Amerindians (Table 1). The samples were assembled at

the Oklahoma Medical Research Foundation (OMRF) after
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collection through multiple institutions around the

world, following ethics committee approval and informed

consent. All cases fulfilled American College of Rheuma-

tology criteria for the classification of SLE.5

The replication data were generated with the Illumina

iSelect technology at the OMRF. A total of 119 SNPs en-

compassing CD44 and within the linkage peak previously

observed at 11p13 (2 Mb interval) plus 347 ancestral-infor-

mative markers (AIMs) typed throughout the genome were

evaluated. SNPs used in the analysis were required to pass

stringent quality control criteria that includedwell-defined

cluster scatter plots,>90% call rates across the entire study,

Hardy-Weinberg proportions with p> 0.01 in controls and

p > 0.0001 in cases, total proportion missing <5%,

and p > 0.05 for differential missingness between cases

and controls.

Samples with a <90% call rate or increased heterozy-

gosity (>5 standard deviations from the mean) were

excluded from the analysis. The remaining samples were

then evaluated for duplicates or related individuals, and

one individual from each pair was removed if the propor-

tion of alleles shared identity by descent was > 0.4.

Samples were assessed for mismatches between reported

gender and genetic data. Assigned males were required to

have chromosomal X heterozygosity % 10% and be

heterozygous at rs2557523, because the G allele for this

SNP is only observed on the Y chromosome, and the A

allele appears only on the X chromosome. Assigned

females were required to have chromosomal X heterozy-

gosity > 10% and be homozygous at rs2557523.

Finally, genetic outliers were removed from further anal-

ysis, as determined by principal component analysis (PCA)

and admixture estimates (Figure 1).6,7 Price et al. utilized

PCA for correcting for population stratification by inferring

continuous axes of genetic variation on genotype data

that is implemented in EIGENSTRAT software.6 Another

method, combining Bayesian and sampling-theory

approaches, has been proposed to estimate admixture

proportions inmultiple populations7–9 andhas been imple-

mented in ADMIXMAP software. Both EIGENSTRAT6 and

ADMIXMAP8,9 were used to identify population strata

within the samples with AIMs, with both yielding similar
11



Figure 1. Principal Components Identify Continental Ancestry
Plot of the first two principal components identifying continental
population substructure within our sample set before quality
control (QC) (A) with 17,003 subjects and after QC (B) with
15,490 subjects. Each circle represents an individual sample, and
colors represent the populations based on self-report.
results. The AIMs were selected to distinguish four conti-

nental ancestral populations: Africans, Europeans, Amer-

ican Indians, and East Asians (Figure 1).10,11 We utilized

principal components from EIGENSTRAT outputs to iden-

tify outliers from each population cluster. After quality

control, a total of 1,139 samples was excluded (Table 2).

Final numbers of subjects included in analyses were

15,490 for replication and 18,076 with the GWAS samples

included (Table 3).
The A
To test for SNP-SLE association in the replication study,

we performed logistic regression, as implemented in

PLINK.12 The additive, dominant, and recessive models

were calculated while adjusting for the first three principle

components and gender. Models were also analyzed with

the ancestry estimates provided by ADMIXMAP, with no

observable difference. Meta-analyses of the SNPs observed

in both the GWAS and the multiethnic study were calcu-

lated with a weighted Z score (Stouffer’s Ztrend), as imple-

mented in METAP.13 Here the weight is the square root of

the sample size for each group. This controls for differences

in sample size between studies when combining.

Our previously published GWAS identified two SNPs

in strong linkage disequilibrium (LD, r2 ¼ 0.94) located

~74 kb telomeric to CD44, showing suggestive evidence of

association with European SLE cases (rs2732552, p ¼
0.004, odds ratio [OR] ¼ 0.78, 95% confidence interval

[CI] ¼ 0.69–0.93; rs387619, p ¼ 0.003, OR ¼ 0.78, 95%

CI¼ 0.68–0.91). In the current independent study, we eval-

uated this region in a large multiethnic case-control collec-

tion of 17,003 subjects (before quality control; Table 1).

We observed robust association at both rs2732552 (p ¼
9.033 10�8, OR¼ 0.83, 95%CI¼ 0.77–0.88) and rs387619

(p ¼ 7.7 3 10�7, OR ¼ 0.83, 95% CI ¼ 0.77–0.90) in the

European samples (Table 4 and Figure 2A). Meta-analyses

of these two SNPs between our current European data set

and that used in the GWAS, accounting for differences in

sample size with a weighted Z score, produced results that

surpass genome-wide thresholds for significance and

yielded a pmeta ¼ 1.82 3 10�9 (OR ¼ 0.82, 95% CI ¼ 0.76–

0.88) for rs2732552 and a pmeta ¼ 1.46 3 10�8 (OR ¼ 0.82,

95% CI ¼ 0.76–0.88) for rs387619 (Table 4 and Figure 2A).

The African American and Asian SLE cases also demon-

strated association at rs2732552 (p ¼ 5 3 10�3, OR ¼ 0.81,

95% CI ¼ 0.70–0.94 and p ¼ 4.3 3 10�4, OR ¼ 0.80, 95%

CI ¼ 0.70–0.91, respectively). The Asian SLE cases were

associated with rs387619 (p ¼ 0.001, OR ¼ 0.8, 95% CI ¼
0.70–0.91), whereas the African American SLE cases

were not, consistent with differences in the haplotype

patterns between racial groups (Table 4; Figure 2A; Fig-

ure 3). Meta-analysis at rs2732552 between Europeans,

Asians, African Americans, and the GWAS produced

pmeta ¼ 3.00 3 10�13. In this study, no evidence of associ-

ation (p < 0.05) was observed in Hispanic, Gullah, or

Amerindian subjects, possibly because of small sample

sizes relative to the other races and/or ethnicities, clinical

and/or genetic heterogeneity, or reduced correlation

between tested markers and one or more causal variants.

When evaluating all ethnic and racial groups evaluated

within this study, meta-analysis yielded a pmeta ¼ 2.36 3

10�13. Several of the subphenotypes comprising the SLE

criteria, including thrombocytopenia, were also tested for

association with these SNPs. No significant relationships

were observed, possibly because of incomplete data.

These two SNPs flank the boundaries of an ~14 kb haplo-

type block observed in Europeans and Asians with r2 > 0.9,

but with only r2 < 0.1 in African Americans (Figure 2A and
merican Journal of Human Genetics 88, 83–91, January 7, 2011 85



Table 2. Summary of Samples Remaining after QC

Populations Number of Samples Case Control Unknown Disease Status Male Female Unknown Gender

African Americans 3338 1527 1811 0 695 2643 0

Asians 2525 1265 1260 0 253 2272 0

Europeans 7053 (7427)a 3562 (3936)a 3491 0 1495 5932 0

Gullah 275 152 123 0 33 242 0

Hispanics 1297 961 336 0 149 1148 0

Amerindians 1002 531 471 0 58 944 0

Unknown 0 0 0 0 0 0 0

Total 15,490 (15864)a 7998 (8372)a 7492 0 2683 13,181 0

a Number of European cases before removing 374 samples to render replication independent from GWAS.
Figure 3). To increase the informativeness of this haplo-

type, we conducted imputation in all three ethnic groups

over a 2 Mb region. Imputation of the replication data

across chromosome 11 (35–37 Mb) was performed with

IMPUTE2, with the HapMap Phase III and 1000 Genomes

Project as reference panels for African Americans, Asians,

and Europeans (Table 5).14–16 Imputation is a method

used to infer genotypes by using other correlated SNPs as

proxies for those not genotyped. Subject genotypes are

compared to a reference panel of all the SNPs genotyped

within the study and those desired to be imputed.

IMPUTE2 was selected because it can combine two refer-

ence panels in a single imputation analysis that will

increase genotype-imputation accuracy. IMPUTE2 calcu-

lates posterior probabilities for the three possible geno-

types (AA, AB, BB).

Imputed genotypes had to meet or exceed a probability

and certainty score of >0.9, and the quality control criteria

described above had to be included in the analyses.

However, we accepted genotype call rates for imputed

SNPs at >70% in the African Americans because of the

small LD blocks. After quality control, a total of 238 SNPs

was imputed in the European replication cohort within

a 0.5 Mb region. Because no significant associations were

observed outside the 14 kb haplotype in Europeans, impu-

tation for Asians and African American samples was per-

formed between rs2732552 and rs387619. After quality

control, imputed data were included for 24 SNPs in the

Asian and 9 SNPs in the African American data sets.

Several imputed SNPs demonstrated association with

disease (Table 4 and Figure 2B). The most statistically signi-

ficant imputed marker among Europeans was rs2553772

(p ¼ 7.35 3 10�8). This SNP was also significantly associ-
Table 3. Summary of Sample Data Sets

Dataset Cases Controls Total

GWAS 431 2155 2586

Multiethnic replication 7998 7492 15,490

Combined 8429 9647 18,076

86 The American Journal of Human Genetics 88, 83–91, January 7, 20
ated with SLE in the Asians (p ¼ 1.05 3 10�4) but did

not pass our quality control criteria in African Americans.

However, a neighboring SNP, rs2785202, was found to

be significant in all three populations (Table 4 and

Figure 2C).

Bioinformatics database mining revealed that this region

is conserved across species and has substantial regulatory

potential within seven mammalian species, supported by

experimental evidence using chromatin immunoprecipita-

tion followed by sequencing (ChIP-Seq). The ENCODE

project recently cataloged transcription factor binding

sites and chromatin modification throughout the genome

with ChIP-Seq in several different cell lines.17 The most

strongly associated SNPs after imputation within our

study flank two transcription factor binding sites identified

in a myelogenous leukemia cell line: E2F6 (35,041,517–

35,041,963 base pairs [bp]; peak binding at 35,041,

776 bp) and c-Jun (35,041,681–35,042,886 bp; peak

binding at 35,041,895 bp; Figure 1C).17 Another region

of interest includes an NF-kB (35,044,973–35,045,701 bp)

binding site identified in a lymphoblastoid cell line, with

the peak binding localized at 35,045,460 bp, only 46 bases

away from rs2785201 (Figure 2C). Studies of multiple cell

lines have demonstrated that the regions spanning

35,043,876–35,047,875 bp (H3K4me1) and 34,998,301–

35,641,975 bp (H3K27me3) are H3 histone interaction

sites shown to be regulated by histone methylation,

which can influence chromatin structure, resulting in tran-

scriptional silencing or enhanced activity (Figure 2C).

Further evaluation will be required to determine whether

one or more of these regulatory elements contributes to

SLE risk.

The genetic association with SLE established in this

study lies between PDHX and CD44, both of which have

been previously implicated in autoimmune or inflamma-

tory conditions. PDHX (MIM 608769) is ~79 kb in length

with 11 exons and encodes for the E3 subunit of the pyru-

vate dehydrogenase (PDH) complex involved in the

conversion of pyruvate to acetyl coenzyme A, which links

glycolysis and the Krebs cycle.18 Interestingly, approxi-

mately 95% of primary biliary cirrhosis patients produce
11



Table 4. Results of Observed and Imputed SNPs at 11p13 Telomeric of CD44a

SNP
Position
(Mb)

European Asian African American

Allelesb MAF GWAS p OR (95% CI)c pmeta (OR, 95% CI) Allelesb MAF p OR (95% CI)c Allelesb MAF p OR (95% CI)c

rs2732552 35.041168 C/T 0.43 4.00E�03 9.03E�08 0.83 (0.77–0.89) 1.82E�09 (0.82, 0.76–0.88) C/T 0.27 4.31E�04 0.80 (0.71–0.90) T/C 0.34 5.36E�03 0.81 (0.94–0.70)

rs2785202 35.041411 C/G 0.42 8.04E�08 0.83 (0.77–0.89) C/G 0.27 4.09E�04 0.80 (0.70–0.90) G/C 0.36 8.24E�04 0.77 (0.66–0.90)

rs2553772 35.042029 G/T 0.43 7.35E�08 0.82 (0.77–0.88) G/T 0.24 1.05E�04 0.76 (0.66–0.87) N/A N/A N/A N/A

rs2732550 35.044894 G/T 0.42 3.21E�07 0.83 (0.77–0.89) G/T 0.24 1.55E�04 0.76 (0.66–0.88) G/T 0.01 0.060 0.44 (0.19–1.03)

rs2732549 35.044975 A/G 0.43 1.58E�07 0.83 (0.77–0.89) A/G 0.24 1.34E�04 0.76 (0.66–0.88) N/A N/A N/A N/A

rs2732547 35.045259 C/T 0.42 1.44E�07 0.83 (0.77–0.89) C/T 0.27 2.07E�04 0.79 (0.69–0.89) T/C 0.41 6.55E�03 0.78 (0.65–0.93)

rs2785201 35.045414 C/G 0.42 1.70E�07 0.83 (0.77–0.89) C/G 0.21 2.69E�03 0.79 (0.68–0.92) G/C 0.41 5.29E�03 0.77 (0.64–0.93)

rs2732546 35.045661 C/T 0.43 1.79E�07 0.83 (0.77–0.89) C/T 0.27 6.04E�04 0.80 (0.70–0.91) N/A N/A N/A N/A

rs1895821 35.046097 C/T 0.43 2.64E�07 0.83 (0.77–0.89) C/T 0.26 3.45E�04 0.79 (0.70–0.90) N/A N/A N/A N/A

rs675970 35.04692 G/A 0.42 1.78E�07 0.83 (0.77–0.89) G/A 0.24 1.44E�04 0.76 (0.66–0.88) N/A N/A N/A N/A

rs1834459 35.049346 A/G 0.42 6.13E�07 0.83 (0.78–0.90) N/A N/A N/A N/A N/A N/A N/A N/A

rs2732544 35.049527 C/T 0.43 3.82E�07 0.83 (0.77–0.89) C/T 0.26 5.98E�04 0.80 (0.70–0.91) N/A N/A N/A N/A

rs2785198 35.049605 A/G 0.42 5.90E�07 0.83 (0.78–0.90) A/G 0.26 6.63E�04 0.80 (0.70–0.91) N/A N/A N/A N/A

rs2785197 35.049646 G/A 0.43 3.64E�07 0.83 (0.77–0.89) G/A 0.26 3.95E�04 0.79 (0.70–0.90) N/A N/A N/A N/A

rs1116470 35.051067 C/T 0.43 2.86E�07 0.83 (0.77–0.89) C/T 0.25 1.72E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs1116471 35.051208 G/A 0.43 3.16E�07 0.83 (0.77–0.89) G/A 0.25 1.96E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs2785194 35.05183 C/T 0.43 2.75E�07 0.83 (0.77–0.89) C/T 0.25 1.96E�04 0.77 (0.67–0.88) T/C 0.29 0.015 0.81 (0.69–0.96)

rs2785193 35.052011 C/A 0.43 2.51E�07 0.83 (0.77–0.89) C/A 0.25 1.96E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs2732540 35.052062 G/A 0.44 2.57E�06 0.84 (0.78–0.90) G/A 0.23 1.62E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs1834460 35.052141 C/T 0.43 3.25E�07 0.83 (0.77–0.89) C/T 0.25 1.57E�04 0.77 (0.67–0.88) T/C 0.29 5.40E�03 0.79 (0.68–0.93)

rs2098878 35.052886 G/A 0.43 2.24E�07 0.83 (0.77–0.90) G/A 0.25 1.77E�04 0.77 (0.67–0.88) A/G 0.46 0.083 0.83 (0.67–1.02)

rs2553827 35.053243 A/G 0.43 4.34E�07 0.83 (0.78–0.89) A/G 0.25 1.52E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs2553826 35.053334 C/T 0.43 2.49E�07 0.83 (0.77–0.89) C/T 0.25 1.52E�04 0.77 (0.67–0.88) N/A N/A N/A N/A

rs429503 35.053571 T/G 0.42 5.04E�07 0.83 (0.78–0.90) T/G 0.23 1.94E�04 0.77 (0.68–0.89) N/A N/A N/A N/A

rs63214363 35.053874 T/A 0.43 2.96E�07 0.83 (0.77–0.89) N/A N/A N/A N/A N/A N/A N/A N/A

rs387619 35.054769 C/T 0.42 3.00E�03 7.71E�07 0.84 (0.78–0.90) 1.46E�08 (0.82, 0.76–0.88) C/T 0.23 1.44E�03 0.80 (0.70–0.92) C/T 0.14 0.485 0.94 (0.81–1.11)

N/A indicates SNPs that did not meet the quality control criteria after imputation.
a Lines in bold indicate observed SNPs.
b Major/minor.
c OR calculated according to the minor allele identified in the European data set.

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

8
8
,
8
3
–
9
1
,
Ja
n
u
a
ry

7
,
2
0
1
1

8
7



Figure 2. Summary of Observed and Imputed SNPs Tested at
11p13
(A and B) Regional plot of observed (A) and imputed (B) SNPs dis-
playing –log10(p) for an ~300 kb window at 11p13 with approxi-
mate gene locations given at top.
(A) Purple and red circles indicate results for SNPs observed in the
replication study. The purple diamond and red square represent
the meta-analysis results between the GWAS and the replication
study. The symbol colors indicate the strength of LD with
rs2732552, as given in the figure legend. Gray indicates that LD
information was not available. The blue trace represents the
average recombination rate for all races.
(B) The purple diamond represents the most significant SNP after
imputation, rs2553772, with strength of LD to rs2553772 indi-
cated by symbol colors as given in the legend.
(C) Expanded view of ~14 kb haplotype associated with SLE in
Europeans (blue diamonds), Asians (red squares), and African
Americans (green triangles). Black lines indicate approximate loca-
tion of transcription factor binding sites. Green and brown lines
represent approximate location of methylated H3 histones.
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autoantibodies that recognize various components of the

PDH complex.19

CD44 is an ~95 kb gene with 20 exons that encodes

a cell-surface glycoprotein expressed on most immunolog-

ical cell types. Alternative splicing of this gene is excep-

tionally complex. Two constant regions of five exons flank

a central variable region consisting of ten exons, poten-

tially resulting in hundreds of protein isoforms (reviewed

in 20). These alternate splice variants are differentially

expressed across hematopoietic cells types, but what

governs this complex process is not understood. The

protein is important in lymphocyte activation, recircula-

tion and homing, apoptosis, hematopoiesis, and tumor

metastasis.20,21 CD44 can also heterodimerize with other

proteins on the cell surface and bind a diverse repertoire

of ligands (e.g., hyaluronic acid, osteopontin, collagens,

and matrix metalloproteinases).

There are data supporting a role for CD44 in the

pathogenesis of SLE and other inflammatory diseases. A

genome-wide linkage scan of multiplex SLE families

with thrombocytopenia has previously shown linkage

(LODmax ¼ 5.72) with the region that includes CD44 at

11p13.4 Linkage was independently confirmed, but anal-

ysis of four SNPs within CD44 showed no association,

which is consistent with the negative results from SNPs

within CD44 evaluated in the current study.22 Several

reports have shown differential protein expression and

complex alternative splicing of the CD44mRNA to be asso-

ciated with disease. Li et al. reported that T cells from SLE

patients overexpressed CD44 and demonstrated increased

adhesion and chemotactic migration when compared to

patients with rheumatoid arthritis (RA [MIM 180300]) or

healthy controls.23 These investigators also evaluated

kidney biopsies from patients with lupus nephritis and

with allograft kidney rejection for expression of CD44.

Although both of these tissue samples had CD3þ CD44þ
T cells, the SLE cases exhibited stronger staining for

CD44 than the allographed tissue.23 A recent study by

Crispin et al. shows that overexpression of CD44v3 and

CD44v6 isoforms in T cells was observed in SLE patients

and correlates with disease activity.24 These two splice vari-

ants are of particular interest because they have been

found to be sufficient for fibroblast-type synoviocytes of

RA patients to become invasive.25,26

CD44 is also important in the homing of T cells to the

pancreas in type 1 diabetes mellitus (MIM 222100). Inter-

estingly, nonobese diabeticmice injected withmonoclonal

antibodies against CD44 were resistant to diabetes, and

immunohistochemical analysis of the pancreas tissue of

these mice shows no active inflammation or destruction

of islet cells.27 In Sjögren syndrome (MIM 270150), CD44

was found to be overexpressed in minor salivary glands

of patients in a gene expression study.28 Expression of

CD44 on macrophages, T cells, and endothelial cells in

an ApoE�/� murine model of cardiovascular disease medi-

ates recruitment of inflammatory cells into atherosclerotic

lesions.29
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Figure 3. Linkage Disequilibrium Pat-
terns for the SNPs within the Associated
Region
Haplotype structure in Asians (A) and
African Americans (B) from the data
collected in this study. Diamonds show
r2 values between markers, and those in
solid black without a number are r2 ¼ 1.0.
Asian and European haplotype structure is
nearly identical.
We have established genetic association with SLE to

a haplotype between PDHX and CD44. Imputation and

transethnic mapping focus the effect on an ~14 kb haplo-

type in a region of strong regulatory potential that may

influence expression of the centromeric CD44. Further
Table 5. Reference Populations for Imputation

Populations
1000 Genomes
Panel 1 HapMap3 Panel 2

African Americans YRI YRI þ ASW þ CEU þ TSI

Asians CHB þ JPT CHB þ JPT

Europeans CEU CEU þ TSI

The following abbreviations are used: ASW, African ancestry in Southwest USA;
CEU, Utah residents with Northern and Western European ancestry from the
CEPH collection; CHB, Han Chinese in Beijing, China; JPT, Japanese in Tokyo,
Japan; TSI, Tuscans in Italy; YRI, Yorubans in Ibadan, Nigeria.

The A
functional studies of this complex locus will be required

to determine the precise variant or variants influencing

risk and to characterize the contribution to SLE and

perhaps other immunological, inflammatory, and onco-

logic phenotypes.
Supplemental Data

Supplemental Data include Supplemental Acknowledgments and

can be found with this article online at http://www.cell.com/

AJHG/.
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