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Abstract

This paper develops a model of the regulator-regulated firm relationship in

a regional natural gas commodity market which can be linked to a com-

petitive market by a pipeline. We characterize normative policies under

which the regulator, in addition to setting the level of the capacity of the

pipeline, regulates the price of gas, under asymmetric information on the

firm’s technology, and may (or may not) operate (two-way) transfers be-

tween consumers and the firm. We then focus on capacity and investigate

how its level responds to the regulator’s taking account of the firm’s incen-

tive compatibility constraints. The analysis yields some insights on the role

that transport capacity investments may play as an instrument to improve

the efficiency of geographically isolated markets.
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1 Introduction

This paper explores the issue of how the regulator’s objective of mitigating

monopoly power, typically emphasized in policy reforms of the natural gas

industry, should affect the capacity of transport networks. Such reforms

have been first conducted in the United States and the United Kingdom

over the last two to three decades and then in the European Union since

the late 90s. With the ongoing industry liberalization process, in particular,

in the EU, significant investments in the building of pipeline capacity have

been engaged. These heavy investments can be justified not only by the

need to anticipate growth in demand and to ensure security of supply, but

also as safeguards against possible exercise of monopoly power in isolated

regional markets.1 Such “local” monopolies seem, indeed, likely to emerge

in the EU, at least in the early stages of the liberalization process, as an

inheritance of the history of the structure of the industry.2

The purpose of this paper is to analyze the role that investments in

transport capacity of networks may play in the effort to mitigate the welfare

consequences of monopoly power in isolated regional gas commodity mar-

kets. Using an industry configuration presented in Cremer et al (2003), for

the case of perfect competition, and Cremer and Laffont (2002) and Gasmi

and Oviedo (2012), for the case of imperfect competition under complete

information, we develop a model of the regulator-regulated firm relation-

ship in a regional natural gas commodity market which can be linked to a

competitive market by a pipeline. First, we characterize normative policies

under which the regulator, in addition to setting the level of the capacity of

the pipeline, regulates the price of gas, under asymmetric information on the

firm’s technology, and may operate (two-way) transfers between consumers

and the regional monopoly. We then focus on capacity and investigate how

its level responds to the regulator’s taking account of the firm’s incentive

compatibility constraints. The analysis yields some insights on the role that

1This last point has been made clear by Borenstein et al (2000) for the case of the
electricity industry in California.

2The EU gas industry has historically been highly concentrated. Following the reforms
of the late 90s, an oligopolistic market structure seems to have developed (Chaton et al.,
2012).
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transport capacity investments may play as an instrument to improve the

efficiency of geographically isolated gas markets.

This paper is organized as follows. The next section presents the basic

market configuration considered in the paper, describes the cost structures of

the gas transport and supply activities, and outlines the information struc-

tures and timing of events assumed in the analysis. We assume that the

regulator first sets the level of transport capacity, a long term decision, and

then the level of price and transfers (if appropriate), a short-term decision,

but that at the time of making this latter decision, the regulator faces ad-

verse selection due to the fact that the marginal cost of the firm is private

information. While, as is standard in the theory of incentive regulation, the

level of the regulatory variables (price and transfers) will be marginal cost-

dependent, we assume that for capacity this is not the case. Next, given

the purpose of this paper, which is to analyze the response of capacity to

incentive compatibility constraints, we take as a benchmark a situation in

which, at the time of determining the capacity level, the regulator makes a

decision under uncertainty about the firm’s marginal cost.

Sections 3 and 4 are organized in a similar manner, but in section 3 we

assume that the regulator may use transfers whereas in section 4 transfers

are not permitted. In each of those two sections, first the optimal regulatory

mechanism under asymmetric information and the control scheme under

uncertainty are characterized. Then the levels of capacity achieved under the

regulatory mechanism, which accounts for the firm’s incentive compatibility

constraints, and the control scheme under uncertainty, which doesn’t, are

compared. Section 5 summarizes our main results and contributions to the

literature of gas markets regulation and the appendix gives the formal proofs

of the results.
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2 Industry configuration, information structures,

and timings of events

Consider a regional natural gas commodity market, market M , covered by

a single firm, firm m, producing with a technology represented by a cost

function Cm(qm) = θ̃qm + Fm, where qm is output, θ̃ is marginal cost such

that θ̃ ∈ {c, θ} with c < θ, and Fm is fixed cost.3 We assume that there may

well be an alternative source of gas at a price precisely equal to c, the lower

of the two possible values of firm m’s marginal cost. This gas would come

from a competitive market, market Cp, which is geographically distinct from

market M but may be linked to it by a pipeline of capacity K built at cost

C(K), with C(·) being increasing and convex, C ′(0) = 0,and C ′′(0) > 0.4

The regional monopoly’s marginal cost is thus at least as large as the level

at which the gas shipped from the competitive market is produced.

This firm is regulated and, following standard practices in regulatory

economics, when it has a low (high) marginal cost c (θ), it will be referred

to as the good- (bad-) “type” firm or the more (less) efficient firm. Hence,

we may think, and in fact will in this paper, of (θ − c) as representing

the productive inefficiency due to monopoly power when the firm is of the

bad type and will hereafter refer to this cost difference as the “cost gap.”

Gas produced under competitive conditions in market Cp and shipped into

the regional market M should help the regulator to counter the exercise

of market power by the monopoly. Figure 1 below illustrates this industry

configuration.

3The financing of this fixed cost Fm is always accounted for in the policies considered
in this paper. However, we assume that it is bounded. This point will be further discussed
later in the paper.

4In this paper, we assume that the cost of building the pipeline (if any) is supported
by the social planner/regulator, and hence there is no need to be more specific about the
cost structure of this activity. In particular, adding a fixed cost in our framework does
not affect the results. In some ongoing piece of work, we assume that the pipeline is built
by a regulated private firm.
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c

M

Cm(θ̃, qm) = θ̃qm + Fm

θ̃ ∈ {c, θ}, θ > c

K, C(K)

-

Figure 1: Industry configuration

We take the view that the fundamental reason for society to support

an investment in the building of a pipeline of a certain capacity is to allow

imports of gas into the regional market that would bring consumers the ben-

efits of competition.5 However, those benefits should be balanced against,

among other things, the firm’s fixed costs which need to be financed from

costly public funds. Letting QM (·) represent the regional market demand

which is assumed to be linear, if a volume of gas corresponding to full capac-

ity of the pipeline is shipped from the competitive market into the regional

market, the firm remains a monopoly on the residual demand QM (pM )−K

where K is the capacity of the pipeline and pM is market price.

In addition to controlling the building and the capacity of the pipeline,

we assume that the regulator has potentially two regulatory instruments,

namely, transfers between consumers and the firm (T ) and pricing of the

gas commodity (pM ). However, in this paper we assume that capacity is not

contingent upon the firm’s type.6 We consider the cases where the regulator

uses the two regulatory instruments and where pricing is the only available

regulatory instrument. Regulation is carried out under asymmetric infor-

mation on the firm’s marginal cost and the way we introduce asymmetric

information follows the standard approach in regulatory economics.7 More

specifically, we assume that at the time the regulator makes the decision on

the level of the regulatory instrument(s), the regional firm privately knows

the value of its marginal cost θ̃, whereas the regulator has only some prior

beliefs represented by the probabilities α and 1− α that this marginal cost

respectively takes on the values θ and c. Figure 2 below shows the timing

of events.
5Market Cp assumed to be efficient, we focus on consumption in market M where

market power is an issue.
6In the vocabulary of contract theory, one may say that capacity is “not contractible.”
7See Laffont and Martimort (2002).
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Time

Choice of K Acceptation or

refusal by the firm
Choice of

price-transfer

or price contract

Discovery of θ̃
by the firm

-

Execution

of contract

Figure 2: Timing of events under asymmetric information

Given the purpose of this paper, which is to analyze the response of

the level of transport capacity to asymmetric information, we take as a

benchmark a control scheme in which the regulator determines this level

under uncertainty. The sequencing of events of such a scheme is as follows.

First, the regulator chooses the capacity of the pipeline. Then, nature draws

the marginal cost of the firm θ̃ which is simultaneously discovered by the

firm and the regulator. Finally, the regulator sets the level of the regulatory

instruments, price and transfers or price only. Hence, when determining the

transport capacity level, the regulator, being uncertain about the value of

the firm’s marginal cost θ̃, sets this level based on the expected value of

marginal cost. Figure 3 below exhibits this timing of events.

-

Choice of K Choice of
price and transfer

(if available)

Time

Discovery of θ̃
by both the regulator

and the firm

Figure 3: Timing of events under uncertainty (benchmark)

The optimal policies when this control scheme under uncertainty is used

are derived by backward induction. First, at the price-(transfer-, if avail-

able) setting stage, the regulator maximizes ex-post social welfare under the

ex-post constraints associated with the regulatory scheme for a given level

of capacity. This yields the optimal price (and transfer) and the Lagrange
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multipliers associated with the constraints as functions of firm’s type and

network capacity. Second, at the capacity-setting stage, the regulator maxi-

mizes ex-ante welfare under the ex-post constraints and taking into account

the optimal price, transfer (if available), and Lagrange multipliers functions

obtained in the first stage. However, since capacity is always controlled by

the regulator, the solution of this sequential constrained welfare maximiza-

tion program is the same as that obtained by maximizing ex-ante welfare

with respect to the available regulatory instruments, under the ex-post con-

straints associated with the regulatory scheme.

In the same vein, the optimal policies, when the regulatory mechanism

under asymmetric information is used, are obtained by maximizing ex-ante

social welfare under the ex-post constraints. However, there is an important

difference which is that since at the time of setting the regulatory instru-

ments, price and transfers (if available), the firm has private information

on its marginal cost, the regulator has to offer it an incentive compatible

contract. Hence, the set of ex-post constraints in which the regulator max-

imizes ex-ante social welfare now should incorporate those that guarantee

that the solution is compatible with the firm’s incentives.

As indicated, our main objective is to analyze within this normative

framework the impact of firm’s incentives on the capacity of the transport

network. For a a fixed set of available regulatory instruments, we charac-

terize both the the asymmetric information regulatory mechanism and the

control scheme under uncertainty and compare the achieved optimal levels

of pipeline capacity. This is carried out in the next two sections on the

basis of an analysis of the regulatory mechanism scheme A and the control

scheme B under which, in addition to controlling K, the regulator sets pM

and T , under A, and only pM , under B. The comparison of the levels of

capacity achieved under uncertainty and under asymmetric information al-

lows us to characterize the conditions under which incentive regulation calls

for “over-” (“under-”) sizing of the pipeline that links the regional market

to the competitive market.
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3 Transport capacity and compatibility with firm’s

incentives when transfers are allowed

In this section, we consider control scheme A in which, in addition to con-

trolling the transport capacity K, the regulator sets the gas commodity

price pM and may use public funds raised through taxation to make mone-

tary transfers between consumers and the firm. Since taxation generates a

deadweight loss, transferring T monetary units to the firm costs taxpayers

(1 + λ)T where λ is the social cost of public funds. Letting S(·) denote the

gross surplus of consumers in market M and U(θ̃) the utility of the θ̃-type

firm is given by

U(θ̃) = (pM (θ̃)− θ̃)[QM (pM (θ̃))−K]− Fm + T (θ̃) (1)

and ex post social welfare is expressed as

W (θ̃) =
{
S(QM (pM (θ̃))) + λpM (θ̃)QM (pM (θ̃))

}

−
{
(1 + λ)

[
θ̃(QM (pM (θ̃))−K) + cK + C(K) + Fm

]}
− λU(θ̃) (2)

This expression says that social welfare is equal to the social value of total

supply of gas (gross consumer surplus plus fiscal value of revenues from gas

supply), minus the social cost of gas supply, minus the social opportunity

cost of the firm’s rent.8

8Total supply of gas QM (pM(θ̃)) in the market, composed of K units imported from

the competitive market and qm(θ̃) units produced locally by the firm θ̃, brings taxpayers

an aggregate (net) welfare V (θ̃) given by

V (θ̃) = {S(QM (pM (θ̃)))− pM (θ̃)QM (pM (θ̃))}

+{(1 + λ)
[
(pM (θ̃)− c)K − C(K)

]
} − {(1 + λ)T (θ̃)}

This taxpayers’ welfare comprises the net surplus of consumers in the regional market, the
social valuation of profits generated by the K units of gas imported from the competitive
market, and the social cost of the transfer T made to the firm. The utilitarian social
welfare function W is then given by the sum of this taxpayers’ welfare and the firm’s
utility. Substituting for V given above and T from (1) yields expression (2). We then see
that reducing the monopoly’s utility is socially desirable for this utility includes a transfer
of public funds raised through distortionary taxes. We also see that the social valuation
of total production explicitly includes the fiscal value of the revenues that it generates.
Indeed, given that transfers are allowed, these revenues allow the government to rely less
on public funds collected through taxation that generates a deadweight loss.
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The firm’s participation and output nonnegativity constraints that will

be taking into account in the social planner’s/regulator’s optimization pro-

grams are given by

U(θ̃) ≥ 0 (3)

qm(θ̃) = QM(pM (θ̃))−K ≥ 0 (4)

Under the scheme A, given the timings described in Figures 2 and 3, opti-

mal regulation under uncertainty and asymmetric information both entail

maximizing expected or ex ante social welfare

E
θ̃
[W (θ̃)] = αW (θ) + (1− α)W (c) (5)

with respect to pM (θ), pM (c), U(θ), U(c), and K, subject to the ex post

constraints

U(θ) ≥ 0 (φ) (6)

U(c) ≥ 0 (φ) (7)

qm(θ) ≥ 0 (ν) (8)

qm(c) ≥ 0 (ν) (9)

where the corresponding Lagrange multipliers are shown in parentheses.

However, for scheme A under asymmetric information, as we will see be-

low, incentive compatibility constraints need to be added to this set of

constraints. For ease of exposition, hereafter we simplify the notation by

letting pM ≡ pM (θ), p
M

≡ pM (c), U ≡ U(θ), U ≡ U(c), qm ≡ qm(θ),

q
m

≡ qm(c), QM ≡ QM (pM (θ)), Q
M

≡ QM (pM (c)), and Q′
M ≡ Q′

M (pM (θ))

(= Q′
M (pM (c)).

3.1 Scheme A under uncertainty

To solve for the optimal policies when scheme A under uncertainty is used,

one maximizes ex ante social welfare (5) with respect to pM(θ), pM(c),

U(θ), U(c), and K, subject to the constraints (6)-(9). The corresponding
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first-order conditions are:9

αλQM + [α(1 + λ)(pM − θ) + ν]Q′
M = 0 (10)

(1− α)λQ
M

+ [(1− α)(1 + λ)(p
M

− c) + ν]Q′
M = 0 (11)

(1 + λ) [α(θ − c)− C ′(K)]− (ν + ν) = 0 (12)

−(αλ− φ) = −((1− α)λ− φ) = 0 (13)

φU = φU = 0 (14)

ν qm = 0 (15)

ν q
m

= 0 (16)

From (14) it is straightforward to see that the participation constraint is

binding for both types of firm, i.e., U = U = 0. Some further useful proper-

ties implied by this system of first-order conditions are stated in the lemma

that follows.

Lemma 1 Under scheme A with uncertainty, optimal prices and shadow

costs of the firm’s output nonnegativity constraints satisfy p
M

≤ pM and

ν ≤ ν.

This lemma says that optimal price is nondecreasing in the firm’s marginal

cost. Moreover, regarding the values of the shadow costs of the firm’s out-

put nonnegativity constraint, (ν, ν), out of the four possible combinations

(ν = 0, ν = 0), (ν > 0, ν = 0), (ν > 0, ν > 0), and (ν = 0, ν > 0), the lemma

rules out the latter combination as a solution. Hence, the decision to shut

down the firm, if it is of the more efficient type, and let it active, if it is of

the less efficient one, is never socially optimal. Moreover, it can be shown

that a solution with ν > 0 and ν > 0 cannot arise either, i.e., the decision

to always shut down the firm, independently of its type, is also never op-

timal.10 Hence, one can ignore the nonnegativity constraint (9) and write

9Given that C′′(K) > 0 for any K ≥ 0, the demand schedule is con-

cave and downward-sloping, and that (pM − θ̃) ≥ 0, the condition (1 +

λ)C′′(K)
[
(1 + 2λ)Q′

M + (1 + λ)(pM − θ̃))Q′′
M

]
< 0 holds, and hence the ex post wel-

fare function (2) and the ex ante expected social welfare function (5) are strictly concave.
These conditions are thus necessary and sufficient and the solution of this system is not
only a local but also a global interior welfare maximizers.

10To see this assume that ν > 0 and ν > 0. Then, (15) and (16) imply qm = q
m

= 0,
which says that the marketM is fully covered by gas which is shipped from the competitive
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that ν = 0, which says that the more efficient firm is always active, in which

case, from the proof of the lemma in the appendix, we obtain p
M

< pM .

Letting ε(QM ) ≡ −Q′
MpM/QM , ε(Q

M
) ≡ −Q′

Mp
M
/Q

M
and rewriting

the first-order conditions (10)-(16) yields Proposition 1 below that describes

the solutions corresponding to the two remaining combinations on the ν’s,

namely, (ν = 0, ν = 0) and (ν > 0, ν = 0).

Proposition 1 When, in addition to controlling capacity, the social plan-

ner determines price, has the ability to make transfers between consumers

and the firm, and faces uncertainty about the marginal cost of the regional

monopoly at the time of setting capacity, there are two possible exclusive

policies (K, pM , p
M
, φ, φ, ν, ν). These policies, denoted by A1u and A2u, are

characterized as follows:

A1u - Under this policy, both types of firms are active (ν = ν = 0) and have

zero utility (φ = αλ, φ = (1 − α)λ), market prices follow a Ramsey-

type rule, and pipeline capacity is such that the social marginal cost of

imports is equal to the expected social marginal cost of local production:

pM − θ

pM
=

λ

1 + λ

1

ε(QM )
(17)

p
M

− c

p
M

=
λ

1 + λ

1

ε(Q
M
)

(18)

(1 + λ)C ′(K) = α(1 + λ)(θ − c) (19)

A2u - Under this policy, the firm of bad type is shut down, the firm of good

type is active but gets zero utility (ν > 0, ν = 0, φ = (1 − α)λ),

market price obeys the Ramsey rule (18), capacity is at the level that

just shuts down the firm of bad type (K = QM ) and is such that

the social marginal cost of imports plus the shadow cost of this firm’s

output nonnegativity constraint (equivalent to the cost of interrupting

market Cp, i.e., K > 0. Solving the first-order conditions (10) and (11) for ν and ν and
substituting into (12) yields λQM + (1 + λ)[pM − c − C′(QM )]Q′

M = 0. However, ν > 0
implies λQM +(1+λ)(pM −c)Q′

M ≥ 0. Hence, since C′(·) ≥ 0, we have QM = qm+K ≤ 0
which contradicts K > 0.
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its production) is equal to the expected social marginal cost of local

production, i.e.,

(1 + λ)C ′(K) + ν = α(1 + λ)(θ − c) (20)

Policy A1u occurs if and only if the condition (0 <)(θ− c) <
C′(QM )

α
, which

says that the cost gap is “sufficiently low,” holds. Policy A2u occurs if and

only if the reverse of this condition, i.e., (θ − c) ≥ C′(QM )
α

, which says that

the cost gap is “sufficiently high,” is true.

Under policy A1u, even if the local monopoly does not have the “right”

marginal cost (c), it meets part of the market demand with a (Ramsey-type)

price markup which allows it to balance its budget. Adding (1+λ)c on both

sides of (19), we see that, at the optimum, capacity is such that the social

marginal cost of imports, (1 + λ)[c+C ′(K)], is equal to the expected social

marginal cost of the firm, (1+λ)[αθ+(1−α)c]. It is optimal to let even the

less efficient firm be active because the expected social marginal cost of local

production is smaller than the social marginal cost of imports at the level of

these imports at which the less efficient firm is inactive, (1+λ)[c+C ′(QM )],

a condition given at the end of the proposition.11

Under policy A2u, because the expected social marginal cost of having

gas supplied locally is greater than the social marginal cost of importing it at

the imports level that makes the less efficient firm inactive, indeed, society

finds it worthwhile to shut down this bad type firm. However, capacity is

now such that the expected social marginal cost of local production is equal

to the social marginal cost of imports plus the shadow cost of the less efficient

firm’s output nonnegativity constraint (ν) since this firm’s production is now

interrupted.12

11Recall from Lemma 1 and the discussion that follows the lemma that the low-marginal
cost firm is always active.

12The bad type firm’s utility is obviously nil under this policy that interrupts its pro-
duction (in fact, the optimal value of φ is αλ). Although we do not provide an explicit
form for ν, we find that the (shutting) level of price of this firm is such that

pM − θ

pM
=

λ

1 + λ

1

ε(QM )
−

ν

α(1 + λ)pM

12



To illustrate the policies discussed in Proposition 1, let us assume the

following functional forms:

QM (pM ) = γ − pM , C(K) =
ω

2
K2; γ, ω > 0, γ > θ > c (21)

Then, if, and only if, the condition

(0 <)(θ − c) <

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (22)

which says that the cost gap is “low,” holds, policy (A1u), under which

the firm is active independently of its type, occurs and price markups and

capacity are given by

pM = θ +

[
λ

1 + 2λ

]
(γ − θ) (23)

p
M

= c+

[
λ

1 + 2λ

]
(γ − c) (24)

K =
α(θ − c)

ω
(25)

The reverse of condition (22), which says that the cost gap is “high,”

i.e., [
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) ≤ (θ − c) < (γ − c) (26)

where the right-hand-side of this inequality comes from the fact that γ > θ,

is a necessary and sufficient condition for policy (A2u), under which only

the firm of good type is active, to occur. The market price markup under

this policy is given by (24) and transport capacity that makes the firm of

bad type shut down satisfies

K =

[
α(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (27)

3.2 Scheme A under asymmetric information

Under asymmetric information about the value of the firm’s marginal cost θ̃,

after building transport capacity the regulator has to offer feasible contracts

yielding ν = α(1 + λ)
[(

θ − λQM

(1+λ)Q′

M

)
− pM

]
. Hence, this shadow cost of the bad type

firm’s output nonnegativity constraint can also be interpreted as the social marginal val-
uation of the expected price reduction required to guarantee that this firm is shut down.

13



to the regional firm. Such contracts need to satisfy, in addition to the

firm’s participation and output nonnegativity constraints (6)-(9), the firm’s

incentive compatibility constraints which can be written as:

U ≥ U − (θ − c)q
m

(µ) (28)

U ≥ U + (θ − c)qm (µ) (29)

where the corresponding Lagrange multipliers are shown in parentheses.13

Adding up (28) and (29) yields q
m

≥ qm which implies the standard result

p
M

≤ pM .14 As a consequence, the Lagrange multiplier associated with

the c-type firm’s output nonnegativity constraint (9), ν, is equal to zero.15

Moreover, because a more efficient firm can always mimic a less efficient one

at a lower level of cost, the participation constraint of the former, i.e., (7),

can also be ignored (see (29)).

Maximizing expected social welfare given by (5) subject to the remaining

constraints yields the following first-order conditions which are necessary

and sufficient:16

αλQM + [α(1 + λ)(pM − θ) + ν − µ(θ − c)]Q′
M = 0 (30)

(1− α)λQ
M

+ [(1− α)(1 + λ)(p
M

− c) + µ(θ − c)]Q′
M = 0 (31)

(1 + λ) [α(θ − c)− C ′(K)]− ν − (µ− µ)(θ − c) = 0 (32)

−[αλ− φ− (µ− µ)] = 0 (33)

−[(1− α)λ+ (µ− µ)] = 0 (34)

µ[U − U + (θ − c)q
m
] = µ[U − U − (θ − c)qm] = 0 (35)

φU = 0 (36)

ν qm = 0 (37)

13These expressions of the firm’s incentive compatibility constraints are derived by using
(1) and a standard add-and-substract technique.

14See, e.g., Baron (1989).
15To see why this is true note that, since q

m
≥ qm, clearly the more efficient firm cannot

be shut down while the less efficient one is left active, i.e., ν = 0 ⇒ ν = 0. When the
nonnegativity constraints (8) and (9) are both binding, i.e., both firms are shut down
(ν, ν > 0), the incentive constraints (28) and (29) are trivially satisfied and we are back to
the case with uncertainty analyzed in the previous subsection. But then in this case, we
have already shown (see footnote (10)) that such a solution cannot arise at the optimum.

16See footnote 9.
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From (33) and (34), we see that φ = λ > 0 and the participation constraint

of the less efficient firm is binding, i.e., U = 0. It is then straightforward to

show that the incentive compatibility constraint of the more efficient firm

is binding, and hence U = (θ − c)qm.17 This equality and the fact that

feasible prices satisfy p
M

≤ pM imply that the incentive compatibility of

the less efficient firm, (28), is not binding, and hence µ = 0. Proposition 2

below gives a characterization of the optimal policies described by the above

first-order conditions (30) − (37).

Proposition 2 When, in addition to controlling capacity, the social plan-

ner regulates price under asymmetric information about the marginal cost of

the regional monopoly and has the ability to make transfers between the con-

sumers and the firm , there are two possible policies (K, pM , p
M
, φ, φ, ν, ν)

which are exclusive. These optimal policies denoted by A1ai and A2ai are

characterized as follows:

A1ai - Under this policy, ν = ν = 0 (the firm is always active), µ = 0 and

µ = (1−α)λ (the θ-type firm’s incentive constraint is not binding while

the c-type firm’s is), φ = λ and φ = 0 (the θ-type firm’s informational

rent is nil while the c-type firm makes a strictly positive rent), and

market price markup and capacity are such

pM − θ

pM
=

λ

1 + λ

1

ε(QM )
+

λ

1 + λ

(1− α)

α

(θ − c)

pM
(38)

p
M

− c

p
M

=
λ

1 + λ

1

ε(Q
M
)

(39)

(1 + λ)C ′(K) = (α+ λ)(θ − c) (40)

A2ai - Under this policy, ν > 0 and ν = 0 (only the more efficient firm is

active), µ = (1−α)λ (the c-type firm’s incentive constraint is binding),

φ = 0 (the c-type firm makes a strictly positive rent), and market price

markup satisfies (39) while capacity K (= QM ) is such that

(1 + λ)C ′(QM ) + ν = (α+ λ)(θ − c) (41)

17These observations on the firm utility are consistent with the fact that the rent of the
firm is socially costly as can be seen from (2).
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Policy A1ai occurs if and only if the condition (0 <)(θ− c) < C′(QM )
α+λ

, which

says that the cost gap is “sufficiently low,” holds. Policy A2ai occurs if and

only if the reverse of this condition, i.e., (θ − c) ≥
C′(QM )
α+λ

, which says that

the cost gap is “sufficiently high,” is true.

Under policy A1ai, even if it is of the less efficient type, the firm meets

part of the market demand. While the more efficient firm pricing rule is

of a standard Ramsey type, that of the less efficient one shows an “extra”

distortion term, λ
1+λ

(1−α)
α

(θ−c)
pM

. This distortion of the less efficient firm’s

output is necessary to decrease the information rent of the more efficient

firm, U = (θ − c)qm. Adding (1 + λ)c on both sides of (40), we see that

optimal capacity is such that the social cost of importing an additional unit

is equal to the expected social cost of having this unit produced by the firm

plus the social opportunity cost of the expected information rent that this

unit generates, λ(1−α)(θ− c). When this policy arises this aggregate social

cost of having the marginal unit produced in the regional market is smaller

than the social marginal cost of having it shipped in from the competitive

market, at the level of imports where the less efficient firm is shut down, a

condition that is stated at the end of Proposition 2.

Under policy A2ai, the comparison between aggregate social cost of hav-

ing an additional unit produced by the firm and the social cost of having it

imported at a level of imports such that the θ-type firm is indeed inactive

calls for the shutting down of the firm if it is of this less efficient type. Pricing

of the active firm (the c-type) follows a standard Ramsey rule and, as can

be seen from (41), capacity is such that the aggregate social marginal cost of

local production is equal to social marginal cost of imports to which is now

added the shadow cost of the θ-type firm’s output nonnegativity constraint

ν to account for its shutting down.18

Using the functional forms given in (21), the solution to the system of

first-order conditions (30)-(37) yields two policies. Policy A1ai occurs if, and

18The shutting down level of price for the firm θ is given by

pM − θ

pM
=

λ

1 + λ

1

ε(QM )
+

λ

1 + λ

(1− α)(θ − c)− ν

αpM
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only if, the condition

(0 <)(θ − c) <
α(1 + λ)

(α+ λ)

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) (42)

saying that the cost gap is “low,” holds. Under this policy, both types of

firms are active and price markups and capacity are given by

pM = θ +
λ [(1− 2α)(θ − c) + α(γ − c)]

α(1 + 2λ)
(43)

p
M

= c+

[
λ

1 + 2λ

]
(γ − c) (44)

K =
(α+ λ)(θ − c)

ω(1 + λ)
(45)

The reverse of condition (42), i.e.,

α(1 + λ)

(α+ λ)

[
ω(1 + λ)

ω(1 + λ) + α(1 + 2λ)

]
(γ − c) ≤ (θ − c) < (γ − c) (46)

which says that the cost gap is “high,” is a necessary and sufficient condition

for policy A2ai to occur. Under this policy, the c-type firm is active and

market price markup and transport capacity are respectively given by (24)

and (27).

3.3 Scheme A under uncertainty vs. under asymmetric in-

formation

By comparing the capacity levels achieved under scheme A under uncer-

tainty (KA
u ) and under asymmetric information (KA

ai), we are now able to

assess the impact, on investment in transport capacity, of the firm’s incen-

tive compatibility constraints (28) and (29). Since C ′(·) is increasing, from

(12) and (32), we obtain

sign[KA
ai −KA

u ] = sign[(1 + λ)[C ′(KA
ai)− C ′(KA

u )]]

= sign[(1− α)λ(θ − c)− (νAai − νAu )] (47)

The next proposition gives the sign of this capacity difference.

Proposition 3 When, in addition to controlling capacity, the social planner

regulates the gas commodity price and may operate transfers between the firm

17



and the consumers, accounting for the firm’s incentive compatibility calls for

transport capacity expansion (in the weak sense), i.e., KA
ai ≥ KA

u .

To illustrate this proposition let us use functional forms given in (21).

A first step is to directly compare the capacity levels given in (25), (27),

and (45). This is straightforward and left to the reader. However, since

the intervals defining the parameter space for each policy are not always

compatible, we complete the illustration of this proposition with numerical

simulations. Because scheme A doesn’t depend on the to the fixed cost, we

ran simulations with Fm = 0 and focused on the relationship between the

capacity gap (KA
ai − KA

u ) and the endogenous variables νAai and νAu in the

{α, (θ − c)}-space. We used the following grids of parameters:

• Case 1: {γ, c, ω, λ} = {10, 2, 0.50, 0.33}, (θ−c) ∈ [0, 4.94] and α ∈ [0, 1]

• Case 2: {γ, c, ω, λ} = {10, 2, 0.52, 0.85}, (θ−c) ∈ [0, 4.94] and α ∈ [0, 1]

• Case 3: {γ, c, ω, λ} = {10, 2, 0.17, 0.25}, (θ−c) ∈ [0, 2.24] and α ∈ [0, 1]

Figure 4 (a-b) exhibits the results of the simulated values of (KA
ai −

KA
u ), ν

A
ai, and νAu . Figure 4a shows in white and gray the regions where

respectively (KA
ai − KA

u ) > 0 and (KA
ai − KA

u ) = 0. Figure 4b exhibits the

curves formed by the (α, (θ−c)) pairs such that νAai = 0 and νAu = 0. A cross-

examination of these figures shows that whenever νAai = 0, νAu = 0, KA
ai >

KA
u , as stated in the proof of Proposition 3 given in the appendix. When

both νAai and νAu are strictly positive, i.e., when the θ-type firm is shut down

under both uncertainty and asymmetric information, KA
ai = KA

u . Finally,

we see that when νAai > 0 and νAu = 0, i.e., when the θ-type firm is shut

down under asymmetric information but remains active under uncertainty,

KA
ai > KA

u .
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4 Transport capacity and compatibility with firm’s

incentives when transfers are not allowed

Let us now consider scheme B in which the social planner controls capacity,

regulates price, but may no longer operate transfers between consumers and

the firm. In this case, the θ̃-type firm’s utility is merely its profits Π(θ̃) given

by

Πm(θ̃) = (pM (θ̃)− θ̃)[QM (pM (θ̃))−K]− Fm (48)

Ex post social welfare is expressed as

W (θ̃) = {S(QM (pM (θ̃)))− pM (θ̃)QM (pM (θ̃))}

+{(1 + λ)
[
(pM (θ̃)− c)K − C(K)

]
}

+{(pM (θ̃)− θ̃)
[
QM (pM (θ̃))−K

]
− Fm} (49)

This social welfare is the sum of the net consumer surplus, the social value of

the profits generated by the K units imported from the competitive market,

and the profits of the firm that now cannot be taxed as transfers are not

allowed. Gathering terms, we obtain

W (θ̃) =
{
S(QM (pM (θ̃))) + λpM (θ̃)K

}

−
{
θ̃(QM (pM (θ̃))−K) + (1 + λ) [cK + C(K)] + Fm

}
(50)

which shows that, as now transfers are not allowed, the regulator assigns a

fiscal value λpM (θ̃)K only to the revenues generated by the K units shipped

from the competitive market Cp into the regional market M . The firm’s

participation and output nonnegativity constraints are respectively given

by

Πm(θ̃) ≥ 0 (51)

qm(θ̃) = QM(pM (θ̃))−K ≥ 0 (52)

Scheme B under uncertainty and asymmetric information both call for

taking into account the ex-post participation and output nonnegativity con-
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straints

Πm = (pM − θ)qm − Fm ≥ 0 (φ) (53)

Πm = (p
M

− c)q
m
− Fm ≥ 0 (φ) (54)

qm = QM −K ≥ 0 (ν) (55)

q
m

= Q
M

−K ≥ 0 (ν) (56)

where the corresponding Lagrange multipliers are shown in parentheses,

when maximizing ex ante social welfare

E[W (θ̃)] = αW (θ) + (1− α)W (c) (57)

with respect to pM , p
M
, and K. A property of the set defined by the above

constraints that turns out to be very useful for analyzing the optimization

program is described in the lemma that follows.

Lemma 2 The constraint set defined by (53)-(56) is convex and satisfies

the nondegenerate constraint qualification (NDCQ) condition. In order to

satisfy the linear independence constraint qualification (LICQ) condition,

when there is no fixed cost, the participation constraints (53) and (54) should

be ignored when either (55) or (56) is satisfied with equality, in which case

(53) and (54) become liminal constraints, i.e., they are active with φ = φ =

0. When there is fixed cost, the LICQ condition is always satisfied since the

firm is always active, i.e., ν = ν = 0.

Lemma 2 basically shows that the constraint set faced by the regulator

is well behaved and helps to clarify the interpretation of the optimal values

of the Lagrange multipliers (the φ’s and the ν’s). Whenever a ν is strictly

positive, i.e., the firm is shut down, the interpretation of the φ somewhat

looses its full significance. For example, take the case of the less efficient

firm. If Fm > 0, it can be shown by contradiction from (53) that the

firm is always active, i.e., ν = 0. Hence, for this firm to be inactive, i.e.,

for ν > 0, it must be the case that Fm = 0. But then, the participation

constraint (53) can be neglected. Technically, this is taken care of by setting

φ = 0 in the slack complementarity condition, φ Π = 0, associated with the

firm’s participation constraint, which would suggest that the firm is making

positive profits.
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4.1 Scheme B under uncertainty

With scheme B under uncertainty, the social planner maximizes (57) with

respect to pM , p
M
, and K, subject to the constraints (53)-(56). The corre-

sponding first-order conditions are given by

α[λK + (pM − θ)Q′
M ] + φ[(pM − θ)Q′

M + qm] + νQ′
M = 0 (58)

(1− α)[λK + (p
M

− c)Q′
M ] + φ[(p

M
− c)Q′

M + q
m
] + νQ′

M = 0 (59)

(1 + λ) [α(θ − c)− C ′(K)] + (αλ − φ)(pM − θ)

+((1− α)λ− φ)(p
M

− c)− ν − ν = 0 (60)

φ[(pM − θ)qm − Fm] = 0 (61)

φ[(p
M

− c)q
m
− Fm] = 0 (62)

ν qm = ν q
m

= 0 (63)

Some properties implied by (58)-(63) are indicated in the next lemma.

Lemma 3 With scheme B under uncertainty, provided second-order condi-

tions are satisfied, at the optimum we have p
M

≤ pM , Πm ≥ Πm, φ ≤ φ,

and ν ≤ ν.

Lemma 2 reduces the number of possible combinations of active and inactive

constraints (53)-(56), at a candidate solution to the social planner’s opti-

mization program, to seven. Lemma 3 further reduces this number to five.

Indeed, this lemma rules out solutions with either (φ = 0, φ = 0, ν = 0, ν >

0) or (φ = 0, φ > 0, ν = 0, ν = 0). Proposition 4 below characterizes the five

remaining solutions.

Proposition 4 shows that under policy (B1u) even the relatively less

efficient firm is active and capacity is such that the social marginal cost of

imports, (1 + λ)[c + C ′(K)], net of the expected marginal fiscal revenue of

imported gas, λ[αpM + (1 − α)p
M
], is equal to the expected marginal cost

of the firm, αθ + (1− α)c.

Under policy (B2u) the less efficient firm just breaks even and capacity

is such that the social marginal cost of imports net of the expected marginal
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fiscal revenue of imported gas is equal to the expected marginal cost of the

firm net of the social value of the contribution of the marginal unit of the

less efficient firm to the relaxation of its participation constraint, φFm

qm
.

Proposition 4 When, in addition to controlling capacity, the social plan-

ners determines price and faces uncertainty about the regional firm’s marginal

cost, the optimal policy (K, pM , p
M
, φ, φ, ν, ν) is of one of the following types:

(B1u) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ = 0, φ = 0, ν =

0, ν = 0) characterized by the following conditions:

pM − θ

pM
=

λK

QM

1

ε(QM )
(64)

p
M

− c

p
M

=
λK

Q
M

1

ε(Q
M
)

(65)

(1 + λ)C ′(K) = α(1 + λ)(θ − c)

+λ[α(pM − θ) + (1− α)(p
M

− c)] (66)

(B2u) The policy (0 < K < QM < Q
M
, pM ≥ θ, p

M
> c, φ > 0, φ = 0, ν =

0, ν = 0) described by

pM − θ

pM
=

[
αλK + φ qm
(α + φ)QM

]
1

ε(QM )
=

Fm

pMqm
, (67)

(65), and

(1 + λ)C ′(K) = α(1 + λ)(θ − c)

+λ

[
α
Fm

qm
+ (1− α)(p

M
− c)

]
− φ

Fm

qm
(68)

(B3u) The policy (0 < K = QM < Q
M
, pM > c, p

M
> c, φ = 0, φ = 0, ν >

0, ν = 0) described by

pM − θ

pM
=

λ

ε(QM )
−

ν

αpM
, (69)

(65), and

(1 + λ)C ′(QM ) = α(1 + λ)(θ − c)

+λ[α(pM − θ) + (1− α)(p
M

− c)]− ν (70)
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(B4u) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ > 0, φ > 0, ν =

0, ν = 0) characterized by (67),

p
M

− c

p
M

=

[
(1− α)λK + φq

m

(1− α+ φ)Q
M

]
1

ε(Q
M
)
=

Fm

p
M
q
m

, (71)

and

(1 + λ)C ′(K) = α(1 + λ)(θ − c)

+λ

[
α
Fm

qm
+ (1− α)

Fm

q
m

]
−

(
φ
Fm

qm
+ φ

Fm

q
m

)
(72)

(B5u) The policy (0 < K = QM = Q
M
, pM = p

M
> c, φ = 0, φ = 0, ν >

0, ν > 0) described by (69),

p
M

− c

p
M

=
λ

ε(Q
M
)
−

ν

(1− α)p
M

, (73)

and

(1 + λ)C ′(QM ) = (α+ λ)(θ − c) + λ(pM − θ)− (ν + ν) (74)

When there is no fixed cost (Fm = 0), only policies (B1u), (B3u), and

(B5u) may arise and they are exclusive. Policy (B5u) arises when λ2K +

(1 + λ)Q′
MC ′(K) > 0. When λ2K + (1 + λ)Q′

MC ′(K) ≤ 0, λ2 + (1 +

λ)Q′
MC ′′(K) < 0, and (0 <)α(θ − c) < C ′(QM ) + λ2QM

(1+λ)Q′
M
, policy (B1u)

arises, while when λ2K + (1 + λ)Q′
MC ′(K) ≤ 0, λ2 + (1 + λ)Q′

MC ′′(K) <

α(1 + λ)2, and α(θ − c) ≥ C ′(QM ) + λ2QM

(1+λ)Q′
M
, policy (B3u) arises.

When there is a fixed cost (Fm > 0), only policies (B1u), (B2u), and

(B4u) may arise and they are exclusive. If λ2K + (1 + λ)Q′
MC ′(K) ≤ 0,

λ2+(1+λ)Q′
MC ′′(K) < 0, 0 < α(θ−c) < C ′(K)+ λ2K

Q′
M

−αλ(
λKqm+Q′

MFm

qmQ′
M

),

and λKqm + Q′
MFm > 0, policy (B1u) arises. When C ′(K) + λ2K

Q′
M

−

αλ(
λKqm+Q′

MFm

qmQ′
M

) ≤ α(θ − c) < C ′(K) − λFm

1+λ
[
qm+α(q

m
−qm)

qmq
m

], policy (B2u)

arises.19 Finally, when α(θ− c) ≥ C ′(K)− λFm

1+λ
[
qm+α(q

m
−qm)

qmq
m

], policy (B4u)

is optimal and second-order conditions are always satisfied.

19Second-order conditions for this policy are summarized by α2λ2(α2K+(qm+λK((1−

α)qm −K(λ−α(2 +λ)))))− 2α2λφqm(qm − (2+λ)K) +αφ
2
qm(3qm +2λK) + 2φ

3
qm

2 −
α2(1 + λ)(qm − λK)2Q′

MC′′(K) > 0.
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Under policy (B3u), the less efficient firm is shut down and capacity is

such that the social marginal cost of imports (at the level that makes the

less efficient firm inactive) net of the expected marginal fiscal revenue of

imported gas, is equal to the expected marginal cost of the firm net of the

shadow cost of the θ-type firm’s output nonnegativity constraint ν.20

Under policy (B4u), the firm, independently of its type, just breaks even

and capacity is such that the social marginal cost of imports net of the

expected marginal fiscal revenue of imported gas, is equal to the expected

marginal cost of the firm, net of the aggregate ex-post social value of the

contribution of the marginal unit of the firm to the relaxation of its partic-

ipation constraint, φFm

qm
+ φFm

q
m

.

Finally, under policy (B5u) the firm, independently of its type, is shut

down and capacity is such that the social marginal cost of imports net of the

expected marginal fiscal revenue of imported gas, is equal to the expected

marginal cost of the firm net of the aggregate ex-post shadow cost of the

firm’s output nonnegativity constraint, ν + ν.21 Note that when there is no

cost of public funds, i.e., λ = 0, policy (B5u) is never optimal.

To illustrate these policy solutions, let us assume that Fm = 0 and use

the functional forms given by (21). Note that in this particular case the

sign of both expressions λ2K+(1+λ)Q′
MC ′(K) and λ2+(1+λ)Q′

MC ′′(K),

used as criteria for selecting an optimal policy, is the same as the sign of

−Ψ, where Ψ ≡ ω(1+λ)−λ2. Solving (58)-(63) yields the following policies.

If Ψ ≥ 0, and the condition

(0 <)(θ − c) <

[
Ψ

Ψ+ α(1 + λ)2

]
(γ − c) (75)

20From (69), we see that ν = α
[(

θ − λQM

Q′

M

)
− pM

]
> 0, and hence it can be interpreted

as the marginal valuation of the expected price reduction required to guarantee that the
less efficient firm is at worse shut down.

21We have (ν + ν) =
[(

αθ + (1− α)c− λQM

Q′

M

)
− pM

]
> 0, and hence it can be inter-

preted as the marginal valuation of the expected price reduction required to guarantee
that the firm, independently of its type, is at worse shut down.
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holds, policy (B1u) arises with qm > 0 (ν = 0), and

K =

[
α(1 + λ)

Ψ

]
(θ − c) (76)

pM = θ +

[
αλ(1 + λ)

Ψ

]
(θ − c) (77)

p
M

= c+

[
αλ(1 + λ)

Ψ

]
(θ − c) (78)

If Ψ ≥ 0 but condition (75) does not hold, i.e.,
[

Ψ

Ψ+ α(1 + λ)2

]
(γ − c) ≤ (θ − c) < (γ − c) (79)

we obtain policy (B3u) with qm = 0 (ν > 0), and

K =

[
α(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (80)

pM = c+

[
Ψ+ αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (81)

p
M

= c+

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (82)

Finally, if Ψ < 0 we obtain policy (B5u) which is characterized by qm = 0

(ν > 0), q
m

= 0 (ν > 0), and

K =

[
1 + λ

Ψ+ (1 + λ)2

]
(γ − c) (83)

pM = p
M

= c+

[
Ψ+ λ(1 + λ)

Ψ + (1 + λ)2

]
(γ − c) (84)

4.2 Scheme B under asymmetric information

Scheme B under asymmetric information entails maximizing expected so-

cial welfare given by (57) under the participation and firm’s output non-

negativity constraints given by (53)-(56), and the incentive compatibility

constraints, with Lagrange multipliers shown in parentheses, given by

(pM − θ)qm ≥ (p
M

− θ)q
m

(µ) (85)

(p
M

− c)q
m

≥ (pM − c)qm (µ) (86)

and directly derived from the expression of the profit function (48). From

(53) and (86), we show that the participation constraint of the c-type firm
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(54) can be ignored (φ = 0). Furthermore, adding up (85) and (86) yields

that price is a nondecreasing function of firm’s type and hence p
M

≤ pM .

For the purpose of solving this regulatory program, it is important, for

the problem to be concave, that the constraint set defined by (53)-(56)

and (85)-(86) be convex, which it turns out not to be. To circumvent this

difficulty, we assume that pricing policies are restricted to type-contingent

prices. The next lemma shows that, indeed, such a restriction takes care of

this problem.

Lemma 4 When p
M

< pM , the constraint set defined by (53)-(56) and

(85)-(86) is convex and “qualified,” i.e., it satisfies the NDCQ and LICQ

conditions. Moreover, if, at the optimum, λ2 + (1 + λ)Q′
MC ′′(K) < 0, the

expected welfare function given in (57) is locally concave.

In an optimization problem, non-convexity of the constraint set gener-

ally leads to multiple solutions. In our case (see the proof of Lemma 4)

multiplicity arises in the form of the existence of two solutions, one of which

reflects bunching in prices, i.e., pM = p
M
. Hence, in essence, Lemma 4

allows us to rule out bunching.

The first-order conditions are then

α[λK + (pM − θ)Q′
M ] + (φ+ µ− µ)[(pM − θ)Q′

M + qm]

−µ(θ − c)Q′
M + νQ′

M = 0 (87)

(1− α)[λK + (p
M

− c)Q′
M ]− (µ− µ)[(p

M
− c)Q′

M + q
m
]

+µ(θ − c)Q′
M = 0 (88)

(1 + λ) [α(θ − c)− C ′(K)] + (αλ− φ)(pM − θ)

+(1− α)λ(p
M

− c)− (µ − µ)(pM − p
M
)− ν = 0 (89)

φ[(pM − θ)qm − Fm] = 0 (90)

ν qm = 0 (91)

µ[(pM − θ)qm − (p
M

− θ)q
m
] = 0 (92)

µ[(p
M

− c)q
m
− (pM − c)qm] = 0 (93)

From now on, we make use of the assumption p
M

< pM which eliminates
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bunching solutions (p
M

= pM , with either µ = µ = 0 or µ, µ > 0) and clearly

solutions with ν > 0. The incentive compatibility constraints (85) and (86)

further eliminate solutions with φ > 0. The next proposition characterizes

the remaining eight possible solutions.

Proposition 5 When, in addition to determining capacity, the regulator

has only price as a regulatory and faces asymmetric information on the

firm’s marginal cost there are eight types of optimal policies of the form

(K, pM , p
M
, φ, ν, µ, µ) designated by (B1ai)-(B8ai). Three of them, namely,

(B1ai)-(B3ai), are identical to policies (B1u)-(B3u) obtained with scheme B

under uncertainty, and are characterized in Proposition 4. This is so because

when the incentive compatibility constraints (85) and (86) are not active

(µ = µ = 0), we are back to the case under uncertainty. The remaining five

policies are characterized as follows:

(B4ai) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ = 0, ν = 0, µ =

0, µ > 0) described by

pM − θ

pM
=

[
αλK − µ qm

(α− µ)QM

]
1

ε(QM )
+

µ(θ − c)

(α− µ)pM
(94)

p
M

− c

p
M

=

[
(1− α)λK + µ q

m

(1− α+ µ)Q
M

]
1

ε(Q
M
)

(95)

(1 + λ)C ′(K) = [α(1 + λ) + µ](θ − c) + µ[(pM − θ)− (p
M

− c)]

+λ[α(pM − θ) + (1− α)(p
M

− c)] (96)

(B5ai) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ > 0, ν = 0, µ =

0, µ > 0) described by

pM − θ

pM
=

[
αλK − (µ − φ)qm

(α+ φ− µ)QM

]
1

ε(QM )
+

µ(θ − c)

(α− µ)pM
=

Fm

pMqm
(97)

(95), and

(1 + λ)C ′(K) = [α(1 + λ) + µ](θ − c) + µ

[
Fm

qm
− (p

M
− c)

]

+λ

[
α
Fm

qm
+ (1− α)(p

M
− c)

]
− φ

Fm

qm
(98)
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(B6ai) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ = 0, ν = 0, µ >

0, µ = 0) described by

pM − θ

pM
=

[
αλK + µ qm
(α+ µ)QM

]
1

ε(QM )
(99)

p
M

− c

p
M

=

[
(1− α)λK − µ q

m

(1− α− µ)Q
M

]
1

ε(Q
M
)
+

µ(θ − c)

(1− α− µ)p
M

(100)

(1 + λ)C ′(K) = [α(1 + λ)− µ](θ − c)− µ[(pM − θ)− (p
M

− c)]

+λ[α(pM − θ) + (1− α)(p
M

− c)] (101)

(B7ai) The policy (0 < K < QM < Q
M
, pM > θ, p

M
> c, φ > 0, ν = 0, µ >

0, µ = 0) described by

pM − θ

pM
=

[
αλK + (φ+ µ)qm
(α+ φ+ µ)QM

]
1

ε(QM )
=

Fm

pMqm
(102)

(100), and

(1 + λ)C ′(K) = [α(1 + λ)− µ](θ − c)− µ

[
Fm

qm
− (p

M
− c)

]

+λ

[
α
Fm

qm
+ (1− α)(p

M
− c)

]
− φ

Fm

qm
(103)

(B8ai) The policy (0 < K = QM < Q
M
, pM > θ, p

M
= θ, φ = 0, ν > 0, µ >

0, µ = 0) described by

pM − θ

pM
=

[
αλ

(α+ µ)

]
1

ε(QM )
−

ν

(α+ µ)pM
, (104)

p
M

= θ, and

(1 + λ)C ′(QM ) = (α+ λ)(θ − c) + (αλ− µ)(pM − θ)− ν (105)

When there is no fixed cost (Fm = 0), only policies (B1ai), (B3ai), (B4ai),

(B6ai), and (B8ai) may arise as optimal policies and these policies are ex-

clusive. When there is a fixed cost (Fm > 0), only policies (B1ai), (B2ai),

(B4ai), (B5ai), (B6ai), and (B7ai) may arise as optimal policies and these

policies are exclusive.22 From Lemma 4, when λ2 + (1 + λ)Q′
MC ′′(K) < 0

second-order conditions of all policies are satisfied.

22The conditions under which these policies may arise cannot be obtained in the general
case as φ, µ, and µ affect the system of first-order conditions in a nonlinear way. However,
such conditions will be derived for the particular functional forms given in (21).
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Under policy (B4ai), even the θ-type firm is active and the social marginal

cost of imports, (1 + λ)[c+ C ′(K)], net of the expected marginal fiscal rev-

enue of imported gas, λ[αpM +(1−α)p
M
], is equal to the expected marginal

cost of the firm, αθ+(1−α)c, plus the social marginal cost associated with

the price distortion of both the θ- and c-type firms required to minimize the

information rent of the c-type firm, µ(pM − p
M
) > 0.

Under policy (B5ai), the less efficient firm just breaks even and capacity

is such that the social marginal cost of imports net of the expected marginal

fiscal revenue of imported gas, is equal to the expected marginal cost of

the firm plus the social marginal cost associated with the price distortion

necessary to minimize the information rent of the more efficient firm, net of

the ex-post social value of the contribution of the marginal unit of the firm

to the relaxation of its participation constraint, φFm

qm
.

Under policy (B6ai), even the less efficient firm is active and the social

marginal cost of imports net of the expected marginal fiscal revenue of im-

ported gas, is equal to the expected marginal cost of the firm net of the

social marginal cost associated with the price distortion of both the θ- and

c-type firms required to minimize the information rent of the less efficient

firm, µ(pM − p
M
) > 0.

Under policy (B7ai), the θ-type firm just breaks even and capacity is

such that the social marginal cost of imports net of the expected marginal

fiscal revenue of imported gas, is equal to the expected marginal cost of

the firm, net of the social marginal cost associated with the price distortion

necessary to minimize the information rent of the less efficient firm and of

the ex-post social value of the contribution of the marginal unit of the firm

to the relaxation of its participation constraint, φFm

qm
.

Under policy (B8ai), the less efficient firm is shut down and capacity

is such that the social marginal cost of imports (at the level they make

the less efficient firm inactive) net of the expected marginal fiscal revenue

of imported gas, is equal to the expected marginal cost of the firm plus

the social marginal cost associated with the price distortions necessary to

minimize the information rent of the less efficient firm, net of the shadow
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cost of the θ-type firm’s output nonnegativity constraint ν.

Let us illustrate this regulatory scheme assuming that Fm = 0 and using

the functional forms given by (21). Again, as in the case under uncertainty,

the sign of λ2 + (1 + λ)Q′
MC ′′(K) (see Lemma 4) is the same as that of

−Ψ, where Ψ ≡ ω(1 + λ)− λ2. Solving (87)-(93) under the restriction that

p
M

< pM yields the following policies:23

When Ψ ≥ αλ(1 + λ) the following group of policies might arise. Policy

(B4ai) arises when

(1− 2α)

α

[
Ψ

2Ψ + (α+ λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
Ψ

Ψ+ α(1 + λ)(1 + 2λ)

]
(γ − c) (106)

with

K =
α [(1− α)(1 + 2λ)(γ − c)− [λ− α(1 + 2λ)](θ − c)]

Ψ + α(1− α)(1 + 2λ)2
(107)

pM = θ + (1− α)

[
Ψ+ αλ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−

[
(1− α)[Ψ + α(1 + 2λ)2]− αλ(1 + λ)

Ψ + α(1− α)(1 + 2λ)2

]
(θ − c) (108)

p
M

= c+ α

[
Ψ+ (1− α)λ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−α

[
Ψ+ α(1 + 2λ) + λ2

Ψ+ α(1− α)(1 + 2λ)2

]
(θ − c) (109)

Policy (B1ai), identical to (B1u), described by (76)-(78), arises when

[
Ψ

Ψ+ α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
Ψ

Ψ+ α(1 + λ)2

]
(γ − c) (110)

Policy (B3ai), identical to (B3u), described by (80)-(82), arises when

[
Ψ

Ψ+ α(1 + λ)2

]
(γ − c) < (θ − c) < (γ − c) (111)

When 0 < Ψ < αλ(1 + λ) the following group of policies might arise.

Policy (B4ai) arises when condition (106) holds. Policy (B1ai), identical to

23Details about the derivation of these policies are given in the appendix.
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(B1u), described by (76)-(78), arises when

[
Ψ

Ψ+ α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
Ψ

α(1 + λ)(1 + 2λ)

]
(γ − c) (112)

Policy (B6ai) arises when

[
Ψ

α(1 + λ)(1 + 2λ)

]
(γ − c) < (θ − c) ≤

[
α[Ψ + (1− α)λ(1 + 2λ)]

Ψ + α(1 − α)λ(1 + 2λ) + α(1 + λ)2

]
(γ − c) (113)

with

K =
α[(1 − α)(1 + 2λ)(γ − c) + (1 + λ)(θ − c)]

Ψ + α(1− α)(1 + 2λ)2
(114)

pM = θ + (1− α)

[
Ψ+ αλ(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(γ − c)

−α(1 + λ)

[
(1− α) + (1− 2α)λ

Ψ+ α(1 − α)(1 + 2λ)2

]
(θ − c) (115)

p
M

= c+ α

[
(1− α)λ(1 + 2λ) + Ψ

Ψ+ α(1− α)(1 + 2λ)2

]
(γ − c)

+α(1 + λ)

[
λ− α(1 + 2λ)

Ψ + α(1 − α)(1 + 2λ)2

]
(θ − c) (116)

Policy (B8ai) arises when

[
α[Ψ + (1− α)λ(1 + 2λ)]

Ψ + α(1 − α)λ(1 + 2λ) + α(1 + λ)2

]
(γ − c) < (θ − c) ≤

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) (117)

with

K =
α(1 + λ)(γ − c) + (1− α)λ(θ − c)

Ψ + λ2 + α(1 + 2λ)
(118)

pM = c+
[Ψ + (α+ λ)λ](γ − c)− (1− α)λ(θ − c)

Ψ + λ2 + α(1 + 2λ)
(119)

p
M

= θ (120)

Finally, policy (B3ai), identical to (B3u), described by (80)-(82), arises when

[
αλ(1 + λ)

Ψ + α(1 + λ)2

]
(γ − c) < (θ − c) < (γ − c) (121)
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4.3 Scheme B under uncertainty vs. under a symmetric in-

formation

In order to compare the capacity levels achieved by control scheme B under

uncertainty (KB
u ) and asymmetric information (KB

ai), it will prove useful to

provide alternative expressions, allowed by our linear demand assumption,

for the incentive constraints (85) and (86). Indeed, linearity of demand

implies (qm − q
m
) = (pM − p

M
)Q′

M . Hence, the incentives constraints can

be rewritten as

(p
M

− θ)Q′
M + qm ≥ 0

(pM − θ)Q′
M + q

m
≥ 0

}
(µ) (122)

(p
M

− c)Q′
M + qm ≤ 0

(pM − c)Q′
M + q

m
≤ 0

}
(µ) (123)

where (122) provides two alternative ways to express (85) while (123) pro-

vides two alternative ways to express (86).

Since C ′(K) is an increasing function, looking at (60) and (89) yields

that when there is no fixed cost,

sign[KB
ai −KB

u ] = sign[(1 + λ)[C ′(KB
ai)− C ′(KB

u )]]

= sign[αλ(pBM,ai − pBM,u) + (1− α)λ(pB
M,ai

− pB
M,u

)

−(µB − µB)(pBM,ai − pB
M,ai

)− (νBai − νBu )] (124)

and when there is a fixed cost,

sign[KB
ai −KB

u ] = sign[(1 + λ)[C ′(KB
ai)− C ′(KB

u )]]

= sign[αλ(pBM,ai − pBM,u) + (1− α)λ(pB
M,ai

− pB
M,u

)

+φ
B
u (p

B
M,u − θ) + φB

u
(pB

M,u
− c)

−(µB − µB)(pBM,ai − pB
M,ai

)− φ
B

ai(p
B
M,ai − θ)] (125)
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Analyzing these signs allows us to state the following proposition:

Proposition 6 When, in addition to controlling capacity, the social plan-

ner regulates the gas commodity price and transfers between the firm and

consumers are not allowed, accounting for the firm’s incentive compatibility

constraints has the following effect on capacity:

Independently of the existence of a fixed cost, if the regulator does not min-

imize the informational rents of both types of firms, µB = µB = 0, there is

no effect of incentives on capacity, i.e., KB
ai = KB

u .

If there is no fixed cost (Fm = 0) and the regulator is constrained to minimize

the information rent of the more (less) efficient firm, µB > 0 (µB > 0), more

(less) transport capacity in the strict sense should arise, i.e., KB
ai > KB

u

(KB
ai < KB

u ).

If there is a fixed cost (Fm > 0), three cases need to be considered.

When the regulator minimizes the information rent of the more efficient

firm, µB > 0, transport capacity expansion in the strict sense should arise,

i.e., KB
ai > KB

u .

When the regulator minimizes the information rent of the less efficient firm,

µB > 0, but lets it earn strictly positive profits, φ
B

ai = 0, less capacity in the

strict sense should arise, i.e., KB
ai < KB

u .

When the regulator minimizes the information rent of the less efficient firm,

µB > 0, but the latter just breaks-even, φ
B
ai > 0, µB > 0 does not allow us

to rank KB
ai and KB

u .

Again, let us now illustrate this proposition using the functional forms

(21). When Fm = 0, we simulate the optimal values of (KB
ai−KB

u ), µB, µB,

νBai, and νBu in the {α, (θ − c)}-space for the parameter grids in Cases 1-3,

given in the illustration of Proposition 3. When Fm > 0, we simulate the

optimal values of (KB
ai −KB

u ), µB, µB, φ
B

ai, φ
B

u , and φB
u
in the {Fm, (θ− c)}-

space for the following parameter grids:
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• Case 1+: {γ, c, ω, λ, α} = {10, 2, 0.50, 0.33, 0.43}, (θ − c) ∈ [0, 4.94],

and Fm ∈ [0, 2.24]

• Case 2+: {γ, c, ω, λ, α} = {10, 2, 0.52, 0.85, 0.43}, (θ − c) ∈ [0, 2.24],

and Fm ∈ [0, 5.14]

• Case 3+: {γ, c, ω, λ, α} = {10, 2, 0.17, 0.25, 0.68}, (θ − c) ∈ [0, 2.24],

and Fm ∈ [0, 2.24]

Figure 5 (a-b) summarizes the results of the simulated values of (KB
ai −

KB
u ), µB, µB , νBai, and νBu for Cases 1, 2 and 3, respectively from the top

to the bottom. Figure 5a shows in white, gray and black the regions where

respectively (KB
ai −KB

u ) > 0, (KB
ai − KB

u ) = 0, and (KB
ai −KB

u ) < 0. The

dashed regions in these figure represent the (α, (θ − c)) pairs for which a

solution under asymmetric information with p
M

< pM cannot arise. Figure

5b exhibits the curves formed by the (α, (θ − c)) pairs such that νBai = 0,

νBu = 0, µB = 0, and µB = 0.

For the parameter grid of Case 1, we have Ψ ≡ ω(1+λ)−λ2 > αλ(1+λ)

for any α ∈ [0, 1], and hence no solution with µB > 0 arises. Cross-examining

Figures 5a and 5b, we see that whenever µB > 0, irrespective of whether or

not νBai and νBu are positive, KB
ai > KB

u , as stated in the proposition. For

Case 2, Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.16], and hence

solutions with µB > 0 exclusively arise for α ∈ (0.16, 1]. We observe that

whenever µB > 0 (µB > 0), independently of νBai and νBu being equal to

zero or positive, KB
ai > KB

u (KB
ai < KB

u ). For Case 3, Ψ ≡ ω(1 + λ)− λ2 >

αλ(1 + λ) for any α ∈ [0, 0.50], and hence solutions with µB > 0 exclusive

arise for α ∈ (0.50, 1]. Cross-examining Figures 5a and 5b, leads to similar

conclusions as in Case 2.
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Figure 6 (a-b) summarizes the results of the simulated values of (KB
ai −

KB
u ), µB, µB , φ

B
ai, φ

B
u , and φB

u
for Cases 1+-3+. Figure 6b exhibits the

curves formed by the (α, (θ − c)) pairs such that φ
B

ai = 0, φ
B

u = 0, φB
u
= 0,

µB = 0, and µB = 0.

For Case 1+, Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 1], and

hence no solution with µB > 0 arises. From Figures 6a and 6b, we see that

whenever µB > 0, irrespective of whether or not φ
B
ai, φ

B
u , and φB

u
are equal

to zero, KB
ai > KB

u . For Case 2+, Ψ ≡ ω(1+λ)−λ2 > αλ(1+λ) for any α ∈

[0, 0.16], and hence solutions with µB > 0 exclusively arise for α ∈ (0.16, 1].

Since under Case 2+, α = 0.43, solutions with µB > 0 are possible. Cross-

examining Figures 6a and 6b, we see that µB > 0, irrespective of whether

the remaining Lagrange multipliers are positive or equal to zero, KB
ai > KB

u .

Moreover, when µB > 0 and φ
B

ai = 0, sign[KB
ai − KB

u ] = −sign[µB ] < 0,

implying KB
ai < KB

u . However, when φ
B
ai > 0, this relationship does not

hold as can be seen from the white region in Figure 6a which shows cases

with µB > 0 and KB
ai > KB

u . This illustrates the result stated at the end of

Proposition 6. Case 3+ demonstrates similar properties as those obtained

under Case 2+.24

24For Ψ ≡ ω(1 + λ) − λ2 > αλ(1 + λ) for any α ∈ [0, 0.50], and hence solutions with
µB > 0 exclusively arise for α ∈ (0.50, 1]. Since under Case 3+, α = 0.68, it is possible to
get solutions with µB > 0.
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5 Conclusion

This paper has attempted to contribute to the literature on the regulation of

network/infrastructure industries in its application to gas markets along two

dimensions. First, we derived, and highlighted the economic properties of,

various policies based on two standard regulatory instruments, namely, pric-

ing and taxation, but also, and most importantly, on a third less conventional

means of market intervention, namely, investments in the gas transport ca-

pacity of the network. As far as this first effort is concerned, although in-

formative, the results obtained are admittedly generally quite intuitive. We

nevertheless provide a thorough discussion of the economic interpretation of

the conditions that characterize some optimal policies aimed at mitigating

the exercise of monopoly power in geographically isolated gas commodity

markets. Second, we investigated the impact on network capacity of incor-

porating in the regulator’s objectives the regulated firm’s incentives in a

context where private information on its technology gives it the opportunity

to earn a socially costly information rent. Interestingly enough, we find that

this impact is not unambiguous.

When the (less informed) regulator regulates the gas price and may op-

erate transfers between consumers and the firm, we find that investments

in transport network expansion may be justified on normative grounds and

by the need to give the (better informed) firm proper production incentives

and at the same time reduce its information rent. Because in this case

the more efficient firm’s information rent is positively correlated with the

less efficient firm’s level of output, building more transport capacity allows

shipping competitive gas into the regional market and hence helps putting

downward pressure on this level of output and subsequently reducing this

firm’s information rent.25

When the regulator may no longer use transfers, the set of results is much

richer. It turns out that in this case the regulator may be concerned about

the information rent of either the more efficient firm or the less efficient

25Indeed, in this case, information rents are of concern only when the firm happens to
be of the more efficient type. When the firm is of the less efficient type, its information
rent is nil.
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one. We identify and analyze various situations. If incentive constraints are

not binding, i.e., the firm behaves truthfully, transport capacity is neutral.

When the regulator is concerned about the information rent of the more

efficient firm, capacity expansion is beneficial independently of whether or

not there is a fixed cost of the regulated firm to be financed . When it is the

less efficient firm’s rent that negatively affects social welfare, cases where

capacity reduction is desirable might arise.
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Appendix

Proof of Lemma 1 Consider the ex-post program under scheme A where the regulator
seeks to control market power exercised by a θ̃-type firm through the maximization of the
social welfare function (2) with respect to pM (θ̃) and U(θ̃), for a given level of already
installed transport capacity K, under the constraints (3) and (4). Differentiating with

respect to θ̃ the associated system of first-order conditions yields that when ν(θ̃) = 0,
dpM (θ̃)

dθ̃
= 1+λ

1+2λ
> 0 and clearly dν(θ̃)

dθ̃
= 0. When ν(θ̃) > 0, we have dpM (θ̃)

dθ̃
= 0 and

dν(θ̃)

dθ̃
= (1 + λ) > 0. �

Proof of Proposition 1 From (14), we obtain that the participation constraint of the firm
is always binding independently of the firm’s type, i.e., φ = αλ > 0 and φ = (1−α)λ > 0.

Concerning policy (A1u), the condition 0 < α(θ − c) < C′(QM ) yields ν = 0. Substitute
into (10) and use the fact that ε(QM ) ≡ −Q′

MpM/QM to obtain (17). Rewrite (11) using
the fact that ε(Q

M
) ≡ −Q′

Mp
M
/Q

M
to obtain (18). Next, substitute ν = 0 into (12) to

get (19).

For policy (A2u), when α(θ − c) > C′(QM ), the first-order condition (12) calls for ν > 0.
Substitute this result into (10) to obtain (17). Since ν > 0 does not appear in (11),
rewriting the later still yields (18). Finally, (12) with ν > 0 yields (20). �

Proof of Proposition 2 In the discussion following the system of first-order conditions
(30)-(37), we obtain that in scheme A under asymmetric information φ = λ > 0 and
µ = 0. Substituting into (34) yields µ = (1− α)λ.

Concerning policy (A1ai), the condition 0 < (α + λ)(θ − c) < C′(QM ) yields ν = 0.
Substitute µ = (1− α)λ > 0 and ν = 0 into (30)-(32) to get (38)-(40).

For policy (A2ai), when (α+ λ)(θ − c) > C′(QM ), the first-order condition (32) calls for
ν > 0. Substitute µ = (1− α)λ > 0 and ν > 0 into (30)-(32) to get (42)-(41). �

Proof or Proposition 3 We know from Propositions 1 and 2 that policy (A1u) arises

when 0 < (θ − c) <
C′(Q

A
M )

α
whereas policy (A1ai) happens when 0 < (θ − c) <

C′(Q
A
M )

α+λ
.

It is direct then to see that whenever (A1ai) is optimal under asymmetric information,
so is (A1u) under uncertainty. Thus, from (47) we obtain that asymmetric information
induces capacity expansion (in the strong sense), i.e., KA

ai > KA
u under policy (A1ai).

When policy (A2ai) arises, the benchmark scheme does not necessarily imply shutting
down the less efficient firm. When this firm is active under uncertainty, it is easy to see

that KA
u < Q

A

M,ai. When this firm is inactive under uncertainty, no capacity expansion

arises. In fact, the two policies are identical and hence KA
u = KA

ai. To see this, solve (20)

for ν and substitute into (10) to obtain
pM−(c+

C′(QM )

α
)

pM
= λ

1+λ
1

ε(QM )
. Moreover, solve

(41) for ν and plug into (30) to find the same markup expression. Furthermore, since
(18) and (39) are identical, we conclude that price and transport capacity under policies
(A2u) and (A2ai) are the same and consequently (νA

ai − νA
u ) = (1− α)λ(θ − c) > 0. �
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Proof of Lemma 2 To find the conditions which characterize convexity of the set asso-
ciated to the constraints (53)-(56), a first step is to separately study the properties of the
surface levels defined by each constraint when satisfied with equality in the {pM , p

M
, K}-

space.

When the participation constraint of the less efficient firm (53) is binding, it is represented
by the level set Π

?

m(pM , p
M
,K) = (pM − θ)qm − Fm = 0, with gradient vector ∇Π

?

m(·) =

((pM−θ)Q′
M+qm, 0,−(pM−θ)). Two cases need to be considered depending on whether or

not there is a fixed cost. When Fm > 0, the θ-type firm’s output nonnegativity constraint
(55) must hold with strict inequality, qm > 0, and consequently pM > θ. Since in this case

∇Π
?

m(·) 6= 0, Π
?

m(·) is a regular surface in <3, and from
∂Π

?
m(·)

∂K
6= 0, the level surface Π

?

m(·)
can be considered as the graph of a function, K?

Πm
, of K in terms of pM and p

M
in <3.

In such a case we have that
∂K?

Πm

∂pM
= F

(pM−θ)2
+Q′

M and
∂K?

Πm

∂p
M

= 0. The leading principal

minors characterizing the Hessian of the function K?

Πm
are {− 2Fm

(pM−θ)3
, 0}. Consequently,

since (pM − θ) > 0, when Fm > 0 the level surface Π
?

m(·) is concave, i.e., the set below
Π

?

m(·) is convex.

When Fm = 0, the level set Π
?

m(·) is not regular everywhere. Indeed, when both pM = θ
and K = QM (qm = 0) the level set Π

?

m(·) is degenerate as ∇Π
?

m(θ, p
M
, QM ) = 0.

However, two regular surfaces can be identified. First, when pM 6= θ, the surface Π
?

m(pM 6=

θ, p
M
,K = QM ) is regular. In this particular case, the K?

Πm
function has

∂K?

Πm

∂pM
=

Q′
M ,

∂K?
Πm

∂p
M

= 0, and Hessian’s leading minors {0, 0}, which define Π
?

m(·) as a plane

with gradient ∇Π
?

m(·) = ((pM − θ)Q′
M , 0,−(pM − θ)) < 0. Second, when pM = θ, and

since constraint (55) holds, qm > 0, the level set Π
?

m(θ, p
M
,K < QM ) is regular and is

represented by a plane with gradient ∇Π
?

m(·) = (qm, 0, 0), perpendicular to the pM -axis.
It is direct to see that these regular surfaces of Π

?

m(·) define a convex set when pM ≥ θ.26

Concerning the θ-type firm’s output nonnegativity constraint (55), it can be binding only
when Fm = 0. In such a case, it is represented by the level set q?m(pM , p

M
,K) = QM −

K = 0, with gradient vector ∇q?m(·) = (Q′
M , 0,−1) 6= 0. Thus, the level surface q?m(·)

is regular and defines a convex set.27 Note that when pM 6= θ and Fm = 0, ∇Π
?

m(·) =
(pM − θ) · ∇q?m(·), and hence when there is no fixed cost and both (53) and (55) are
effective, the gradients of these constraints are not linearly independent, i.e., the Linear
Independence Constraint Qualification (LICQ) condition is violated. In order to avoid
this, (53) is considered as a liminal constraint, i.e., an active inequality with a Lagrange
multiplier equal to zero. See Horsley and Wrobel (2003) for more details.

26A property of standard convex sets says that every two points of a convex set are visible to
each other, i.e., the straight segment joining these points is contained in the set. Since Π

?
m(·)

belongs to the set associated to the participation constraint of the less efficient firm (53), such

set will be convex if any point lying to the straight line connecting two points in Π
?
m(·), yields

positive profits for the θ-type firm. Let us study first the straight line lying the points (pM,1 =

θ − ε, p
M

,K1 = QM,1) and (pM,2 = θ, p
M

, K2 < QM,2 < QM,1). It is direct to see that

Πm(δpM,1 + (1 − δ)pM,2, pM
, δK1 + (1 − δ)K2) = −δ(1 − δ)εqm,2 < 0, which is a contradiction.

Let us now check the case where (pM,1 = θ+ε, p
M

,K1 = QM,1) and (pM,2 = θ, p
M

,K2 < QM,2).

In this latter case the profit associated to any combination of connecting points is Πm(·) =
δ(1− δ)εqm,2 > 0, which is consistent with our convexity argument. Therefore, when Fm = 0 the

level set Π
?
m(·) supports a convex set only in cases where pM ≥ θ.

27The output level q?m(·) can be considered as the graph of a function, K?
qm

, of K in terms of

pM and p
M

in <3 with
∂K?

qm
∂pM

= Q′
M and

∂K?
qm

∂p
M

= 0, and the Hessian’s leading minors {0, 0}.
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Similar to the analysis performed for the participation constraint of the θ-type firm, when
that of the c-type firm, i.e., (54), is binding, it is represented by the level set given by
Π?

m(pM , p
M
,K) = (p

M
− c)q

m
− Fm = 0, with gradient vector ∇Π?

m(·) = (0, (p
M

−

c)Q′
M + qm,−(p

M
− c)), and it defines a convex set. Concerning the c-type firm’s output

nonnegativity constraint (56), it is represented by the level set q?
m
(pM , p

M
,K) = Q

M
−K =

0, with gradient vector ∇q?
m
(·) = (0, Q′

M ,−1) 6= 0, defining a convex set.28 Therefore,
since the intersection of convex sets is convex, the set defined by (53)-(56) is convex.

When there is no fixed cost, Fm = 0, and both nonnegativity constraints (55) and (56) are
effective they are represented by the level set q?

m
(pM , p

M
,K) = Q

M
−QM = 0 with gradient

vector ∇q?
m
(·) = (−Q′

M , Q′
M , 0) 6= 0, and then the surface level is a plane perpendicular

to the pM -axis which coincides with the 45◦ line between the pM - and p
M
-axes. It is then

direct to see that the Jacobian Jq?m,q?
m

= (∇q?m,∇q?
m
) is full rank (the maximum possible

number of effective constraints), and hence the Non Degenerate Constraint Qualification
(NDCQ) is satisfied.

When Fm > 0 and both participation constraints (53) and (54) are binding, they are
represented by the level set Π

?

m(pM , p
M
,K) = (p

M
− c)q

m
− (pM − θ)qm = 0 with gradient

vector ∇Π
?

m(·) = (−(pM − θ)Q′
M − qm, (p

M
− c)Q′

M + q
m
, (pM − p

M
)− (θ− c)) 6= 0. Since

the Jacobian JΠ
?
m,Π?

m
= (∇Π

?

m,∇Π?
m) is full rank, the (NDCQ) is again satisfied. �

Proof of Lemma 3 Consider the ex-post program under scheme B where the regulator
seeks to control market power exercised by a θ̃-type firm by the maximization, with respect
to pM (θ̃), of the social welfare function (50), for a given level of already installed transport
capacity K, under the constraints (51) and (52). Differentiating the associated system

of first-order conditions with respect to θ̃ yields that when the firm is active and makes

positive profits, i.e., when ν(θ̃) = φ(θ̃) = 0, dpM (θ̃)

dθ̃
= 1, dΠm(θ̃)

dθ̃
= [(pM (θ̃) − θ̃)Q′

M +

qm(θ̃)] dpM (θ̃)

dθ̃
− qm(θ̃) < 0, and clearly dν(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0. In this case, second-order

conditions are summarized by λ2 + (1 + λ)Q′
MC′′(K) < 0.

When the firm is active and just breaks even, ν(θ̃) = 0 and φ(θ̃) > 0, we obtain dpM (θ̃)

dθ̃
=

qm(θ̃)

(pM (θ̃)−θ̃)Q′

M
+qm(θ̃)

≷ 0, dΠm(θ̃)

dθ̃
= 0, dν(θ̃)

dθ̃
= 0, and dφ(θ̃)

dθ̃
=

[(1+φ̃)(pM (θ̃)−θ̃)Q′

M−φ̃qm(θ̃)]Q′

M

[(pM (θ̃)−θ̃)Q′

M
+qm(θ̃)]2

>

0. Finally, when the firm is shut down, ν(θ̃) > 0, the participation constraint is trivially

satisfied (Fm = 0) and hence dpM (θ̃)

dθ̃
= dΠm(θ̃)

dθ̃
= dφ(θ̃)

dθ̃
= 0, and dν(θ̃)

dθ̃
= 1. �

Proof of Proposition 4 From the discussion of Lemma 3 in the text we know that only
five combinations of Lagrange multipliers are possible.

Concerning policy (B1u), replace φ = φ = ν = ν = 0 in the system of first-order conditions
(58)-(63) to get (64)-(66). Next, solve (58) and (59), respectively, for pM and p

M
and

substitute into (60) to obtain λ2K + (1+ λ)Q′
MC′(K)− α(1 + λ)Q′

M (θ− c) = 0. For this
equality to hold, it is required that λ2K + (1 + λ)Q′

MC′(K) < 0. Moreover, second-order
conditions associated with this policy are summarized by λ2 + (1 + λ)Q′

MC′′(K) < 0.29

28The participation constraint (54) is liminal when Fm = 0.
29Note that when C′(K)

K
−C′′(K) ≤ 0, when λ2K + (1 + λ)Q′

MC′(K) < 0 holds, second-order
conditions are always satisfied.
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When there is no fixed cost, Fm = 0, to insure that this policy yields qm > 0, (66)
should be satisfied with strict inequality when evaluated at qm = 0, i.e., (1 + λ)C′(QM ) >
α(1+λ)(θ− c)+λ[α(pM − θ)+ (1−α)(p

M
− c)]. Replacing pM and p

M
in (58) and (59),

evaluated at qm = 0, yields 0 < α(θ − c) < C′(QM ) + λ2QM

(1+λ)Q′

M
. When there is a fixed

cost to finance, Fm > 0, we need to guarantee that this solution belongs to the set defined
by the participation constraints (53) and (54). From Lemma 3 we restrict ourselves to
cases under which policy (B1u) satisfies Πm > Πm and then we only need to check the
participation constraint of the θ-type firm. First, it is necessary that (66) be satisfied with
strict inequality when (pM −θ) = Fm

qm
, i.e., (1+λ)C′(K) > α(1+λ)(θ− c)+λ[αFm

qm
+(1−

α)(p
M

− c)], which can be rewritten as 0 < α(θ− c) < C′(K) + λ2K
Q′

M
− αλ(

λKqm+Q′

MFm

qmQ′

M
).

Second, the pricing rule associated with (B1u) should satisfy (53), i.e., λKqm +Q′
MFm >

0.

To obtain policy (B2u), replace ν = ν = φ = 0 and Fm > 0 in the system of first-order
conditions (58)-(63) to get (67), (65), and (68). Since Fm > 0, it is necessary that (68) be
satisfied with strict inequality when (p

M
− c) = Fm

q
m

, i.e., (1+λ)C′(K) > α(1+λ)(θ− c)+

λ[αFm

qm
+ (1− α)Fm

q
m

], which can be rewritten as α(θ − c) < C′(K) − λFm

1+λ
[
qm+α(q

m
−qm)

qmq
m

].

Second-order conditions for this policy are summarized by α2λ2(α2K + (qm + λK((1 −

α)qm −K(λ−α(2 +λ)))))− 2α2λφqm(qm − (2+λ)K) +αφ
2
qm(3qm +2λK) + 2φ

3
qm

2 −
α2(1 + λ)(qm − λK)2Q′

MC′′(K) > 0.

To obtain policy (B3u), replace φ = φ = ν = 0 and Fm = 0 in the system of first-order
conditions (58)-(63) to get (69), (65), and (70). Next, solve (58) and (59), respectively,
for pM and p

M
and substitute into (60) to obtain λ2K+(1+λ)Q′

MC′(K)+(1+λ)Q′
M [ν−

α(θ−c)] = 0. We now prove that [ν−α(θ−c)] < 0. Since ν > 0 and ν = 0, from Lemma 3
we know that q

m
> qm = 0 and hence p

M
< pM . From (58), ν = α(−(pM −θ)− λK

Q′

M
) > 0,

and from (59), − λK
Q′

M
= (p

M
− c), which results in ν − α(θ − c) = −α(pM − p

M
) < 0.

Consequently, policy (B3u) arises when Fm = 0 and λ2K+(1+λ)Q′
MC′(K) < 0. Second-

order conditions associated with this policy are summarized by λ2 + (1 + λ)Q′
MC′′(K) <

α(1 + λ)2.30

To obtain policy (B4u) , replace ν = ν = 0 in the system of first-order conditions (58)-(63)
to get (67), (71), and (72). Second-order conditions for this policy are always satisfied.

Finally, to obtain policy (B5u), replace φ = φ = 0 in the system of first-order conditions
(58)-(63) to get (69), (73), and (74). Next, solve (58) and (59), respectively, for pM and
p
M

and plug into (60) to obtain λ2K+(1+λ)Q′
MC′(K)+(1+λ)Q′

M [(ν+ν)−α(θ−c)] = 0.
We next prove that [(ν + ν) − α(θ − c)] > 0. Since ν > 0 and ν > 0, from Lemma 3 we
know that p

M
= pM . From (58), ν > 0 necessitates − λK

Q′

M
> (pM − θ), and from (59),

ν > 0 calls for − λK
Q′

M

> (pM − c). Therefore, when pM − c + λK
Q′

M

< 0, both ν and

ν are strictly positive. Now, solve (58) and (59), respectively, for ν and ν and obtain
(ν + ν)−α(θ− c) = −[pM − c+ λK

Q′

M
] > 0. Thus, for (B5u) to arise as the optimal policy,

it is necessary that Fm = 0 and λ2K +(1+λ)Q′
MC′(K) > 0. Second-order conditions for

this policy are always satisfied. �

30Note that this inequality is less stringent than the one summarizing second-order conditions of

policy (B1u). Furthermore, when C′(K)
K

− C′′(K) ≤ −α(1+λ)
Q′

M

, second-order conditions of policy

(B3u) are always satisfied.
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Proof of Lemma 4 From Lemma 2, the constraint set defined by (53)-(56) is convex. It
then remains to analyze the properties of the sets defined by the incentive constraints (85)
and (86).

The incentive constraint of the less efficient firm (85) satisfied with equality is represented
by the level set Υ

?
(pM , p

M
,K) = (pM − θ)qm − (p

M
− θ)q

m
= 0, with gradient vector

∇Υ
?
(·) = ((pM − θ)Q′

M + qm,−(p
M

− θ)Q′
M − q

m
,−(pM − p

M
)). Since adding up the

incentive constraints (85) and (86) yields p
M

≤ pM , two cases should be analyzed de-
pending on whether or not this inequality holds in the strict sense. When p

M
< pM and

(85) is satisfied with equality, it can be easily verified that (86) holds with strict inequality.
Moreover, linearity of demand implies (qm−q

m
) = (pM −p

M
)Q′

M , which allows to rewrite

Υ
?
(·) as Υ

?
(pM , p

M
,K) = (pM −θ)Q′

M + q
m

= 0. Hence, we obtain that ∇Υ
?
(·) < 0, and

since ∂Υ
?
(·)

∂K
< 0, Υ

?
(·) can be considered as the graph of a function K?

Υ
, of K, in terms

of pM and p
M

with
∂K?

Υ
∂pM

=
∂K?

Υ
∂p

M

= Q′
M .31 Consequently, when p

M
< pM the level surface

Υ
?
(·) is a plane with ∇Υ

?
(·) < 0 and hence the set below it is convex. When p

M
= pM , the

level set Υ
?
(·) cannot be represented through the K?

Υ
function since ∂Υ

?
(·)

∂K
= 0. However,

since in this case the gradient vector is ∇Υ
?
(pM , pM ,K) = ∂ΠM

∂pM
· (1,−1, 0), the surface

level is a plane perpendicular to the pM -axis which coincides with the 45◦-line between the
pM - and p

M
-axes.32

Let us now check that Υ
?
(·) defines a convex set when both incentive constraints (85) and

(86) hold, hence when p
M

≤ pM . To see this, we verify if the points (pM,1 = pM , p
M,1

=

pM ,K1 = K < QM,1 = Q
M,1

= QM ) and (pM,2 = pM , p
M,2

= pM − ε,K2 = K <

QM = QM < Q
M,2

), each belonging to one of the two regular surfaces defined for the level

set Υ
?
(·), are “visible” to each other. For the set defined by Υ

?
(·) to be convex, it must

be the case that any point which lies on the connection between these two points should
satisfy the incentive constraint (85). With linear demand, q

m2
= q

m,1
− εQ′

M . Hence,

(δpM,1+(1−δ)pM,2−θ)(δqm,1+(1−δ)qm,2)−(δp
M,1

+(1−δ)p
M,2

−θ)(δq
m,1

+(1−δ)q
m,2

) =

δ(1− δ)ε2Q′
M < 0, which violates (85). Thus, to guarantee convexity of the set defined by

the level set Υ
?
(·), p

M
< pM should be imposed.

Similarly, when the incentive constraint of the more efficient firm, (86), is binding, it
is represented by the level set Υ?(pM , p

M
,K) = (p

M
− c)q

m
− (pM − c)qm = 0 with

gradient vector ∇Υ?(·) = (−(pM − c)Q′
M − qm, (p

M
− c)Q′

M + q
m
, (pM − p

M
)). When

(p
M

− c)q
m
− (pM − c)qm = 0 holds, so does (pM − c)Q′

M + q
m

= 0 and hence ∇Υ?(·) > 0.

Therefore, when p
M

< pM the level surface Υ?(·) is a plane and the set above it is convex.33

Again, as shown for the level set Υ
?
(·), to insure convexity of the set defined by Υ?(·),

p
M

< pM should be imposed.

Summing up, when Fm > 0 the relevant level sets defining the constraint set of the regu-

31For a general demand function
∂K?

Υ
∂pM

=
(pM−p

M
)(pM−θ)Q

′

M−(qm−q
m

)(p
M

−θ)

(pM−p
M

)2
R 0 and

∂K?

Υ
∂p

M

=

−
(pM−p

M
)(p

M
−θ)Q′

M
−(qm−q

m
)(pM−θ)

(pM−p
M

)2
R 0. The assumption of linearity of market demand helps

not only to simplify these expressions but also to sign them.
32Note that the level set Υ

?
(·), given that p

M
= pM , is degenerate when ∂ΠM

∂pM
= 0, i.e., when

profits of the less efficient firm are maximized.
33When p

M
= pM , we have Υ?(pM , pM ,K) = Υ

?
(pM , pM ,K) and ∇Υ?(pM , pM ,K) =

−∇Υ
?
(pM , pM ,K). Hence, in this case, the two incentive constraints are trivially satisfied.
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lator’s optimization program under asymmetric information are Π
?

m(·), Υ
?
(·), and Υ?(·).

Since the intersection of convex sets is convex, the constraint set defined by (53)-(56) and
(85)-(86) is convex only when p

M
< pM . When Fm = 0 the relevant level sets defining

this constraint set are q?m(·), Υ
?
(·), and Υ?(·). Again, since the intersection of convex sets

is convex, we should still impose the restriction p
M

< pM in order to obtain convexity.

Before proceeding in the proof, let us illustrate our results in the case where Fm = 0,
QM (pM (θ̃)) = 10 − pM (θ̃), θ = 4, and c = 2. When p

M
< pM , Figure A1a shows that

the set defined by (53)-(56) and (85)-(86) is convex in the {pM , p
M
,K}-space. When

p
M

= pM , the incentive constraints (85)-(86) are trivially satisfied, and hence the relevant
constraint set is defined by (53)-(56). In this case, Figure A1b shows that the constraint
set is also convex (see the trapezoidal region defined by bold lines).
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Figure A1a: Constraint set Figure A1b: Constraint set

with p
M

< pM with p
M

= pM

However, in the general case where p
M

≤ pM , the constraint set found by superposing the
constraint sets in Figures A1a and A1b is not convex, as shown in Figure A2.
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46



Let us now verify the regularity of the constraint set under asymmetric information.
When Fm = 0 and both (55) and (85) are binding, they are represented by the level set

Υ
?

(pM , p
M
, K) = −(p

M
− θ)q

m
= 0 with gradient vector ∇Υ

?

(·) = ((p
M

− θ)Q′
M ,−(p

M
−

θ)− q
m
, 0) with p

M
= θ, i.e., ∇Υ

?

(·) = (0,−q
m
, 0) 6= 0 since q

m
> 0. In such a case, the

Jacobian JΥ
?
,q?m

is full rank. When Fm > 0, and both (53) and (85) are binding, they are

represented by the level set Υ
??

(pM , p
M
,K) = F − (p

M
− θ)q

m
= 0 with gradient vector

∇Υ
??

(·) = (0,−(p
M

− θ)Q′
M − q

m
, (p

M
− θ)) with p

M
= θ + Fm

q
m

. Then, the Jacobian

JΥ
?
,Π

?
m

is again full rank.34

Finally, concerning the local concavity of the welfare function (57), we know that ∂2
E[W ]

∂p2
M

=

αQ′
M < 0, ∂2

E[W ]
∂K∂pM

= αλ > 0, ∂2
E[W ]

∂pM∂p
M

= 0, ∂2
E[W ]

∂K∂p
M

= (1−α)λ > 0, ∂2
E[W ]

∂p2
M

= (1−α)Q′
M <

0, and ∂2
E[W ]

∂K2 = −(1 + λ)C′′(K) < 0. The leading principal minors of the Hessian of the

welfare function (57) are {αQ′
M , α(1−α)Q′

M
2
,−(1−α)Q′

M [λ2+(1+λ)Q′
MC′′(K)]}. Local

concavity of the welfare function requires that the last minor be negative, i.e., the condition
stated in the lemma. �

Proof of Proposition 5 Let us then start assuming that the incentive constraints (85)
and (86) are satisfied with strict inequality. In such a case, we come back to the regu-
lator’s optimization program under uncertainty. We should now check which of the five
policies (B1u)-(B5u) can arise under asymmetric information. When Fm = 0, since un-
der asymmetric information p

M
< pM , only policies (B1u) and (B3u) can arise, renamed

as (B1ai) and (B3ai). When Fm > 0, since the less efficient firm cannot be shut down
(qm > 0), from the incentive constraint (86), rewritten as Πm ≥ Πm+(θ−c)qm, we obtain
Πm > Πm. Therefore, from Proposition 4 only policy (B2u) can arise, renamed here as
(B2ai).

When the incentive constraint (86) is binding, (µ > 0, µ = 0), and there is no fixed cost,
only the case where ν = 0 may arise. Indeed, replace for ν > 0 into set of constraints (53)-
(56) and (85)-(86) to obtain p

M
= c. Substituting this into (88) yields (1−α)λK+µq

m
=

0. Since q
m

> 0, this equality requires µ < 0, which is a contradiction. Then, replacing

for φ = ν = µ = 0, and µ > 0 into (87)-(89), yields (94)-(96) which characterize policy
(B4ai).

When there is a fixed cost, in addition to policy (B4ai), there is the possibility to make
the less efficient firm just break even, φ > 0. Replacing ν = µ = 0, φ > 0 µ > 0 into
(87)-(89), yields (97), (95), and (98) which describe policy (B5ai).

Let us now study the case where the incentive constraint (85) is binding, (µ = 0, µ > 0)

three cases might arise. First substitute for ν = φ = µ = 0 into (87)-(89), to obtain
(99)-(101) which describe policy (B6ai).

When there is fixed cost, Fm > 0, and replacing for ν = µ = 0 into (87)-(89), yields (102),
(100), and (103) characterizing policy (B7ai). When there is no fixed cost, Fm = 0, and
replacing for φ = µ = 0 into the constraint set (53)-(55) and (85)-(86) yields p

M
= θ.

Moreover, replacing for φ = µ = 0 into (87)-(89), we get (104) and (105) describing policy
(B8ai). �

34A similar approach can be applied in the two remaining cases, i.e., when both (55) and (86)
are binding, and when both (53) and (86) are tight.
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Derivation of optimal regulatory policies under asymmetric information as-
suming (21) Solving the system of first-order conditions (87)-(93) when we assume
Fm = 0 (φ = φ = ν = 0) with the functional forms (21), yields the following solutions:

Solution 1: described by ν = 0, pM = θ + α(θ−c)λ(1+λ)
ω+λ(−λ+ω)

, p
M

= c + α(θ−c)λ(1+λ)
ω+λ(−λ+ω)

, K =
α(θ−c)(1+λ)
ω+λ(−λ+ω)

, µ = 0, and µ = 0. Second-order conditions are satisfied provided Ψ ≡ ω(1 +

λ)−λ2 > 0. In such a case, it is clear to see that p
M

> c, pM > θ, K > 0. For qm > 0, it is

required that Ψ(γ−c) > [Ψ+α(1+λ)2](θ−c). Moreover, this solution makes both incentive
constraints (85) and (86) inactive. Hence, we need to check for which values of (θ−c) they
are jointly satisfied. As to (85) it requires that Ψ(γ−c) > α(1+λ)(1+2λ)(θ−c). For (86),
it is necessary that Ψ(γ − c) < [Ψ + α(1 + λ)(1 + 2λ)](θ − c). It can be seen that this last
condition is compatible with those establishing that the incentive constraint (85) holds and
qm > 0. Now, we should check which of these conditions is the more stringent one. After
some calculations, we obtain that when the condition Ψ ≥ αλ(1+λ) holds, the final interval
for this solution is [ Ψ

Ψ+α(1+λ)(1+2λ)
](γ − c) ≤ (θ − c) < [ Ψ

Ψ+α(1+λ)2
](γ − c). Otherwise,

when 0 < Ψ < αλ(1 + λ), the final interval for this solution is [ Ψ
Ψ+α(1+λ)(1+2λ)

](γ − c) <

(θ − c) < [ Ψ
α(1+λ)(1+2λ)

](γ − c). This solution constitutes policy (B1ai).

Solution 2: described by ν = 0, pM = p
M

= c+ α(θ − c) + α(θ−c)λ(1+λ)
ω+λ(−λ+ω)

, K = α(θ−c)(1+λ)
ω+λ(−λ+ω)

,

µ = 0, and µ = (−1+α)α(θ−c)(λ2−(1+λ)ω)

((γ−c)+(θ−c))(λ2−(1+λ)ω)+α(θ−c)(1+3λ+2(1+λ)ω)
. In this case, second-order

conditions, pM = p
M

> c, and K > 0 necessitate Ψ > 0. For pM ≥ θ it is necessary that

Ψ ≤ αλ(1+λ)
(1−α)

. qm requires Ψ(γ − c) > α[Ψ + (1 + λ)2](θ − c). This solution makes both

incentive constraints (85) and (86) binding. To get this result, however, only µ > 0 which
calls for Ψ(γ − c) < [α(1 + λ)(1 + 2λ) − (1 − 2α)Ψ](θ − c). Hence, the defining interval

for this solution, provided Ψ ≤ αλ(1+λ)
(1−α)

holds, is given by [ Ψ
[α(1+λ)(1+2λ)−(1−2α)Ψ]

](γ− c) ≤

(θ − c) < [ Ψ
α[Ψ+(1+λ)2]

](γ − c). However, from Lemma 4 this solution is neglected.

Solution 3: described by ν = 0, pM = p
M

= c+ α(θ − c) + α(θ−c)λ(1+λ)
ω+λ(−λ+ω)

, K = α(θ−c)(1+λ)
ω+λ(−λ+ω)

,

µ = 0, and µ = − (−1+α)α(θ−c)(λ2−(1+λ)ω)

(γ−c)(λ2−(1+λ)ω)+α(θ−c)(1+3λ+2(1+λ)ω)
. In this case, second-order con-

ditions, pM = p
M

> c, and K > 0 necessitate Ψ > 0. For pM ≥ θ, Ψ ≤ αλ(1+λ)
(1−α)

,

and for qm, Ψ(γ − c) > α[Ψ + (1 + λ)2](θ − c). This solution makes both incentive con-
straints (85) and (86) binding. To get this result, however, only µ > 0 which calls for
Ψ(γ−c) > α[(1+λ)(1+2λ)+2Ψ](θ−c). Therefore, the defining interval for this solution,

provided Ψ ≤ αλ(1+λ)
(1−α)

holds, is given by 0 ≤ (θ− c) < [ Ψ
α[(1+λ)(1+2λ)+2Ψ]

](γ− c). However,
from Lemma 4 this solution is neglected.

Solution 4: described by ν = 0, K = α((−1+α)(γ−c)(1+2λ)+(θ−c)(λ−α(1+2λ)))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
, µ = 0, pM =

λ((γ−c)λ+α2((γ−c)+2(γ−c)λ)−α((γ−c)+(θ−c)+3(γ−c)λ))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ ((−1+α)(γ−c)−α(θ−c))(1+λ)ω+c(λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω)

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
,

p
M

= c(−1+α)(α(1+λ)(1+2λ)+ω+λ(−λ+ω))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ α(α(1+2λ)((θ−c)+(c+(γ−c))λ)−(1+λ)(−(θ−c)ω+(c+(γ−c))(λ+ω)))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
, and

µ = (−1+α)α(α(θ−c)(1+λ)(1+2λ)+((γ−c)−(θ−c))(λ2−(1+λ)ω))

αλ((θ−c)+2(γ−c)λ)+α2((θ−c)+2(θ−c)λ)+2α(−(γ−c)+(θ−c))(1+λ)ω+(γ−c)(ω+λ(−λ+ω))
.

Second-order conditions are satisfied when Ψ+α(1−α)(1+2λ)2 > 0, which is always true
since from Lemma 4, we restrict ourselves to cases where Ψ > 0. To obtain that qm > 0 the
condition [(1−α)λ(1+2λ)+Ψ](γ−c) > [Ψ+α(1+2λ)+λ2](θ−c) should hold. For q

m
> 0,

−(1− α)[αλ(1 + 2λ) + Ψ](γ − c) < α[Ψ + λ(1 + λ)](θ − c). As to the incentive constraint
(85), it is satisfied provided that (1−2α)Ψ(γ−c)+α[(α+λ)(1+2λ)+2Ψ](θ−c) > 0. Note
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that the denominator of µ is positive whenever the incentive constraint is (85) satisfied.
Therefore, µ > 0 requires Ψ(γ − c) > [α(1 + λ)(1 + 2λ) + Ψ](θ − c). Solving the former

inequality in Ψ we obtain Ψ∗ > α(1+λ)(1+2λ)(θ−c)
(γ−θ)

> 0, and then this solution requires

Ψ > 0.35 Now we have to check which of the constraints determining that qm > 0 and
µ > 0 is more stringent. After some calculations, we get that the most stringent constraint
is that establishing µ > 0. This solution illustrates policy (B4ai).

Solution 5: described by ν = 0, K = α(−(θ−c)(1+λ)+(−1+α)(γ−c)(1+2λ))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
, µ = 0, pM =

λ(α((−1+α)(γ−c)+(−2+α)(θ−c))+(−1+α)(−1+2α)((γ−c)+(θ−c))λ)

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+ ((−1+α)(γ−c)−(θ−c))(1+λ)ω+c(λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω)

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
,

p
M

= c(−1+α)(α(1+λ)(1+2λ)+ω+λ(−λ+ω))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω

+α(α(1+2λ)((θ−c)+(c+(γ−c)+(θ−c))λ)−(1+λ)((c+(γ−c)+(θ−c))λ+(c+(γ−c))ω))

λ2−α(1+2λ)2+(α+2αλ)2−(1+λ)ω
, and

µ = − (−1+α)α(α(θ−c)(1+λ)(1+2λ)+(γ−c)(λ2−(1+λ)ω))

α2((θ−c)+2(θ−c)λ)+αλ((θ−c)+2((γ−c)+(θ−c))λ)−2α(γ−c)(1+λ)ω+((γ−c)+(θ−c))(ω+λ(−λ+ω))
.

Second order conditions are satisfied when Ψ+α(1−α)(1+2λ)2 > 0, which is always true.
For qm > 0, α[(1−α)λ(1 + 2λ) +Ψ](γ − c) > [Ψ+ α(1−α)λ(1 + 2λ) +α(1 + λ)2](θ− c).
Concerning the incentive constraint (86), it is satisfied when (1−2α)Ψ(γ−c)+[Ψ+α(α+
λ)(1+2λ)](θ− c) > 0. When both qm > 0 and (86) hold, p

m
> c. Furthermore, for µ > 0,

both (1−2α)Ψ(γ−c)+[Ψ+α(α+λ)(1+2λ)](θ−c) > 0 and Ψ(γ−c) < α(1+λ)(1+2λ)(θ−c)
should hold.36. After some calculations we obtain that when Ψ < αλ(1 + λ), the incentive
constraint (86) is always satisfied and hence the defining interval of this solution is given
by those establishing that qm > 0 and µ > 0. This solution represents policy (B6ai).

Solution 6: described by ν = −(γ−c)+α(θ−c)+ (γ−c)(1+λ)2

1+ω+λ(2+ω)
, pM = p

M
= c+ (γ−c)(λ+ω+λω)

1+ω+λ(2+ω)
,

µ = (−1+α)(γ−c)(λ2−(1+λ)ω)
(γ−c)(λ+ω+λω)−(θ−c)(1+ω+λ(2+ω))

, K = (γ−c)(1+λ)
1+ω+λ(2+ω)

, and µ = 0. Second-order con-
ditions are always satisfied. This solution is characterized by qm = q

m
= 0, and makes

both incentive constraints (85) and (86) binding by setting µ > 0 and µ = 0. Shutting

down is obtained by setting ν > 0, which calls for 0 < Ψ < αλ(1+λ)
(1−α)

and Ψ
α
(γ − c) <

[Ψ + (1 + λ)2](θ − c) < [Ψ + λ(1 + λ)](γ − c). However, from Lemma 4 this solution is
neglected.

Solution 7: described by ν = −(γ−c)+α(θ−c)+ (γ−c)(1+λ)2

1+ω+λ(2+ω)
, pM = p

M
= c+ (γ−c)(λ+ω+λω)

1+ω+λ(2+ω)
,

µ = − (−1+α)(λ2−(1+λ)ω)
λ+ω+λω

, K = (γ−c)(1+λ)
1+ω+λ(2+ω)

, and µ = 0. Second-order conditions are
always satisfied. This solution is characterized by qm = q

m
= 0, and makes both incentive

constraints (85) and (86) binding by setting µ = 0 and µ > 0, which requires that Ψ < 0.
Since, from Lemma 4 we must restrict to cases where Ψ > 0 and p

M
< pM , this solution

is ignored.

Solution 8: described by pM = c + −(θ−c)λ+α((γ−c)+(θ−c))λ+(γ−c)(1+λ)ω
α+2αλ+ω+λω

, p
M

= θ, ν =
α2((γ−c)−(θ−c))λ(1+2λ)+(θ−c)(ω+λ(−λ+ω))+α((θ−c)(1+3λ(1+λ))−(γ−c)(1+λ)(λ+ω))

α+2αλ+ω+λω
, µ = 0, µ =

− (−1+α)(α(1+λ)((θ−c)−(γ−c)λ+(θ−c)λ)+(θ−c)(ω+λ(−λ+ω)))
(θ−c)λ+α((θ−c)−(γ−c)λ+(θ−c)λ)+(−(γ−c)+(θ−c))(1+λ)ω

, and

K = (θ−c)λ+α((γ−c)+(γ−c)λ−(θ−c)λ)
α+2αλ+ω+λω

. Second order conditions are always satisfied. This
solution is characterized by p

M
> c and qm = 0. For the incentive constraint (86) to hold,

[Ψ + λ(α + λ)](γ − c) > [Ψ + (1 + λ)(α + λ)](θ − c). Provided that this latter condition
holds, for µ > 0, αλ(1 + λ)(γ − c) > [Ψ + α(1 + λ)2](θ − c). Furthermore, ν > 0 calls

35Given that Ψ > 0, q
m

> 0 and (85) are always satisfied.
36Note that the former inequality provides an upper bound for Ψ which allows for the possibility

of Ψ ≶ 0. However, from Lemma 4, we restrict to cases with Ψ > 0.
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for α[(1 − α)λ(1 + 2λ) + Ψ](γ − c) < [Ψ + α(1 − α)λ(1 + 2λ) + α(1 + λ)2](θ − c). After
some calculations, we obtain that when Ψ < αλ(1 + λ), the conditions which define the
optimality of this solution are those guaranteeing that ν > 0 and µ > 0. This solution
illustrates policy (B8ai).

Solution 9: described by ν = α(α(θ−c)(1+λ)2+((γ−c)−(θ−c))(λ2−(1+λ)ω))

α(1+λ)2+ω+λ(−λ+ω)
, pM = c+ (γ − c) −

α(γ−c)(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, p

M
= c + α(γ−c)λ(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, µ = 0, K = α(γ−c)(1+λ)

α(1+λ)2+ω+λ(−λ+ω)
, and

µ = 0. Second-order conditions are satisfied when Ψ+α(1+λ)2 > 0, which is always true
in our case. This solution is characterized by qm = 0. For the incentive constraint (85) to
hold, αλ(1 + λ)(γ − c) < [α(1 + λ)2 +Ψ](θ − c). Provided that this latter condition holds,
for ν > 0, it is required that Ψ(γ−c) < [α(1+λ)2+Ψ](θ−c). Concluding, two cases might
arise: If Ψ ≥ αλ(1+λ), this solution is chosen when [ Ψ

Ψ+α(1+λ)2
](γ−c) < (θ−c) < (γ−c).

If 0 < Ψ < αλ(1+λ), this solution is chosen when [ αλ(1+λ)

Ψ+α(1+λ)2
](γ− c) < (θ− c) < (γ− c).

This solution illustrates policy (B3ai). �

Proof of Proposition 6 The first-order conditions of the regulator’s optimization pro-
gram under uncertainty, (58)-(60), can be expressed as37

∂E[WB]

∂pM
+ φ

B

u

∂Π
B

m

∂pM
+ νB

u Q′
M = 0 (A.1)

∂E[WB]

∂p
M

+ φB

u

∂ΠB
m

∂p
M

+ νB
u Q′

M = 0 (A.2)

∂E[WB]

∂K
− φ

B

u (pBM − θ)− φB

u
(p

M
− c)− νB

u = 0 (A.3)

Those of the regulator’s optimization program under asymmetric information, (87)-(89),
can be written as

∂E[WB]

∂pM
+ (φ

B

ai + µB − µB)
∂Π

B

m

∂pM
− µB(θ − c)Q′

M + νB
aiQ

′
M = 0 (A.4)

∂E[WB]

∂p
M

− (µB − µB)
∂ΠB

m

∂p
M

+ µB(θ − c)Q′
M = 0 (A.5)

∂E[WB]

∂K
− φ

B

ai(p
B
M − θ)− (µB − µB)(pBM − pB

M
)− νB

ai = 0 (A.6)

We know from Propositions 4 and 5 that when there is no fixed cost, φ
B

u = φB

u
= 0 and

φB

ai
= 0. When there is a positive fixed cost, these propositions yield that νB

u = 0 and

νB
ai = 0. Moreover, from the definition of the firm’s profit function (48) and the expected

welfare function (57), ∂2Πm

∂p2
M

,
∂2Πm

∂p2
M

< 0 and ∂2
E[WB ]

∂p2
M

, ∂2
E[WB ]

∂p2
M

, ∂2
E[WB ]

∂K2 < 0. Let us now

separately study two cases according to whether or not there is a fixed cost.

The no-fixed-cost case. When Fm = 0, we see from (124) that the effect of accounting
for incentives is closely related to the behavior of µB, µB, νB

ai, and νB
u . As a consequence of

Lemma 4 only three cases should be discussed. First, we study the case where µB = µB = 0.
Second, we consider the effect of accounting for incentives when the regulator is constrained
to minimize the information rent of the more efficient type, i.e., it makes the incentive
constraint of the c-type firm binding, µB > 0. Finally, we analyze the role of incentives

37Note that following Lemma 4 we should exclude the case where both νBu > 0 and νBu > 0,
and hence νBu = 0.
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when the regulator targets on the information rent of the less efficient firm by setting
µB > 0.

It is direct to see that when the incentive constraints (85) and (86) are satisfied with strict
inequality, i.e., µB = µB = 0, the outcome of the regulatory scheme under asymmetric

information coincides with that under uncertainty and hence KB
ai = KB

u .

When µB = 0 and µB > 0, the only possibility is to have νB
ai = 0.38 Since µB > 0,

constraint (86), rewritten as (123), implies that ( ∂Πm

∂pM,ai
+ (θ − c)Q′

M ) < 0. Then, from

(A.4) we obtain ∂E[W ]
∂pM,ai

< 0, while from (A.1) ∂E[W ]
∂pM,u

≥ 0, which implies that pBM,ai > pBM,u.

Similarly, (123) satisfied with equality yields
∂Πm

∂p
M,ai

> 0. Then, from (A.5) we obtain

∂E[W ]
∂p

M,ai

< 0, while from (A.2), ∂E[W ]
∂p

M,u

= 0 which implies that pB
M,ai

> pB
M,u

. Plugging all

these results into (124) yields that when Fm = 0 and µB > 0, KB
ai > KB

u

When µB > 0 and µB = 0, constraint (85), rewritten as (122), implies ∂Πm

∂pM,ai
< 0 and

(
∂Πm

∂p
M,ai

− (θ− c)Q′
M) > 0. Now, two cases should be analyzed depending of whether or not

the less efficient firm is shut down under asymmetric information.

When νB
ai = 0 we obtain [ ∂E[W ]

∂pM,ai
− ( ∂E[W ]

∂pM,u
+ νB

u Q′
M )] = −µB ∂Πm

∂pM,ai
> 0 and then

it is direct to see that pBM,ai < pBM,u. From (A.5) we obtain ∂E[W ]
∂p

M,ai

> 0, while

from (A.2), ∂E[W ]
∂p

M,u

= 0 which implies that pB
M,ai

< pB
M,u

. Now, from conditions

(A.3) and (A.6) we obtain sign[KB
ai − KB

u ] = −sign[∂E[WB ]
∂Kai

− ( ∂E[WB]
∂Ku

− νB
u )] =

−sign[µ(pBM,ai − pB
M,ai

)] < 0, i.e., KB
ai < KB

u .39

When νB
ai > 0 we again obtain that pBM,ai < pBM,u and pB

M,ai
< pB

M,u
. Two subcases

should be analyzed depending of the value of νB
u . When νB

u = 0, it is direct to see
from (124) that when µB > 0, νB

ai > 0, and νB
u = 0, KB

ai < KB
u . When νB

u > 0,

sign[KB
ai − KB

u ] = −sign[( ∂E[WB ]
∂Kai

− νB
ai)) − ( ∂E[WB]

∂Ku
− νB

u )] = −sign[µ(pBM,ai −

pB
M,ai

)] < 0, i.e., KB
ai < KB

u
40

The with-fixed-cost case. When Fm > 0, we see from (A.1)-(A.6), and (125) that the

effect of accounting for incentives is closely related to the behavior of µB, µB, φ
B

ai, φ
B

u , and

φB

u
. Again, three cases should be studied. First, we study the case where µB = µB = 0.

Second, we consider the case where µB = 0 and µB > 0. Next, we analyze the role of

incentives when µB > 0 and µB = 0.

As in the no-fixed-cost case, we see that when µB = µB = 0, KB
ai = KB

u .

38See the proof of Proposition 5.
39If the regulator is allowed to set µB > 0 without shutting down the firm, νBai = 0, when it

would have been necessary to do so in the case where incentives are not taken into account, i.e.,
qm,u = 0, it should be the case that µB(pBM,ai − pB

M,ai
) > νBu . Plugging this into (124) yields

that when Fm = 0, µB > 0, and νBai = 0, KB
ai < KB

u .
40Indeed, consistency between (A.3) and (A.6) necessitates that −(νBai − νBu ) < µB(pBM,ai −

pB
M,ai

) < νBu . Plugging this result into (124) yields that when Fm = 0, µB > 0, νBai > 0,

KB
ai < KB

u .
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When µB = 0 and µB > 0, constraint (86), rewritten as (123), implies that ( ∂Πm

∂pM,ai
+

(θ− c)Q′
M ) < 0 and

∂Πm

∂p
M,ai

> 0. Two cases should be studied depending of whether or not

φ
B

ai = 0.

When φ
B

ai = 0, from (A.1) and (A.4) we obtain that ∂E[W ]
∂pM,ai

< 0, and [ ∂E[W ]
∂pM,ai

−

( ∂E[W ]
∂pM,u

+ φ
B

u
∂Πm

∂pM,u
)] = µB( ∂Πm

∂pM,ai
+ (θ − c)Q′

M ) < 0, and hence pBM,ai > pBM,u.

Similarly, from (A.2) and (A.5) we obtain that ∂E[W ]
∂p

M,ai

< 0, and [ ∂E[W ]
∂p

M,ai

− ( ∂E[W ]
∂p

M,u

+

φB

u

∂Πm

∂p
M,u

)] = −µB ∂Πm

∂p
M,ai

< 0, and hence pB
M,ai

> pB
M,u

. Plugging all these results

into (125) yields that when Fm > 0, µB > 0, and φ
B

ai = 0, disregarding of whether

or not φ
B

u and/or φB

u
are equal to zero, KB

ai > KB
u .

When φ
B

ai > 0, we see that when the regulator is allowed to set µB > 0 and still

makes the less efficient firm just break even, φ
B

ai > 0, while would have only been

necessary to let it earn zero profits under uncertainty, i.e., φ
B

u , φB

u
> 0, clearly

µB(pBM,ai − pB
M,ai

) > φ
B

ai(p
B
M,ai − θ) − φ

B

u (p
B
M,u − θ) − φB

u
(pB

M,u
− c). Plugging all

these results into (125) yields that when Fm > 0, µB > 0, and φ
B

ai > 0, KB
ai > KB

u .

When µB > 0 and µB = 0, constraint (85), rewritten as (122), implies ∂Πm

∂pM,ai
< 0 and

(
∂Πm

∂p
M,ai

− (θ− c)Q′
M) > 0. Now, two cases should be analyzed depending of whether or not

the less efficient firm is constrained to break even under asymmetric information.

When φ
B

ai = 0, from (A.1) and (A.4) we obtain that ∂E[W ]
∂pM,ai

> 0, and [ ∂E[W ]
∂pM,ai

−

( ∂E[W ]
∂pM,u

+ φ
B

u
∂Πm

∂pM,u
)] = −µB ∂Πm

∂pM,ai
> 0, and hence pBM,ai < pBM,u. Similarly, from

(A.2) and (A.5) we obtain that ∂E[W ]
∂p

M,ai

> 0, and [ ∂E[W ]
∂p

M,ai

− ( ∂E[W ]
∂p

M,u

+ φB

u

∂Πm

∂p
M,u

)] =

µB(
∂Πm

∂p
M,ai

− (θ− c)Q′
M) > 0, and hence pB

M,ai
< pB

M,u
. Now, from conditions (A.3)

and (A.6) we see that when the regulator is allowed to set µB > 0 without making

binding the participation constraint of the less efficient firm, φ
B

ai = 0, while it would
have been necessary to do so in the case where incentives are not taken into account,

i.e., φ
B

u > 0, it clear that µB(pBM,ai−pB
M,ai

) > φ
B

u (p
B
M,u−θ)+φB

u
(pB

M,u
−c). Hence,

substituting into (124) implies that when Fm > 0, µB > 0, and φ
B

ai = 0, KB
ai < KB

u .

When φ
B

ai > 0 we again obtain that pBM,ai < pBM,u and pB
M,ai

< pB
M,u

. Two subcases

should be analyzed depending of the value of φ
B

u and/or φB

u
. When φ

B

u = φB

u
= 0,

it is direct to see from (125) that KB
ai < KB

u . When either φ
B

u > 0 or both φ
B

u > 0
and φB

u
> 0, µB > 0 does not unambiguously imply the sign of (KB

ai −KB
u ). �
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