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GLOSSARY 

 

19S REGULATORY PARTICLE (19S RP): A sub-complex of the 26S proteasome composed of 

two subunits, the base and the lid. It flanks each extremity of the 20S CP controlling the 

access of the substrates to the internal chamber and removing ubiquitin from the substrate 

committed to degradation.  

 

20S CORE PARTICLE (20S CP): A sub-complex of the 26S proteasome, composed of 28 

subunits forming a hollow cylinder that contains inside a catalytic chamber where 

internalized substrates are degraded.  

 

26S PROTEASOME: A large and complex enzyme that degrades substrates tagged with 

certain ubiquitin signals. It is composed of two sub-complexes, a 20S core particle (20S CP) 

and a 19S regulatory particle (19S RP) 

 

CATALYTIC TRIAD: Three amino acid residues, within the active site of the protease, that 

work together to break peptide bonds.  

 

COLONY FORMING UNIT (CFU): Estimate of viable cells present, assessed by counting the 

amount of colonies visible on the plate.  

 

CO-IMMUNOPRECIPITATION: Technique to study protein-protein interactions under 

physiological conditions by using specific antibodies that recognize the proteins of interest. 

 

DAPI: Fluorescent counterstain for nucleus and chromosomes. It binds strongly to A-T rich 

regions in DNA emitting blue fluorescence. Used extensively in fluorescence microscopy.  

 

DEGRON: Specific recognition motifs within the structure of proteins, ought to be degraded 

through the ubiquitin pathway, which are identified by particular E3 ligases.  

 

DEUBIQUITINATING ENZYMES (DUBs): A diverse group of proteases responsible for the 

deconjugation of ubiquitin. 

 

DOXYCYCLINE: Semisynthetic antibiotic, tetracycline derivative.  

 

FOCAL ADHESION COMPLEX: Integrin-based macromolecular complexes that connect the 

cell cytoskeleton with extracellular ligands.  
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FOCAL ADHESION KINASE (FAK): Tyrosine kinase recruited at early stages of focal adhesions 

formation. It integrates many cellular signals.  

 

HECT E3 LIGASES: E3 ligases that harbor an HECT domain within its structure. In opposition 

to the RING E3 ligases, they bind the ubiquitin carried by its cognate E2 to its own catalytic 

cysteine before transferring it to the target protein.  

 

HYPOXIA INDUCIBLE FACTOR (HIF)-1: Key transcription factor of the hypoxia response. 

 

IMMUNOFLUORESCENCE: Technique to detect the location and relative abundance of 

proteins of interest in the cells, by using specific fluorescent-labeled antibodies.  

 

INTEGRINS: Family of cell surface adhesion receptors. They operate as transmembrane 

proteins with large extracellular and short cytoplasmic domains that connect the 

extracellular matrix to the cell cytoskeleton.  

 

LIPOPOLYSACCHARIDE (LPS): The major component of the outer membrane of Gram-

negative bacteria.  

 

mCHERRY: Monomeric red fluorophore with peak absorption/emission at 578 nm and 610 

nm, respectively.  

 

MULTIPLICITY OF INFECTION (MOI): The ratio of infectious agents (in this case bacteria) to 

infection targets (cells).   

 

PHALLOIDIN: Toxin that binds F-actin with high-affinity. It is conjugated to fluorescent dyes, 

such as fluorescein (FITC) to visualize the actin cytoskeleton of the cells.  

 

POST-TRANSLATIONAL MODIFICATIONS (PTMs): Chemical modifications in the proteins 

structure. They alter the functions of their substrates by regulating their activity, cellular 

location and interaction with other molecules.  

 

PULL-DOWN ASSAY: Technique to study physical protein-protein interactions in in vitro 

conditions. 

 

PUROMYCIN: Antibiotic that inhibits protein synthesis.  
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P120-CATENIN: Protein that regulates the abundance and activity of the cadherin cell 

adhesion receptors.  

 

RING E3 LIGASES: E3 ligases that harbor a RING domain within its structure. In opposition 

to the HECT E3 ligases, they promote the discharge of ubiquitin directly from its cognate E2 

to the substrate, without binding the ubiquitin to its own catalytic site.  

 

SEVEN IN ABSENTIA HOMOLOG (SIAH) 1 and 2: E3 ubiquitin-protein ligases. 

 

TET-ON SYSTEM: Inducible gene expression system, in which the expression of the gene of 

interest is triggered by tetracycline. 

 

TETRACYCLINE: Broad-spectrum antibiotic. One of its derivatives is doxycycline. 

 

TRIGGER MECHANISM: Bacterial invasion strategy, in which the bacteria inject protein 

effectors into the host cytoplasm that promote their internalization.  

 

UBIQUITIN: A small protein of 76 amino acids that operates as a post-translational 

modification. 

 

UBIQUITINATION: The enzymatic cascade that conjugates ubiquitin to its substrates. 

 

UBIQUITIN ACTIVATING ENZYME (E1): The first enzyme in the ubiquitination cascade that 

activates the C-terminal glycine of ubiquitin, allowing its subsequent binding to the other 

enzymes and its final substrate. 

 

UBIQUITIN BINDING DOMAINS (UBDs): Domains harbored on effector proteins downstream 

the ubiquitin pathway, known as ubiquitin receptors, which bind non-covalently to ubiquitin 

recognizing the signal it conveys and eliciting the appropriate response.  

 

UBIQUITIN CONJUGATING ENZYME (E2): The second enzyme in the ubiquitination cascade 

that takes the activated ubiquitin from the E1 enzymes and brings it in proximity of a specific 

E3 enzyme, to aid in the transference of ubiquitin to its final substrate.  
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UBIQUITIN LIGASE (E3): The third enzyme in the ubiquitination cascade that catalyzes the 

formation of an isopeptide bond between the activated C-terminal glycine of ubiquitin and 

usually a lysine within the substrate.  

 

UBL-SPECIFIC PROTEASES (ULPs): Proteases responsible for the deconjugation of ubiquitin-

like modifiers (UBLs) 

 

UBIQUITIN-DOMAIN PROTEINS (UDPs): Proteins that bear domains related to ubiquitin, but 

contrary to ubiquitin they cannot be processed and conjugated to other substrates as 

modifiers. 

 

UBIQUITIN PROTEASOME SYSTEM (UPS): The coupled action of ubiquitination and 

proteasomal degradation, where ubiquitination targets the substrate protein for 

degradation within the 26S proteasome.  

 

UBIQUITIN-LIKE MODIFIERS (UBLs): Ubiquitin-like proteins that can be covalently 

conjugated to substrates working as PTMs in a manner analogous to ubiquitin.  

 

UBIQUITIN-LIKE PROTEINS: Proteins related to ubiquitin in sequence, structure or function 

 

Ub-VS: Functional probe that labels active DUBs.  

 

VINCULIN: Component of the focal adhesion complexes. It carries out a stabilizing function.  

 

YEAST-TWO-HYBRID SCREEN: Method to detect weak and transient physical protein-protein 

interactions in vivo. 

 

ZIPPER MECHANISM: Bacterial invasion strategy, in which bacteria exploit host cell 

membrane surface receptors to induce their internalization.  
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ABBREVIATIONS 

 

19S RP: 19S regulatory particle 

20S CP: 20S core particle 

AD: Activating domain 

ARF: ADP ribosylation factor 

ARF-BP1: ARF-binding protein 1 

ATM: Ataxia telangiectasia mutated 

ATR: Ataxia telangiectasia and Rad3-related protein 

bHLH: Basic-helix-loop-helix domain 

CFU: Colony forming units 

c-IAP1/2: Cellular inhibitor of apoptosis protein 1/2  

DBD: DNA binding domain 

DOX: Doxycycline 

DUB: Deubiquitinating Enzyme 

DUSP: Domain present in ubiquitin specific proteases 

ECM: Extracellular matrix 

EMT: Epithelial-to-mesenchymal transition 

ER: Endoplasmic reticulum 

ERAD: Endoplasmic reticulum associated degradation 

FAK: Focal adhesion kinase 

E1: Ubiquitin activating enzyme 

E2: Ubiquitin conjugating enzyme 

E3: Ubiquitin ligase  

GST: Glutathione S-transferase 

HCV: Hepatitis C virus 

HECT: Homologous to E6AP C terminus 
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HGF: Hepatocyte growth factor 

HIF-1: Hypoxia inducible factor-1 

His: Poly-histidine 

HPV: Human papilloma virus 

JAMM: Josephins and JAB1/MPN/MOV3 metalloenzyme 

KPC1: Kip1 ubiquitination-promoting complex 1 

LPS: Lipopolysaccharide 

MCPIP: Monocyte chemotactic protein-induced protein 

MOI: Multiplicity of infection 

MYND domain: Myeloid translocation protein 8, Nervy, and DEAF-1 

NEMO: NF-κβ essential modulator 

NLS: Nuclear localization sequence 

NF-κβ: Nuclear factor kappa-light-chain enhancer of activated B cells 

OTU: Ovarian tumor protease 

PAS: Per-Arnt-Sim domain 

PFA: Paraformaldehyde 

PHD: Prolyl hydroxylase 

PTM: Post-translational modification 

PuroR: Puromycin selection marker 

PVDF: Polyvinylidene difluoride 

p23/CS domain: p23-like CHORD and Sgt1 domain 

RING: Really interesting new gene 

rtTA3: Tetracycline-controlled transcription factor 

SIAH: Seven in absentia homolog 

TAK: Transforming growth factor-β-activated kinase 1   

TβRI: TGF-β type I receptor 

TF: Transcription factor 
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TGF-β: Transforming growth factor β 

TMD: Transmembrane domain 

TNF: Tumor necrosis factor 

TRAF2/3/6: TNF-receptor associated factor 2/3/6 

TRE: Tetracycline-inducible promoter 

Ub: Ubiquitin 

UBC: Human ubiquitin C 

UBD: Ubiquitin binding domain 

UBL: Ubiquitin-like 

ULP: UBL-specific protease 

UCH: Ubiquitin C-terminal hydrolase 

UCH-L1: Ubiquitin C-terminal hydrolase-L1 

UPS: Ubiquitin proteasome system 

USP: Ubiquitin-specific protease 

USP4: Ubiquitin specific protease 4 

USP19: Ubiquitin specific protease 19 

VHL: Von Hippel-Lindau tumor suppressor protein 

WGA: Wheat germ agglutinin 
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ABSTRACT 

 

The conjugation of ubiquitin to proteins, known as ubiquitination, has different cellular 

functions; they include targeting proteins for degradation by the proteasome, regulation of 

DNA damage repair signaling, membrane receptor signaling and endocytosis (1). The 

ubiquitin moieties can be de-conjugated from their substrates or other ubiquitin moieties 

by a large group of proteases named deubiquitinating enzymes (DUBs) (2). DUBs are 

essential for the maintenance of the ubiquitin homeostasis in the cell and regulation of the 

ubiquitination status of the different substrates. The diversity of these proteases hints on 

their specificity for certain targets and participation in particular cellular pathways. 

Although several DUBs have been thoroughly studied, at present the targets and 

physiological roles of most of them remain unknown. Here, we studied the functional roles 

of the ubiquitin specific protease 19 (USP19), USP4 and the ubiquitin C-terminal hydrolase 

(UCH-L1), using several cellular and molecular techniques. We found that, i) USP19 can be 

regulated by SIAH ubiquitin ligases, ii) USP19 is important for controlling the key regulator 

of response to hypoxia, HIF-1α, iii) USP4 is a proteasome-interacting DUB, iv) an mCherry-

UCH-L1 chimera reproduces only partially previous phenotypes described for UCH-L1, and 

v) UCH-L1 promotes Yersinia pseudotuberculosis internalization.  

 

Keywords: Ubiquitin, deubiquitinating enzymes, USP19, USP4, UCH-L1 
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RESUMEN 

 

El marcaje de proteínas con ubiquitina, conocido como ubiquitinación, cumple diferentes 

funciones que incluyen la regulación de varios procesos celulares, tales como: la 

degradación de proteínas por medio del proteosoma, la reparación del ADN, la señalización 

mediada por receptores de membrana, y la endocitosis, entre otras (1). Las moléculas de 

ubiquitina  pueden ser removidas de  sus sustratos gracias a la acción de un gran grupo de 

proteasas, llamadas enzimas deubiquitinizantes (DUBs) (2). Las DUBs son esenciales para la 

manutención de la homeostasis de la ubiquitina y para la regulación del estado de 

ubiquitinación de diferentes sustratos.  El gran número y la diversidad de DUBs descritas 

refleja tanto su especificidad como su utilización para regular un amplio espectro de 

sustratos y vías celulares. Aunque muchas DUBs han sido estudiadas a profundidad, 

actualmente se desconocen los sustratos y las funciones biológicas de la mayoría de ellas. 

En este trabajo se investigaron las funciones de las DUBs: USP19, USP4 y UCH-L1. Utilizando 

varias técnicas de biología molecular y celular se encontró que: i) USP19 es regulada por las 

ubiquitin ligasas SIAH1 y SIAH2  ii)  USP19 es importante para regular HIF-1α, un factor de 

transcripción clave en la respuesta celular a hipoxia, iii) USP4 interactúa con el proteosoma, 

iv) La quimera mCherry-UCH-L1 reproduce parcialmente los fenotipos que nuestro grupo 

ha descrito previamente al usar otros constructos de la misma enzima, y v) UCH-L1 

promueve la internalización de la bacteria Yersinia pseudotuberculosis. 

 

Palabras clave: Ubiquitina, enzimas deubiquitinizantes, USP19, USP4, UCH-L1
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INTRODUCTION 

 

Before the 1950s, it was believed that the set of proteins within our body were building 

our organs as static blocks. Nowadays we know that body proteins are in a dynamic state, 

being synthesized and degraded extensively in a process known as protein-turnover. This 

conception started to be slowly accepted after pioneering experiments of Rudolf 

Schöenheimer. Using the stable isotope 15N to label amino acids, he demonstrated that the 

ingested proteins are not completely metabolized and excreted, but an important portion 

of them is retained in body proteins (3). Further support to the concept of protein-turnover 

came in the mid-1950s, when Christian de Duve discovered the lysosome, an organelle able 

to digest intracellular proteins; thus providing a mechanism for protein degradation (4). 

However, protein synthesis was still perceived as the most relevant component of the 

protein-turnover. Most of the studies were focused on how genes are transcribed to RNA 

and translated to proteins, thus neglecting the area of protein degradation (5).  

 

Nevertheless, the principles described for lysosomal degradation did not match with 

some observations regarding protein breakdown. A breakthrough came in the 1980s, when 

Aaron Ciechanover, Avram Hershko, and Irwin Rose discovered that a small protein named 

ubiquitin (Ub) is responsible for regulated protein degradation in cells in an energy-

dependent process (6-8). The discovery of this protein degradation pathway was awarded 

with the Nobel Prize in 2004 by virtue of its critical importance in maintaining the internal 

balance of most eukaryotic cells, as well as in the control of cellular events. On top of that, 

this findings demonstrated that protein degradation is as important and tightly regulated 

as protein synthesis. Successive studies have established further non-proteolytic roles of Ub 

conjugation to cellular proteins. To date, we have learned that Ub is a key modulator of 

several signaling pathways, participating in virtually every cellular process (1).  

 

Deubiquitinating enzymes (DUBs), a diverse group of proteases responsible for the 

deconjugation of Ub, are essential in the dynamics and regulation of the Ub pathway. The 

research work described in this document focused on the functional study of three of them: 

USP19, USP4 and UCH-L1.  
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1. THEORETICAL FRAMEWORK 

 

This section gives an account of the fundamental concepts underlying this study, starting 

with the identity, mode of operation and functions of Ub and DUBs. Subsequently, USP19, 

USP4 and UCH-L1 are discussed in further detail, followed by the presentation of the aims 

pursued in this work.  

  

1.1  POST-TRANSLATIONAL MODIFICATIONS BY UBIQUITIN AND UBIQUTIN-LIKE 

MOLECULES 

 

1.1.1  Ubiquitin and ubiquitin-like molecules 

 

The last decade of research has shown that the human genome contains less information 

than it was first expected, with an estimation of about 20.000 genes (9). However, we know 

now that the proteome, which actually represents more accurately the identity of a cell, its 

state, and behavior, is highly complex. This complexity is achieved through different 

mechanisms that modify in several different ways a gene product, such as post-

transcriptional modifications (e.g. alternative splicing) and post-translational modifications 

(PTMs). PTMs are chemical modifications made in the structure of proteins. They alter 

proteins functions by regulating their activity, cellular location and interaction with other 

molecules. Currently there are more than 300 different types of PTMs identified; some of 

the most prominent ones are the addition of phosphate, methyl and acetyl groups known 

as phosphorylation, methylation and acetylation, respectively (10). 

 

Ub is a small protein of 76 amino acids that operates as a PTM. After its discovery, several 

proteins related to it in sequence, structure or function have been described. These proteins 

are termed Ub-like proteins, and most of them share the tertiary structure ubiquitin fold, 

also termed β-grasp fold (11). 

 

The Ub-like proteins fall into two separate classes: First, Ub-like modifiers (UBLs) are 

proteins that can be covalently conjugated to substrates functioning as PTMs in an 

analogous manner to ubiquitin. Second, Ub-domain proteins (UDPs) bear domains related 

to ubiquitin that cannot be processed and consequently conjugated to other substrates as 

modifiers. Instead, UDPs fulfil an adaptor function binding non-covalently to ubiquitin or 

UBLs affecting protein-interactions, enzymatic activity, stability or sub-cellular localization 

of the protein that contains them (12).  

 



21 
 

PTMs by ubiquitin and UBLs participate in a variety of physiological processes. In general, 

each one of this modifications display different mechanisms of conjugation, their own set 

of conjugating enzymes and adaptors, and distinct actions on their substrates. To date more 

than ten UBLs have been identified. The small-ubiquitin-related modifier (SUMO), and the 

neural precursor cell-expressed developmentally downregulated-8 (NEDD8) are the best 

known, but other UBLs are under intensive investigations, such as the F-adjacent transcript-

10 (Fat10) and the interferon-stimulated gene-15 (ISG15). 

 

1.1.2  The conjugation cascade 

 

Ub and UBLs have related biochemical mechanisms for conjugation to their substrates. 

Precursors of ubiquitin and most of the UBLs need to be processed by deubiquitinating-

enzymes (DUBs) in the case of ubiquitin, and UBL-specific proteases (ULPs) in the case of 

UBLs to generate mature forms. These mature forms usually terminate with a signature di-

glycine sequence, which is the site of conjugation to their substrates (13,14).  

 

The conjugation of ubiquitin to the substrates is named ubiquitination (Figure 1). It 

involves the sequential action of three enzymes: a ubiquitin activating enzyme (E1), a 

ubiquitin conjugating enzyme (E2) and a substrate specific ubiquitin ligase (E3) (15). First, 

the E1 forms a thio-ester with the C-terminal glycine of ubiquitin in an ATP requiring 

reaction causing the activation of the C-terminus of ubiquitin. This reaction allows the 

subsequent binding of the activated ubiquitin to the active-site cysteine of an E2 enzyme. 

Finally, the E3 bound specifically to its cognate substrate, binds a ubiquitin loaded-E2 and 

catalyzes the formation of an isopeptide bond between the activated C-terminal glycine of 

ubiquitin and usually a lysine (K) within the substrate (16).  These PTMs are then recognized, 

leading to specific downstream events, which vary depending on the identity of the PTM 

and the location and identity of substrates. Most of the functional consequences of these 

PTMs are unknown (14).  

 

Although the ubiquitin pathway keeps a hierarchical structure, its components operate 

in an intricate network. In humans there are two known E1s for ubiquitin (UBA1 and UBA6) 

(17), around 35 active E2s have been described (18) and there is an estimated of more than 

600 putative E3s (19). Presumably those E1s are able to activate and transfer all the 

ubiquitin necessary for every E2 in the cell. One to a few E2s interact with each E3, and most 

E2s interact with several E3s. Likewise, many E3s interact with different substrates, and in 

turn some substrates can be targeted by more than one E3 (20). The accurate operation of 

this pathway is accomplished by means of the tight regulation of its components and high 



22 
 

specificity for its substrates. Many of these components are further regulated in a spatial 

and temporal way often by the action of PTMs, including ubiquitination itself (21,22).  

 

 

 
 

Figure 1. Ubiquitination cascade. (1) E1 forms a thio-ester with Ub in an ATP-requiring reaction, causing the 

activation of Ub. (2) Later, the Ub bound to the E1 is transferred to the active-site Cys of an E2. (3) The E2 

cooperates with a substrate specific E3 to conjugate the Ub to the substrate through an isopeptide bond 

between the C-terminal glycine of Ub and a Lys within the substrate. Ub: Ubiquitin, E1: Ubiquitin activating 

enzyme, E2: Ubiquitin conjugating enzyme, E3: Ubiquitin ligase, Cys: cysteine, Lys: Lysine. 

 

The outstanding diversity of the E3s among the ubiquitin pathway components hints on 

their large contribution to the specificity of ubiquitination. These ligases can identify within 

their substrates specific recognition motifs, named degrons when ubiquitination results in 

substrate degradation. Two major types of E3s have been defined according to the presence 

of either a HECT (homologous to E6AP C terminus) or a RING (Really interesting new 

gene)/U-box (Ufd2-box) domain. Furthermore, these groups have divergent mechanisms of 

ubiquitin transfer: the RING E3s function as a scaffold, binding to E2 enzymes and promoting 

the discharge of its bound ubiquitin directly on the substrate. In contrast, the HECT E3 

enzymes are ubiquitinated by the cognate E2 to its own catalytic Cys before transferring 

ubiquitin to the target (23,24) (Figure 2).  Besides the HECT and RING ligases, additional E3s 

with different structural and/or mechanistic characteristics have been identified  (25,26).  
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Additionally, ubiquitinated substrates are recognized by any of the numerous small 

ubiquitin-binding domains (UBDs) harbored on effector proteins known as ubiquitin 

receptors, which bind non-covalently to ubiquitin signals and elicit the appropriate 

downstream event. Many of them have been shown to specifically recognize certain 

ubiquitin linkages (27).   

 

 

 
 

Figure 2. RING and HECT E3 ubiquitin ligases. A. RING E3s ligases promote the transfer of Ub from the E2 

directly to the substrate. B. HECT E3 enzymes are first ubiquitinated by the cognate E2 and from there Ub is 

finally transferred to the substrate. Ub: Ubiquitin, E2: Ubiquitin conjugating enzyme, E3: Ubiquitin ligase, 

Lys: Lysine. 

 

1.2  FUNCTIONS OF UBIQUITINATION 

 

The presence of ubiquitin in most eukaryotic cells and outstanding high evolutionarily 

conservation may reflect a strong selective pressure on this protein. Ubiquitin modify a 

plethora of cellular proteins, being critical for cellular functions such as cell cycle 

progression, inflammatory response and antigen presentation among many (13). 

 

Ubiquitin can be found conjugated to the substrates either as monomers or as chains of 

ubiquitin molecules with a variety of lengths and topologies. Ubiquitin chains can be linked 

by any of the possible ubiquitination sites within the ubiquitin itself, which are the lysines 
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K48, K63, K11, K33, K27, K6, K29 and the methionine M1 (28,29). The polyubiquitin chains 

can be homogenous if the same residue is modified during elongation, or mixed if different 

linkages alternate at succeeding positions of the chain (Figure 3).  

 

 

 
 
Figure 3. Topologies of ubiquitin chains. Ubiquitin can be found conjugated to the substrates as monomers 

(monoubiquitin), or as chains of ubiquitin molecules of different lengths. In turn, the chains can be linked by 

the same lysine in each ubiquitin molecule (homogenous ubiquitin chain), or by different lysines (mixed 

ubiquitin chain). Red circumferences: Ubiquitin, K/Lys: Lysine, G: Glycine. 

 

Although it is known that such diversity of ubiquitin chains is important for targeting the 

substrates to different fates, the functional implications of each type of chain and the 

mechanisms used to polymerize ubiquitin chains are not clearly determined yet (30). For 

instance, monoubiquitination can regulate DNA repair, gene expression, receptor transport 

and viral budding (31). Polyubiquitin chains of at least four subunits regulate protein 

stability by proteasomal degradation, which is explained below in the section 1.2.1. The 

canonical signal for targeting substrates to proteasomal degradation are K48 linked chains, 

although they can produce other outcomes (32). Moreover, other non-K63 linked chains 

are also involved in proteasomal degradation (33). K63 chains lead instead to modification 

of protein function on different cellular processes such as kinase activation, DNA damage 

tolerance, signal transduction and endocytosis (32) (Figure 4). 

 

1.2.1  Proteasomal-dependent degradation 

 

The coupled action of ubiquitination and proteasomal degradation is known as ubiquitin 

proteasome system (UPS) (Figure 4, middle panel). The UPS is one of the major protein 
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degradation pathways in the cell. It degrades damaged, misfolded and short-lived 

regulatory proteins related to numerous cellular pathways (5).  

 

 

 
Figure 4. Functions of ubiquitination. Substrates can be destined to different fates according to the length 

and topology of Ub chains. Red circumferences: Ubiquitin, Lys/K: Lysine. 

 

In the UPS pathway, ubiquitination targets the substrate for degradation within the 26S 

proteasome, a large and complex enzyme composed of two sub-complexes, a 20S core 

particle (20S CP) and a 19S regulatory particle (19S RP) (20) (Figure 5). The 20S CP is a 28-

subunit hollow cylinder that contains inside a catalytic chamber where the internalized 

substrates are degraded. The subunits are arranged on four stacked rings. Each ring 

contains seven subunits; the outer rings are composed of α subunits, while the inner rings 

possess β subunits, resulting in the two-fold symmetric structure α1-7 β1-7 β1-7 α1-7 (20,34). 

The β-rings are responsible of the substrate degradation, three subunits of each β-ring 

harbor active catalytic sites with different cleavage site preferences facing towards the 

inside of the 20S core particle, ensuring an efficient protein degradation (34). The α-rings 

aid to control the passage of the substrates and degradation products into and out the 

catalytic chamber, forming a network with their N-termini that acts as a narrow pore. The 
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α-subunits also possess cavities or pockets that participate on the binding with the 19S RP 

(35,36). 

 

 

 
Figure 5. Representation of the proteasome structure. On the left is shown a schematic representation of 

the components of the holoenzyme 26S proteasome. On the right is presented the subunit composition of 

each complex (19S and 20S) of the 26S proteasome. 

 

The 19S RP is in turn composed of two parts: the lid and the base (Figure 5). This sub-

complex flanks each extremity of the 20S CP controlling the access of the substrates to the 

internal chamber, and removing the ubiquitin from the substrate committed to degradation 

(37). The base contains six AAA+ (ATPase associated with a variety of cellular activities)- 

ATPases, named Rpt1-Rpt6 in yeast. They form a pseudo-symmetrical ring and use the ATP 

energy to pull, unfold and translocate the substrate into the catalytic chamber (38). 

Moreover, the ATPases are critical for the RP-CP complex formation and the opening of the 

CP pore as their C-termini insert into the α-subunit cavities in presence of ATP (39,40). 

Additionally, the base contains four non-ATPase subunits: the scaffolding proteins Rpn1, 

Rpn2 and the ubiquitin receptors Rpn10 and Rpn13, from which Rpn10 is essential to 

connect the lid with the base (35). The additional ubiquitin receptors Rad23, Ddi1 and Dsk2 

are recruited to the base through interactions with Rpn1, which also binds the non-essential 

deubiquitinated protein (DUB) (a class of enzymes that will be discussed in section 1.3) Ubp6 

(USP14 in mammals) (41). Ubp6 can act removing the ubiquitin signal from the substrate 

before it is committed to degradation, antagonizing substrate breakdown (35).  
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The lid consists of nine non-ATPase proteins (Rpn3, Rpn5-Rpn9, Rpn11, Rpn12 and 

Rpn15). Rpn11 (POH1 in mammals) is a DUB that deubiquitinates the substrate only in the 

presence of ATP, which indicates that, in contrast to Ubp6, Rpn11 acts only on the 

substrates committed to degradation. Furthermore, the DUB action of Rpn11 speeds up the 

degradation of the substrates besides helping on ubiquitin recycling (42). Rpn5 also 

stabilizes the interface between the lid and the RP (35).  

 

1.3  DEUBIQUITINATING ENZYMES 

 

Ubiquitination is a dynamic process. Ubiquitin can be deconjugated by the action of a 

large group of proteases named deubiquitinating enzymes (DUBs), that cleaves specifically 

the link between ubiquitin and the substrate (2,43). This ability empowers the DUBs to 

participate in every process where ubiquitin is involved. DUBs can perform proofreading 

functions by removing ubiquitin signals before the substrate is committed to proteasomal 

degradation, leading to its rescue. Alternatively, other DUBs release ubiquitin from 

substrates engaged to degradation, promoting ubiquitin recycling and facilitating the entry 

of the substrate into the catalytic chamber of the proteasome. DUBs also provide a way to 

modulate non-proteolytic ubiquitin-dependent processes. Additionally, these enzymes are 

used in the processing of ubiquitin precursors, which are transcribed as chains of ubiquitin 

joined to other ubiquitin molecules or ribosomal proteins (2,43,44) (Figure 6).  

 

About 98 functional DUBs are predicted to be encoded in the human genome. According 

to their mechanisms of catalysis they are either cysteine or metallo-proteases. 

Furthermore, based on the similarity of their ubiquitin protease domains they have been 

grouped into six families: ubiquitin C-terminal hydrolases (UCHs), ubiquitin-specific 

proteases (USPs), ovarian tumor proteases (OTUs) and monocyte chemotactic protein-

induced protein (MCPIP) are cysteine-proteases, whereas the Josephins and 

JAB1/MPN/MOV3 metalloenzymes (JAMMs) are metallo-proteases (45).  

 

To date, most of the putative DUBs that have been tested display ubiquitin protease 

activity in vitro and many evidences support their specificity: First, they are very diverse; 

second, they appear to regulate a limited number of proteins and pathways; third, 

structural studies have demonstrated that some of them experience conformational 

changes once they are bound to their substrate in order to display catalytic activity; fourth, 

some of these enzymes have been found to be included in multi-complexes, what may help 

them localizing their targets and driving the catalysis (43,44,46); fifth, they contain 
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additional domains that could work as ubiquitin binding domains and protein-protein 

interaction domains facilitating the recognition and binding to the substrates and multi-

complexes (44,47,48). 

 

 

 
 

Figure 6. Function of DUBs. A. and B. DUBs can deconjugate ubiquitin moieties with different purposes: 

They can edit or remove ubiquitin chains rescuing substrates for degradation or modifying their fates in 

other pathways. C. DUBs release Ub from substrates engaged to degradation facilitating their entry into the 

proteasome. D. DUBs also process ubiquitin precursors. E. Through all this actions DUBs aid on the recycling 

of ubiquitin. Red circumferences: Ubiquitin, DUB: Deubiquitinating enzyme, yellow form: substrate. 

 

Although several DUBs have been thoroughly studied, the mode of regulation, targets 

and physiological role of most of them is far from being completely deciphered. In general, 

DUBs can be regulated at transcriptional level, by post-transcriptional modifications, 

allosteric interactions and subcellular localization (2,48). A better comprehension of their 

operation comes from the identification of binding partners that may act for instance as 

substrates, regulators or scaffolds (47). The general aim of this work is to contribute to the 

functional characterization of three DUBs: the ubiquitin specific protease 4 and 19 (USP4 

and USP19, respectively), and the ubiquitin carboxy-terminal hydrolase L1 (UCH-L1).  
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1.3.1  Ubiquitin specific protease 19 (USP19)  

 

USP19 belongs to the largest family of DUBs, the USPs. This enzyme of 150 kDa possesses 

a canonical USP domain harboring the catalytic triad that comprises the residues C506, 

H1157 and D1189, and a MYND domain (Myeloid translocation protein 8, Nervy, and DEAF-

1) that could mediate protein-protein interactions. Close to the N-terminal region of USP19 

lie two p23-like CHORD and Sgt1 (p23/CS) domains that might exert chaperone functions 

although their exact functions in USP19 are still unknown. Additionally, this is one of the 

few DUBs with an identified transmembrane domain (TMD). This domain,  located close to 

the C-terminus, anchors the protein to the ER membrane  (49) (Figure 7).  

 

USP19 has DUB activity in vitro and shows preference towards K63-linked ubiquitin 

chains over K48-linked chains, which may indicate its involvement in non-proteolytic 

signaling events (50). Although USP19 has been implicated in diverse pathways, its 

physiological role and substrates have not been clearly elucidated. This enzyme was first 

identified from rat skeletal muscle and subsequently found to be strongly induced during 

muscle atrophy, however the mode of regulation and substrates targeted in this process 

remain unknown (51). 

 

 

 
 

Figure 7. Schematic representation of the protein domains of USP19. The N-terminal region of USP19 

harbors two p23-like CHORD and Sgt1 (p23/CS) domains. The MYND domain (myeloid translocation protein 

8, Nervy, and DEAF-1) and the catalytic triad (comprising the residues C506, H1157 and D1189) are found 

within the USP domain as indicated. The transmembrane domain (TDM) is located close to the C-terminus 

 

Its DUB activity has been implicated in the regulation of some cellular functions. The 

active enzyme stabilizes the ubiquitin ligase Kip1 ubiquitination-promoting complex 1 

(KPC1), which promotes the proliferation of rat fibroblasts (52). During hepatitis C virus 

(HCV) infection, re-localization of USP19 to the virus replication compartments hampers its 

ability to rescue proteasomal substrates. This is dependent on the interaction of USP19 with 
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the non-structural proteins NS5A and is likely to mediate the cell-proliferation inhibitory 

properties of NS5A since infection with a recombinant virus lacking the USP19 interaction 

site failed to decrease cell growth (53). Interestingly, non-catalytic functions of USP19 have 

been reported. The inactive enzyme stabilizes the cellular inhibitor of apoptosis protein 1 

and 2 (c-IAP1 and c-IAP2, respectively) (54). Furthermore, our group previously described a 

non-catalytic effect of USP19 in the rescue of endoplasmic reticulum associated 

degradation (ERAD) substrates (49). 

 

Similar to many DUBs, USP19 can regulate its own ubiquitination (54), but additional 

mechanisms involved in the transcriptional and post-translational regulation remain largely 

unknown. Splice variants of the human USP19 gene code for at least four isoforms, some of 

which lack the TMD (49). In addition, USP19 is phosphorylated by the protein kinase ataxia 

telangiectasia mutated (ATM) or ataxia telangiectasia and Rad3-related protein (ATR) in 

response to DNA damage (55).  

 

Hence, albeit some cellular and physiological roles, and substrates of USP19 have been 

identified, its mode of operation and regulation remain largely unknown. In order to 

contribute to the knowledge of these aspects we aimed to identify interacting partners of 

this DUB, and subsequently to study the significance of the interactions that could 

potentially unveil details on how USP19 operates.   

 

1.3.2  Ubiquitin specific protease 4 (USP4)  

 

USP4 belongs to the USP family. This DUB of 963 amino acids long harbors in the N-

terminal a domain present in ubiquitin specific proteases (DUSP) and a ubiquitin-like (UBL) 

domain, both with unknown function. Within the USP domain, it contains the catalytic 

residues C311 and H880, another UBL domain close to the catalytic cysteine residue that 

has auto-regulatory functions (56), and a nuclear localization sequence (NLS) (Figure 8).  

 

USP4 regulates various cellular functions through the stabilization of substrates and the 

regulation of protein activity within signaling pathways by cleaving K48- and K63-linked 

ubiquitin chains respectively (57). For instance, USP4 cleaves K63-linked Ub chains from 

TNF(tumor necrosis factor)-receptor associated factor 2 (TRAF2), TRAF6 and transforming 

growth factor-β-activated kinase 1 (TAK1) to downregulate the tumor necrosis factor α 

(TNFα)-mediated activation of the transcription factor nuclear factor kappa-light-chain 

enhancer of activated B cells (NF-κB), which is downstream of those three proteins (58-60). 

Among the broad range of cellular responses regulated by NF-κB, the action of USP4 has 
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been linked with migration of lung cancer cells and immune response (59,60). Another 

example is the stabilization of the p53 inhibitor ARF-binding protein 1 (ARF-BP1), which 

might regulate apoptosis, senescence, and oncogenic transformation (61). USP4 also 

participates in the regulation of transforming growth factor β (TGF-β) signaling, important 

in embryogenesis and tissue homeostasis, by stabilizing the TGF-β type I receptor (TβRI) and 

thus inducing the signaling of the TGF-β pathway with possible pro-tumorigenic effects (62). 

 

 
Figure 8. Schematic representation of the protein domains of USP4. The N-terminal region of USP4 harbors 

a domain present in ubiquitin specific proteases (DUSP) and a UBL domain. Within the USP domain contains 

the catalytic resides C311 and H880, another UBL domain and a nuclear localization sequence (NLS). 

 

As the information presented above suggest, USP4 has potential roles in cancer. 

Additional evidences show that its mRNA levels are elevated in various types of cancers 

(61). Furthermore, its overexpression promotes tumorigenesis in mice (63). Nevertheless, 

USP4 role in cancer is controversial. USP4 dowregulates the NF-κB pathway and its 

knockdown activates Wnt signaling, suggesting that USP4 represses signaling pathways that 

can have tumorigenic activity (59,64). In addition its expression levels were decreased in 

lung cancer cells (65). Therefore, some authors suggest that its role in cancer might be 

dependent on the biological context.  

 

In order to understand better the functions of USP4, we tried to identify unknown 

interacting partners of this DUB in a yeast-two-hybrid screen, and to further study the most 

relevant findings.  

 

1.3.3  Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1)  

 

UCH-L1 is a member of the UCH family of DUBs. UCH-L1, also known as PGP 9.5, is 223 

amino acids long and possesses a UCH homology domain harboring the catalytic residues 

C90 and H161 (66,67). This DUB has no accessory domains identified (Figure 9).  
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UCH-L1 participates in the maintenance of the pool of free ubiquitin through the 

processing of ubiquitin precursor proteins (67), the stabilization of monoubiquitin 

independently of its catalytic activity (68,69), and the generation of monomeric ubiquitin 

by cleaving a peptide bond at the ubiquitin C-terminal glycine (67). The analysis of the 

crystal structure of UCH-L1 shows that the active site is hidden behind a small aperture and 

a loop that covers it, making it not easily accessible. This suggests that UCH-L1 can either 

cleave only small moieties or must undergo conformational changes to expose the catalytic 

site to its substrates (70). Additionally, UCH-L1 might act also as a ubiquitin ligase, 

recognizing α-synuclein as its substrate (71). 

 

 
Figure 9. Schematic representation of the protein domains of UCH-L1. UCH-L1 possesses a UCH homology 

domain harboring the catalytic residues C90 and H161. 

 

Although the functions of UCH-L1 are not clearly defined yet, and its substrates have 

been hard to identify, this DUB is implicated in important human diseases. UCH-L1 is one of 

the most abundant proteins in the brain, and is present in other tissues at lower levels, such 

as testis and ovaries (66,72). Several lines of evidence suggest that it is related to 

neurodegenerative conditions. Its spontaneous mutation in mice leads to neuronal 

dysfunction and neurodegeneration (73,74). In humans UCH-L1 has been implicated in 

Alzheimer´s and Parkinson´s diseases (71,75-77). Recent studies suggests that the human 

papillomavirus (HPV) recruits UCH-L1 on basal keratinocytes to suppress the adaptative 

immune response by removing K63 ubiquitin chains from the tumor-necrosis factor 

receptor-associated factor-3 (TRAF3) and promoting the degradation of  the NF-KB essential 

modulator (NEMO) (78). In addition, UCH-L1 has been found to be over-expressed in several 

human cancers (79). Multiple evidences show that UCH-L1 is implicated in the regulation of 

phenotypic properties associated with malignant growth such as epithelial-to-

mesenchymal transition (EMT), cell motility and invasion (80,81). Conversely, other studies 

report that UCH-L1 is downregulated by methylation in nasopharyngeal and breast cancer, 

what prevents its DUB activity to stabilize the tumor suppressor p53 (82,83).  
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1.4  AIMS  

 

The information presented above expose the need to discover unknown substrates and 

improve our knowledge of the biological roles of USP19, USP4 and UCH-L1.  In order to 

contribute to the functional characterization of these DUBs, the present work pursued the 

following specific aims: 

 

Aim 1. Identification of new interacting partners of USP19, and study of the biological 

significance of the interactions.  

 

Aim 2. Identification of new interacting partners of USP4, and study of the biological 

significance of the interactions.  

 

Aim 3. Study of the molecular events by which UCH-L1 regulates membrane proximal 

events associated with cell adhesion and bacteria internalization. 

 

Due to the implication of these DUBs in important cellular pathways, many of them 

cancer-related, this study not only contributes to their functional characterization, but can 

further provide some insights on how they could be manipulated to treat human diseases 

in which they might be involved. DUBs are an attractive potential therapeutic target and 

there has been an increasing interest from the pharmaceutical industry to target these 

enzymes in drug development (45). 
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2. METHODOLOGY 

 

This section contains a brief description of the main techniques used during the 

experimental part of this work, and the general principles behind them. Additional 

information about the protocols followed are found in the Materials and Methods sections 

of the respective papers (Appendix A, B, C and D). 

 

2.1  YEAST-TWO HYBRID SCREEN (Appendix A, B and C) 

 

Given that the majority of proteins have to interact with other ones to exhibit a proper 

biological function, the study of interacting partners is fundamental for the understanding 

of protein functions. There is a wide variety of methods and approaches to study protein-

protein interactions. Yeast-two hybrid screen is a versatile and sensitive method, able to 

detect relatively weak and transient physical protein interactions in vivo.  

 

 

 
Figure 10. Principle of the yeast-two hybrid screen. Two proteins under evaluation, called bait and prey, are 

fused respectively with the DNA binding domain (DBD) and the activating domain (AD) of a transcription 

factor (TF), and transformed into yeast. The interacting proteins come to close proximity reconstituting the 

TF (right panel), and activating the expression of a reporter gene that allows the yeast to grow on selective 

media. The interacting partners are identified by sequencing the corresponding expression vectors in the 

selected yeast colonies. 
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This assay is performed in yeast strains carrying a reporter gene that is activated upon 

reconstitution of its functional transcription factor (TF) when the two proteins under 

evaluation interact physically. This is possible because the TF, in this case Gal4, is divided 

into two separate parts: the DNA binding domain (DBD) and the activating domain (AD). 

The protein of interest, or bait, is fused with the DBD. The protein that binds to the bait, 

known as prey, is fused to the AD. Each construct is cloned in a different yeast expression 

vector, and is subsequently transformed into yeast. If the prey happen to be a binding 

partner of the bait, upon interaction, the DBD and the AD are brought in close proximity 

and the TF is reconstituted. This activates in consequence, the expression of the reporter 

gene. Plating the transformed yeast co-expressing the bait and the prey on selective media 

makes possible to screen for individual clones that express the reporter gene, indicating 

interacting protein pairs (84). The identity of the interacting partners is then obtained by 

sequencing the corresponding expression vectors in the selected yeast colonies (Figure 10). 

 

Here we used as bait the unique N-terminal regions of USP19 (Appendix A and B) and 

USP4 (Appendix C) since they exclude the USP consensus domain. These regions were 

cloned in-frame with the Gal4 DBD and Myc tag in the yeast expression vector pGBKT7 

(Clontech), which was transformed in a yeast strain. As prey we used the MatchmakerTM 

pre-transformed cDNA HeLa library (Clontech) (Appendix A, B and C). In this way the 

technique enables the sampling of several potential binding partners.  

 

Although the high sensitivity of this technique is an advantage, it produces a high rate of 

false positives. Additionally, the interactions observed could be a product of conditions 

created by the yeast model rather than the reflection of events produced in the real context. 

For these reasons it is indispensable to validate the obtained results using other techniques. 

It is noteworthy that this technique only allows the identification of pairs of proteins 

interacting directly (85,86). 

 

2.2  CO-IMMUNOPRECIPITATION (Appendix A, B, C and D) 

 

Co-immunoprecipitation is another technique to study protein-protein interactions. It is 

one of the most commonly used methods for verification of interactions. To start, an 

antibody recognizing specifically the protein of interest is added to a cell lysate. After a 

period of incubation, protein G attached to sepharose beads is used to capture the antibody 

associated to the protein of interest and its binding partners (Figure 11). The beads are then 

washed to remove all the proteins not binding specifically to the antibody, and boiled to 

elute the beads, antibody and proteins associated. The bounded proteins are visualized by 
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western blot (section 2.2). This technique is sensitive to transient interactions, and has the 

advantage of being performed in vivo, providing the conditions to find the proteins on their 

native conformation and with the modifications that they might need to interact with their 

binding partners (85,87). However, it is convenient to verify if the interaction is taking place 

in the cell, and not as a consequence of cell lysis, using other assays e.g. evaluating its co-

localization or the effect of mutants on the interaction. Furthermore, it is important to 

consider that the interactions identified with this technique can be direct or proceed 

through another protein that links both of them (86).  

 

 

 
 
Figure 11. Principle of co-immunoprecipitation. A cell lysate is incubated with an antibody that specifically 

recognizes the protein of interest. Later, a protein G attached to sepharose is added to capture the 

antibodies. After incubation the beads are precipitated by centrifugation and the supernatant removed. The 

beads are washed several times with a suitable buffer and re-suspended in loading buffer to be analyzed by 

western blot. 

 

2.3  CROSSLINKING (Appendix D) 

 

Although co-immunoprecipitation is a technique suitable to study protein-protein 

interactions under physiological conditions, the stringent wash conditions applied to avoid 

false positives can disrupt and make invisible labile and transient interactions (88), which 

occur very often in in vivo conditions to facilitate signaling or metabolic functions. One 

approach that makes possible the study of those kind of interactions is the employment of 

cross-linking reagents in intact cells with the purpose of freezing those bindings in place and 

sizing them in a complex sufficiently stable for isolation and characterization by 

downstream methods such as Western blot, immunoprecipitation and mass spectrometry. 
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This results in an increased sensitivity to detect weak protein-protein interactions (87). 

Cross-linking reagents are molecules that contain two or more reactive end groups that bind 

specific functional groups of proteins. If two proteins physically interact with each other, 

those reagents will form covalent bonds between them. After the fixation step, highly 

stringent conditions can be used during cell lysis and enrichment, minimizing the risk of 

identifying false positives (89). 

  

Several cross-linkers varying in length, reaction groups and other properties are 

available. One of the most commonly used is formaldehyde. It reacts primarily with the 

residues of the basic amino acid lysine (89). Additionally, it is highly permeable towards cell 

membranes enabling a rapid cross-linking in the intact cell. The small size of formaldehyde 

ensures that only closely associated proteins will be cross-linked. This is important because 

this technique could detect any protein in close vicinity which may not be in direct contact 

(87,88). 

 

2.4  PULL-DOWN ASSAY (Appendix C) 

 

The pull-down assay is a technique, analogous to co-immunoprecipitation, used to 

discover or confirm physical protein-protein interactions. In contrast to co-

immunoprecipitation, the interactions are tested in in vitro conditions, and a bait protein is 

used instead of an antibody to capture the protein complexes. The bait protein usually is 

fused to a protein-reactive tag, such as glutathione S-transferase (GST) or poly-histidine 

(His), to facilitate the collection of the protein complexes.  

 

To start, the recombinant fusion tagged protein or bait is generated. This can be done by 

expressing and purifying it from an appropriate expression system such as bacteria. 

Subsequently, the bait is incubated with the putative prey proteins. The source of the prey 

proteins varies according to the objective of the experiment, they can be either a cell lysate 

or recombinant purified proteins. The addition of an affinity ligand corresponding to the tag 

used (i.e. glutathione in the case of GST) coupled, for instance, to agarose or sepharose 

beads allows the pull-down and collection of the complexes by centrifugation.  These 

complexes are then washed, eluted and analyzed by standard protein detection methods 

such as western blotting (90). 

 

The pull-down assay is useful when other techniques are not sensitive enough to detect 

an interaction thanks to the possibility of concentrating the tested proteins in the 

production and purification step. It also allows the study of interacting proteins for which 
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antibodies have not been produced or where the antibodies available interfere with the 

interaction under investigation. Additionally the in vitro conditions allows to control the 

conditions of the interaction. This helps for the identification of additional factors needed 

for an interaction to occur, such as co-factors or accessory proteins. Some disadvantages of 

the technique are the possible failure to find or confirm an interaction when it needs 

unknown factors or conditions not present in the incubation step. It is worth to notice that 

it can also become more laborious as it requires the production and purification of at least 

the bait.  

 

2.5  WESTERN BLOTTING (Appendix A, B, C and D) 

 

 

 
 

Figure 12. Chemiluminescent detection method in Western blotting.  The membrane containing proteins 

previously separated by mass and charge, is blocked and incubated with a primary antibody recognizing 

specifically the protein of interest. A secondary antibody labeled with the enzyme horseradish peroxidase 

(HRP) recognizes the primary antibody. After several washes, a chemiluminescent substrate is added. The 

HPR when combined with the substrate produces light as byproduct, which is documented with X-ray films. 

 

Western blotting is a technique for protein analysis that enables the detection of specific 

proteins of interest in the midst of a complex protein mixture through the use of antibodies. 

First, the proteins on the sample are separated by mass and charge using SDS-PAGE gel 

electrophoresis. After this, the separated proteins are transferred across an electric field 

onto a membrane, generally of nitrocellulose or polyvinylidene difluoride (PVDF). Next, the 

membrane is blocked to prevent nonspecific binding of antibodies to the surface of the 

membrane, and the protein of interest is detected using an antibody that recognizes it 

specifically. We used an indirect detection method that amplifies the signal, where a 
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secondary antibody labeled with the horseradish peroxidase enzyme (HRP) is used to detect 

the primary antibody attached to the protein (Figure 12). To visualize the protein bands in 

the membrane, we added a chemiluminescent substrate that, when combined with the 

enzyme produces light as a byproduct, which we documented with X-ray films. The intensity 

of the bands correlate with the amount of protein present in the sample. In that way, this 

technique produces qualitative and semi-quantitative data about the protein of interest. 

 

2.6  TRANSFECTION (Appendix A, B, C and D) 

 

Transfection is the name of a variety of methods used to introduce nucleic acids into a 

cell to modify it genetically. These methods facilitate the study of gene and protein function 

and regulation by enhancing or inhibiting expression of specific genes, besides allowing the 

generation of recombinant proteins in mammalian cells.  

 

The selection of the transfection method depends on the cell type and purpose of the 

experiments. Optimal characteristics are high transfection efficiency, low cell toxicity, 

minimal effects on cell physiology, and simplicity.  From the variety of transfection methods 

available, two chemical methods were employed in this work: calcium phosphate and 

cationic polymer. In principle, these chemical methods use positively charged chemicals 

that make complexes with the negatively charged nucleic acids. The positively charged 

complexes are attracted and pass through the negatively charged cell membrane using 

unknown mechanisms, possibly involving phagocytosis and endocytosis.  

 

The transfection efficiency of these methods varies according to the cell type, and in 

general terms is low compared with virus-mediated methods. Nevertheless, the chemical 

methods provide many advantages over the virus-mediated methods such as no size 

limitation on the packaged nucleic acid, no extra-carrying DNA, and avoiding the use of 

vectors (91).  

 

2.7  FLUORESCENCE MICROSCOPY (Appendix B and D) 

 

Fluorescence microscopy is a special type of light microscopy. It allows the visualization 

of fluorescent objects of interest in the specimen under study, providing the advantage of 

a high contrast between the objects and a dark background. If the objects do not possess 

natural fluorescence, they can be labeled with a vast selection of fluorescent compounds 

known as fluorophores. In the present work, our cellular objects or proteins of interest were 
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labeled with fluorophores (e.g. fluorescent proteins or stains), as described in the respective 

appendices.  

 

Fluorophores emit light when excited with the right wavelength. Absorption of light 

energy triggers the movement of an electron towards a higher energy level, going from a 

ground- to an excited-state. Eventually, the electron relaxes to a lower level and the 

fluorophore returns to its ground state shedding part of the absorbed energy, in the form 

of light. The emitted light has a longer wavelength than the absorbed one. The efficiency of 

the fluorophore, as well as its excitation and emission wavelengths depend largely on its 

chemical structure (92).  

 

 

 
 

Figure 13. Principle of fluorescence microscopy. From the light source, the excitation light goes through an 

excitation filter that only lets through light with the desired wavelength. The dichroic mirror reflects this 

light (blue line) towards the objective, which focuses the light on the sample and collects the emitted light 

(green line) from it. The dichroic mirror allows the emitted light to pass, which is the only one that can go 

through the emission filter. The emitted light is directed towards an interface (detector) that allows the 

visualization of the image.  

 

The difference between the exciting and emitted wavelengths, is known as the Stokes 

shift. This property allows to sort out effectively the emitted light and generate a visible 

image in the eyepieces or a camera. This kind of microscope employs incident light. First, 
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the excitation light goes through an excitation filter that only lets through light with the 

desired wavelength. A dichroic mirror reflects this light and directs it to the objective, which 

in turn focusses the light on the sample, and then collects the emitted light from it. As the 

emitted light has a higher wavelength than the excitation light, this time the dichroic mirror 

allows it to pass. Subsequently, the emitted light goes through an emission or barrier filter 

that prevents any other light different than the emitted one to pass (Figure 13). Finally, the 

emitted light is directed towards an interface, like the eyepieces or a camera, which allows 

the visualization of the image (92). 

 

2.8  CONFOCAL MICROSCOPY (Appendix D) 

 

 

 
 

Figure 14. Principle of confocal microscopy. The confocal microscope uses point illumination (e.g. 

a laser) and small pinholes in a screen, to block the scattered light, with the aim of providing high 

quality images, with fine detail and without out-of-focus light. Imaging is achieved by scanning 

serially focal spots in the X-Y plane across the specimen that are collected to a computer, which 

builds up the image. 

 

Confocal microscopy offers several additional advantages to study our specimens 

prepared for fluorescence microscopy. In contrast to fluorescence microscopy, it provides 

higher quality images, with fine detail, without out-of-focus light and, in result, more 

contrast. The confocal method of image formation creates virtual slices or planes within the 

specimen, in two dimensions (X and Y). Acquisition of sequential thin virtual slices along the 
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third dimension (Z-stacks) through the specimen allows the reconstruction of a three-

dimensional image in a computer (93).  

 

Confocal microscopy achieves this by illuminating and observing a single diffraction 

limited spot at a time. In conventional fluorescence microscopy the entire specimen is 

simultaneously illuminated; even if the brightest and highest intensity is at the focal point 

of the objective lens, it results in background noise that decreases the quality of the image. 

The confocal, instead, uses point illumination that often comes from a laser; this means that 

the excitation beam focuses on a small spot inside the specimen. Additionally, the confocal 

increases the quality of the image by blocking the scattered light. The conventional 

fluorescence microscope detects all the resulting fluorescence, including a large unfocused 

background part. In the confocal, a small pinhole in a screen allows only the emitted light 

from the desired focal spot to pass through, while the screen blocks any scattered light, 

which is the out-of-focus fluorescent light (Figure 14).  On the other side of the pinhole, the 

confocal light is detected usually by a photomultiplier tube. Imaging is achieved by scanning 

serially focal spots in the X-Y plane across the specimen. All these points are collected to a 

computer that builds the image, which is finally displayed on a video monitor.  
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3.  RESULTS 

 

3.1  USP19: ITS ROLE IN HYPOXIA AND NOVEL INTERACTING PARTNERS 

 

3.1.1  The SIAH E3 ligases interact with and regulate USP19 (Appendix A)  

 

In order to gain insight into the functions of USP19 we performed a yeast-two-hybrid 

screen to identify some of its interacting partners. We identified ten different USP19 

interacting proteins in the screen, of which the E3 ubiquitin ligases seven in absentia 

homolog 1 and 2 (SIAH1 and SIAH2, respectively) were the most recurrent hits (Table 1 in 

Appendix A). 

 

 

 
Figure 15. The SIAH E3 ligases interact with and regulate USP19. SIAH1 and SIAH2 promote USP19 

ubiquitination and degradation through its E3 ubiquitin ligase activity. A SIAH-interacting motif within USP19 

is necessary for this interaction. 

 

The interactions were verified by co-immunoprecipitation of the over-expressed 

proteins, and the expression of SIAH and USP19 mutants demonstrated that their E3 ligase 

and DUB catalytic activities, respectively, are not required for the interaction (Figure 2 in 

Appendix A). We further assessed whether this interaction is important for the regulation 

of the cellular levels of USP19 and SIAH. Western-blot analysis demonstrated a dramatic 

decrease of USP19 levels in the presence of SIAH, dependent on the E3 ligase activity. This 

effect was associated with an increased ubiquitination of the transfected USP19 in the 

presence of the full-length SIAH ligases, strongly suggesting that USP19 is a target of the E3 

activity of the ubiquitin ligases SIAH1 and SIAH2 (Figure 3 in Appendix A and Figure 15).  
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Several SIAH interacting proteins contain a conserved RPVAxVxPxxR motif that functions 

as a degradation signal (94). Bioinformatics analysis identified a perfectly conserved VxP 

core motif encompassing USP19 V468 and P470 flanked by conserved Pro and basic 

residues. Mutation of the V468 and P470 residues or deletion of the predicted full-length 

motif (462-473 amino acids) stabilized USP19 in the presence of SIAH, thus confirming its 

role in the regulation of the protein stability (Figure 4 in Appendix A and Figure 15).  

 

3.1.2  USP19 regulates HIF-1 during hypoxia (Appendix B) 

 

 
Figure 16. Hypoxia inducible factor (HIF) pathway.  Under normoxic conditions HIF-1 is continuously 

degraded. The PHD enzymes hydroxylate HIF-1; this modification is required for the binding of the 

ubiquitin ligase VHL that targets HIF-1 for ubiquitination and proteasomal degradation (black arrows). In 

hypoxic conditions HIF-1 is stabilized and translocated to the nucleus to dimerize with HIF-1ß and act as a 

transcription factor of genes involved in angiogenesis, erythropoiesis, glycolysis, iron metabolism, and cell 

survival. The SIAH E3 ligases stabilize indirectly HIF-1 levels by targeting the PHD enzymes for degradation 

(red arrows). 

 

The SIAH ligases have been shown to stabilize the levels of the hypoxia inducible factor 

(HIF-1), a key transcription factor of the hypoxia response (95). HIF-1 regulates the 



45 
 

transcription of at least 70 genes involved in physiological responses to hypoxia like 

angiogenesis, erythropoiesis and glycolysis. HIF-1 is a heterodimeric protein formed by the 

short lived HIF-1 and the constitutively expressed HIF-1ß subunits. During normoxia 

conditions HIF-1 is hydroxylases on Pro 402 and/or 564 by the prolyl hydroxylases 1, 2 and 

3 (PHD 1, 2 and 3, respectively). This modification are required for the binding of the Von 

Hippel-Lindau tumor suppressor (VHL) protein, the recognition component of an E3 

ubiquitin ligase that in turn targets HIF-1 for ubiquitination and degradation by the 

proteasome. In hypoxic conditions, HIF-1 is stabilized and translocated to the nucleus 

where it dimerizes with HIF-1ß to form HIF-1 that binds to specific DNA sequences in target 

genes acting as a transcription factor (Figure 16) (96). SIAH modulates indirectly the HIF-1 

levels through the targeting of the PHD enzymes for degradation (95). 

 

 
Figure 17. USP19 regulates HIF-1α. USP19 is able to stabilize HIF-1 independently of its catalytic DUB 

activity (red arrows). 

 

Based on this evidence, we investigated whether USP19 interacts with components of 

the hypoxia pathway such as HIF-1, PHD1, PHD2, PHD3 and VHL by co-

immunoprecipitation of transiently transfected proteins. We confirmed the interaction of 
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USP19 with SIAH, and further demonstrated that this DUB interacts with HIF-1 (Figure 1 in 

Appendix B). The interaction of USP19 with HIF-1 was validated at endogenous levels, 

inducing the accumulation of detectable levels of HIF-1 by exposing the cells to hypoxia 

(1% O2) (Figure 1C in Appendix B). Using deletion mutants, we mapped the interaction of 

USP19 to the Per-Arnt-Sim (PAS) and basic helix-loop-helix (bHLH) domains of HIF-1. The 

bHLH domain near the N terminus is required for the binding to HIF-response element 

sequences present in HIF target genes, and the PAS domains mediate dimerization to HIF-

1ß (Figure 2 in Appendix B).  

 

To test whether USP19 regulates the levels of HIF-1 expression we performed 

immunofluorescence and western-blot analysis in cells over-expressing the wild type 

USP19, or mutant variants lacking either the catalytic activity or the transmembrane domain 

that targets the protein to the endoplasmic reticulum (ER). These set of experiments 

showed that USP19 is able to stabilize HIF-1 independently of its catalytic DUB activity and 

location to the ER (Figure 3 and 4 in Appendix B). To confirm the biological role of USP19 in 

the hypoxia response, we knocked down this DUB in HeLa cells using siRNA. HeLa cells 

lacking USP19 failed to accumulate HIF-1 and to regulate specific HIF-target genes in 

hypoxic conditions (Figure 5 in Appendix B and Figure 17).  

 

3.2.  USP4 IS ASSOCIATED TO THE PROTEASOME (Appendix C) 

 

To explore the functions of USP4 we did a yeast-two-hybrid screen using as bait its first 

318 N-terminal amino acids, which share less sequence similarities with other DUBs than 

the rest of the enzyme. The interaction with the S9 subunit, located on the lid of the 19S 

proteasome was the most prominent hit out of 90 identified proteins (Supplementary table 

S1 in Appendix C).  

 

These results were validated by co-immunoprecipitation. Pull-down assays with the 

purified proteins fused to GST demonstrated that the interaction is specific and direct 

experiments (Figure 1 in Appendix C). Furthermore the successful co-immunoprecipitation 

of USP4 with the core and the base of the proteasome suggest that USP4 interacts with the 

whole assembled 26S proteasome (Figure 2 in Appendix C and Figure 18).  

 

Co-immunoprecipitation experiments performed with a set of deletion mutants of USP4 

and S9 proteins identified the ubiquitin like (UBL) 1 domain of USP4 and the N-terminus of 

S9 as the regions involved on the interaction (Figure 3 and Figure 4 in Appendix C).  
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Figure 18. USP4 interacts with the 26S proteasome. USP4 interacts with the N-terminus of the S9 subunit, 

located in the 19S regulatory particle of the assembled proteasome. 

 

3.3  UCH-L1 IN CELL ADHESION AND BACTERIA INTERNALIZATION (Appendix D) 

 

Many evidences indicate that UCH-L1 regulates membrane proximal events, such as 

vesicular trafficking in pre-synaptic nerve terminals (97), cell adhesion, spreading (98), 

motility and invasion (99,100), LFA1-dependent homotypic adhesion in lymphoid cells 

(101), receptor signaling, and bacteria uptake (102). Several questions still need to be 

answered to elucidate the biology of UCH-L1 in these events. At present, our group focuses 

on two different aspects: First, the identification of the UCH-L1 substrates in the context of 

cell adhesion; and second, the study of the mechanisms by which UCH-L1 enhances 

bacterial entry. Our preliminary data in both research lines is presented below. 

 

3.3.1  Identification of UCH-L1 substrates in the context of cell-adhesion  

 

Integrins are the best characterized family of cell surface adhesion receptors. They are 

transmembrane proteins with a large extracellular and a short cytoplasmic domains. 

Integrins are present as heterodimers containing an α and a β subunits, non-covalently 

associated. Mammals have 18 α subunits and eight β subunits; which have been found in 

24 different combinations (103).  

 

Integrins contribute largely to cell adhesion by associating with extracellular ligands, like 

proteins in the extracellular matrix (ECM) or counter-receptors on adjacent cells, thus being 

crucial in the maintenance of tissue integrity and playing important roles in several 
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biological processes, such as development, wound healing, host defense and angiogenesis 

(104,105). However, integrins not only provide a physical link between the extracellular 

space and the cytoskeleton, they also produce sites of signal transduction into the cell (106). 

Outside-in signaling provides information about the surroundings of the cell and its state in 

relation to it, determining a variety of cellular responses. Inside-out signaling regulates the 

conformation of the integrins, having an effect upon the affinity for its ligands (105).  

 

Upon binding of the integrin extracellular domains to any of its specific extracellular 

ligands, the receptor undergoes a conformational change that initiates the recruitment of 

approximately 156 components forming a multiprotein complex, and promoting the 

clustering of integrins (106-108). These multiprotein complexes comprise intracellular 

signalling and adaptor proteins that connect the integrins to the actin cytoskeleton, and 

serve both structural and signaling functions. Additional proteins may associate transiently 

with the adhesion complex to regulate its activity (109). Maturation of integrin clustering 

gives place to the formation of the structures known as focal adhesion complexes, whose 

dynamics of assembly and disassembly, which is tightly regulated and cell specific, 

determines several aspects of adhesion and cell migration (106). 

 

Previously, our group demonstrated that the expression of the functional UCH-L1 in HeLa 

cells promotes integrin-dependent cell adhesion and spreading, as well as migration. The 

UCH-L1 expressing cells presented enhanced integrin-signaling activation and increase 

formation of focal adhesion complexes. This was associated with co-localization and co-

immunoprecipitation of the active UCH-L1 with components of the integrin and cadherin 

adhesion complexes, such as focal adhesion kinase (FAK), a tyrosine kinase recruited at an 

early stage to focal adhesions integrating many signals to control cell motility (110), p120-

catenin, a regulator of the abundance and activity of the adhesion receptors cadherin (111), 

and vinculin, which interacts indirectly with integrins in focal adhesions, thus stabilizing the 

complexes (98,112). However, we do not understand yet how UCH-L1 regulates these 

events and what the significance of the associations described is.   

 

In order to identify the targets of the DUB UCH-L1 in the context of cell migration and 

adhesion we chose to make use of an inducible gene expression system under the control 

of tetracycline. This system allows us to turn on and off the expression and modulate the 

levels of UCH-L1 in transfected cells (113), thus avoiding the variability due to clonal 

selection that might arise when having different sublines.  

 



49 
 

We used a tet-on system, built in a stably transfected expression vector. This expression 

vector possesses a puromycin selection marker (PuroR) and a recombinant tetracycline-

controlled transcription factor (rtTA3) downstream the constitutive human ubiquitin C 

(UBC) promoter. Additionally, this vector carries a tetracycline-inducible promoter (TRE), 

under which we cloned the catalytically active UCH-L1, or the inactive form UCH-L1C90S, both 

tagged at the N-terminus with the red fluorescent protein mCherry, suitable for microscopy 

analysis and live cell imaging studies (Figure 19A). 

 

 

 
Figure 19. mCherry-UCH-L1 tet-on inducible expression system. A. mCherry-UCH-L1 or mCherry- UCH-L1C90S 

were cloned downstream a tetracycline-inducible promoter (TRE).  The expression vector possesses a 

puromycin selection marker (PuroR) and a recombinant tetracycline-controlled transcription factor (rtTA3) 

downstream a constitutive human ubiquitin C promoter (UBC). B. The expression of the enzyme is triggered 

by doxycycline (DOX), which associates directly with the TRE.  
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In this system, expression of UCH-L1 is triggered by addition of doxycycline (DOX) to the 

culture medium. This modified form of tetracycline quickly enters into the cells and 

associates directly with rtTA3, allowing the specific binding of the transcription factor to the 

TRE, and consequently driving the expression of UCH-L1 (Figure 19B).   

 

To generate stable clones, HeLa cells were transfected with the purified expression 

vector and kept under puromycin selection for 7 days. Fluorescence microscopy analysis 

confirmed the expression of the mCherry-UCH-L1 chimeras in cells cultured in the presence 

of DOX (Figure 21A). To test the performance of the tet-on system, DOX was withdrawn 

from the medium for 7 days and expression of UCH-L1 was assessed by western blot 

analysis. As shown in figure 20A, removal of the antibiotic from the medium resulted in 

complete silencing of the UCH-L1 expression. We also evaluated the catalytic activity of the 

chimeric proteins, expressed in HeLa cells using the Ub-VS functional probe. This set of 

experiments demonstrated that only the active mCherry-UCH-L1 could bind the functional 

probe, resulting in a molecular weight shift of approximately 9 kDa, as assessed by Western-

blot analysis (Figure 20B). 

 

 
Figure 20. Performance of the mCherry-UCH-L1 and -UCH-L1C90S tet-on systems. A. UCH-L1 expression was 

assessed by western blotting in lysates of HeLa cells stably transfected with the tet-on inducible mCherry-

UCH-L1 (WT) or mCherry-UCH-L1C90S (C90S) plasmids cultured in presence (+) or absence (-) of doxycycline 

(DOX) B. The enzymatic activity of mCherry-UCH-L1 (WT) and the catalytic mutant mCherry-UCH-L1C90S 

(C90S) was assessed by labelling with the Ub-VS functional probe. Lysates of HeLa cells stably transfected 

with the tet-on inducible plasmids and cultured in the presence of DOX were incubated for 1 hour at 37°C 

with (+) or without (-) the Ub-VS probe. Western blots were probed as indicated.  

 

Next, we tested whether cells expressing the active mCherry-UCH-L1 recapitulated the 

spreading and adhesion phenotypes previously demonstrated in cells stably expressing this 

DUB (98). Cells were let to adhere onto fibronectin coated surfaces for 1h, and then fixed 

with 4% paraformaldehyde (PFA) for 20 minutes. Upon permeabilization, the cellular actin 
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cytoskeleton was stained with FITC-conjugated phalloidin (green), and nuclei were 

counterstained with DAPI (blue) (Figure 21A). Cell spreading was assessed by measuring the 

cell area using the ImageJ software. As expected, the area of the cells expressing the 

catalytically active enzyme (WT, DOX+; n = 87, mean(x) = 417.71) was significantly bigger 

than that of the control cells not expressing the enzyme (WT, DOX-; n = 96, mean(x) = 

266.20; p-value = 4,787x10-16; Figure 21B). Expression of the catalytically inactive mCherry-

UCH-L1C90S did not result in a major enhancement of cell spreading. The mean area of these 

cells was bigger compared to that observed in cells transfected with the wild type mCherry-

UCH-L1, irrespectively of the DOX treatment (p-value = 0,8367; Figure 21B). This suggests 

that the inactive form of the enzyme does not affect cell spreading and that the variation 

of their cell area might be an effect of clonal selection in these specific transfectants.    

 

 
Figure 21. mCherry-UCH-L1 promotes cell spread. A. Confocal images illustrating the morphology of HeLa 

cells stably transfected with the tet-on inducible mCherry-UCH-L1 (WT) or mCherry-UCH-L1C90S (C90S) 

plasmids and maintained in presence (DOX+) or absence (DOX-) of doxycycline, cultured for 1 h on 

fibronectin-coated cover slides. mCherry-UCH-L1 was visualized in red, actin cytoskeleton was stained with 

FITC-conjugated phalloidin (green), and nuclei were stained with DAPI (blue). B. Boxplot representing the 

cell area measurements from confocal micrographs (as in A) of WT and C90S cells treated (DOX+) or not 

(DOX-) with doxycycline. The lower and upper limit of the boxes represent the first and third quartile, 

respectively, while the whiskers are set to represent the lower and higher value within 1.5 time the 

interquartile range. The horizontal line inside boxes show the medians, while the “x” represent the means. 

Two-tailed-test performed to compare DOX- and DOX+ treatments show a highly significant difference for 

WT cells (p-value =  4,787x10-16), and no significant difference for C90S cells (p-value = 0,8367). 
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We further performed wound healing assays using live cell imaging to confirm that 

expression of the active mCherry-UCH-L1 promoted cell motility. As shown in figure 22, cells 

grown in medium supplemented with DOX, thus expressing the active DUB (red, lower left 

panels), closed the gap with a much faster kinetic compared to cells grown in absence of 

DOX (upper left panels) or cells expressing the catalytically inactive mCherry-UCH-L1C90S 

(red, lower right panels). 

 

 
Figure 22. mCherry-UCH-L1 promotes cell motility. Confluent monolayers of HeLa cells stably transfected 

with the tet-on inducible mCherry-UCH-L1 (WT) or mCherry-UCH-L1C90S (C90S) plasmids and maintained in 

presence (DOX+) or absence (DOX-) of doxycycline were scratched with a tip to generate a linear wound and 

photographed at the indicated times (Leica DMI6000, 10X magnification). 

 

Next, we tested whether the mCherry-UCH-L1 chimera maintained the ability to interact 

with components of the integrin-dependent focal adhesions. To this end, the chimeric DUB 

was immunoprecipitated from cells grown in the presence (DOX+) or absence (DOX-) of DOX 

after mild cross-linking (Figure 23). Unexpectedly, we did not see any specific interaction 

with vinculin in cells expressing either the active or the mutant mCherry-UCH-L1 (upper 

right panel). Furthermore, a band corresponding to the size of the mCherry-UCH-L1 chimera 

was also detected in the immunoprecipitates from cells grown in the absence of DOX, 

possibly due to a leakage of the tet-on system (Figure 23, lower right panel). It is conceivable 

that the fusion of the mCherry at the N terminus of UCH-L1 may affect the protein folding 

or may mask sites relevant for protein-protein interactions. To clarify this issue, we 

produced a new set of HeLa cells stably transfected with a vector expressing the UCH-L1 or 
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the catalytic inactive UCH-L1C90S tagged at the N-terminus with the FLAG epitope under the 

doxycycline inducible promoter. Western-blot analysis and labelling with the Ub-VS 

functional probe confirmed the inducibility of the system (Figure 24A) and the DUB activity 

of the wild type protein (Figure 24B) in stably transfected HeLa cells.  

 

 
Figure 23. mCherry-UCH-L1 does not interact specifically with vinculin. UCH-L1 was immunoprecipitated 

from lysates prepared with prior cross-linking. Total cell lysates (input) and the immunoprecipitates (IP) 

were fractionated in 4-12% SDS-PAGE gels, and western blots were probed with the indicated antibodies.  

 

 

 
 

Figure 24.  Performance of the FLAG-UCH-L1 and -UCH-L1C90S tet-on systems. A. UCH-L1 expression was 

assessed by western blotting in lysates of HeLa cells stably transfected with the tet-on inducible FLAG-UCH-

L1 (WT) or FLAG-UCH-L1C90S (C90S) plasmids cultured in presence (DOX+) or absence (DOX-) of doxycycline B. 

The enzymatic activity of FLAG-UCH-L1 (WT) and the catalytic mutant FLAG-UCH-L1C90S (C90S) was assessed 

by labelling with the Ub-VS functional probe. Lysates of HeLa cells stably transfected with the tet-on 

inducible plasmids and cultured in the presence of DOX were incubated for 1 hour at 37°C with (+) or 

without (-) the Ub-VS probe. Western blots were probed as indicated. 
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We repeated the immunoprecipitation experiments described in figure 24 using this new 

set of cell lines. The results confirmed the capacity of the FLAG-UCH-L1 or FLAG- UCH-L1C90S 

to interact with vinculin only when expression of the DUB was induced with DOX (Figure 

25). Furthermore, we did not detect expression of UCH-L1 in the cells grown in absence of 

DOX (lower panel), validating the inducible system. 

 
Figure 25. FLAG-UCH-L1 interacts with vinculin. FLAG-UCH-L1 was immunoprecipitated from lysates 

prepared with prior cross-linking. Total cell lysates (input) and the immunoprecipitates (IP) were 

fractionated in 4-12% SDS-PAGE gels, and western blots were probed with the indicated antibodies.  

 

 

3.3.2 Studying the contribution of UCH-L1 to bacterial entry.  

 

Some pathogenic bacteria invade non-phagocytic cells as part of their life cycle. The 

access to the intracellular space protects bacteria from immune detection, allows them to 

access deeper tissues and provides an agreeable environment for growth. Although the 

mechanisms that invasive bacteria use to induce their own uptake are very diverse (114), 

they have been separated into two groups: the ’zipper’ and the ‘trigger’ mechanisms. Some 

examples of bacteria employing the ‘zipper’ mechanism are Yersinia, Listeria and Neisseria. 

Surface-exposed proteins of these bacteria interact with surface receptors of the host cell 

membrane often involved in cell-matrix or cell-cell-adherence. This binding engages the 

host cell receptor, inducing signaling cascades that result in actin rearrangement and 

modest membrane extension that leads to bacterial internalization. Shigella and Salmonella 

are examples of bacteria that enter using the ‘trigger’ mechanism. These bacteria inject 

protein effectors into the host cytoplasm using a specialized secretory apparatus known as 

type III secretion system. The effectors interact with and modulate heavily the actin 
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cytoskeleton, promoting the formation of membrane extensions that internalize the 

bacteria in a process similar to micropinocytosis (115,116). 

 

Our group has previously demonstrated that UCH-L1 promotes the entry of Listeria 

monocytogenes and Salmonella enterica. This was associated with an enhanced activation 

of the actin cytoskeleton (102). However, the mechanisms by which this DUB promotes 

bacteria entry remains unknown. To inquire into this matter we took advantage of the 

bacterium Yersinia pseudotuberculosis. It is known that this bacterium uses the invasin 

surface protein to interact with high affinity to β1 integrins, leading to activation of several 

small GTPases, such as Rac1, which promotes the modulation of the phosphatidylinositol 

metabolism at the bacterial entry site to induce actin rearrangements, promoting invasion 

(114). The rational of choosing this bacterium is that we have shown that UCH-L1 promotes 

activation of the integrin signaling as explained in the previous section (98). 

 

To start, we assessed whether UCH-L1 enhances Y. pseudotuberculosis entry, as 

observed before with S. enterica and L. monocytogenes (102). HeLa cells stably transfected 

with the empty vector (CTR), or vector expressing the wild type UCH-L1 or the catalytically 

inactive UCH-L1C90S were infected with Y. pseudotuberculosis at a multiplicity of infection 

(MOI) of 50:1, and incubated for 1h at 37°C, prior addition of fresh medium supplemented 

with 100 µg/ml gentamicin. Cells were further incubated for 1h at 37°C to kill non 

internalized bacteria, and subsequently lysed with 0.5% Sodium deoxycolate in phosphate 

buffer saline (PBS). Serial dilutions of cell lysate was plated in LB agar plates to evaluate the 

number of colony-forming units (CFU). As shown in figure 26A, the number of bacteria 

internalized by HeLa cells expressing the active DUB was higher compared to the number 

of bacteria recovered in control cells or in cells expressing the UCH-L1C90S. 

 

To study the molecular mechanism by which UCH-L1 promotes bacteria invasion, we 

developed a Y. pseudotuberculosis strain expressing the mCherry protein under an L-

arabinose inducible promoter. This tool will allow us to follow bacteria entry by 

fluorescence microscopy and live cell imaging. To assess whether expression of the mCherry 

protein did not alter the internalization pattern observed with wild type strain, we infected 

HeLa cells stably expressing the wild type or the inactive UCH-L1 at a MOI of 50:1, and 

incubated for 1h at 37°C. Cells were washed twice with PBS, fixed in 4% PFA for 20 minutes 

and extracellular bacteria were finally stained by indirect immunofluorescence using a 

rabbit anti-LPS antibody, followed by a donkey anti-rabbit Alexa 488 (green) conjugated 

secondary antibody. Wheat germ agglutinin (WGA) conjugated to Alexa 680 (far red) was 

used to label the cell membrane. This staining allowed us to identify the internalized 
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bacteria, which are only mCherry positive from the extracellular bacteria that were both 

red (mCherry positive) and green (LPS positive) (Figure 26B).  

 

 

 
Figure 26. UCH-L1 promotes Y. pseudotuberculosis internalization. A. HeLa cells stably transfected with 

UCH-L1 (WT), UCH-L1C90S (C90S) or the empty vector (CTR) were infected with Y. pseudotuberculosis at a 

MOI of 50:1, and the number of CFU was assessed 1 h post-infection. B. HeLa cells infected as in A with Y. 

pseudotuberculosis expressing mCherry were washed and fixed (without permeabilization) 1 h post-

infection. Confocal microscopy was used to assess bacteria internalization. Extracellular bacteria were 

stained using a rabbit anti-LPS antibody (green). WGA was used to label the cell membrane (white). C. 

Quantification of the percentage of intracellular bacteria (red) from ten confocal micrographs as in B (mean 

±SD). A Cochran-Mantel-Haenszel test for repeated test of independence shows a highly significant 

difference of internalized bacteria between the cells expressing the catalytically active (WT) and inactive 

enzyme (C90S) (p-value = 2,38x10-96) 
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As shown in figure 27B, the number of internalized bacteria was significantly higher in 

cells expressing the wild type UCH-L1 (WT, mean = 20.8), compared with that observed in 

cells transfected with the inactive UCH-L1C90S (C90S, mean = 5.98; p-value = 2,38x10-96; 

Figure 26C).  
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4. DISCUSSION 

 

This thesis summarizes the work performed on three different DUBs. Here, I discussed a 

mechanism of regulation of USP19, the role of this DUB in the cellular response to hypoxia, 

the function of USP4 in the proximity of the proteasome, and the function of UCH-L1 in cell 

adhesion, migration and spreading, and in bacteria internalization. The results described in 

this thesis do not only illustrate the wide functional diversity of these DUBs, but also give a 

good understanding of the multi-functionality displayed by many of these enzymes. Last 

years of research in this topic have shown that although DUBs are substrate-specific, several 

appear to play roles in the regulation of multiple different pathways or to act on multiple 

players within the same pathway. This is the case of CYDL, a DUB that negatively regulates 

NF-κB signaling by deubiquitinating different regulators of this pathway (117,118). It is not 

well understood yet how the multi-functionality is achieved, but this property, along with 

the pivotal role of these enzymes, suggest that they have to be tightly controlled. It appears 

that DUBs can be controlled by a wide variety of mechanisms. For example, their abundance 

can be regulated through transcriptional control (119,120), their activities can be directed 

by subcellular localization (121,122), and their functions can be modulated by 

posttranslational modifications (123) and by conformational changes upon association with 

interacting proteins (2,44).  

 

Although sequences of individual DUBs vary widely, the members of each family share a 

high degree of homology in the regions surrounding the conserved catalytic core of the 

enzymes. The functional diversity and substrate specificity is largely attributed to accessory 

domains (2). USP19 harbors a p23/CS, a MYND and a TMD domain for which the functions 

have not been completely elucidated. We found a motif in USP19 that functions as a degron 

regulating its stability (section 3.1.1). On the other hand, USP4 contains, apart from its DUB 

domain, a DUSP and two UBL domains. The DUSP domain might be implicated in protein-

protein interactions, similarly to how it operates in USP15 (124), the UBL domain, which is 

localized within the catalytic region has auto-regulatory activities (125), while our findings 

show that the most N-terminal UBL domain is required for USP4 association with the 

proteasome (section 3.2).  

 

The catalytic activity of the DUBs constitute other layer of regulation. On one hand, a 

specificity for the type of ubiquitin chain linkages has been determined for many DUBs: For 

instance, USPs prefer K48 and K63 chains (45).  On the other hand, it seems that at least 

some DUBs can exert non-catalytic functions. Here we reported a non-catalytic activity for 

USP19 in the regulation of HIF-1α (section 3.1.2), and previously it was shown to be able to 
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rescue some ERAD substrates from proteasomal degradation (49). So far these events seem 

rare, though not unique for USP19. Ubp6, an homolog of USP14, was shown to delay 

proteasomal degradation independently of its catalytic activity (126), and A20 can inhibit 

the regulator of the NFκB pathway IκB kinase complex (IKK), by a non-catalytic mechanism 

(127). The mechanisms used in these non-catalytic functions are still unclear.   

 

The association of DUBs with several proteins is another crucial aspect for their 

regulation. Thus, the search for interacting partners of DUBs not only helps  understanding 

their functions through the identification of their substrates, but also provides clues about 

the necessity of their association with some proteins or inclusion in complexes to display a 

proper activity (46,47). Our interaction studies showed that USP19 levels can be regulated 

by ubiquitination and proteasomal degradation promoted by the SIAH ligases, and revealed 

a function for this DUB in stabilizing HIF-1α during cellular response to hypoxia (section 3.1). 

Although we ignore if the regulation USP19 stability through this pathway is important for 

all the multiple roles described for this DUB or for any specific one, it is tempting to 

speculate that this mechanism of regulation might be important for maintaining the 

adequate levels of USP19 to regulate HIF-1α in hypoxic conditions, since both events are 

regulated by the SIAH ligases (95). Conversely, we discovered that USP4 is associated with 

the 26S proteasome (section 3.2). Albeit the purpose of this interaction remains to be 

evaluated, its location, as well as its incompetence to rescue substrates directed to 

degradation, suggest that USP4 has a different function than the other DUBs associated to 

the proteasome, USP14 and UCH37, which counteract the degradation of some 

proteasomal substrates before they are committed to degradation (35,41). For instance, 

USP4 could play a role in the stability of the 26S complex.  Meanwhile, the interaction of 

UCH-L1 with components of the focal adhesion complexes appear to be related with the 

ability of this enzyme to regulate cell adhesion, spreading, migration, resistance to anoikis 

and bacteria internalization (98). Nevertheless the substrate(s) of UCH-L1 in this context, 

and the mechanisms used to regulate these events are unknown (section 3.3).  

 

One of the major challenges towards the functional characterization of UCH-L1 has been 

the identification of its physiological targets. Difficulties encountered up to date to elucidate 

this issue may depend on the requirement for very transient post-translational 

modifications or interactions with co-factors to produce a conformational rearrangement 

of the enzyme, exposing the otherwise inaccessible catalytic site (70). In an effort to identify 

the substrates of UCH-L1 in the context of cell adhesion and migration we generated a tet-

on system, expressing an mCherry tagged UCH-L1 with the purpose of performing 

biochemical and imaging assays to identify the substrate(s) for this DUB (Section 3.3.1). 
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Although we could reproduce our previous results showing that the catalytically active UCH-

L1 promotes cell spreading and migration (98), the co-immunoprecipitation assays did not 

worked as expected. Interestingly, expression of a FLAG-tagged UCH-L1, cloned into the 

same tetracycline inducible vector recapitulated all the phenotypes observed in cells stably 

expressing this DUB. Thus, it is possible that the mCherry tag, of approximately 28 kDa, may 

interfere with the folding of UCH-L1 or may mask important sites for protein-protein 

interaction. It is noteworthy that although the mCherry chimera seems to not interact with 

focal adhesion components such as vinculin, it stills promotes cell spreading, migration and 

resistance to anoikis (98), suggesting that those effects may be regulated by focal adhesion 

independent pathways. The confocal images of cells expressing mCherry-UCH-L1 did not 

reveal a striking accumulation of the enzyme at the cell membrane during the initial phase 

of adhesion as reported before (98).  

 

Bacteria use efficient strategies for hijacking the process of endocytosis to induce their 

internalization into non-phagocytic cells. Previously, our group showed that UCH-L1 

promotes internalization of L. monocytogenes and  S. enterica, but the mechanisms 

involved have not been elucidated. Here, we demonstrated that UCH-L1 also promotes Y. 

pseudotuberculosis internalization (section 3.3.2). All these bacteria employ distinct 

invasion strategies: both Y. pseudotuberculosis and L. monocytogenes induce their uptake 

via zipper mechanisms, using different cell receptors: β1 integrins (Y. pseudotuberculosis) 

and E-cadherin and the Hepatocyte growth factor (HGF) Met (L. monocytogenes). On the 

other hand, S. enterica enters via a trigger mechanism (114,116). Hence, since UCH-L1 

promotes bacteria invasion regardless of the strategy used by the bacteria, this suggests 

that this DUB must have a role in actin remodeling, a common event for the two strategies 

of bacteria invasion. Indeed, our group have previously reported the formation of actin 

stress fibers in HeLa cells ectopically expressing UCH-L1 (102). Consequently, this DUB may 

regulate the activity of one or more of the many effectors that promote actin cytoskeleton 

dynamics. 

 

For a detailed discussion of the findings regarding USP4 and USP19 the reader is referred 

to the discussion section of the appendices A, B and C.  

 

The diverse biological roles of DUBs regulating several signaling pathways related to 

diseases such as cancer and neurodegenerative disorders, make them attractive 

therapeutic targets. Some of the strategies envisioned to target these enzymes are to block 

the DUB activity through specific inhibitors, and to manipulate signal-transduction 

pathways in which they are involved or its gene expression (45). The major challenge to 
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date, has been to ensure the specificity of the therapeutic agents. Most DUBs are cysteine 

proteases, a class of enzymes difficult to target with small molecules mainly because of the 

lack of specificity of their inhibitors (128). Additionally, several DUBs share a core domain 

(45). At present, some cysteine protease inhibitors have been identified. Ubiquitin aldehyde 

(Uba1) and UbVs are commonly used to study the three-dimensional structure of these 

enzymes and their catalytic activity (129). Besides having a limited specificity, these 

compounds exhibit high molecular weights, being not suitable as therapeutic agents (130). 

Thus, much work is still needed to develop DUB inhibitor molecules to clinic. Recently, the 

small molecule AP15 was shown to induce tumor cell apoptosis by abrogating the DUB 

activity of UCH-L5 and USP14, which are associated to the 19S regulatory particle (131). This 

area will benefit from the progress in understanding the regulatory mechanisms, the 

substrates, functions and molecular structures of DUBs. To take care of the multi-functional 

aspect of the DUBs is particularly important to avoid undesired effects since the inhibition 

of an enzyme could affect its protective effects (130). 
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5. CONCLUSIONS 

 

This work aimed to gain a better understanding of the biological functions of the 

deubiquitinating enzymes USP19, USP4 and UCH-L1. We found that: 

 

 USP19 can be regulated through ubiquitination and proteasomal degradation, 

promoted by the SIAH1 and SIAH2 ubiquitin ligases. The interaction between USP19 

and the SIAH ligases is mediated by a SIAH-consensus binding motif.  

 

 USP19 has a role, independent of its catalytic DUB activity, in controlling the key 

regulator of response to hypoxia, HIF-1α. 

 
 

 USP4 is a proteasome-interacting DUB, in addition to two previously described ones. 

It interacts specifically with the S9 subunit, located in the lid of the proteasome. 

 

 The chimera mCherry-UCH-L1 has an impaired function, reproducing only partially 

our previous findings about the role of UCH-L1 in cell adhesion, spreading and 

migration. 

 
 

 UCH-L1 promotes Y. pseudotuberculosis internalization. 
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6. RECOMMENDATIONS AND PERSPECTIVES 

 

The findings presented in this work not only contribute to the functional characterization 

of the DUBs USP19, USP4 and UCH-L1, but raise new research questions. In the case of 

USP19 two important remaining questions are: what is the functional role of the interaction 

between USP19 and SIAH, and, what are the mechanisms through which USP19 regulates 

HIF-1α (Section 3.1). In the first case one approach could be to explore if the interaction 

between USP19 and SIAH is required for any of the specific functions linked to this proteins. 

In this regard, it would be interesting to test if there is a link between SIAH, HIF-1α and 

USP19 in severe and acute hypoxia conditions. We could learn a lot from studying and 

understanding the physiological conditions in which USP19 regulates HIF-1α. An additional 

aspect that we could not solve in this work, and could provide important clues about these 

mechanisms of regulation, is if USP19 have also a regulatory activity on the SIAH ligases. 

 

Regarding USP4, the main question left is: what is the functional significance of the 

interaction between the proteasomal subunit S9 and this DUB. The unchanged enzymatic 

activity of USP4 on fluorogenic substrates when associated with S9 (Section 3.2) (64), 

together with the localization of this subunit, suggest that USP4 has a different role to the 

other identified proteasome interacting DUBs, USP14 and UCH37, which display an increase 

enzymatic activity when associated to the proteasome, and are localized in close proximity 

to the incoming ubiquitinated substrates (41).  

 

We have not been able to identify the targets of UCH-L1 in cell adhesion and migration 

(Section 3.3). Although we know that the association of this DUB to some components of 

the integrin and cadherin signaling pathways is weakened in the absence of the catalytic 

activity of UCH-L1, as well as the membrane proximal effects observed, our attempts to 

identify changes in the ubiquitination state of such components due to its DUB activity have 

failed (98). This suggests that either our assays were not sensitive enough to detect this 

changes or that the DUB activity is not exerted directly in these proteins but in other one(s) 

in close relationship to this complexes. Consequently, there is a lot of work to be done in 

order to dissect the pathways by which UCH-L1 acts to promote cell adhesion, spreading, 

migration, survival and bacteria internalization. It could be worth to follow the dynamics of 

some of the focal adhesion, acting remodeling, and microtubule components using live cell 

imaging, in cells expressing the catalytically active and inactive form of the DUB. The use of 

technologies like TIRF microscopy could facilitate this task. The integration of this studies to 

other cell models, where the enzyme is highly expressed such as cells from the brain tissue, 

gonads, or some cancer cells could provide additional clues on this research problem.  
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Due to the critical role of ubiquitination, DUBs are an attractive potential therapeutic 

target and there has been an increasing interest from the pharmaceutical industry to target 

these enzymes in drug development (45). Although USP19, USP4 and UCH-L1 are implicated 

in important cellular pathways, many of them cancer-related (Section 1.3), we need to gain 

a better understanding of their functions before attempting to find clinical applications for 

them. We still know very little about the functions of USP19, and the roles of USP4 and UCH-

L1 are quite controversial. Nevertheless, given the central role of hypoxia in tumor 

progression and resistance, USP19 could be an interesting target to be exploited in 

oncology. Likewise, the high expression of UCH-L1 in tumor cells underscore the therapeutic 

importance of the findings described here. The effects of this enzyme in migration and 

survival might be associated with malignant transformation and tumor progression. On the 

other hand, the mechanisms used by UCH-L1 to promote bacteria internalization could be 

exploited to limit bacterial infection, or to use attenuated strains of bacteria to deliver 

vectors or enzymes in tumor cells.  
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APPENDIX A 

 

Paper I: Velasco K, Zhao B, Callegari S, Altun M, Liu H, et al. (2013) An N-terminal SIAH-
interacting motif regulates the stability of the ubiquitin specific protease (USP)-19. 
Biochem. Biophys. Res. Commun. 433 (4): 390-395.  
 
Abstract 
The Ubiquitin Specific Protease-19 (USP19) regulates cell cycle progression and is involved 
in the cellular response to different types of stress, including the unfolded protein response 
(UPR), hypoxia and muscle atrophy. Using the unique N-terminal domain as bait in a yeast-
two hybrid screen we have identified the ubiquitin ligases Seven In Absentia Homolog 
(SIAH)-1 and SIAH2 as binding partners of USP19. The interaction is mediated by a SIAH-
consensus binding motif and promotes USP19 ubiquitylation and proteasome-dependent 
degradation. These findings identify USP19 as a common substrate of the SIAH ubiquitin 
ligases. 
 
This manuscript was published in the journal Biochemical and Biophysical Research 
Communications (doi: 10.1016/j.bbrc.2013.02.094).  

Link to the article: 
http://www.sciencedirect.com/science/article/pii/S0006291X13003951?via=ihub 
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APPENDIX B 

 

Paper II: Altun M, Zhao B, Velasco K, Liu H, Hassink G, et al. (2012) Ubiquitin-specific 
protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J Biol 
Chem 278: 1962-1969.  
 
Abstract 
A proper cellular adaptation to low oxygen levels is essential for processes such as 

development, growth, metabolism, and angiogenesis. The response to decrease in oxygen 

supply, referred to as hypoxia, is also involved in numerous human diseases including 

cancer, inflammatory conditions, and vascular disease. The hypoxia-inducible factor 1-α 

(HIF-1α), a key player in the hypoxic response, is kept under stringent regulation. At 

normoxia, the levels are kept low as a consequence of the efficient degradation by the 

ubiquitin-proteasome system, and in response to hypoxia, the degradation is blocked and 

the accumulating HIF-1α promotes a transcriptional response essential for proper 

adaptation and survival. Here we show that the ubiquitin-specific protease-19 (USP19) 

interacts with components of the hypoxia pathway including HIF-1α and rescues it from 

degradation independent of its catalytic activity. In the absence of USP19, cells fail to mount 

an appropriate response to hypoxia, indicating an important role for this enzyme in normal 

or pathological conditions. 

 

This manuscript was published in the Journal of Biological Chemistry (doi: 

10.1074/jbc.M111.305615).  

 

Link to the article:  

http://www.jbc.org/cgi/pmidlookup?view=long&pmid=22128162 
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APPENDIX C 
 

Paper III: Zhao B, Velasco K, Sompallae R, Pfirrmann T, Massuci M, Lindsten K. (2012) The 
ubiquitin specific protease-4 (USP4) interacts with the S9/Rpn6 subunit of the 
proteasome. Biochem Biophys Res Commun 427 (3): 490-496.  
 
Abstract 
The proteasome is the major non-lysosomal proteolytic machine in cells that, through 
degradation of ubiquitylated substrates, regulates virtually all cellular functions. Numerous 
accessory proteins influence the activity of the proteasome by recruiting or deubiquitylating 
proteasomal substrates, or by maintaining the integrity of the complex. Here we show that 
the ubiquitin specific protease (USP)-4, a deubiquitylating enzyme with specificity for both 
Lys48 and Lys63 ubiquitin chains, interacts with the S9/Rpn6 subunit of the proteasome via 
an internal ubiquitin-like (UBL) domain. S9/Rpn6 acts as a molecular clamp that holds 
together the proteasomal core and regulatory sub-complexes. Thus, the interaction with 
USP4 may regulate the structure and function of the proteasome or the turnover of specific 
proteasomal substrates. 
 
This manuscript was published in the journal Biochemical and Biophysical Research 
Communications (doi: 10.1016/j.bbrc.2012.09.075).  
 
Link to the article: 
http://www.sciencedirect.com/science/article/pii/S0006291X12018220?via=ihub 
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APPENDIX D 

 

MATERIAL AND METHODS: UCH-L1 IN CELL ADHESION AND MIGRATION 

 

Cell lines, bacteria strains and plasmids 

HeLa cells [American Type Culture Collection (ATCC), Teddington, UK] were cultured in 

Iscove´s modified Dulbecco´s medium (IMDM, Sigma-Aldrich, St. Louis, MO, USA), 

supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin, and 10 µg/ml 

ciprofloxacin (Sigma-Aldrich; complete medium).  

 

Tetracycline regulated mCherry-UCH-L1 and mCherry-UCHL1C90S expression vectors were 

produced by cloning the mCherry coding sequence into the BamHI and EcoRI sites of the 

pRSFDuet1 vector (Millipore, Billerica, MA, USA). The UCH-L1 and C90S sequences were 

amplified using the primers 5’-ATTCCAATTGATGCAGCTCAAGCCGATGGAGATC-3’ and 5’-

GCAGTCGACTTAGGCTGCCTTGCAGAGAGCCAC-3’ and cloned in frame with the mCherry 

gene into the EcoRI and SalI sites. The chimeras were then amplified with the primers 5’-

ATTCACCGGTATGGTGAGCAAGGGCGAGGAG-3’ and 

5’GCAACGCGTTTAGGCTGCCTTGCAGAGAGCCAC-3’, and cloned into the AgeI and MluI sites 

of the tet-on inducible lentiviral pTripZ vector (Open Biosystems, Lafayette, CO, USA). For 

the FLAG-UCH-L1 construct the primers used were 5’-

TTAACCGGTATGGATTACAAGGATGACGATGA-3’ and 5’-TTAACGCGTTTAGGCTGCCTTGCAGA-

3’. All restriction enzymes and DNA-modifying enzymes were purchased from New England 

Biolabs (Ipswich, MA, USA). Semiconfluent monolayers of cells grown in a 12-well plate 

were transfected with 1 µg of the indicated expression vectors using the JetPEI transfection 

kit (Polyplus Transfection, Illkirch, France), according to the manufacturer´s instructions, 

and further selected in complete medium in the presence of 1 µg/ml puromycin. Expression 

of the mCherry-UCH-L1 and -UCHL1C90S proteins was induced by adding 1µg/ml doxycycline 

to the culture medium.  

 

HeLa stably transfected with the pCEP4-UCH-L1, or pCEP4-UCHL1C90S plasmids (99) were 

cultured in complete medium in the presence of 300 µg/ml hygromycin.  

 

Yersinia pseudotuberculosis was cultured in LB medium. Bacteria were transformed with 

the pMW165 plasmid carrying the mCherry gene under an L-arabinose inducible promoter, 

obtained from Dr. Dirk Bumman (Biozentrum, University of Basel, Basel, Switzerland). The 

mCherry tagged Y. pseudotuberculosis was cultured in LB medium supplemented with 100 

µg/ml ampicillin and 20mM L-arabinose. 
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Ub deconjugase activity assay 

Deconjugase activity was determined using the Ub-VS (vinyl-sulfone) functional probe 

(Boston Biochem, Cambridge, MA, USA). The cells expressing the protein to be tested were 

lysed for 30 min at 4°C in 80 µl of buffer containing 50 mM Tris (pH 7.4), 0.5% Nonidet P-40, 

5mM MgCl2, 250 mM sucrose, 1 mM DTT, and 1 mM ATP, and the cell lysates were clarified 

by centrifugation (14,000 rpm, 4°C, 30 min). Cell lysates (20 µg) were incubated with 1 µg 

of Ub-VS probe for 1h at 37°C, and enzyme activity was assessed in Western blots as a shift 

of the UCH-L1 specific band corresponding to the size of the probe.  

 

Immunofluorescence 

Cells (2x105) in IMDM containing 1% FBS were seeded on 13 mm cover slides previously 

coated with 1 µg/ml fibronectin (Sigma-Aldrich, St. Louis, MO, USA) for 1 h at 37°C, and let 

adhere for 1 h.  The slides were then washed once in PBS and fixed with 4% PFA (Sigma-

Aldrich, St. Louis, MO, USA) for 15 min. After permeabilization and blocking with 0.2% Triton 

X-100 and 3% BSA in PBS for 30 min, the slides were incubated with 1 µg/ml TRITC-phalloidin 

(Sigma-Aldrich, St. Louis, MO, USA) in PBS for 1 h at 37°C. The nuclei were counterstained 

with DAPI (Vectashield; Vector Laboratories, Burlingame, CA, USA). Immunofluorescence 

was visualized by confocal microscopy (LSM510 META; Zeiss, Oberkochen, Germany). The 

cell area was estimated from micrographs using the ImageJ software (U.S. National 

Institutes of Health, Bethesda, MD, USA), and the figures were made using Volocity Image 

Analysis Software (PerkinElmer, Inc., Waltham, MA, USA). Data were analyzed with the R 

statistical package (3.0.2 Version). The Shapiro-Wilk test was used to analyze the normal 

distribution of the variables. The Student´s t-test was used to compare the means between 

groups in each experiment. 

 

For the bacteria internalization assays 1.5 x105 cells/well were seeded on 13 mm cover 

slides in a 12 well plate in complete medium. Next day, after adding the bacteria at a MOI 

of 50:1, plates were centrifuged 5 min at 1500 rpm and incubated 1 h. The slides were then 

washed in PBS, fixed with 4% PFA for 15 min and blocked with 3% BSA in PBS for 30 min. 

The slides were stained with rabbit anti Y. pseudotuberculosis LPS (1:500, provided by Maria 

Fällman, Umeå University, Umeå, Sweden) and WGA conjugated to Alexa 680 (1:500, 

Molecular Probes). The number of bacteria internalized was quantified from micrographs 

taken by confocal microscopy using ImageJ. Data were analyzed using the Cochran-Mantel-

Haenszel (CMH) test. The test was performed using the Excel spreadsheet written by John 

Mc Donald (http://udel.edu/~mcdonald/statcmh.html.).  

 

http://udel.edu/~mcdonald/statcmh.html
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Wound healing assay 

10x103 cells/well were seeded on a 12-well plate and grown to confluence. The monolayers 

were then scratched with a pipette tip to generate a linear wound and washed to remove 

cell debris. The monolayers were left in complete medium and photographed every 30 min 

during 24 h (Leica DMI6000, Leica Microsystems GmbH, Wetzlar, Germany). 

 

Immunoprecipitation 

10x106 cells were plated onto 10 cm dishes in complete IMDM supplemented with 1% FBS, 

and let adhere for 1 h at 37°C. Protein cross-linking was performed by addition of PFA 

(Sigma-Aldrich, St. Louis, MO, USA) to a final concentration of 1% for 20 min at room 

temperature, and the reaction was stopped by adding 0.125 M glycine for 5 min. The cells 

were collected by gentle scraping, washed twice with cold PBS, and lysed in 2 ml lysis buffer 

containing 50 mM Tris-HCl, 150 mM NaCl, 0.5% Nonidet P-40, 0.01% SDS, 1 mM EDTA, 

protease inhibitor cocktail (Roche, Basel, Switzerland), 1 mM sodium orthovanadate, 1 mM 

sodium fluoride, 10 mM N-ethylmaleimide (NEM), 10 mM iodoacetamide, and 1 mM DTT 

(Sigma-Aldrich, St. Louis, MO, USA) for 30 min on ice. The cell lysates were clarified, and 

protein concentration was measured with a detergent-compatible protein assay in 

microliter plates (Biorad, Hercules, CA, USA). UCH-L1 was immunoprecipitated from equal 

amounts of proteins by incubation in gentle rotation at 4°C with either FLAG-beads (Sigma-

Aldrich, St. Louis, MO, USA) for 5 h, or an antibody recognizing UCH-L1 (PGP9.5; Biomol 

International) for 3 hours and GammaBind G Sepharose (GE Healthcare Piscataway, NJ, 

USA) for 2 additional hours. The beads were washed 3 times in lysis buffer, re-suspended in 

2X Laemmli buffer, and boiled 10 min.  

 

Western blot 

Proteins were fractionated by SDS-polyacrylamide gel electrophoresis using precast 4-12% 

gradient gels (Invitrogene, Carlsbad, CA, USA), transferred to PVDF membranes (Millipore, 

Darmstad, Germany), and probed with 1:1000 dilution of the indicated antibodies, followed 

by the appropriate horseradish peroxidase-conjugated secondary antibody (GE Healthcare 

Piscataway, NJ, USA). The blots were developed by enhanced chemiluminescence (GE 

Healthcare Piscataway, NJ, USA) according to the manufacturer’s instructions. The following 

antibodies were used: rabbit polyclonal anti-UCH-L1 (PGP9.5; Biomol International), mouse 

monoclonal anti-vinculin (Millipore, Darmstad, Germany) and anti-tubulin (Oncogene, 

Cambridge, MA, USA). 
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Gentamicin assay 

Gentamicin assays were performed in six-well tissue culture plates. 0.5x105 cells per well 

were plated 1 day prior to the assay. Cells were washed once with serum-free medium 

without antibiotics and bacterial suspension was added in serum-free medium without 

antibiotics at a MOI of 50:1. Cells were incubated with the bacterial suspension at 37°C for 

1 h. The bacteria-containing medium was removed and cells were further incubated with 

medium containing 100 µg/ml gentamicin for 1 h at 37°C. Cells were washed once in PBS 

and lysed by adding 0.2% Triton X-100. Subsequently, the cell lysates were incubated for 24 

h at 37°C onto LB agar plates and incubated for 24 h at 37°C. The number of viable bacteria 

released from the cells was assessed as the number of CFU.  


