ĂŤtem
Acceso Abierto

Transcriptome profiles evaluation of Leishmania braziliensis promastigotes subjected to temperature shifts in vitro

dc.contributorVásquez, Nubia Marcela
dc.contributorPatiño, Luz H.
dc.contributorCruz-Saavedra, Lissa
dc.contributor.advisorRamĂ­rez, Juan David
dc.creatorBallesteros Chitiva, Nathalia
dc.creator.degreeBiĂłlogospa
dc.creator.degreetypeFull timespa
dc.date.accessioned2019-02-13T12:53:11Z
dc.date.available2019-02-13T12:53:11Z
dc.date.created2019-02-05
dc.date.issued2019
dc.description.abstractThe increasing of the temperature is one of the principal consequences of the climate change, which affect human populations due of the emergence and re-emergency of infection diseases. The Leishmaniases are diseases cause by protozoans’ parasites of the genus Leishmania; these diseases are composed by different clinical manifestations, one of the most important in the New World is Cutaneous Leishmaniasis for which the most common causative species is Leishmania braziliensis. This species as the other members of the Trypanosomatidae family present a genomic plasticity and a particular gene expression regulation that allow to the parasites to adapt and response to several stimulus, for that reason the aim of this study is evaluate the transcriptome profiles of L. braziliensis promastigotes subjected to temperature shifts. To reach this aim the authors performed an RNA-Seq that permitted to find several genes associated with a direct response to the treatments; also, through the growth curves done the authors evidenced a decrease in the cell proliferation in all the temperatures tested, where the most affected was 30°C. The results obtained in this study demonstrated a fast response of L. braziliensis promastigotes to temperature shifts.eng
dc.description.embargo2021-02-14 01:01:01: Script de automatizacion de embargos. info:eu-repo/date/embargoEnd/2021-02-13
dc.description.sponsorshipDirecciĂłn de investigaciĂłn e innovaciĂłn de la Universidad del Rosariospa
dc.format.mimetypeapplication/pdf
dc.format.mimetypeimage/jpeg
dc.identifier.doihttps://doi.org/10.48713/10336_19055
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/19055
dc.language.isospa
dc.publisherUniversidad del Rosariospa
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticasspa
dc.publisher.programBiologĂ­aspa
dc.rightsAtribuciĂłn-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rightsAtribuciĂłn-NoComercial-SinDerivadas 2.5 Colombiaspa
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.rights.accesoAbierto (Texto Completo)spa
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorizaciĂłn es original y la realizĂł sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autorĂ­a y tiene la titularidad sobre la misma.spa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.source.bibliographicCitationBarria, C., Malecki, M., & Arraiano, C. M. (2013). Bacterial adaptation to cold. Microbiology, 159(Pt_12), 2437–2443.spa
dc.source.bibliographicCitationBifeld, E., Lorenzen, S., Bartsch, K., Vasquez, J.-J., Siegel, T. N., & Clos, J. (2018). Ribosome Profiling Reveals HSP90 Inhibitor Effects on Stage-Specific Protein Synthesis in Leishmania donovani. MSystems, 3(6), 1–18.spa
dc.source.bibliographicCitationBussotti, G., Gouzelou, E., Côrtes Boité, M., Kherachi, I., Harrat, Z., Eddaikra, N., Späth, G. F. (2018). Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. MBio, 9(6), e01399-18.spa
dc.source.bibliographicCitationDumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., & Pescher, P. (2017). Modulation of Aneuploidy in Leishmania In Vitro and In Vivo Environments and Its impact on gene expression. mBio, 8(3), 1–14.spa
dc.source.bibliographicCitationCardenas, R., Sandoval, C., & Rodriguez-Morales, a. (2007). P530 Impact of climate variability in the occurrence of leishmaniasis in Southern departments of Colombia. International Journal of Antimicrobial Agents, 29(2), S117–S118.spa
dc.source.bibliographicCitationCardoso de Paiva, R. M., Grazielle-silva, V., Cardoso, M. S., Canavaci, C., Melo, N. S., & Martinelli, P. M. (2015). Amastin Knockdown in Leishmania braziliensis Affects Parasite- Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes. PLoS Pathogens, 11(12), 1–24.spa
dc.source.bibliographicCitationClayton, C. E. (2002). Life without transcriptional control? From fly to man and back again. EMBO, 21(8), 1881–1888.spa
dc.source.bibliographicCitationClayton, C., & Shapira, M. (2007). Post-transcriptional regulation of gene expression in trypanosomes and leishmanias. Molecular & Biochemical Parasitology, 156, 93–101.spa
dc.source.bibliographicCitationCoughlan, S., Taylor, A. S., Feane, E., Sanders, M., Schonian, G., Cotton, J. A., & Downing, T. (2018). Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. Royal Society Open Science, 5(4).spa
dc.source.bibliographicCitationDowning, T., Imamura, H., & Decuypere, S. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome, 21, 2143–2156.spa
dc.source.bibliographicCitationDujardin, J. C., Mannaert, A., Durrant, C., & Cotton, J. A. (2014). Mosaic aneuploidy in Leishmania: The perspective of whole genome sequencing. Trends in Parasitology, 30(12), 554–555.spa
dc.source.bibliographicCitationDumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., & Pescher, P. (2017). Modulation of aneuploidy in Leishmania in vitro and in vivo environments and its impact on gene expression. MBio, 8(3), 1–14.spa
dc.source.bibliographicCitationFolgueira, C., Quijada, L., Soto, M., Abanades, D. R., Alonso, C., & Requena, J. M. (2005). The translational efficiencies of the two Leishmania infantum HSP70 mRNAs, differing in their 3′-untranslated regions, are affected by shifts in the temperature of growth through different mechanisms. Journal of Biological Chemistry, 280(42), 35172–35183.spa
dc.source.bibliographicCitationGonzález, C., Wang, O., Strutz, S. E., González-Salazar, C., Sánchez-Cordero, V., & Sarkar, S. (2010). Climate change and risk of leishmaniasis in North America: Predictions from ecological niche models of vector and reservoir species. PLoS Neglected Tropical Diseases, 4(1).spa
dc.source.bibliographicCitationHanke, T., Ramiro, M. J., Trigueros, S., Roca, J., & Larraga, V. (2003). Cloning, functional analysis and post-transcriptional regulation of a type II DNA topoisomerase from Leishmania infantum. A new potential target for anti-parasite drugs. Nucleic Acids Research, 31(June 2014), 4917–4928.spa
dc.source.bibliographicCitationHlavacova, J., Votypka, J., & Volf, P. (2013). The Effect of Temperature on Leishmania (Kinetoplastida: Trypanosomatidae) Development in Sand Flies. Journal of Medical Entomology, 50(4), 1–4.spa
dc.source.bibliographicCitationHombach, A., Ommen, G., Chrobak, M., & Clos, J. (2013). The Hsp90 – Sti1 interaction is critical for Leishmania donovani proliferation in both life cycle stages. Cellular Microbiology, 15(November 2012), 585–600.spa
dc.source.bibliographicCitationHombach, A., Ommen, G., Macdonald, A., & Clos, J. (2014). A small heat shock protein is essential for thermotolerance and intracellular survival of Leishmania donovani. Cell Science, 127, 4762–4773.spa
dc.source.bibliographicCitationIantorno SA, Durrant C, Khan A, S., MJ, Beverley SM, Warren WC, Berriman M, S., DL, Cotton JA, G. M. 2017. G. expression, By, in L. is regulated predominantly, Https://doi.org/, gene dosage. mBio 8: e01393-17., & 10.1128/mBio.01393-17. (2017). Gene Expression in Leishmania Is Regulated Predominantly by Gene Dosage, 8(5), 1–20.spa
dc.source.bibliographicCitationImamura, H., Downing, T., Broeck, F. Van Den, Muylder, D., Dumetz, F., Rai, K., … Roy, S. (2016). Evolutionary genomics of epidemic visceral leishmaniasis in the Indian subcontinent. ELife, 5, 1–39.spa
dc.source.bibliographicCitationJensen, B. C., Sivam, D., Kifer, C. T., Myler, P. J., & Parsons, M. (2009). Widespread variation in transcript abundance within and across developmental stages of Trypanosoma brucei. BMC Genomics, 24.spa
dc.source.bibliographicCitationKoch, L. K., Kochmann, J., Klimpel, S., & Cunze, S. (2017). Modeling the climatic suitability of leishmaniasis vector species in Europe. Scientific Reports, 7(1), 1–10.spa
dc.source.bibliographicCitationKramer, S. (2012). Developmental regulation of gene expression in the absence of transcriptional control: The case of kinetoplastids. Molecular & Biochemical Parasitology, 181(2), 61–72.spa
dc.source.bibliographicCitationLafferty, K. D., & Mordecai, E. A. (2016). The rise and fall of infectious disease in a warmer world. F1000Research, 5(0), 2040.spa
dc.source.bibliographicCitationLawrence, F., & Robertgero, M. (1985). Induction of heat shock and stress proteins promastigotes of three Leishmania species. Proc. Natl. Acad. Sci. USA, 82(July), 4414–4417.spa
dc.source.bibliographicCitationLean, J. L., & Rind, D. H. (2009). How will Earth’s surface temperature change in future decades? Geophysical Research Letters, 36(15), 1–5.spa
dc.source.bibliographicCitationLeon, L. L., Soares, M. J., & Temporal, R. M. (1995). Effects of Temperature on Promastigotes of Several Species of Leishmania. J. Euk. Microbiol., 42(3), 219–223.spa
dc.source.bibliographicCitationLeprohon, P., Le, D., Girard, I., Papadopoulou, B., & Ouellette, M. (2006). Modulation of Leishmania ABC Protein Gene Expression through Life Stages and among Drug-Resistant Parasites. Eukaryotic Cell, 5(10), 1713–1725.spa
dc.source.bibliographicCitationLiang, L., & Gong, P. (2017). Climate change and human infectious diseases: A synthesis of research findings from global and spatio-temporal perspectives. Environment International, 103, 99–108.spa
dc.source.bibliographicCitationMandal, G., Mandal, S., Sharma, M., & Charret, K. S. (2015). Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1. PLoS Neglected Tropical Diseases, 1–29.spa
dc.source.bibliographicCitationMarquis, N., Gourbal, B., Rosen, B. P., Mukhopadhyay, R., & Ouellette, M. (2005). Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Molecular Microbiology, 57, 1690–1699.spa
dc.source.bibliographicCitationMcnicoll, F., Drummelsmith, J., Müller, M., Madore, É., Boilard, N., Ouellette, M., & Papadopoulou, B. (2006). A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics, 6, 3567–3581.spa
dc.source.bibliographicCitationMondelaers, A., Sanchez-Cañete, M. P., Hendrickx, S., Eberhardt, E., Garcia-Hernandez, R., Lachaud, L., Maes, L. (2016). Genomic and Molecular Characterization of Miltefosine Resistance in Leishmania infantum Strains with Either Natural or Acquired Resistance through Experimental Selection of Intracellular Amastigotes. PloS One, 11(4), e0154101.spa
dc.source.bibliographicCitationNedwell, D. B. (1999). Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiology Ecology, 30(2), 101–111.spa
dc.source.bibliographicCitationOuellette, M., Danielle, L., Haimeur, A., Grondin, K., Brochu, C., & Papadopaulou, B. (1998). ABC transporters in Leishmania and their role in drug resistance. Drug Resistance Updates, 1, 43–48.spa
dc.source.bibliographicCitationPatino, L. H., Mendez, C., Rodriguez, O., Romero, Y., Velandia, D., Alvarado, M., Ramírez, J. D. (2017). Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Neglected Tropical Diseases, 11(8), 1–15.spa
dc.source.bibliographicCitationPatino, L. H., & Ramírez, J. D. (2017). RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. Infection, Genetics and Evolution, 49, 273–282.spa
dc.source.bibliographicCitationPays, E., Coquelet, H., Pays, A., Tebabi, P., & Steinert, M. (1989). Trypanosoma brucei: Posttranscriptional Control of the Variable Surface Glycoprotein Gene Expression Site. Molecular and cellular biology, 9(9), 4018–4021.spa
dc.source.bibliographicCitationPrieto Barja, P., Pescher, P., Bussotti, G., Dumetz, F., Imamura, H., Kedra, D., Späth, G. F. (2017). Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology & Evolution, 1(12), 1961–1969.spa
dc.source.bibliographicCitationQueiroz, R., Benz, C., Fellenberg, K., Hoheisel, J. D., & Clayton, C. (2009). Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics, 19, 1–19.spa
dc.source.bibliographicCitationRajesh, K., & Sanjay, K. (2013). Change in global Climate and Prevalence of Visceral Leishmaniasis. International Journal of Scientific and Research Publications, 3(1), 1–2.spa
dc.source.bibliographicCitationRamírez, J. D., Hernández, C., León, C. M., Ayala, M. S., Flórez, C., & González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6(March), 1–10.spa
dc.source.bibliographicCitationRastrojo, A., García-Hernández, R., Vargas, P., Camacho, E., Corvo, L., Imamura, H., Requena, J. M. (2018). Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. International Journal for Parasitology: Drugs and Drug Resistance, 8(2), 246–264.spa
dc.source.bibliographicCitationRogers, M. B., Hilley, J. D., Dickens, N. J., Wilkes, J., Bates, P. A., Depledge, D. P., Mottram, J. C. (2011). Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania. Genome Research, 21, 2129–2142.spa
dc.source.bibliographicCitationSeraphim, T. V, Alves, M. M., Silva, I. M., Gomes, F. E. R., & Silva, K. P. (2013). Low Resolution Structural Studies Indicate that the Activator of Hsp90 ATPase 1 (Aha1) of Leishmania braziliensis Has an Elongated Shape Which Allows Its Interaction with Both N- and MDomains of Hsp90. PLoS ONE, 8(6), 1–14.spa
dc.source.bibliographicCitationShaw, C. D., Lonchamp, J., Downing, T., Imamura, H., Freeman, T. M., Cotton, J. A., Carter, K. C. (2016). In vitro selection of miltefosine resistance in promastigotes of Leishmania donovani from Nepal: Genomic and metabolomic characterization. Molecular Microbiology, 99(6), 1134–1148.spa
dc.source.bibliographicCitationSpäth, G. F., Drini, S., & Rachidi, N. (2015). A touch of Zen: post-translational regulation of the Leishmania stress response, 17(April), 632–638.spa
dc.source.bibliographicCitationTeixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The Cell Biology of Leishmania: How to Teach Using Animations. PLoS Pathogens, 9(10), 8–11.spa
dc.source.bibliographicCitationTeixeira, S. M. R., Kirchhoff, L. V, & Donelson, J. E. (1995). Post-transcriptional Elements Regulating Expression of mRNAs from the Amastin / Tuzin Gene Cluster of Trypanosoma cruzi. The Journal of Biological Chemistry, 270(38), 22586–22594.spa
dc.source.bibliographicCitationTorres, C., Marı, J., Paroditalice, A., Marı, J., Gamarro, F., & Castanys, S. (2003). The overexpression of a new ABC transporter in Leishmania is related to phospholipid trafficking and reduced infectivity. Biochemical et Biophysica Acta, 1612, 195–207.spa
dc.source.bibliographicCitationToye, P., & Remold, H. (1989). The influence of temperature and serum deprivation on the synthesis of heat-shock proteins and alpha and beta tubulin in promastigotes of Leishmania major. Molecular & Biochemical Parasitology, 35, 1–10.spa
dc.source.bibliographicCitationValdivia, H. O., Reis-Cunha, J. L., Rodrigues-Luiz, G. F., Baptista, R. P., Baldeviano, G. C., Gerbasi, R. V., Bartholomeu, D. C. (2015). Comparative genomic analysis of Leishmania (Viannia) peruviana and Leishmania (Viannia) braziliensis. BMC Genomics, 16(1), 1–10.spa
dc.source.bibliographicCitationVanaerschot, M., Decuypere, S., Downing, T., Imamura, H., Stark, O., De Doncker, S., Rijal, S. (2012). Genetic markers for SSG resistance in leishmania donovani and SSG treatment failure in visceral leishmaniasis patients of the Indian subcontinent. Journal of Infectious Diseases, 206(5), 752–755.spa
dc.source.bibliographicCitationWu, X., Lu, Y., Zhou, S., Chen, L., & Xu, B. (2016). Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environment International, 86, 14–23.spa
dc.source.bibliographicCitationZilberstein, D., & Shapira, M. (1994). The role of pH and temperature in the development of Leishmania parasites. Annu. Rev. Microbiol., 48, 449–470.spa
dc.source.bibliographicCitationZilka, A., Garlapati, S., Dahan, E., Yaolsky, V., & Shapira, M. (2001). Developmental Regulation of Heat Shock Protein 83 in Leishmania. The Journal of Biological Chemistry, 276(51), 47922–47929.spa
dc.source.instnameinstname:Universidad del Rosariospa
dc.source.reponamereponame:Repositorio Institucional EdocURspa
dc.subjectTranscriptomicspa
dc.subjectHeat stressspa
dc.subjectResponse to external stimulusspa
dc.subjectGrowth curvesspa
dc.subject.ddcEnfermedadesspa
dc.subject.lembLeishmaniasisspa
dc.subject.lembInfecciones por protozoariosspa
dc.titleTranscriptome profiles evaluation of Leishmania braziliensis promastigotes subjected to temperature shifts in vitrospa
dc.title.alternativeTemperature shifts impacts on Leishmania braziliensisspa
dc.typebachelorThesiseng
dc.type.documentAnálisis de casospa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.type.spaTrabajo de gradospa
Archivos
Bloque original
Mostrando1 - 5 de 6
Cargando...
Miniatura
Nombre:
BallesterosChitiva-Nathalia-2019.pdf
Tamaño:
267.26 KB
Formato:
Adobe Portable Document Format
DescripciĂłn:
ArtĂ­culo principal
Cargando...
Miniatura
Nombre:
Imagenes_Ballesteros_Chitiva_Nathalia.zip
Tamaño:
2.6 MB
Formato:
Compressed Archive File
DescripciĂłn:
Cargando...
Miniatura
Nombre:
Table S1.pdf
Tamaño:
409.92 KB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Material suplementario 1
Cargando...
Miniatura
Nombre:
Table S2.pdf
Tamaño:
403.06 KB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Material suplementario 2
Cargando...
Miniatura
Nombre:
Table S3.pdf
Tamaño:
400.64 KB
Formato:
Adobe Portable Document Format
DescripciĂłn:
Material suplementario 3