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1 By a metaphysical reason I allude to a cause that e

be otherwise (demonstration of the reasoned fact:
derive effects from causes; not derive causes from ef
imposes recognition of God’s transcendent presence.
the importance of maintaining the presence of God
«Kepler’s own work, [.], confirmed him both in hi
could reveal God in a special way and in his assurance
can and will be revealed» (1998, p. 209).
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a b s t r a c t

This paper examines the methodology used by Kepler to discover a quantitative law of refraction. The
aim is to argue that this methodology follows a heuristic method based on the following two Pythag-
orean principles: (1) sameness is made known by sameness, and (2) harmony arises from establishing a
limit to what is unlimited. We will analyse some of the author’s proposed analogies to find the afore-
mentioned law and argue that the investigation’s heuristic pursues such principles.

� 2016 Elsevier Ltd. All rights reserved.
Kepler never hid his sympathy for Pythagoras. His knowledge of
Pythagoras came from Aristotle and from Proclus’ judicious
reception of Euclid’s work. On another occasion, I suggested that
the Keplerian methodology is inspired by two principles of Py-
thagorean origin: (i) sameness is made known by sameness, and (ii)
harmony arises from establishing a limit to the unlimited. The
methodological influence of Pythagoras can be summarized by
what I call the Keplerian Leitmotiv. This Leitmotiv can be synthesised
into the following stages:

(1) Problem formulation. Many of the problems of natural phi-
losophy addressed by Kepler conform to the following nat-
ural form: given that phenomena in a certain restricted field
exhibit a regularity such that despite the fact that we could
expect infinite logical possibilities, only a small number of
these possibilities are present, we could thus reach the
conclusion that there is a profound metaphysical reason that
explains why the possibilities have been restricted in such a
xplains why things could not
propter quid). Research must
fects. The metaphysical cause
Charlotte Methuen sums up
on the horizon of research:
s conviction that nature [.]
that these “truths” of nature
manner.1 This metaphysical necessity is intimately linked
with the assumption of order and harmony in the world,
which implies, in the Pythagorean sense, that a certain limit
is imposed on the unlimited.

(2) Search for a contrast analogy. Given the problem, the
researcher must recognise that the foundation of the
assumed harmony is in some way hidden from him. We can
imagine, in a Pythagorean sense, that mathematics (espe-
cially geometry) provides a tool that renders the harmony
underlying the problem obvious. Thus, the researcher can
proceed to seek a mathematical analogy that can be juxta-
posed with the problem situation by searching for (a) a
mathematical resource that provides a finite number of
control rules for the framework of infinite possibilities and
(b) a resource that engages in a familiar manner with the
problem situation. An analogy is a finitistic instrument of
control that allows us to grasp the relations that determine
the imposition of a limit on what is unlimited.

(3) Deployment of obstructions. The creative power of the
researcher resides in providing an adequate analogy. Analo-
gies are never coupled with absolute ease. In fact, analogies
allude to absolutely simplified ideal situations. Thus, it is not
strange that the deployment of finitistic control criteria
applied on a mathematical instrument produces results that
differ from the natural circumstances in which the world’s
information is collected. Once the researcher faces obstruc-
tions, as long as he does not abandon the potential he sees in
the analogy, he should proceed or make adjustments to the
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3 Kepler transcribed as epigraph a Proclus’ passage in Book III of Harmony. A part
of this epigraph says: «Thus Plato teaches us many remarkable things about the nature
of the gods through the appearance of mathematical things; and the Pythagorean
philosophy disguises its teaching on divine matters with these, so to speak, veils» (1619/
1997, p. 127) (cfr. Proclus, trans. 1970, p. 19). In Zaiser’s words: «Harmony is present
when a multitude of phenomena is regulated by the unity of a mathematical law which
expresses a cosmic idea» (1932, p. 47). I am grateful for the comments of one of the
readers of this text, who warned of the danger of bringing Kepler in an amiable
relationship with numerology. I want to clarify that the Pythagoreanism, attached
to only the two above-mentioned principles, is, rather, the Pythagoreanism of
Proclus. Walker said rightly that Kepler agreed with the criticism of Aristotle
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analogy to achieve a more fine-grained coupling or to find
material circumstances that explain why this adjustment
cannot be made.

(4) Gathering results. Constant research in the aforementioned
direction can provide three types of results. (a) An ulti-
mately successful coupling: in this case, the research project
reaches its goal with the expected results. (b) A coupling,
although truncated, provides unexpected results: the anal-
ogy does not achieve successful finite control rules that can
reproduce the regularities, but in the exercise of examining
the couplings, we achieve new regularities that we possibly
would not have accessed if not for our stubborn investiga-
tion. (c) A coupling that hints at unattainability: the
researcher decides to abandon what seemed to be a prom-
ising analogy.

In Chapter 4 of Paralipomena2 Kepler brilliantly summarizes
what we call the Leitmotiv of the Keplerian methodology. Consider
the passage:

For geometrical terms ought to be at our service for analogy. I love
analogies most of all: they are my most faithful teachers, aware of
all the hidden secrets of nature. In geometry in particular they are
to be taken up, since they restrict the infinity of cases between their
respective extremes and the mean with however many absurd
phrases, and place the whole essence of any subject vividly before
the eyes. (Paralipomena, p. 109; GW, II, p. 92).

When the investigator of nature is confronting a problem, he
assumes nature hides a key that does not emerge naturally on the
surface. Kepler recommends comparing the problematic situation
with an analogy. The researcher restricts the endless logical pos-
sibilities to a reduced set of possibilities. Finding a geometric
analogy means finding a mathematical resource that provides a
system of finite control over the infinite and that, aside from the
differences, offers the same behaviour on the surface as that
exhibited by the particular aspect of nature.

As D. Walker points out: «Harmony, musical or of any other kind,
consists in the mind’s recognizing and classing certain proportions
between two or more continuous quantities by means of comparing
them with archetypical figures» (1978, pp. 44e45). For this reason,
Walker believes that Kepler would prefer geometric to arithmetic
analogies. In fact, Walker writes: «Analogies based purely on
numbers correspond to no archetype in the soul of man ormind of God,
whereas geometric analogies do so correspond, and, in many cases, are
therefore more than analogies: they display the reasons why God
created things as they are and not otherwise» (1978, p. 44).

Proclus, who strongly influenced Kepler, provides a recom-
mendation quite akin to Kepler’s methodological order. We quote
him in full:

Mathematicals are the offspring of the Limit and the Unlimited, but
not of the primary principles alone, nor of the hidden intelligible
causes, but also of secondary principles that proceed from them
and, in cooperation with one another, suffice to generate the in-
termediate orders of things and the variety that they display. This is
why in these orders of being there are ratios proceeding to infinity,
but controlled by the principle of the Limit. (trans. 1970, p. 5).
2 After the death of Tycho Brahe (1601), Kepler dedicated part of his time to
conceiving and writing Ad Vitellionem paralipomena, quibus Astronomiæ pars optica
traditur (1604). This work, which hereinafter I will abbreviate as Paralipomena, was
written in the form of critical commentary on the optics of Witelo and ultimately
became the origin of a fundamental revolution in the study of optics.
Later Proclus adds « And certainly beauty and order are common
to all branches of mathematics, as are the method of proceeding from
things better known to things we seek to know and the reverse path
from the latter to the former, the methods called analysis and syn-
thesis» (trans. 1970, p. 6e7). Proclus, in effect, anticipated the
Keplerian Leitmotiv.3

The main explicit references made by Kepler to Proclus are
posterior to the Paralipomena. This fact, as pointed out by one of the
reviewers of this article, casts doubt on the early influence of Pro-
clus on Kepler. However, the idea of imposing a limit on the un-
limited by means of a mathematical instrument was already
present in the Mysterium Cosmographicum when Kepler suggested
that regular solids embedded in spheres respond to the question
“Why are there six planets when there they could be many more?”
In addition, the first printed Greek text of the commentary on
Euclid by Proclus was edited by Symon Grynaeus, who was in
Tübingen in 1534 and 1535 to participate in curriculum reform at
the university where Kepler has studied. Both Grynaeus and Philip
Melanchthon helped to disseminate Proclus’ ideas in German uni-
versities. Melanchthon had great influence among Kepler’s pro-
fessors, among them Jacob Heerbrand. In 1602 Kepler wrote to
David Fabricius: “I havewritten against Ursus, but it does not satisfy
me; I must first read Proclus and Averroes on the history of hy-
potheses” (quoted in N. Jardine, 1988, p. 28). So although we can’t
be sure that Kepler read Proclus before taking up Paralipomena, the
preceding arguments suggest that this possibility cannot be
completely ruled out.4

Gerd Buchdahl suggests that the use of analogies (archetypes,
the author says) function in the manner of regulative principles.5 In
principle, I do not feel comfortable with this recommendation. I can
think of only two ways of understanding law as a regulative prin-
ciple. First, it cannot be a law that describes a family of phenomena,
but a principle for constructing such laws. This occurs with the
principle of conservation of energy or the principle of minimal
action, for example. Secondly, there may be a law prescribing the
meaning of a concept that we want to introduce, but rather than
doing so in an explicit way it presents themeaning at the same time
that the law is established. This occurs, for example, with respect to
Newton’s first law. Having said that, in my perspective, the use that
Kepler gives to analogies is not related to either of the meanings
that I see for a regulative principle. As we will see, analogies do not
establish the form that we would like a law to take nor do they
introduce new concepts to the system. I will demonstrate that the
mentioned analogies function as control instruments that we are
able take up in complex cases (cases involving the presence of
against the Pythagorean number; however he stresses that Kepler was in accor-
dance with the Proclus’ philosophy of continuous quantities (1978, p. 44).

4 Ch. Methuen (1998) presents a full study of the intellectual environment in
Tübingen at the time when Kepler studied there.

5 Buchdahl, however, also endows analogies with a function tied to justification.
The second use may be closer to what I want to defend here. According to the
author says: «Methodologically, they [the archetypes, or analogies] act as necessary
rules, regulative maxims; whilst epistemologically, they function as principles of
justification» (G. Buchdahl, 1972, p. 276).



Fig. 1. Air-water refraction.

7 Roshdi Rashed (1990) proposed that there is a formulation of the law of sines in
the works of Ibn Sahl, an Arab mathematician from the tenth century. Although the
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infinite possibilities) in the hope of revealing a metaphysical cau-
sality that is hidden from us.

Kepler, by making use of analogies as control instrument, sur-
mised that planetary orbits are adjusted in the Platonic solids.
Many previous trials led to the central thesis of the Mysterium:
since there are only five regular solids drawn in a sphere, this case
must determine that there are only six planets in the solar system.
When Kepler investigated the cause of planetary movements,
certain analogies were very valuable for him. If the planets revolve
around the sun, it is natural to think that the star is the cause. The
sun is also a source of light, so it is conceivable that the mechanism
by which the sun radiates light is similar to the mechanism by
which it radiates its driving force. Radiant multiplication is an
interesting reference to the Trinity: the point is the centre of ra-
diation fromwhich rays of light emanate diverging and illustrating.
The expanding sphere presents the results of creation: Father, Son
and Holy Spirit (point, line and spherical surface).

Another interesting example is the unified treatment, proposed
by Kepler, in the study of conic sections. A conic section results of
cutting a plane with a double cone (two cones found in a vertex).
This cut by the double cone can produce a multitude of figures,
which can be grouped into five classes: straight, hyperbolic, para-
bolic, elliptical and circular. Kepler, making use of analogies, pro-
posed a control instrument to show the family similarities shared
by these sections (Paralipomena, pp. 106e109; GW, II, pp. 90e93).
Two opposite boundaries are defined by circumference and
straight: the former is pure curvedness, the latter pure straightness.
The other three are involved in both natures: the hyperbola is closer
to straightness, the ellipse is closer to curvedness and the parabola
is intermediary. Given the comparison (analogy) it is possible to
speak of a pair of foci in the straight line itself, two foci of the
circumference that merge into the middle or two foci of the
parabola (one of them in the infinite).6

In the case of optical research, Kepler knew that only if he were
to find a precise law of refraction could he counteract the deceptive
effects of astronomical observations caused by the modification of
light’s trajectory as it passes through the ether of space to the
Earth’s air and from air to the crystal spheres that he thought
constituted the eye. I will demonstrate that the astronomer tried to
reach this law by deploying the Keplerian Leitmotiv. There is no
single contrast analogy; Kepler explores various analogies that he
sets aside because of the obstructions he encounters. I will first
present the general problem and subsequently interpret some of
the proposed analogies and its corresponding obstructions. To help
the reader follow this discussion, I will introduce corresponding
paragraphs with a brief title in italics, which will summarise the
subject to be discussed, and I will note the outlines of the article
with one title that alludes to the contrasting analogies.

Problem formulation. When a ray of light passes from one me-
dium to another with different optical characteristics, e.g., from air
to water, the ray abandons the direction it had and adopts a new
direction of propagation in a straight line, provided that the second
medium is homogeneous. Refraction scholars have recognised with
little difficulty that if the secondmedium is denser than the former,
the direction of the new ray approaches the normal, whereas when
the second medium is less dense, the new ray diverges from the
normal. Before the XVII century, no scholar stated with clarity what
he referred to when comparing the density of media. The problem
of interest can be defined by asking why, when there is an infinite
6 In his presentation of the contemporary edition of Paralipomena Franz Hammer
argues that: «Kepler does not see light as a physical phenomenon isolated from all
creation; on the contrary, he sees light as an organic part of creation [.] Light is a
force like magnetism that creates and revives the cosmos» (GW, II, p. 407).
quantity of possibilities, nature regularly restricts itself to just one
of them. Thus, if a ray of light travelling in air impacts water by
forming an incidence angle i (Fig. 1), we ask why, if it could have
refracted in any direction, it always refracts in the direction that
corresponds to the same refraction angle r. There should thus exist
ametaphysical cause, a control rule that would allow us to establish
a limit to an infinite spectrum of logical possibilities.

In the late sixteenth and early seventeenth century in Europe
there now existed a clear demand to find a quantitative law of
refraction. The perfection of using lenses for the construction of
telescopes, among other pressures, demanded that knowledge.
Della Porta in his work “De refractione optics” and “De telescope”
presented qualitative descriptions that could only join the tradition
if it was complemented with a precise law for refraction.

The Englishman Thomas Harriot seems to have found the law of
sines in 1601, before Kepler dealt with these issues.7 While Kepler
and Harriot exchanged letters, this occurred after the publication of
Paralipomena, there are no traces that Harriot had revealed his
discovery.8 Willebrord Snell seems to have reached such a law in
1620 almost simultaneously with Descartes who published it in his
Dioptric years later. Fermat discussed the approaches of Descartes
and conceived the law of sines from the relationship of resistance
offered by the medium instead of focusing on the ratio of speeds as
suggested by Descartes.9

Kepler was not a researcher who was dedicated to gathering
empirical data. As in the case of astronomy, for which he decided to
use the data of an expert (Tycho Brahe), in the study of refraction,
he decided to use the data compiled by Witelo in his treatise. In
chapter IV of Paralipomena, Kepler transcribes a table that compiles
the information thatWitelo supposedly obtained from experiments
in which he tried to evaluate the passage of light from air to water.
Witelo presents the incidence angle relative to the normal and
subsequently registers the deviation of the refracted ray from the
incident ray. Kepler adds another three columns, which we may
omit. I add a column in which I calculate, based on Witelo’s data,
the refraction angle with regard to the normal (see Table 1).10 J. A.
Lohne, in an interesting study, holds that Witelo not only
hypothesis is interesting, it is worth noting that Ibn Sahl’s work was not part of a
research program that sought to provide a full explanation of refraction.

8 See F. J. Dijksterhuis, 2010, p. 35.
9 A. I. Sabra (1981) describes an interesting study of attempts to find a law of

refraction in the 16th and 17th centuries.
10 I have converted the data to decimal notation. Kepler presents information in
sexagesimal notation.



Table 1
Witelo’s data.12

Radiation distance from
zenith in the rarefied medium

Experimental results
of Witelo

Refraction angle

10 2.25 7.75
20 4.5 15.5
30 7.5 22.5
40 11 29
50 15 35
60 19.5 40.5
70 24.5 45.5
80 30 50

Fig. 2. Kepler’s first analogy (Paralipomena, p. 101 with modifications; GW II, p. 85).
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plagiarised the work of Alhazen (Ibn Al-Haitam) paragraph by
paragraph but also introduced the data table that served as refer-
ence for Kepler. Some manuscripts of Ptolemy (discovered in 1800)
suggest, in the opinion of Lohne, that Witelo slightly modified the
empirical information compiled by Ptolemy.11 Lohne holds that
Kepler found out, two years after the publication of Paralipomena
and thanks to the works of Harriot, the uncertain nature of Witelo’s
data (1968, pp. 414e426).

Kepler seeks a law that would anticipate the magnitude of
refraction. In principle, he believes that the variables that deter-
mine this law can only be, first, the difference between the den-
sities of the media and, second, the magnitude of the incidence
angle. However, he never clarifies whether the density can be an
effective cause. In fact, Kepler notes, “the cause of the refraction
consists, not in the corporeal bulk of the dense body, but in the surface”
(Paralipomena, p. 97; GW II, p. 80). This clarification is important
because light is immaterial provided it only has a two-dimensional
expansion. Kepler most likely imagines that there is a certain
property in the surface of transparent media that determines the
magnitude of the deviation that rays of light undergo. Let us ima-
gine we can name this postulated property the optical density of the
medium and that we reserve the n sign as its symbol.12

1. First contrast analogy

After criticising Tycho Brahe’s efforts to find a method for pre-
dicting the effect of refraction, Kepler suggests an analogy or
mathematical control instrument as a promising candidate. “I
devised another procedure for measuring, to combine both the density
of the medium and the angle of incidence. For since the denser medium
becomes the cause of refractions, it therefore seems to be exactly as if
one were to extend the depth of that medium, in which the rays are
refracted, to a size that the same amount of matter, in the form of the
rarer medium, occupies” (Paralipomena, p. 101; GW II, p. 85). A rep-
resents the position of the observer (Fig. 2), BC represents the plane
surface that separates the air and water, C, F, G and B are the
possible incidence points. Kepler asks us to imagine an arbitrary
water deepness CE and suggests drawing a new depth CK in such a
way that the segments CK and CE have the same proportion as the
optical densities of the media; thus, CKCE ¼ n2

n1
. Now, Kepler asks us to

imagine that the water contained up to the depth CE extends ho-
mogeneously until it fills the depth CK. Therefore, there would be
no difference in the density of the media and consequently, light,
when leaving A and passing through points B, G, F and C, will
11 Witelo took Ptolemy’s data except for a difference in the first line (A. Heeffer,
2014, p. 66). Itard also says that Kepler removed the inconsistency in the first
line of Witelo data between a reported refraction angle (7�, 450) and a difference
(between incidence and refraction) reported (2� , 50), when it should be 2� , 15�(2.25
in decimal notation) (M. J. Itard, 1957, p. 60).
12 These data are found in F. Risner, 1572, X, 8, p. 412 and are cited by Kepler in
Paralipomena, p. 128; GW II, p. 109.
subsequently continue along the straight trajectories ABD, AGT, AFS
and ACE (with D, T, F and C on the line DE that is parallel to CB). We
can guarantee this conclusion if the optical density (which char-
acterises the surface) is proportional to the material density. Kepler
next asks us to draw lines that are perpendicular to DE from D, T, S
and E to obtain intersections with LK (parallel to BC); denote these
intersections as L, M, N and K. We then draw segments LB, MG, NF
and KC. Kepler suspects that the diagram allows us to predict the
light’s trajectory. Thus, if the light passes from air to water, it will
follow trajectories similar to ABL, AGM, AFN and ACK.

If L, M, N and K are objects in depth LK and A represents the
observer, according to the classical principle,13 images will form,
respectively on D, T, S and E. In this order of ideas, all objects located
on KL would be captured on the same depth DE regardless of the
incidence angle. It is easy to see that the rule proposed by Kepler

has the following form: tanðiÞ
tanðrÞ ¼ n2

n1
The following theorem can also

be easily demonstrated. If we consider, for example, the point of
incidence F, tanðiÞ ¼ FC

AC and tanðrÞ ¼ FC
RC. Therefore, applying the

form that we have given to the candidate for Kepler’s law, we have
RC
AC ¼ n2

n1
. Consequently, the point R, which is obtained by cutting the

extension of FN and the normal CK, is completely independent of
the specific location of F; therefore, all equivalent extensions of MG
and LB converge in R.

Deployment of obstructions to the first analogy. “This way
measuring,” says Kepler about the analogy, “is refuted by experience”
(Paralipomena, p. 102; GW, II, 86). I will explain, using Fig. 3, which
is based on empirical information recorded by Witelo, the type of
refutation that is alluded to by Kepler. GC represents the air-water
interface, CE is a distance of any depth, A represents an observer, CA
is the normal to the surface at point A, ET is a perpendicular to CA, G
is any point of incidence between the values provided byWitelo, GA
is a refracted ray that receives A, and GT is its extension up to the
intersection with the perpendicular to AC by E. If we imagine that T
is the place where A perceives an image, the object must be located
13 This principle was formulated by Euclid and recognised by Ptolemy, Alhacen
and the entire classical tradition, until Kepler severely criticised it. In the words of
Alhacen, it states: “every visible object [seen according to refraction] is perceived by
the visual faculty through an image, and the image location is the point at which the
radial line along which the form extends to the centre of sight and the normal dropped
from the visible point intersect” (A. M. Smith, 2010, VII, 6.7; F. Risner, 1572, VI, p. 267).
The principle can also be found in the Witelo’s work (cfr. F. Risner, 1572, V, 207
(prop. 37)).



Fig. 3. Evaluation of the first analogy with Witelo’s data.
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on the perpendicular to TE drawn by T. MG is the incident ray14

adjusted to the empirical data offered by Witelo. M is the inter-
section of the refracted ray and the perpendicular to TE by T.
Consequently, M is the object that causes the image T for A. If we
repeat the same construction scheme for each of the data pairs, we
will be forced to conclude the following results, all of which are
used to construct the theoretical expectations derived from the first
analogy: (i) if images T are located at the same depth CE, it is clear
that objectsM that generate them vary in their depth TM according
to the incidence angle. When this angle increases and approaches a
horizontal angle, the depth of the object seems to change to greater
values. (ii) The extensions MG do not converge at the same point R
on the normal AC. When the angle i increases excessively, R moves
away from A in an unattainable manner. When i is small, R seems to
approach A. In the figure, we have drawn something similar to the
geometrical locus that groups the experimental points M. This is a
locus that moves away from the expectation of a line imposed by
the analogy. It is worth noting, however, that when the incidence
angles are very small, the geometrical locus seems to behave as
expected based on the analogy.

Gathering results based on the first analogy. In principle, the ob-
structions are sufficient to abandon the analogy. These obstructions
lead the author to explore other analogies related to the previous
analogy. However, there are many candidates to evaluate for the
suggested ratio. Each of these candidates leads to similar results:
the theoretical expectations do not coincide with the empirical
information compiled by Witelo. I abstain from conducting a
detailed study of all of the candidates contemplated by Kepler for
the sake of brevity and to proceed to the study of the family of
analogies supported by a conic section as a calibration curve.15

Because the tested analogies have led to deadlocks, Kepler notes
the following: “Hitherto, we have followed an almost blind plan of
enquiry, and have called upon luck. From now on let us open the other
eye, proceeding with a sure method” (Paralipomena, p. 104; GW II,
88). The criterion to evaluate whether an analogy is promising has
been to consider the location of the images of a known object or the
position an object should have in the water for its image to always
have the same depth. This approach led Kepler to think that the
observed location of objects’ images at the same depth in the water
could be the key to measure the refractions in a more effective
14 I assume that the Witelo data can be read reversibly, as was accepted in the
tradition since Ptolemy.
15 Heeffer summarized twelve analogies in a table which were studied by Kepler
in this family of analogies; see A. Heeffer, p. 70.
manner than the prior efforts based on the different densities of the
media. Given that mirrors also produce images in different places
than the real locations of objects, it may well occur that mirrors
(whose reflection laws are perfectly known) offer the finitistic
control instrument for which we are searching. Thus, in the same
manner by which an image of an object becomes smaller in convex
mirrors and larger in concave mirrors (in some positions), because
the image also becomes smaller when light passes to a more
rarefied medium and larger when it passes to a denser medium, we
can also suppose that the transition to a denser medium is analo-
gous to the formation of images in a convex mirror, whereas the
transition to less-dense media (more rarefied) is analogous to the
behaviour of a concave mirror. Kepler thus introduces the new di-
rection of his research: “And indeed, this very difficult Gordian Knot of
catoptrics I finally cut by analogy alone. [.] when I consider what
would happen in mirror, and what fittingly should happen in water
following this similitude” (Paralipomena, p. 105; GW II, p. 88). Kep-
ler’s basic idea consists of imagining that the plane surface that
separates the two media of different optical density can be
conceived of as a curved reflecting surface, which offers a control
rule that restricts the infinite possibilities.
2. Second family of contrast analogies

Kepler states, initially vaguely, that for the contemplated image
to be larger in a concave mirror (hyperbolic, elliptical or parabolic),
the observer should move away from the surface and approach the
focal point.16 If this case includes by analogy increasing images that,
due to refraction, are producedwhen light passes fromonemedium
to another denser medium, the proportion between the optical
densities should be represented by the different positions of the eye
in the mirror’s diameter. Kepler strengthens his initial trust in the
newmethod through twoarguments. First, if the eye is located in the
focal point of a parabolic mirror, the image moves away towards
infinity and acquires dimensions that grow without any limit; this
case could thus represent the passage of light from one medium to
another of infinite optical density compared with the former. Sec-
ond, “If you designate with points the places of the images in water
through all the angles of inclination, a hyperbola will be approximately
foreshadowed, which increases my confidence” (Paralipomena, p. 111;
16 Evenwhen Kepler writes of the centre of the mirror, there is no doubt that he is
referring to the focal point.



Fig. 4. Modelling with hyperbolas.

Fig. 5. Application to another point F.
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GW, II, p. 94). It is feasible to think that Kepler refers to a geometrical
locus that is similar to what we have constructed in Fig. 3.

Kepler now steps back from his focus on the differences in op-
tical densities between the media and prefers to imagine that the
central contrast has to do with the apparent location adopted by
the objects (or their images) when observed in medium 2, despite
the fact that this information originates in medium 1. I will explore
Kepler’s efforts in the following order: hyperbola, ellipse and
parabola. In an interesting recent paper, Dupré contends that
Kepler took advantage of and reinterpreted common experiences
taken during the sixteenth century with glass spheres. Most
particularly, Kepler consulted the Theorica speculi concavi sphaerici
(ca. 1560) of Ausonius and Magia naturalis (1589) of Della Porta.
Kepler quotes the curious experiments of Della Porta in Para-
lipomena (pp. 193e194; GW, II. pp. 180e182).17

The hyperbola and its obstructions. If we imagine that the source
of light is located in the focal point of a parabola, the images con-
verges at infinity. From this behaviour, we can infer that the situ-
ation models a refraction from one medium to another with an
infinitely superior optical density compared with that of the first
medium. If the source of light is located at one of the foci of a hy-
perbola or an ellipse, we can model transition cases between two
media with comparable optical densities. Then, imagine that B and
A are two foci of a hyperbola and O is the mean point of A and B and,
also, the origin of the coordinated system that allows the evaluation
(Fig. 4). We should consider the data pair of information provided
by Witelo (80�, 50�)18 of incidence and refraction in the air-water
passage and try to calibrate the supposedly hyperbolic curve,
which would offer us a control instrument.19 Now, we will model
the incidence angles from focal point B and the refraction angles
from A. Thus, we construct lines BC and AC in such a manner that
angle ABC will be 80� and angle BAC will be 50�, as required by the
empirical information of Witelo. C is the intersection point. We can
17 S. Dupré studied the Kepler’s analysis of these types of experiments in S. Dupré,
2008 and S. Dupré, 2012.
18 Lohne holds that Kepler did not manage to reach the correct refraction law
because he based his work on empirically incorrect data; the specific problem was
his obsession with considering the data pair (80� , 50�) as the most representative
pair (1968).
19 Below, I present the cases in a style that radically differs from Kepler’s expo-
sition. I do try, however, to maintain the spirit of Kepler’s arguments (but not
literally) and to make them more accessible to a contemporary reader. Kepler
makes specific calculations for a parameter chosen by him. His evaluations are
always restricted to the chosen parameter. I try to offer general arguments that are
not subject to the choice of a specific parameter. Kepler’s procedure does not deny
generality to his conclusions; however, a demonstration of this claim would have to
be offered, and this is a demonstration that Kepler omits.
now, if we imagine that A and B are initially given, construct a
hyperbola with foci A and B that passes through C.20

Now, we ask whether this control instrument allows us to
calculate the refraction angle for any given incidence angle. The
evaluation demands that we take an arbitrary point F on the hy-
perbola (Fig. 5). We draw FB and FA and measure the angles ABF
(namely a) and FAB (namely b) with the hope that they behave in a
manner that is similar to the expectations imposed by Witelo’s
data. It can be easily demonstrated that the behaviour of these
angles is independent of the choice of the parameter AB.

The results could not be more discouraging for Kepler. For an
arbitrary angle ABF, we construct the angle, BAF0, that would be
expected according to the Snell-Descartes law and for a refraction
index adjusted to the data pair (50�, 80�). F0 is the cut-off point of
lines BF and AF� (Fig. 6). In discontinuous line, I denote the
geometrical locus of the intersection points F0 when we vary the
incidence angle between 0� and 90�. The cut-off values adjusted to
the empirical data compiled by Witelo appear in the intersections.
These data are distributed very close to the geometrical locus and
notably move away from Kepler’s expected hyperbola. When the
angle increases in such a manner that ABF approaches a right angle,
i.e., when the light enters touching the horizon, the expected
refraction angle specified by the Kepler hyperbola (namely BAM) is
much greater than the angle expected based onWitelo’s data. Thus,
we are forced to discard this new analogy.

The ellipse and its obstructions. “You could now guess immedi-
ately”, insists Kepler, “that because the hyperbola does the opposite of
the refractions, the ellipse, being the hyperbolás opposite, is going to do
the same as the refractions, and will accommodate itself to the mea-
sure” (Paralipomena, p. 112; GW II, p. 95). Kepler tests an algorithm
that is similar to the previous one but that uses an ellipse rather
20 With the available information, we can calculate the magnitudes of AC and CB
and, based on these values, the difference AC � CB. If we assume that the length of

the parameter AB is 2f, the law of sines states that AC ¼ sinð80Þ
sinð30Þ2f . Furthermore,

BC ¼ 2f if and when the triangle ABC is isosceles. On the other hand,

AC � BC ¼ 2f
�
sinð80Þ
sinð50Þ � 1

�
. Kepler uses Apollonius’ classical definitions to deal with

hyperbolas. The author uses theorem 51 of book III, which establishes that at each
point C of a hyperbola, the difference in the lengths AC and BC (with A and B as foci)
is the same regardless of the choice of C (Apollonius, 2000, III, prop. 51). Thus, the
difference AC � CB determines the length DE, with D and E as vertices of the hy-
perbola. Kepler thus has a family of hyperbolas, which are adjusted according to the
choice of the parameter AB ¼ 2f.



Fig. 6. Comparison of the Kepler (black), Witelo (crosses) and Snell-Descartes (discontinuous line).

Fig. 7. Modelling with ellipses.
Fig. 8. Application to another point F.

21 Basing ourselves on Apollonius (I, 33), we can conclude that the mean point
between E and K, namely B, is the vertex of the parabola. On the other hand, based
on the Apollonius theorem (I, 20), we can infer that KD2 ¼ 4f(BK), where f is the
focal distance. This same result implies that AM ¼ 2f, where A is the focal point and
M is the cut-off of the parabola with a perpendicular drawn by A. With the tools
described, we can thus establish the location of the focal point A for the contrast
points C and I. This procedure yields a family of parabolas, one parabola for each
choice of parameter CI. In this case, as opposed to the other two, the functional
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than a hyperbola. The final results of the exercise are compiled in
Figs. 7e9. Again, the results do not favour Kepler’s heuristic. When
the angle increases in such a manner that ABF0 approaches a right
angle, the expected refraction angle yielded by the Kepler ellipse
(namely, BAM) is closer to the Witelo-Descartes data than in the
case of the hyperbola. Nevertheless, we are forced to discard this
analogy.

The parabola and its obstructions. I have already argued that if
the source of light is conceived to be at the focal point of the
parabola, we imagine that the formation of images in a parabolic
mirror is analogous to the formation of images by refraction; this
case represents the passage from one medium to another that
has an infinitely higher optical density than the density of the
first medium. If we now want to use parabolas to represent other
cases, we have to abstain, as opposed to the previous cases, from
locating the source of light at the focal point. We will thus take
points C and I as calibration points and use the Witelo data pair
(80�, 50�). We find D on the intersection of CD and IG in such a
manner that the angles ICD and CIG are, respectively, 80� and 50�

(Fig. 10). We draw the bisector EDN to the angle IDC and obtain
the cut-off E with IC. It is easy to see that the angles CDE and
GDN are congruent. Therefore, if C is a source of light, it will form
its image, after being reflected, in direction DI. We construct the
perpendicular to IC by D and obtain the cut-off point K. ED
should be tangent, at point D, to the parabola that we are
searching for.21

By repeating the evaluation, we expect that for each point F of
the parabola, the pair of angles a, b corresponds to a pair of
empirical data (Fig. 11).

Fig. 12 shows the modelling with expected data according to the
Snell-Descartes law and the construction with Witelo’s empirical
data. Again, the analysis does not leave Kepler in good standing,
although the data are now in better agreement with Kepler’s
model.

The efforts conducted with hyperbolas, ellipses and parabolas
all failed. Gerd Buchdahl suggests ewrongly, in my opinione that if
Kepler had experimented with circumferences rather than hyper-
bolas, ellipses or parabolas, he would have reached the result
established by Snell (1972, p. 286). A. Heeffer also suggests that
Descartes could inspire in the Kepler method applied to a
dependence of CI with regard to f is more complex.



Fig. 9. Comparison of the Kepler (black), Witelo (crosses) and Snell-Descartes
(discontinuous line).

Fig. 10. Modelling with parabolas.

Fig. 11. Application to another point F.

Fig. 12. Comparison of the Kepler (black), Witelo (crosses) and Snell-Descartes
(discontinuous line).
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circumference to offer the argument that led him to the law of sines
(2014, pp. 70e71). The curve shown in Fig. 13 leaves Buchdahl’s
strange argument without any foundation.

We can, regardless of the above, ask how Kepler could have
proceeded, without abandoning his spirit of inquiry, to obtain a
control instrument that would move him closer to Witelo’s data
and the law that was later announced by Descartes and Snell.
Kepler could have reasoned in the following terms: let A be a source
of light and AB an incident ray that passes from the air to the water
at B (the interface is a plane) (Fig. 13). We construct a circumference
with centre B and radius AB, and we extend the incident ray up to
the cut-off C. The trajectory BC indicates the direction of light
dispersion had the newmedium been homogeneous with the prior
medium. We construct the normal BD and the perpendicular to it
defined C. Now, on CD, we locate a point E in such amanner that the
ratio CD

DE coincides with the ratio between the optical densities of the
media, namely n2

n1
. Now, we draw the perpendicular to CD defined by

E and obtain its cut-off F with the initial circumference. The line FB
indicates the postulated trajectory for the refracted ray. The figure
shows, with a continuous line, the geometrical locus of the points F
when we move B throughout the length of the interface of the
media. Point R, the intersection between BF and the perpendicular
to the surface defined by A, has the behaviour expected based on
Witelo. It is very easy to demonstrate that the implicit law in the
construction of this instrument is sinðiÞ

sinðrÞ ¼ n2
n1
.22 Why did Kepler not

test a similar model, given that he was inquiring into very closely
related constructions? If we imagine that this scheme demands a
reasoning close to one of those offered by Descartes (1988, vol. 1,
pp. 651e171, second discourse), who proposed an argument similar
to what has been presented, wewould have to admit that the speed
of light is not infinite. This admission can lead us to surmise that a
demand that comes from the metaphysical characterization of
light, namely, the instantaneous propagation of light, operates as an
epistemological obstacle. Light, as Plotinus and Kepler argue, has no
matter, weight or resistance (Paralipomena, p. 20; GW II, p. 20). In
this order of ideas, light is immaterial. Lindberg clarifies this well:
“If light were corporeal substance, it would encounter continuing
resistance within a transparent substance; consequently, it would be
continuously retarded and continuously bent. But no such thing is
observed. On the contrary, refraction is exclusively a surface phe-
nomenon; light is bent as it crosses the boundary of a transparent
medium and thereafter continues on a straight course” (1986, p. 37).
The presence of light in the universe closely resembles the presence
that Neoplatonism reserved for God in the world. This is precisely
the argument that Kepler used to convert light into a mathematical
object: “Kepler carried this mathematical program to the hearth of the
science of optics. His claim was not simply that light can be described
Hereinafter, I will abbreviate the ratio 2
n1

as n21.



Fig. 13. Control instrument.

C.A. Cardona / Studies in History and Philosophy of Science 59 (2016) 22e3530
mathematically but that the very nature of light s mathematical” (D.
Lindberg, 1986, p. 42). In the comparison of the radiant display of
light with the Trinity, the point that is the source of light is the
origin (father), mathematical vectors emerging illustrate the
intangible and instant deployment of light (holy spirit) and the
radiant sphere of the presence of light in the world as a whole
(son).23 Ofer Gal and Raz Chen-Morris synthesize the empathy of
Kepler with Neoplatonism in these terms: «Kepler grounds this Neo-
Platonic speculation in an explicitly theological claim: light is “the
most excellent thing in the whole corporal world” it is the “instrument
of the Creator, for giving form and growth to everything.the matrix of
the animate faculties, and the chain linking the corporeal and spiritual
world by which He introduce laws in them.” This dual existence of light
embeds Kepler’s mathematical structures in the corporeal world and
allows him to infer its physical properties directly from the geometry of
spherical propagation» (2013, p. 212).24

J. Lohne has suggested that the fact that Kepler did not conduct
careful experiments personally explains why hewas unable to find a
precise refraction law (1963, p. 163). In my opinion, Witelo’s data
were sufficient to advance a judicious attempt at a physical explo-
ration of the law. Heeffer suggests that if Kepler had followed this
reasoning in his inductive repertoire of research he would have
reached the correct law. The author believes, therefore, that the
investigation of Kepler was reduced to finding a mathematical
regularity in a background of inductive information. The meta-
physical arguments I have presented here suggest that the astron-
omerwas doingmuchmore than an inductive calculation: seeking a
metaphysical cause to impose a limit on the unlimited. In that vein,
my reading is closer to the hypothesis of S. Dupré, who believes that
Kepler’s work is closer to natural philosophy than an inductive
perspective. My analysis is closer to Dupré taking into account, as I
have tried to suggest, that the methodology of research in optics
keeps a close family resemblance to themethodology for research in
astronomy. Dupré, however, believes that the two major contribu-
tions of Kepler to optics are: to provide a precise characterization of
optical images and solve the problem of images through holes
(2012). Inmy opinion, themost important contribution is concerned
with demonstrating the fundamental theorem of optics, namely
23 In his commentary on Euclid Proclus states that “For the circle, which is the
principle of all curvilinear figures, carries a hidden Trinity in its center, diameter, and
circumference” (trans. 1970, p. 93).
24 Both passages cited by Gal and Chen-Morris come from Paralipomena p. 7; GW
II, p. 4.
homocentric rays of light and paraxial traversing the area of the eye
in such a way that they become homocentric after refraction (Par-
alipomena, p. 214; GW II, p. 198). This result was achieved with the
law of refraction that we are trying to analyse here.

Gathering results. After the failure of the control instruments
offered as candidates, Kepler again focused on the exploration
related to the causal nature that should be provoked by refraction.
Kepler thought that the fundamental cause is related to the resis-
tance of a medium to the natural dispersion of light. As previously
explained, we are not dealing with a resistance that comes from the
volume of the medium; rather, it is a resistance that operates at the
superficial level every time that the nature of light demands a
bidimensional (light is not a body).

At the same time inwhich Kepler conceived the Paralipomena he
wrote a defense of Tycho Brahe regarding accusations of plagiarism
made by Ursus. Kepler explains the role played by hypotheses in
scientific work. The philosopher differentiates between a hypothe-
ses that simply try to save appearances and hypotheses that seek to
uncover the true causes of phenomena. Analogies of contrast that
we have examined simply try to save appearances. Next Kepler re-
verses course and employs hypotheses to find causes. The passage
from the defense that I quote below justifies this change of
approach, whichwewill now study. Kepler first argues that wemust
ignore the assumptions that are not in accordance with observed
celestial movements. He then considers Ursus’ recommendation,
which consists of using astronomical hypotheses as rules for
calculation to anticipate celestial movements. Kepler reacts in this
way to Ursus’ proposal: «This use, whilst it is not foreign to hypotheses,
is secondary and of less importance. For we first depict the nature of
things in hypotheses, then we construct out of them a method of
calculation e that is, we demonstrate the motion.25 Finally, retracing
our steps we expound to the learner the true rules of the method of
calculation» (1601/1988, p. 148).26 As we have said in the introduc-
tion, this type of research (between metaphysics and physics)
should make clear the presence of God in the world. In the dedi-
catory note to the Emperor in Paralipomena, Kepler warns: «nor have
I filled up my soul with speculations of abstract geometry, that is, with
pictures “both of those things that are and of those things that are not”,
which are almost the only things on which the most celebrated ge-
ometers of today spend their lives, but I have tracked geometry through
the cosmic bodies portrayed through her, following the Creato�rs im-
prints with sweat and painting» (Paralipomena, p. 8; GW II, p. 8).
3. Synthesis

In the newcourse of research, Kepler included the results in a set
of propositions. Proposition 1 states that the deviation of the
refracted ray compared with the incident ray is greater when the
inclination of the latter ray is greater. With no clear reasons, Kepler
thought he was justified to suggest as a corollary the following: “If
the medium itself were to be considered in isolation, in respect to its
density, the angle of refraction would become proportional to the
angles of incidence” (Paralipomena, p. 124; GW II, p. 105). What is
Kepler suggesting? He proposes the existence of a refraction that, of
itself, is caused by the differences in optical densities of the media.
This refraction, according to Kepler’s expectation, has to yield ef-
fects that depend on the incidence angle in such a manner that the
refraction angle is proportional to the difference in optical den-
sities. Let us describe Kepler’s proposition with the following
25 Demonstration propter quid.
26 N. Jardine evaluated the Kepler’s defense in this way: «He [Kepler] argues that
saving the phenomena is not the sole criterion of adequacy for astronomical hypoth-
eses; they should in addition be confirmed by ‘physical considerations’» (1988, p. 73).



Fig. 14. Second refraction (Paralipomena, p. 124 with modifications; GW II, p. 105). Fig. 15. Refraction angle (continuous line) and deviation (discontinuous line) accord-
ing to the Snell-Descartes law as a function of the incidence angle.
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expression: d ¼ ki, where dmeasures the deviation of the refracted
ray from the incident ray, i is the current incidence angle (namely,
the angle between the incident ray and the normal), and k is a
constant of proportionality that has to be an exclusive function of
the difference in the original optical densities of the media in
question. It is clear that Witelo’s data do not conform to this
expectation.

Because the data do not conform to such a simple recommen-
dation, it is necessary to postulate an additional cause that would
allow us to retain the model. Kepler thus proposes that the resis-
tance offered by the medium is greater when the incidence angle is
greater. In other words, it is as if we were to imagine that the dif-
ference in optical densities becomes greater when the incidence
angle is greater. Thus, when light passes from air to water, for each
incidence angle, we must consider a total compound refraction of
two elements: a refraction that is provoked by the natural differ-
ence between the media (a refraction that is proportional to the
incidence angle) and an additional refraction that is provoked by
the increase (or decrease) of optical densities as a consequence of
the incident ray’s inclination.27 The first refraction, we could say,
obeys the natural differences of the media (included in the pro-
portion of their optical densities) and the accidental circumstance
of the inclination degree of the incident ray. As for the second
refraction, we could say that it obeys the accidental increase in
resistance of the second medium by virtue of the accidental incli-
nation of the incident ray.

On what does this second accidental refraction depend, then?
Kepler assures us that this second additional deviation is a function
of the secant of the refraction angle. We should devote some
attention to this argument. Let AB be a ray of light that enters the
water from the airwith an angle i (Fig.14); when entering thewater,
it changes direction to approach thenormal to a greaterextent.KM is
a parallel ray and is very close to AB.28 We can thus imagine that the
light that enters with an angle i does so in a surface represented by a
segment BM. LM is perpendicular to AB. BR is perpendicular to the
refracted ray at point B. Note that the angle BML is congruent to the
angle formedbythe incident rayABwith thenormal inB; in the same
manner, the angle MBR is congruent to the angle formed by the
refracted ray and the normal drawn to B. Because the direction
change obeys the obstruction exercised by the surface (represented
27 John Pecham had already proposed before Kepler distinguish two operating
causes in refraction: «there are two causes of refraction, one on the part of the ray e

namely, it is weakness of inclination e and the other on the part of the medium e

namely, that variation in transparency» (1482/1970, p. 213).
28 In fact, we can imagine that if a point source of light is very far from surface BC,
there is no major problem in assuming that the closer rays of light reach it nearly in
parallel.
by BM) on the light expansion surface, wemay be inclined to believe
that a larger exposition surface corresponds to greater resistance.
Thus, when rays AB and KM (parallels) enter perpendicularly (inci-
dence angleof 0�), theminimumresistance is obtained; to theextent
that i increases, the exposition surface (BM) eand with it, the
resistance of the secondmediume also increases. LM represents the
separation between the two close and parallel incident rays, and BR
represents the separation between two close and parallel refraction
rays, which originated from the incidence of the former in BM. As a
result of the effects of the refractiondthe refracted rays approach
the normald BR is greater than LM.

Kepler wants to propose that the new resistance offered by the
newmediumisproportional to thesegmentBM, but this segmentcan
bewritteneitherasBM¼ LMsec(i) or asBM¼RMsec(r). Therefore, the
researcher should choose whether he wants to propose that this
resistance is proportional to the secant of i or to the secant of r. Kepler
suggests that we should consider the densermedium and argues the
following reduction ad absurdum: ifwe said, for the passage fromair
towater, that the angle of the second refraction is proportional to the
secantof i,we should admit thatwhen i approaches90�, that is,when
the incident rayenters scraping thehorizon, thenew refraction angle
becomes infinitely larger as the secant of the right angle approaches
infinite values. As this is not what is observed, becausewhen a ray of
light passes from air to water and does so approaching the horizon,
the refracted ray assumes perfectly determined values, we should
postulate that the new refraction angle is proportional to the secant
of the refracted angle (which for the studied case corresponds to the
greater optical density).

Kepler’s conjecture becomes more refined in proposition 3. “The
angles of refraction increase with greater incremental proportions
than does the obliquity of incidence” (Paralipomena, p. 124; GW II, p.
105). This is a passage that is very difficult to interpret. Kepler is
thinking about the reason for the change of the refraction angle
with respect to the incidence angle. Hence, it follows that Kepler
suggests that the ratio for change is increasingly larger to the extent
the incidence angle increases. However, it is not clear whether he is
referring to the refraction angle measured with respect to the
normal or to the angle of difference between the incident and
refracted rays (i.e., d ¼ i � r). Applying a sort of charity principle, I
will assume the interpretation that is closer to the expectations
derived from a law that is better adjusted to the empirical data,
namely, the Snell-Descartes law. In Fig. 15, I present a graph that
shows (in continuous line) the expected refraction angle for
different incidence angles according to this law; in discontinuous
line, I show the expected angle of deviation, d, for the same inci-
dence angle. In the first one, the angle grows with a decreasing rate
of change, whereas in the second one, the angle increases with an



Table 2
Kepler’s analysis.

Distance of radiant from
Zenith in the rare medium

Part of the refraction
proportional to the inclinations

Addition because
of secants

Whole demonstrative
refraction

Witelo’s experimental
results

Difference

10 2.41 0.017 2.427 2.25 �0.177
20 4.82 0.17 4.99 4.5 �0.49
30 7.23 0.58 7.81 7.5 �0.31
40 9.65 1.38 11.03 11 �0.03
50 12.07 2.7 14.77 15 0.23
60 14.47 4.67 19.14 19.5 0.36
70 16.87 7.32 24.19 24.5 0.31
80 19.28 10.72 30 30 0
90 21.71 14.78 36.49

30 What follows is the table I attach (see Table 2). I present the data in decimal
notation, as opposed to Kepler, who offers them in sexagesimal notation.
31 I mean the fact of considering the similarities of family among the intangible
nature of light and the presence of God in the universe. Kepler dealt with the nature
of light in the first chapter of the Paralipomena. The philosopher uses the analogy
between the radiant deployment of light (illuminated spherical surfaces emerging
and spreading out from a source that is but a single point of light) and the Trinity:
«For in forming it, the most wise founder played out the image of his reverend Trinity.
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increasing rate of change. Therefore, the interpretation that is most
favourable to Kepler is the second one; he should refer to angle d,
not angle r.

The angle d, according to Kepler’s reasoning, is a composite of
two angles: one is a product of the natural resistance that results
from the difference in optical densities and is proportional to the
incidence angle, and the other is the product of the accidental
resistance that emerges from the inclination of the incidence,
which, in turn, depends on the secant of the refraction angle. Let us
cite the author:

The angle of refraction [understood as d] is composed29 of one ratio,
which is proportional to the incidences, and another which is
proportional to the lines BM [alluding to a similar figure to
Fig. 14]. But the lines BM initially increase very little [.] as the
table of secants shows, where ever greater and greater secants
correspond to equal degrees. Therefore, part of the angle of re-
fractions is proportional to the incidences, and part increases with
greater increments of proportion. Thus, the whole angle increases
with greater increments. (Paralipomena, p. 124; GW II, p. 105).

M. J. Itard summarizes in this way the Kepler conjecture:
d¼miþ nsec(r), withm and n constants of proportionality (1957, p.
65). I intend to show that the composition that Kepler has in mind
is not additive as Itard suggests, but that is of the form: d ¼ kisec(r),
with k a constant of proportionality.

In proposition 8, Kepler proposes a crucial problem. The author
tries to reconstruct Witelo’s table based on the conjectures that,
supported by metaphysical intuition, he has formulated. Given the
importance of the exercise to clarify the law of refraction, I allow
myself to cite at length Kepler’s tangled description. Subsequently, I
will try tomake sense of the calculations he proposes in response to
the prior axioms (or propositions):

Problem 1. From a known composite refraction of any inclination,
to hunt the elements of refraction, and the composite or whole
refraction of the remaining inclinations. Let the medium is water,
the inclination 80�. The refraction, fromWitelo, is 30�. [.] As this is
to the secant of the angle 0�, that is, to the right sine, so is the
composite refraction, 30�, to the proportional refraction of the
inclination 80�. For this has been demonstrated in the preceding
[propositions]. Thus the refraction that is simple or proportional to
the inclination, for an incidence of 80�, is 19�, 170, to which is added
10�, 43�[.] Once the simple refraction of an inclination of 80� is
obtained, let there be a distribution to the other inclinations, since
the simple refraction is proportional to the inclinations, angle by
angle. Next, let any one be multiplied by the secant of the refracted
29 To judge by subsequent calculations, by “composition”, Kepler meant a product
rather than an addition.
ray, which is not yet fully known. And let this search for the secant
be iterated sufficient times that there be no remaining discrepancy.
This could be done algebraically, if there were also a way of going
from straight lines to curves in algebraic operations. [.] I
accordingly introduce below the entire table of the refractions of
water, and add the refractions published by Witelo which he found
out with his instrument, so as to show the agreement. (Para-
lipomena, pp. 127e128; GW II, pp. 108e109).30

What is behind this torturous calculation? My response is, “A
brilliant intuition”. Itard argues that the calculation is obscure and
progresses throughapainful road (1957, p. 64). Theauthorconcludes
that: «the law of 1604 [Paralipomena: lawwe are evaluating]was too
rough, He [Kepler] replaced it with an elegant approach» (1957, p. 67).
Itard refers to the axiomsVII, VIII and IX to theDioptric (1611). Kepler
worked again in optics when he knew about the astronomical ob-
servations that Galileo hadmadewith a telescope. Kepler wanted to
theoretically explain the use of the telescope and he attended an
interesting approach for the previouswork of the Paralipomena. The
first of the above axioms argues that the deviation of the light going
from air to glass is directly proportional to the angle of incidence
whenever the incidence of 30� is not exceeded (Dioptric, p. 450).
These axioms are offered by way of conjecture without explaining
their rationale or heuristics that could make them plausible. Kepler
actually refuses to propose in the Dioptric a precise quantitative law
of refraction; he derived the functioning of the lens system that
forms a telescope from the approach suggested in the axiom 7. I will
try to clarify the structure of the calculation that Kepler wants to
offer as a candidate for the law of refraction. I shall try to show,
contrary to the Itard’s suggestion, that Kepler is guided by meta-
physical principles that show the way.31 I will do so imagining that
the author has more complete empirical data than that offered by
Witelo, i.e., data adjusted to the Snell-Descartes expectations. In
other words, I want to contrast Kepler’s calculationwith the graphs
shown in Fig. 15. The problem does not have any difficulties in
wording: if I know with clarity and confidence the complete
refraction angle for a certain incidence angle, what is asked is the
Hence the point of the center is in a way the origin of the spherical solid, the surface the
image of the inmost point, and the road to discovering it. The surface is understood as
coming to be through an infinite outward movement of the point out of its own self [.]
And since these are clearly three e the center, the surface, and the interval e they are
nonetheless one, inasmuch as none of them, even in thought, can be absent without
destroying the whole» (Paralipomena, p. 19; GW, II, p. 19).



Fig. 16. Structure of Kepler’s argument. Refraction angle (continuous line) and devi-
ation (discontinuous line) according to the Snell-Descartes law.

Table 3
Kepler’s calculation.

d1 Assumed d2 Assumed r Calculated d2 New d

12.07 0 37.93 3.23 9.52
12.07 3.23 34.7 2.61 9.93
12.07 2.61 35.32 2.72 9.84
12.07 2.72 35.21 2.70 9.86
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reconstruction of the value table for the remaining refraction angles.
Kepler’s question makes us solve a set of complex equations for
which the astronomer lacks tools. Thus, Kepler states, “This could be
done algebraically, if there were also a way of going from straight lines
to curves in algebraic operations”. The previous propositions offer
Kepler the following instruments, which can be applied when light
passes fromonemedium (with density n1) to anotherwith a greater
optical density (with density n2):

a) The refraction angle (r) is the difference between the inci-
dence angle and the deviation caused by the change of me-
dium (d); i.e., r ¼ i � d.

b) The angle of deviation (d) is composed of two elements: d1
and d2, i.e., d ¼ d1 þ d2.

c) The angle d1 is caused by the natural difference in optical
densities, and in principle, it can be expected that this angle
will be directly proportional to i, i.e., d1 ¼ ki, where k is a
proportionality constant that surely depends on the differ-
ence in optical densities and that, for now, can be evaluated
based on the provided empirical information.

d) The initial exploration conditions are determined by the
following fact: if the incidence angle is the smallest possible
(namely, i¼ 0), the total refraction angle is also 0; both d1 and
d2 are nil in this case. However, the intervention of the sec-
ond medium is already perceived in the fact that the secant
of 0 is 1.

e) The deviation d is a function of the secant of the complete
refraction angle (r) and of the component d1. In principle, we
can surmise that d ¼ d1sec(r). Given that d1 ¼ ki, we can infer
that Kepler proposes an expression that is similar to
d ¼ kisec(r).32

f) Based on (a) and (e), we infer that d2 ¼ d1(sec(r) � 1).

Let us thus see how the calculation is performed. The graph from
Fig. 16 shows in continuous gross line the behaviour of the refrac-
tion angle against the incidence angle for a family of data perfectly
adjusted to the Snell-Descartes expectations; in discontinuous line,
the behaviour of d is presented. The line segment models the
behaviour that Kepler expects for d1: we can calculate the slope of
the line because first, we know that it passes through the origin and
second, we can calculate the value of d1 for the specific case of the
incidence and refraction angles that we know exactly, namely (80�,
32 G. Buchdahl reaches the same conclusion when evaluating Kepler’s arguments
(1972, p. 291).
50�). From empirical information and from (v), we infer that
k ¼ 0.241; we can also establish that when the incidence angle is
80�, d1 ¼ 19.28 and, based on (vi), d2 ¼ 10.72.

Now, we should calculate r for any other i value. The first
component of d can be easily evaluated as d1 ¼ ki because we
already know k. If we try to evaluate r based on (e), we have the
difficulty of ignoring d. Kepler starts by offering a working hy-
pothesis, which is to lead us closer to successive approximations of
the solution. The hypothesis consists of assuming, although we
recognise that this assumption is imprecise, that d1 is the only
contribution to d for the case of the specific value of i that we are
studying. Thus, for this case, wewould have to take for granted that
d ¼ d1 and d2 ¼ 0; therefore, r ¼ i � d1. Thus, we can calculate d2
based on (f) to find that it is different than zero, as we have initially
assumed. We can also calculate, based on (a), the new value for
d considering the new estimation of d2. This calculation requires us
to make a new estimation for the refraction angle; now, we
consider that r is established based on (a), (b) and the new esti-
mated values for d1 and d2. Kepler recommends repeating the
previous calculation with the hope that the new calculation of d2
coincides with the estimated value. This coincidence will never
take place; however, we can iterate the calculation until the dif-
ference is numerically insignificant. This process is what Kepler
refers to when he suggests, “And let this search for the secant be
iterated sufficient times that there be no remaining discrepancy”.
When the calculations have been performed so many times that we
no longer find significant differences, we suspend the search and
declare the values estimated in this manner to be the quantities we
seek. Kepler illustrates the algorithm for the specific case of an
incidence angle of 50� (the example was removed from the quoted
passage). I will present the results of this calculation in a table
presenting the steps I have commented on. If i is 50�, d1 is 12.07�

(according to equation (c), for which we know the value of k). The
first estimation of r starts by imaging d1 ¼ 12.07� and d2 ¼ 0. The
table’s rows present the components of the calculation’s iterations.
In the first column, the calculated value for d1 appears. The second
column contains the supposed value for d2. The estimated value for
r, based on which we calculate d, is present in the third column.
Then, (based on (f)), we calculate d2. By noting that the calculated
value of d2 differs from the estimated value, we proceed to make a
new estimation based on this new value of d2. In the exercise
presented, Kepler stops the calculations in the third iteration
because he considers that an insignificant difference has already
been reached (see Table 3).

Kepler is following the false rule method (Regula-falsi) to find
the solution of an equation from a calculation iterated with
approximate solutions. In the defense that Kepler wrote in favour of
Tycho Brahe, he offered a brilliant explanation justifying the
method:

When the number we seek is unknown, we give it an unknown
name, and with that name we follow the prescribed rules until that
name is revealed to us by the procedure. So in positing that a unity
is designated we say nothing false [.] For the number posited [by
this method] is called “false” not because the truth follows from it
e if that were to happen it would not be so called e but because it



Fig. 17. Comparison of the Kepler and Snell-Descartes models. Refraction angle
(continuous gross line) and deviation (discontinuous line) according to the Snell-
Descartes law. Behaviour of d1 (continuous fine line) as derived from the Snell-
Descartes law. Data from the Kepler table (crosses).
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leads to what is also false, as is readily apparent to one who con-
siders the matter. A number is sought which when handled by the
prescribed rules will come to some particular value. Whatever
number comes to mind is chosen and handled by the rules laid
down, and if it comes to the value hoped for it is the number sought;
but if it comes to less it is false. The same thing is tried out on
another [number] and the two are compared, as are their de-
viations, and from the inspection of these things the true [number]
is eventually elicited. (1601/1988, p. 149).

This calculation, which is conducted for each case of i, leads to
the completion of the table that accompanies proposition 8. The
graph from Fig. 16 shows in continuous gross line the expected
behaviour for the refraction angle and in discontinuous line the
behaviour of the angle d according to the Snell-Descartes law. In
continuous fine line, we show the calculation expected by Kepler
for the hypothetical contribution d1. The values calculated by Kepler
appear in back crosses. If Kepler were right, we would expect a
straight line; this expectation is satisfied for small values of i; this is
the case for small values of incidence (in fact less than 30�) and
therefore the approach suggested in the axiom 7 (Dioptric) is a good
approximation.

The subsequent behaviour diverges from the expected straight
line.

Two additional elements provide a glimpse into Kepler’s
reasoning for a contemporary methodologist. First, Kepler decided
to theoretically complete the absent values from Witelo’s table. He
undertook to calculate the expected refraction angle when a ray is
nearly horizontally incident to the water.33 From Fig. 17, we can
infer that in this calculation, the largest discrepancy is present with
the empirical information compiled. Second, Kepler comments that
given the evident differences between his data and those of Witelo,
we should prefer information constructed on mathematically ori-
ented calculations. Kepler states, “But my refractions progress from
uniformity and in order. Therefore, the fault lies inWitelo’s refractions”
(Paralipomena, pp. 128e129; GW II, p. 109). Kepler’s confidence in
his algorithm is so high that he now suggests that the algorithm
should be set up as the standard control experience. It is no longer
experience that establishes the limits and controls theoretical
33 Even when Kepler assures us that for that case, the angle of deviation is 36.49� ,
the estimates I obtained with 16 iterations of the algorithm suggest that the angle
of deviation should be 38.35� .
speculation; rather, it is theoretical speculation that determines
when experience has difficulties.

Gerd Buchdahl has demonstrated (1972, pp. 293e294), using
polynomial Taylor-type expansions and armed with great patience
for calculations, that the underlying equation of Kepler’s work,
namely, i � r ¼ kisec(r)(see (e)), can be re-written, with k ¼ k��1

k� , in
the following manner:

senðiÞ ¼ k�senðrÞ
 
1�

�
k�� 1

��
k�� 2

�
6

sen2ðrÞ þ.

!
;

This result demonstrates that Kepler’s law approaches the Snell
law if we can discount the higher powers of sin(r) (1972, pp. 293e
294). When the values of i and r are small, these powers can be
discounted. Jean Itard proposed a relationship similar between the
constant k of Kepler and the index of refraction in Snell’s law (1957,
p. 64). This result explains the proximity of Snell and Kepler’s ex-
pectations for small values (axiom 7, Dioptric), as shown in the
graph presented in Fig. 17.

Gathering of results. The tradition did not incorporate the
complex result achieved by Kepler and, to the contrary, preferred
to accept the results which were to come to light: the Snell-
Descartes Law.34 Nevertheless, Kepler used his proposition to
analyse d in terms of two components (albeit devoid of the
complexity of the calculations) to subsequently prove that when
we want to clearly perceive an object of interest to us, an object
located at an adequate distance, the rear face of the crystalline
lens should slightly modify its geometrical form to guarantee
that all information that comes from all the points of the object
converges precisely at a point on the retina (Paralipomena, pp.
212e214; GW II, pp. 195e200).

In Astronomia nova, Kepler managed to bequeath to tradition
two valuable laws that became essential in the new celestial
mechanics without the tradition accepting the tortuous arguments
that led to Kepler’s deduction of these laws.35 Similarly, in the
Paralipomena, the philosopher used his imprecise and tortuous
law of refraction to derive brilliant results, such as demonstrating
how images we perceive should be collected sharply on the retina
despite their inverted appearance at the bottom of the eye. The
tradition (both astronomical and optical) assimilated the results of
Kepler’s research but not the intricate arguments that led to them;
indeed, the complex metaphysical argumentation that led to
Kepler’s results was completely ignored.
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