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Abstract

Background: This study describes a bioinformatics approach designed to identify Plasmodium vivax proteins potentially
involved in reticulocyte invasion. Specifically, different protein training sets were built and tuned based on different
biological parameters, such as experimental evidence of secretion and/or involvement in invasion-related processes. A
profile-based sequence method supported by hidden Markov models (HMMs) was then used to build classifiers to search
for biologically-related proteins. The transcriptional profile of the P. vivax intra-erythrocyte developmental cycle was then
screened using these classifiers.

Results: A bioinformatics methodology for identifying potentially secreted P. vivax proteins was designed using sequence
redundancy reduction and probabilistic profiles. This methodology led to identifying a set of 45 proteins that are potentially
secreted during the P. vivax intra-erythrocyte development cycle and could be involved in cell invasion. Thirteen of the 45
proteins have already been described as vaccine candidates; there is experimental evidence of protein expression for 7 of
the 32 remaining ones, while no previous studies of expression, function or immunology have been carried out for the
additional 25.

Conclusions: The results support the idea that probabilistic techniques like profile HMMs improve similarity searches. Also,
different adjustments such as sequence redundancy reduction using Pisces or Cd-Hit allowed data clustering based on
rational reproducible measurements. This kind of approach for selecting proteins with specific functions is highly important
for supporting large-scale analyses that could aid in the identification of genes encoding potential new target antigens for
vaccine development and drug design. The present study has led to targeting 32 proteins for further testing regarding their
ability to induce protective immune responses against P. vivax malaria.
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Introduction

Human malaria is caused by five parasite species from the genus

Plasmodium, of which Plasmodium falciparum has a preferential

distribution in African countries and is particularly important,

since it produces most of the fatal cases. The second species in

clinical importance for humans is Plasmodium vivax (predominantly

distributed throughout Asia and America). P. vivax does not cause

such an imminent life-threatening condition as that caused by P.

falciparum; however, it imposes an important social and economic

toll on the world’s poorest countries, as reflected in the large

number of disability adjusted life years (DALYs) associated with its

incidence [1]. Furthermore, several aspects still hamper the total

eradication of this disease, which include (1) the gradual

emergence of antimalarial drug resistance among parasite strains,

as well as (2) insecticide-resistant populations of the malaria

mosquito vector, and (3) the lack of an effective vaccine [2].

Progress in P. vivax research has been notably delayed by

contrast with P. falciparum, partly due to the difficulty of

establishing a long-term in vitro culture of this species given that

it is restricted to invading human reticulocytes which only account

for ,1–2% of circulating red blood cells. This difficulty has been

reflected in the delayed release of its genome sequence [3], the

transcriptional profile of its intra-erythrocyte developmental cycle
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[4] and the partial proteome of its schizont stage [5] compared to

the release of the same studies in P. falciparum. In silico approaches

have emerged from such experimental limitations, thereby

promoting the development of an automatic analysis of the P.

vivax transcriptome aimed at identifying parasite genes that have

dominant transcription during schizont stages, mainly 30–

48 hours post-infection, based on the rationale that they could

be encoding proteins involved in P. vivax invasion of human

reticulocytes [4].

Hidden Markov models (HMMs) are among the most effective

and efficient approaches for analyzing large sets of biological data

[6–8]. These models have been applied over the last 20 years in

sequence analysis, gene finding and protein family characteriza-

tion [9]. Chen et al., designed a predictor for secreted proteins

using HMM-based methods in 2003 to identify signal peptides and

transmembrane proteins [10]; in 2009 Tinhosolo et al., identified

carotenoid genes in P. falciparum by comparing biosynthesis-related

genes against a local database of P. falciparum genes using BLAST

and HMM [11]. In the same year, Gaskell et al.., identified

secreted enzymes in Toxoplasma gondii using SHARKhunt which

used profile HMM based on the PRIAM polypeptide profile

library to search for a set of genomic DNA sequences potentially

encoding such proteins [12]. In 2010, Arena et al., identified 16

new genes encoding trypsin proteases in 8 Apicomplexan genomes

[13]. Ghouila et al., constructed a system for identifying protein

domains based on comparing HMM and Pfam profiles so that a

Pfam family was represented by a multiple sequence alignment

and a profile HMM [14].

More specifically, different HMM-based approaches have been

proposed for the search, identification and characterization of new

vaccine candidate proteins in the Plasmodium genus. A method

for detecting new protein domains in P. falciparum using co-

occurrence was proposed by Terrapon et al., in 2009 [15]. This

method has been claimed to improve the sensitivity of Pfam

domain detection. More recently, Bischoff and Vaquero, in 2010

[16], reported a set of proteins potentially involved in the

transcriptional machinery of the Plasmodium genus, based on in

silico reports and databases. Particularly, a directory of factors

associated with Plasmodium transcription was built by scanning

the Plasmodium genome using profile HMMs. It should be

stressed that HMMER software was used for the searches related

to both methods [17].

One of the most used profile HMM-based tools is HMMER

v3.0 which is a new generation of sequence homology search

software that is used for querying sequence databases for protein

homologues and performing protein alignment. Compared to

BLAST, FASTA and other sequence alignment and database

search tools based on classical scoring methodology, HMMER has

been shown to be significantly more accurate and better at

detecting remote homologues because of the strength of its

underlying mathematical models. In the past, this strength came at

significant computational expense, but in the new HMMER3

project, HMMER is now essentially as fast as BLAST [18].

Several adjustments to the input data are required as part of

the process for obtaining the different probabilistic profile

HMMs taking into account that, if there is a high degree of

similarity among the biological sequences, any analysis could be

biased due to redundancy. Different efficient algorithms allow a

set of sequences to be constructed with a degree of similarity

below a given parameter. Cd-hit uses an algorithm based on

short word filtering (i.e. dipeptides, tripeptides, etc.) to determine

protein similarity taking into account the minimum number of

identical short substrings [19]. On the other hand, PISCES [20]

uses PSI-BLAST and an inclusion/exclusion label process that is

based on the size of the parameter that determines the similarity

threshold.

This study describes an approach to the large-scale identifica-

tion and selection of proteins playing an active role in P. vivax

invasion of human reticulocytes. It is based on identifying secreted

and/or invasion-related proteins using sequence redundancy

reduction and profile HMMs to analyze genome-annotated genes

with significantly high levels of transcription toward the end of the

intra-erythrocyte cycle. The preference for this transcriptional

stage was based on the premise that gene expression is timely

regulated and therefore biological functions can be assigned to a

particular instant of the parasite’s developmental cycle inside the

infected red blood cell [4]. The selected candidates were further

analyzed; this included reviewing published experimental evidence

of role during invasion and/or immunological assays leading to

their classification as vaccine candidates and experimental

confirmation of protein presence. Supporting information based

on the prediction of subcellular localization and signal sequence,

number of transmembrane regions, identification of glycosylpho-

sphatidylinositol (GPI)–anchor sites and functional domains

related to invasion, and prediction of adhesion activity was also

assessed. The objective was to define robust selection criteria based

on a bioinformatics strategy to find P. vivax proteins likely to be

interesting vaccine candidates.

Results

The results were based on the 3 phases proposed in the

methodology (Figure 1). The first one consisted of constructing

36 profile HMMs and a target data set of 582 P. vivax open

reading frames (ORFs) with predominant transcription toward

the end of the intra-erythrocyte cycle. In the second phase

(identification), the 36 profile HMMs were used for exploring

the target data set, leading to the discovery of 46 P. vivax ORFs

scanned by the profile HMMs. Forty-five of them encoded

potentially secreted and/or invasion-related proteins, while the

remaining one belonged to the negative set. It is worth noting

that ORFs were included irrespective of whether they were

identified once or several times. The resulting ORFs/proteins

were screened in the third phase according to a literature review

of published evidence regarding their secretion or previous use

as vaccine candidates.

Phase 1: Constructing protein profile HMMs (1a) and
target data set (1b)

Nine protein sequence data sets were also constructed to create

the protein profile HMMs. It should be highlighted that data sets

had different construction criteria, were processed by 2 different

redundancy reduction algorithms and that cut-off values were

established at 2 different identity percentages, leading to 36

profiles in total being obtained (Table 1).

Table 2 shows the ORFs/proteins identified by the 36 profile

HMMs that were constructed from 9 Plasmodium protein data

sets (Table S1); 8 of them were considered as secreted and some

have been reported as being involved in invasion, while the

remaining set contained the non-secreted proteins.

The target data set was constructed from proteins encoded in

the P. vivax genome showing a peak transcription at the end of the

intra-erythrocyte development cycle and which could therefore

have potential roles in the invasion of reticulocytes [4].

Consequently, this data set only included genes exhibiting a

Cy5/Cy3 expression ratio larger than 1.5 at the end of the intra-

erythrocyte cycle (31–48 hours post-invasion) (Table S2).

P. vivax Vaccine Candidate Selection Using HMMs
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Phase 2: Protein profiles against the target data set and
identification step

The analysis shows that, even though some sequences were

shared between profile HMMs, the different modifications applied

to the 9 protein data sets led to different results being obtained in

all cases, except for the negative profile, in which all the 4 profile

HMM modifications pointed to the same protein (PVX_090110),

as will be further explained below (Table 2).

A close analysis of Table 2 indicates that the 36 profile HMMs

allowed tracking new candidate ORFs/proteins. Interestingly, 34

out of the 46 ORFs/proteins identified by the different profile

HMMs were identified by more than one profile HMM, while the

remaining 12 were identified only once. The most frequently

identified ORFs/proteins were: PVX_117880 (27 times),

PVX_092975 (18 times) and PVX_002510 (17 times). On the

other hand, PVX_080305, PVX_112665, PVX_092995,

PVX_081810, PVX_101505, PVX_094425, PVX_086850,

PVX_081845, PVX_097710, PVX_123550, PVX_109280, and

PVX_118525 were identified only once. The profile HMMs

labeled as ‘‘42, Pisces 90% identity’’, ‘‘67, Cd-hit 30% identity’’,

‘‘88, Cd-hit 30% identity’’ and ‘‘118, Pisces 30% identity’’ in

Table 2 were those that identified the largest number of ORFs/

proteins (12 in total).

Regarding the negative set, containing non-secreted reported

ORFs/proteins used as a probe to validate the consistency of the

results, only PVX_090110 was identified as a non-secreted protein

out of the initial set of target proteins. This was the only case in

which all profile HMMs identified the same protein.

Table S3 shows the protein domain families indexed in PFAM

(version 25.0), which were reported by the hmmscan algorithm as

being related to each built data set’s protein sequences.

Specifically, 310 domains were scanned in the PFAM database.

The AMA-1 Apical membrane antigen 1, DUF605 Vta 1 like and

MSP7_C MSP7-like protein C-terminal domains were the most

Figure 1. Methodology for identifying Plasmodium vivax proteins having a potential role in invasion using sequence redundancy
reduction and profile hidden Markov models.
doi:10.1371/journal.pone.0025189.g001

Table 1. Plasmodium protein data sets used for profile HMMs construction.

Protein existence** Organism

# of proteins Type Query Prot/Trans Predicted Putative Homology P. falciparum P. vivax P. berghei P. yoelii

129* Neg Database 34 1 0 94 75 10 12 12

133 Pos Database 21 81 22 9 79 28 15 11

118 Pos Lit/DB 20 69 22 7 66 28 14 10

110 Pos Database 21 81 0 1 71 21 8 10

88 Pos Lit/DB 20 69 0 0 54 20 6 8

68 Pos Lit/DB 0 68 0 0 48 11 4 5

67 Pos Literature 6 48 8 5 67 0 0 0

42 Pos Lit/DB 20 0 22 0 12 16 10 4

20 Pos Lit/DB 20 0 0 0 6 9 2 3

*The remaining protein sequences correspond to P. chabaudi (10), P. knowlesi (8), P. gallinaceum (1) and P. malariae (1).
**Level of evidence that supports the existence of the protein concerned. ‘‘Prot/Trans’’ indicates that there is clear experimental evidence for the existence of the
protein or that expression data indicate the existence of a transcript. ‘‘Homology’’ indicates that the existence of a protein is probable because orthologs exist in closely-
related species. ‘‘Predicted’’ is used for entries without evidence at protein, transcript, or homology levels. ‘Putative’ indicates putative proteins having predicted
existence.
doi:10.1371/journal.pone.0025189.t001

P. vivax Vaccine Candidate Selection Using HMMs
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retrieved domains (32 profile HMMs), while the HMM 129 (Cd-

Hit 90%) profile scanned the highest number of domains (171

domains in total) (Table S3).

It should be stressed that the negative profile HMM scanned

164 domains that were not recognized by the positive profiles; 139

domains were thus recognized by the positive profiles but not by

the negative ones. There were only 7 domains, which were

recognized by both positive and negative profile HMMs (Table

S3).

Phase 3: Selection step
The 46 proteins identified in the target data set (45 positive and

1 negative) were compared against those reported in the literature

and analyzed in terms of several structural features such as the

presence of putative classical and non-classical signal sequences,

the number of transmembrane helices, the presence of GPI-

anchor sites, as well as the presence of protein domains relevant for

invasion of erythrocytes and able to mediate cell adhesion

(Table 3). The final categorization included 13 proteins which

had already been classified as vaccine candidates according to

previous studies; 9 of these have been tested for their antigenicity

[21–25], two have been assayed for their protection-inducing

ability [5,21,26,27] and strong reticulocyte-binding ability has

been described for the remaining two [28,29]. Experimental

evidence of protein expression has been published for 7 additional

ORFs; however, no immunological or functional assays testing

their potential role as vaccine candidates have been reported yet

[5,30–32]. Interestingly, 25 ORFs for which there is no additional

experimental evidence, apart from their transcriptional profile,

were also identified. This last group plus that containing the seven

proteins for which immunological studies are lacking thus became

interesting protein candidates to be further tested in vaccination

assays (giving a total of 32 selected). The last protein out of the 46

classified was the negative one (Table 3).

Importantly, 18 out of the 32 selected proteins were predicted as

being secreted via the classical pathway to the extracellular

medium and having a signal peptide, while three additional ones’

secretion seems to occur via the non-classical pathway, according

to at least four prediction tools. Predictors yielded contradictory

results for the 11 remaining proteins.

Discussion

Adjusting and modifying the algorithm parameters shifted the

probability of the appearance of biological variables represented in

the sequences, thereby broadening the identification of molecules

likely to be far-relatives within the target protein data set. It should

be noted that, although the data used for constructing the protein

profile HMMs were similar (Table 1), the results obtained differed

for all profiles so constructed (Tables 2 and 3).

Probabilistically, when a data set is analyzed by means of a

redundancy adjustment algorithm, then it would be assumed that,

depending on the extent of decreased identity percentage values,

there should be more diversity among results. Different identity

percentage parameters were thus explored, seeking to favor

sequences which, while being different, did share some degree of

similarity. The methodology followed in protein set definition and

adjustment was thus designed considering that profiles adjusted to

30% identity would be more diverse in terms of the variables

included in them. However, since the data sets for constructing the

profile HMMs were so limited according to the selection criteria, it

was difficult to establish such relationship.

As for the set of the 45 proteins identified, the presence of

several of them was somehow expected considering that they

belong to families that have already been characterized as good

malaria antigen candidates; specifically, 6 proteins belonged to the

serine repeat antigen family (SERA) which is considered a vaccine

candidate antigen for P. falciparum malaria due to the immuno-

genicity conferred in rats by one of them when expressed as a

recombinant protein [33]. It is worth noting that all 6 proteins

identified as being SERA were P. falciparum SERA1, SERA2,

SERA3, SERA4, SERA5, SERA6, SERA7 and SERA9 orthologs

(Table S4). This group also included two ORFs identified as being

rhoptry-associated proteins (RAP1 and RAP2). Some of the

previously identified and characterized rhoptry proteins have been

found to be actively involved in red blood cell invasion as they are

able to bind to red blood cells or since monoclonal or polyclonal

antibodies raised against them have inhibited in vitro invasion of

target cells [32,34]. An additional rhoptry protein (RON2) [30]

expressed in the rhoptry necks was also identified. Previous studies

have shown that the RON2 ortholog in P. falciparum is essential for

parasite invasion due to its interaction with AMA-1 [35].

The profile HMMs also identified reticulocyte binding proteins

(RBP1 and RBP2) which are directly associated with P. vivax

merozoites’ preference for invading human reticulocytes [28]; 9

MSP3 and 1 MSP7 (merozoite surface proteins 3 and 7,

respectively) were similarly identified. MSPs are among the best

candidate antigens for inclusion in an antimalarial vaccine, mainly

because their surface localization facilitates their initial attachment

to the red blood cell and involvement in subsequent invasion [36].

Moreover, this localization leaves them accessible to interact with

host antibodies.

Regarding the protein identified as negative, it should be noted

that it was only identified by the four probabilistic profiles

constructed from the data set of 129 proteins, using the redundancy

reduction algorithms at 30% and 90% identity (Table 2).

Of the 32 ‘‘selected’’ proteins (Table 3), 26 have orthologs in

other species from the Plasmodium genus but the present analysis

focused on 21 of them having orthologs in P. falciparum. The list of

orthologous proteins can be found in Table S4.

Although tools predicting protein localization within a broader

range of cellular organelles in eukaryotes are currently available, it

has been particularly difficult to define which motifs or domains

are exclusively associated with proteins located in apical organelles

[37]. The only consensus regarding signals targeting proteins to

cell surface or to apical compartments so far consists of the

presence of a classical signal sequence or, eventually, the presence

of some secondary targeting signals [38,39]. This led us to perform

an additional analysis of the set of 45 identified proteins to define

priorities in identifying new antigens which are potentially

involved in P. vivax invasion of reticulocytes. It was thus

ascertained whether proteins had a classical signal peptide

sequence, as well as the presence and number of transmembrane

regions, GPI-anchor sites and domains known to be involved in

host-cell invasion, and their ability to mediate cell adhesion.

It has been observed that parasite antigens involved in host-cell

invasion that are targeted to membrane or apical organelles are

stabilized within such organelles via transmembrane helices or, if

such regions are lacking, then by their non-covalent association

with other anchored-proteins [39].

It is clear that an important number of P. falciparum cell surface-

associated proteins are attached to the plasma membrane via GPI

anchors [40]. Is also well known that some of these proteins play

an active role in host-cell invasion through their incorporation into

lipid rafts [41], also being recognized by neutralizing antibodies

induced during natural malarial infection in people living in

endemic areas [42]. Based on these data, various GPI-anchored

proteins, such as MSP1 and MSP2, have been or are currently
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being assessed as candidates for a vaccine against this parasite

species [43]. Given the importance of proteins containing GPI-

anchor sites, understood as a post-translational modification, a

GPI-anchored prediction was thus run on the set of 45 proteins

identified using the FragAnchor tool [44]. Such analysis predicted

a highly probable (HP) GPI-anchor attachment site in 2 of these

proteins and 3 had a potentially false positive GPI-anchor site

(Table 3).

Despite the difficulty in determining consensus domains and

motifs of apical organelle proteins in members of the phylum

Apicomplexa, the 45 proteins selected in the computational

protein identification were screened against the CODD database

[15]. Among the domains used as search query, only those

potentially involved in host-cell invasion by mediating adhesion to

receptors on the target cell surface or actively involved in

shedding-off other parasite proteins were included. This search

for P. vivax proteins containing one or more of these domains was

carried out using PlasmoDB v6.1 based on a list of accession codes

for the domains reported in PFAM [45] and InterPro [46]

(Table 3).

Another alternative was to check which selected proteins were

predicted to act as adhesins. The MAAP [47] tool was thus used

which was designed on the sequence composition of a group of

proteins from the genus Plasmodium, experimental evidence

having shown them to be directly involved in adhesion to host cells

(Table 3).

It should be noted that even though the performance of the

approach chosen here depended on the current status of parasite

genome annotation, the exploratory methodology focused on

identifying true positive values and therefore sought to optimize

search precision rate. The results are thus not to be measured by

the number of proteins so identified but rather by the method’s

reliability in confirming that such identified proteins are actually

true positives. In other words, the fraction of true vaccine

candidates among those that the algorithm identified as belonging

to the candidates subset had to be close to one.

The information made available through the publication of the

genome sequences of several parasites and their hosts, as well as of

malaria vector mosquitoes, together with analyses focused on the

detection and quantification of parasite gene transcription and

protein expression, is now allowing novel strategies to be

postulated and better approaches to be adopted for designing

more effective vaccines, drugs, diagnostic methods and treatments

[48]. This study constitutes an exploratory and rational approach

toward the identification of P. vivax proteins playing a potential

role in invasion of human reticulocytes based on the search for far-

homologues by applying algorithmic techniques for adjusting

sequences in regards to redundancy, construct profiles based on

HMMs and analyzing protein features such as amino acid

composition and secretion pathways.

Materials and Methods

The bioinformatics approach proposed in this paper explored a

methodology for identifying P. vivax proteins that could be involved

in parasite invasion of reticulocytes, therefore making them

interesting vaccine candidates. The methodology was based

primarily on the use of techniques for reducing sequence

redundancy and constructing HMM-based profiles. The main

purpose of the methodology was the construction of various

probabilistic profiles to search for biologically-related proteins in the

P. vivax intra-erythrocyte transcriptome. The probabilistic profiles

were built using different data sets with sequences from the

Plasmodium genus (9 sets in total (Table S1), each with 4 profiles, for

a total of 36 profile HMMs) generated by varying protein feature

parameters, and which were adjusted using 2 different methods to

reduce redundancies. Proteins identified as possible candidates were

further analyzed according to their sequence and additional features

to select the most likely vaccine candidates (Figure 1).

The approach followed in this study can be divided into 3 main

phases (Figure 1). The objective of the first two phases was to

identify proteins potentially involved in P. vivax invasion of

reticulocytes. These stages involved generating suitable data sets

(phase 1a), eliminating protein sequence redundancy (phase 1a),

generating protein alignments and obtaining probabilistic profiles

based on HMMs (phase 1a), generating the 582 P. vivax target data

set (phase 1b) (Table S2) and scanning the target data set with the

profile HMMs (phase 2). The protein set obtained after these

stages included previously reported proteins that had been

described as participating in P. vivax invasion but, more

interestingly, it also contained proteins that have not been

previously implicated in cell invasion.

The third phase, denoted as the selection step, consisted of

debugging the data set obtained in the previous stages to select the

most likely vaccine candidates. This included reviewing scientific

literature in the search for previous experimental evidence

regarding vaccine candidates or expressed proteins. In addition,

the identified proteins were analyzed using different computational

classifiers to detect cellular secretion, signal peptides, transmem-

brane regions, GPI-anchor regions, invasion-related domains and

adhesion-like proteins. The orthologs for all the proteins identified

are reported in Table S4. A detailed description of each step

followed in these 3 phases is given below.

Phase 1: Constructing protein profile HMMs and the
target data set

Constructing the protein sequences. Positive and negative

sets of proteins were created based on a literature review and

search in biological databases (Table 1). In the case of the positive

data set, 8 subsets of non-exclusive proteins were formed to model

the possible values for a protein’s attributes and the organism to

which it belonged. Specifically, the attribute ‘‘Protein existence’’

from the SwissProt database was modeled by generating data sets

representing each possible value for that attribute (‘‘predicted’’ and

‘‘putative or hypothetical’’). Similarly, the organism to which the

protein belonged was modeled by including the four species of

Plasmodium considered here. The negative set consisted of proteins

having an annotation of being localized in cytoplasm, nucleus,

mitochondria, or retained in the endoplasmic reticulum, whereas

the positive set clustered proteins targeted at P. falciparum, P. vivax,

P. berghei and P. yoelii cell surface, rhoptries or micronemes.

Table S1 shows the 9 different data sets created for the

exploration. It should be noted that there was no exclusive set of

proteins for each data set, but rather proteins were shared between

more than one set.

The set construction generated sets having divergent features

(Table 1). Specifically, the number of sequences ranged between

133 sequences (Set 2) and 20 sequences (Set 9). Some of the sets

resulted from combining searches in databases and literature

reviews (Sets 3 and 5 to 9) while other sets were built strictly on

query results from databases (Sets 1, 2 and 4). The parameter of

‘‘existence’’ diverged between the sets, allowing for some of them

to contain proteins for all possible values (Sets 2, 3 and 7) whereas

others were restricted to proteins combining two of these

annotations (Sets of 4, 5 and 8) and others were restricted to

proteins with one particular type of annotation (Set 6 and 9).

Regarding distribution in the organism of origin, some sets were
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unbalanced in favour of P. falciparum (Sets 1 to 7) while others

tended to cluster proteins from P. vivax (Sets 8 and 9).

It is worth noting special features for certain data sets. For

example, Set 7 clustered 67 P. falciparum proteins reported as being

involved in invasion and with annotations of function, subcellular

localization and time during the cycle in which they are

transcribed [49]. Similarly, all proteins present in the data sets

were compared with the target set and were extracted before

constructing the profiles. This step was carried out to avoid biasing

profile construction by favoring sequences repeated between a

specific profile and the target set.

An essential premise was that the divergence among the data sets

reported in Table 1 allowed generating different probabilistic

profiles, therefore leading to different search approaches within the

target data set. The negative set was used to validate the robustness

of the results obtained in the exploration of the target data set.

Reducing redundancy. The task was performed by applying

the Cd-hit [19] and PISCES [20] algorithms to each of the 9

protein profile data sets (defined in the previous subsection),

according to 2 identity parameters (30% and 90% identity). This

reduction of redundancy resulted in a total of 36 subsets.

Constructing protein profile HMMs data sets. This stage

consisted of obtaining protein alignments. Sequence alignments

for the 36 subsets (defined in the previous subsection) were

obtained using the ClustalW2 suite [50].

A profile HMMs comparison between the different data sets and

the PFAM 25.0 database was also performed. Specifically, the

‘hmmscan’ algorithm in the HMMER v3.0 suite [18] was the choice

selected for a protein sequence vs profile-HMM database query.

Table S3 shows the domains reported as being related to data set

protein sequences. The profile HMMs are publicly available in

http://www.biolisi.unal.edu.co/publications/supplementary-files/p_

vivax/.

Target data set. This set was constructed on P. vivax gene

mRNA abundance levels during each time interval during the

intra-erythrocyte cycle, expressed in terms of the degree of RNA

hybridization in the microarray compared to hybridization in

the RNA reference pool assembled from the RNA samples from

all time points for the 3 studied isolates [4]. Of the total of 5,335

genes analyzed in the 3 clinical isolates, only those genes

showing a Cy5/Cy3 ratio higher than 1.5 in the TP7–9 time

interval (corresponding to 31–48 hours of intra-erythrocyte

cycle), but not in any of the previous time intervals (TP1–6),

were selected. This selection considered genes transcribed in at

least one P. vivax isolate to discard genes that did not have a

single maximum transcription peak at the end of the intra-

erythrocyte cycle.

It should be noted that genes having larger transcription peaks at

any previous time (0–30 hours) were not taken into account. The

transcription criteria ‘‘at the end of the intra-erythrocyte cycle’’ was

chosen due to previous evidence showing that most P. falciparum

genes encoding proteins having important roles in erythrocyte

invasion have a peak transcription during this lapse of time, which

agrees with merozoite maturation and the development of apical

organelles (rhoptries, micronemes and dense granules) [51]. This

resulted in a target data set of 582 transcribed genes (Table S2).

All amino acid sequences used in this study, either identified

previously or as a result of P. falciparum and P. vivax genome

annotation were downloaded from the PlasmoDB database [52],

with their corresponding accession codes.

Phase 2: Protein profiles against target data set and
protein identification

The probabilistic profiles were obtained and used as query for

searching in the target protein data set using HMMER v 3.0

software [18]. The results for this phase are reported in Table 2.

Phase 3: Protein selection
The protein identification described in the previous section

defined a set of 46 candidates (Table 3). This set of proteins was

further characterized according to structural features regarding

secretion and the transcriptional profile reported in PlasmoDB.

These results were then contrasted with previous literature reports

to classify proteins already being considered as vaccine candidates

and those that were not. As a result of this analysis, the identified

proteins were grouped into two categories: ‘‘vaccine candidates’’

and ‘‘selected’’. The respective sub-categories can be found in

Table 3.

The P. vivax gene homologues located in syntenic regions

were identified in the annotated P. falciparum genome by

screening the PlasmoDB [52] and the OrthoMCL–DB [48]

databases (Table S4). The subcellular localization of the pool of

proteins selected based on the abovementioned criteria was also

predicted using tools based on Support Vector Machine (SVM)

systems and/or homology-based analyses. The ESLpred2 tool

[53] hosted at http://www.imtech.res.in/raghava/eslpred2/

and BaCelLo [54] available at http://gpcr.biocomp.unibo.it/

bacello/were used, selecting the animal kingdom-specific

predictor in both cases.

The next step was to screen proteins for the presence of a signal

peptide using various tools for predicting the secretion pathway in

eukaryotic proteins. SignalP 3.0 [55] http://www.cbs.dtu.dk/

services/SignalP/was used for classical secretion as it combines

neural networks (NN) and hidden Markov models (HMM), as well

as PolyPhobius [56] http://phobius.sbc.su.se/poly.html, a tool

that allows determining transmembrane topology performing an

HMM algorithm using homology information. Secretion via non-

classical pathways was predicted using SecretomeP 2.0 [57]

available at http://www.cbs.dtu.dk/services/SecretomeP/.

Transmembrane helices and GPI anchors were also reported as

part of the analysis. PolyPhobius and TMHMM v 2.0 [58] http://

www.cbs.dtu.dk/services/TMHMM/were used for predicting the

presence and number of transmembrane regions in the pool of

chosen peptide sequences. The latter tool is based on the use of an

HMM; however, unlike PolyPhobius, TMHMM sometimes

incorrectly classifies the signal peptide as a transmembrane region.

Those regions predicted as transmembrane helices but showing at

least 50% similarity with one or both of the signal peptide

predictions mentioned above were thus discarded. All proteins

were analyzed for the presence of GPI-anchor sites using

FragAnchor (http://navet.ics.hawaii.edu/,fraganchor/NNHMM/

NNHMM.html) [44] which is based on the tandem use of NN and

HMM predictors.

P. vivax proteins having a potential adhesive function, being

understood as a protein’s ability to adhere to another protein or

molecule on red blood cell surface, were identified using the

Malarial Adhesins and Adhesin–like proteins (MAAP) predictor

[59] available at http://maap.igib.res.in/, which is a non-

homology-based approach that implements the compositional

characteristics of amino acid dipeptides and multiplet frequencies

with an SVM-based classification system.
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