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Abstract
We formulate the concept of minimal fibration in the context of fibrations in the model
categorySC of C-diagrams of simplicial sets, for a small index category C.When C is an
E I -category satisfying some mild finiteness restrictions, we show that every fibration
of C-diagrams admits a well-behaved minimal model. As a consequence, we establish
a classification theorem for fibrations in SC over a constant diagram, generalizing
the classification theorem of Barratt, Gugenheim, and Moore for simplicial fibrations
(Barratt et al. in Am J Math 81:639–657, 1959).
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1 Introduction

After the introduction by D. Kan in the fifties of the theory of simplicial sets and
Kan fibrations, M.G. Barratt, V.K. Gugenheim, and J.C.Moore developed in their
celebrated paper [1] the appropriate version of simplicial fibre bundles, which in
particular are Kan fibrations when the fibre is a Kan complex. Conversely, given a
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Kan fibration, these authors proposed the notion of a minimal simplicial fibration, a
fibrewise deformation retract of the original fibremap, which always exists and is itself
a simplicial fibre bundle, provided the base of the fibration is connected. In this way,
the classification of simplicial fibrations reduces to the classification of simplicial fibre
bundles. The latter is achieved by associating to every fibre bundle a twisted cartesian
product (TCP), where the twisting functions take values in the structure group G of
the bundle. Then, the simplicial group G provides a classifying space W (G) and a
universal fibre bundle such that every G-bundle over a base B can be obtained as a
pullback of a map B → W (G) along this universal bundle.

Denote by S the category of simplicial sets. Given a small category C, the main goal
of our work has been to extend Barratt-Gugenheim-Moore framework to the category
SC of C-diagrams of simplicial sets assuming that the fibrations involved are defined
over a constant base. The first observation is that the category of diagrams possess a
structure of cofibrantly generated model category and inherits a simplicial structure
from S [12]. Then, assuming always a constant base B, there exist natural translations
of the notions of simplicial fibration, simplicial bundle or twisted cartesian product.

Extending the notion of minimal fibration is more involved. To this aim we define
a full subcategory � of SC whose set of objects is given by the free C-diagrams δcn
over the standard n-simplex �[n] (see Definition 2.2). Identifying C-diagrams with
�op-sets, the free diagrams play in this context the role of the standard simplices in
the classical theory, and become the basic building blocks throughout we may study
any C-diagram X . In particular, a n-c-simplex will simply be a natural transformation
from a free diagram δcn to X , for any n ≥ 0 and c ∈ Ob(C),

Now it is possible to define a sub-p-homotopy relation for the set of n-c-simplices
of the total space of fibration of C-diagrams for all n ≥ 0 and c ∈ C (Definition 3.2),
and then the notion of minimal fibration (Definition 3.3). If C is an arbitrary small
category the shape of the orbits of a free diagram can be elusive. However, when C is
an artinian E I -category (Definition 3.5), our main theorem establishes the existence
of minimal C-fibrations:
Theorem A Let C be a small artinian E I -category. If p : X −−→ B is a fibration in
SC for which X is a free diagram, then p has a strong fibrewise deformation retract,
q : X̂ −−→ B, which is minimal and where X̂ is a free C-diagram.

Observe that Example 3.13 shows that some restrictions on the structure of the index
category are unavoidable in order to always find minimal models for the fibrations.

Nowconsider a simplicial set B, a categoryC, and the compositionC → {∗} → S of
the trivial functor with the functor that takes the point to B. Slightly abusing notation,
we will also denote this diagram by B and call it a C-diagram over a constant base B.
Now, Theorem A opens the way to extend all the Barrat-Gugenheim-Moore program
to C-diagrams over a constant base. As an intermediate step, we prove that any C-fibre
bundle over a constant diagram B with fibre F is equivalent to a C-twisted cartesian
product (and viceversa), and this allows to classify C-fibre bundles. We denote by
autC(F) the simplicial group of automorphisms of the diagram F .

Theorem B Let C be a small category, F a C-diagram, G a simplicial subgroup of
autC(F) and B a simplicial set. Then the homotopy classes of maps [B,WG] from B
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Minimality in diagrams of simplicial sets 1045

to WG are in bijective correspondence with the equivalence classes of C-fibre bundles
with fibre F, constant base B and group G.

Nowwe can use TheoremsA and B, and Quillen’s small object argument to classify
fibrations in SC .

Theorem C Let C be a small artinian E I -category, B a connected simplicial set, and F
a C-diagram. Then there is a bijective correspondence between the set [B, BhautC(F)]
of homotopy classes of maps from B to BhautC(F) and the set of weak homotopy
classes of fibrations over the constant diagram B whose fibres are weakly homotopy
equivalent to F.

Roughly speaking, for a fibrant C-diagram F , hautC(F) is described as the set of
self equivalences of F in the homotopy category that admit a rigidification in the
category of simplicial sets. When F is not fibrant we use a fibrant replacement. The
precise definition appears in Sect. 5, and we also show there, elaborating on results of
Dwyer-Kan [6], that it is a loop space.

This classification is related with the results of Dwyer-Kan-Smith in [7], classifying
towers of fibrations. They construct inductively a classifying space B(EY1 . . . EYn)
by means of an appropriate homotopical version of the wreath product of groups.
A tower of fibrations Xn −→ Xn−1 −→ · · · −→ X1 −→ X0, where Yi is the fibre
of the map Xi −→ Xi−1, might be seen as a C-fibration over the constant base
X0, where C is the finite poset { n −→ · · · −→ 1 }, and with fibre the diagram
F = Fn −→ Fn−1 −→ · · · −→ F1, being Fi the fibre of the composite fibration
Xi −→ X0. With this interpretation, the tower is classified by BhautC(F), and this
turns out to be a connected component of Dwyer-Kan-Smith classifying space.

Part of the motivation for our study arose from our attempts to dualize to the
augmented case classical results [3,8] of preservation of fibrations under localization
functors. In this context, giving a fibration F → E → B and a functor L , the problem
is to produce another fibration LF → E ′ → B that is naturally mapped from the
original one. Our research about this subject, which corresponds to the case of a
diagram of two objects and one morphism, will appear in a separate paper. Observe
that the base of the fibration does not change throughout the process.

It is also worth mentioning the recent work of Blomgren-Chachólski [2]. Given
objects X and F , they define Fib(X , F) as the category whose objects are all the
possible fibrations with base X and fibre weakly homotopy equivalent to F . One
of the innovative ideas of their work lies in the description of the homotopy type of
Fib(X , F) and not only of its connected components, thus providing a refinement of the
classical classification theorems. They develop the notion of core of a category in order
to overcome set-theoretic difficulties that derive from the fact that Fib(X , F) is not a
small category in general. Although their results are valid in any model category, the
point of view is different from ours, as we propose a more classical and combinatorial
approach in the model category of C-diagrams.

The paper is structured as follows. InSect. 2wedescribe the structure of the category
of diagrams of simplicial sets over a small index category. The theory of minimal
fibrations in this category is developed in Sect. 3, where we prove TheoremA. Section
4 is devoted to discuss and classify C-fibre bundles, a goal that is achieved in Theorem
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1046 C. Broto et al.

B. Last section culminates the paper, by proving the classification result (Theorem C)
for fibrations in the category of C-diagrams. We conclude with an appendix, where we
prove some technical properties of preordered sets that are needed in Sect. 3.

2 Themodel category of C-diagrams

The model category of C-diagrams has been extensively investigated in [12]. In this
section, we will first recall some basic facts about simplicial sets and will fix some
notation (a more complete account of the theory can be found in [5,10,15]). Then, we
explain how the category of C-diagrams inherits the structure of cofibrantly generated
simplicial model category from that of simplicial sets. In the way, we describe C-
diagrams as �

op
C -sets (see Definition 2.2 below), a point of view that will be useful in

the construction of minimal fibrations in Sect. 3.
Let � be the category whose objects are the finite, totally ordered, non-empty sets

[n] = {0, 1, . . . , n}, n ≥ 0, and whose morphisms are the order-preserving functions.
A simplicial set X is a functor �op −→ Sets, while a simplicial map is a natural
transformation.Wewill denote byS the category of simplicial sets and simplicialmaps.

A simplicial set can be seen as a sequence of sets X = {Xn}n≥0, together with
structural maps that consist of face operators di : Xn −→ Xn−1, n ≥ 1, 0 ≤ i ≤ n,
and of degeneracy operators si : Xn −→ Xn+1, n ≥ 0, 0 ≤ i ≤ n, subject to the
following relations:

did j = d j−1di , i < j

di s j = s j−1di , i < j

d j s j = 1 = d j+1s j
di s j = s j di−1, i > j + 1

si s j = s j+1si , i ≤ j .

(1)

Accordingly, a simplicial map f : X −→ Y between simplicial sets is a sequence of
maps fn : Xn −→ Yn , for n ≥ 0 which commutes with face and degeneracy operators.
The set of simplicial maps from X to Y will be denoted byMorS(X ,Y ). When no con-
fusion is possible, a map between simplicial sets is understood to be a simplicial map.

The elements of Xn are called n-simplices, or just simplices if we do not need to
emphasize the dimension n. Simplices in the image of a degeneracy operator are called
degenerate simplices. In turn, all the simplices of the form di1di2 . . . dir (x), r ≥ 0 will
be called faces of x . Those of the form si1si2 . . . sir (x), r ≥ 1, are called degeneracies
of x .

The standard n-simplex�[n] is the simplicial set defined�[n] = Hom�([−], [n]).
It contains a fundamental simplex ın = Id[n] ∈ �[n]n and all of simplices are either
faces or degeneracies of ın . Actually, Yoneda’s lemma provides a natural isomorphism
MorS(�[n], X) ∼= Xn , assigning to a simplicial map ϕ : �[n] −→ X , the image of
the fundamental simplex, ϕ(ιn) ∈ Xn . We call ϕ the characteristic map of x . We will
often identify a simplex x ∈ Xn with its characteristic map�[n] x−→ X , denoted with
the same symbol.
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Minimality in diagrams of simplicial sets 1047

Given a face di ın ∈ �[n], the characteristic map is denoted di : �[n−1] −→ �[n].
Likewise, given a degeneracy si (ın), we have a characteristic map si : �[n +
1] −→ �[n]. It turns out that the set of maps di and si , 0 ≤ n, 0 ≤ i ≤ n, generate
all maps �[m] −→ �[n], n,m ≥ 0, subject to the dual relations (1). In particular, we
can identify�with the full subcategory of Swith objects�[n], n ≥ 0. Then, given an
arbitrary simplicial set X , the overcategory �↓X might be seen as an index category
for the simplices of X and we can express X as colimit of its simplices (cf. [10, I.2.1])

X ∼= colim�↓X�[n].

We will now describe how these considerations extend to the category of C-
diagrams, for a fixed small index category C. Then, we will also explain how the
category of C-diagrams inherits a cofibrantly generated simplicial model category
structure from that of S. We mainly follow [12] (in particular [12, 11.6.1]) but at the
same time we will introduce the convenient notation for next sections.

Given a small category C, we denote by SC the category of C-diagrams, namely,
the category of functors from C to S and natural transformations between them. Any
simplicial set X might be considered as a constant C-diagram, namely a diagramwhere
any object of C maps to X and any morphism maps to the identity of X .

Let c be an object of C and ıc : {c} → C the inclusion of the subcategory with a
unique object c and a unique morphism idc. Given a simplicial set Y , we will equally
denote by Y the functor defined on {c} that assigns Y to c. Then its left Kan extension
ıc,∗Y along the inclusion functor is a C-diagram that can be described on objects as

ıc,∗Y (d) = Y × MorC(c, d), d ∈ Ob(C),

and for amorphism f ∈ MorC(a, b), the inducedmap ıc,∗Y ( f ) : ıc,∗Y (a)−→ ıc,∗Y (b)
is defined as ıc,∗Y ( f )(y, g) = (y, f ◦g), for each simplex y of Y and g ∈ MorC(c, a).
(cf. [12, 11.5.25]). Furthermore, there is an adjunction

MorSC (ıc,∗Y , X) ∼= MorS(Y , X(c)). (2)

for each object c of C.
Recall that the boundary of �[n] is defined as the smallest simplicial subset �̇[n]

of �[n] containing the faces di ın , 0 ≤ i ≤ n, while the kth-horn �k[n] (0 ≤ k ≤ n,
n ≥ 1) is the smallest simplicial subset �[n] containing all of the faces di ın , i �= k.
Now, we extend these definitions to the category of SC .

Definition 2.1 Let C be a small category. For each object c of C we set

δcn = ıc,∗�[n]
δ̇cn = ıc,∗�̇[n]

λcn,k = ıc,∗�k[n]

for n ≥ 0 and 0 ≤ k ≤ n.
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Definition 2.2 Let �C be the full subcategory of SC with objects δcn , with c in C and
all n ≥ 0. We define the category �

op
C -sets as the category of functors from �

op
C to the

category of sets, and natural transformation between them.

By naturality of the left Kan extension, we have morphisms in �C ,

si : δcn+1 −−−→ δcn

di : δcn−1 −−−→ δcn

for all c ∈ Ob(C), n ≥ 0 and 0 ≤ i ≤ n, which are in turn induced by the simplicial
maps si : �[n + 1] −→ �[n] and di : �[n − 1] −→ �[n], respectively. For every
f ∈ MorC(a, b) and n ≥ 0 there is also a morphism

δ
f
n : δbn −−−→ δan

defined by (δ
f
n )c(z, h) = (z, h ◦ f ), for any c ∈ Ob(C), any simplex z ∈ �[n] and

any morphism h ∈ MorC(b, c).

Proposition 2.3 All morphisms of�C are compositions of the form δ
f
mdkr . . . dk1s j1 . . .

s jt .

Proof Take an arbitrary morphism η : δcn −→ δdm of �C . The adjoint map is a map of
simplicial sets

η̃ : �[n] −→ (δdm)c = �[m] × HomC(d, c) =
∐

HomC(d,c)

�[m].

Since the simplex �[n] is connected, the image η̃(�[n]) is contained in one of the
components of (δdm)c. Hence, we can factor η̃ as a map ϕ : �[n] −→ �[m] followed
by the inclusion ı f : �[m] −→ �[m] × HomC(d, c) defined by ı f (z) = (z, f ). It is
known that every map �[n] −→ �[m] is a composition of face and degeneracy maps
ϕ = dkr . . . dk1s j1 . . . s jt . So, η̃ is the composition shown in the left hand diagram

�[n]
dkr ...dk1 s j1 ...s jt

η̃

�[m] ı f
(δdm)c

δcn

dkr ...dk1 s j1 ...s jt
η

δcm
δ
f
m

δdm

Taking adjoints we obtain the right hand diagram, and thus η = δ
f
mdkr . . . dk1s j1 . . .

s jt . �
According to Proposition 2.3, a �

op
C -set X can be described as a family of sets

{Xc,n} indexed by objects c of C and natural numbers n ∈ N together with structural
maps
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Minimality in diagrams of simplicial sets 1049

di : Xc,n −−−→ Xc,n−1, 0 ≤ i ≤ n, n ≥ 1, c ∈ Ob(C)

si : Xc,n −−−→ Xc,n+1 0 ≤ i ≤ n, n ≥ 0, c ∈ Ob(C)

f : Xc,n −−−→ Xd,n f ∈ MorC(c, d), n ≥ 0,

satisfying the simplicial relations (1) and the naturality relations

f ◦ di = di ◦ f , and f ◦ si = si ◦ f , for all f and i . (3)

Proposition 2.4 Givena small categoryC, there is a natural isomorphismof categories

�
op
C -sets

∼=−−→ SC .

Proof A �
op
C -set X is mapped to a C-diagram ˜X where ˜X(c) is the simplicial set

with n-simplices Xc,n , face maps di : Xc,n −→ Xc,n−1, 1 ≤ n, 0 ≤ i ≤ n and
degeneracy maps si : Xc,n −→ Xc,n+1, 0 ≤ n, 0 ≤ i ≤ n. We assign the map
˜X( f ) : ˜X(a) −→ ˜X(b) induced by the structural maps of X , δ

f
n , n ≥ 0, to every

morphism f ∈ MorC(a, b).
The inverse functor assigns to a C-diagram Y the �

op
C -set Y given by Y (δcn) =

MorSC (δcn,Y ) ∼= HomS(�[n],Y (c)) ∼= Y (c)n , with structural maps induced by those

of each simplicial set Y (c), c ∈ Ob(C), and by δ
f
n : δbn −→ δan , for each n ≥ 0, and

each f ∈ Mor(C). �
We will use this result as an identification of the categories SC and �

op
C -sets. In

particular, by a C-diagram of simplicial sets we mean an object of either of these
categories, and we will choose the most useful description in each situation.

When a C-diagram X is viewed as a �
op
C -set, every element of every set Xc,n =

X(δcn) is called a simplex, and identifying Xc,n ∼= Mor�op
C -sets(δ

c
n, X), we equally

denote with the same letter a simplex x ∈ Xc,n and its characteristic map δcn
x−→ X ,

as we do for simplicial sets. In this case we can also decompose a C-diagram X as
colimit of its simplices

X ∼= colim�C↓Xδcn .

We will now explain the basic concepts and definitions that endow the category of
C-diagrams with the structure of a cofibrantly generated simplicial model category,
extending that of S.

Definition 2.5 A map of C-diagrams p : X −→ B is a fibration if for every diagram

λcn,k

i

X

p

δcn

θ

B

)
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1050 C. Broto et al.

where the solid arrows commute, there is a map θ , the dotted arrow, making both
triangles commutative.

A C-diagram X is fibrant provided the unique map X −→ ∗ from X to the constant
diagram with value a point is a fibration.

This reduces to the classical definition of Kan fibration when the index category C
is the trivial category with one object and one morphism. It clearly holds that a map
of diagrams X −→ B is a fibration if it restricts to a Kan fibration X(c) −→ B(c) of
every object c ∈ Ob(C).

Definition 2.6 We define weak equivalences of diagrams as those maps X −→ Y that
restrict to a weak equivalence of simplicial sets X(c) −→ Y (c) for each c ∈ Ob(C).

Definition 2.7 ([6, 2.4]) A map f : X −→ Y of SC is called free, if for every object c
of C and n ≥ 0, the map fc,n : Xc,n −→ Yc,n is injective and if there exists a set �( f )
of simplices of Y such that

(i) no simplex of �( f ) is in the image of f .
(ii) �( f ) is closed under degeneracy operators, and
(iii) for every object c of C, n ≥ 0, and every simplex y ∈ Yc,n which is not in

the image of fc,n , there exists a unique simplex b ∈ �( f ) and a unique map
h ∈ Mor(C) such that δhn (b) = y.

We will say that a C-diagram X is free if the map ∅ −→ X from the empty diagram is
free.

According to this definition a C-diagram X is free if there is a set � = �(X) of
simplices of X which is closed under degeneracies and generates X freely; namely,
for each simplex x ∈ X , there is a unique w ∈ �(X) and a unique morphism h in C,
such that δhn (w) = x . The set � is called a basis for X , and an element of � is called
a generator. We will call �n the subset of � consisting of all n-simplices of X that
belong to �n = � ∩ Xn . Similarly, �c = � ∩ Xc and �c,n = � ∩ Xc,n , for n ≥ 0
and c ∈ Ob(C).

In the case of a free map f : X −→ Y , we will also call a basis for f the set �( f )
over which f is free according to Definition 2.7.

Example 2.8 Let X be a C-diagram. For any n ≥ 0, c ∈ C, and any map ϕ in
MorSC (δ̇cn, X), the map ı : X −→ Y defined by the push-out diagram

δ̇cn
incl

θ

δcn

y

X
ı

Y

(4)

is a free map with�(ı) = {y}∪{iterated degeneracies of y}, where y is the n-simplex
of Y classified by the map y : δcn −→ Y . Moreover, if X is free with basis �(X), then
Y is also a free C-diagram with �(Y ) = �(X) ∪ �(ı)
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Minimality in diagrams of simplicial sets 1051

Actually, all freemaps and free C-diagrams can be obtained by a possibly transfinite
iteration of the above example. A free map between C-diagrams, ω : X −→ Y with
base �, can easily be seen to be the composition of a sequence

X −−−→ Y0 −−−→ Y1 −−−→ . . . −−−→ Yi −−−→ Yi+1 −−−→ . . . −−−→ Y

= colimi Yi

where each step Yi −→ Yi+1 is produced by a pushout diagram that generalizes Exam-
ple 2.8 from attaching a single simplex to the case of a collection of simplices of
dimension i + 1.

Conversely, any transfinite iteration of the construction of Example 2.8 is a free
map. Actually, a standard transfinite induction argument shows that given an ordinal
λ, and a λ-sequence of maps of C-diagrams

X0
ϕ1−−−→ X1

ϕ2−−−→ X2 −−−→ . . .
ϕβ−−−→ Xβ −−−→ . . .

with β < λ, where any of the maps Xβ −→ Xβ+1, β+1 < λ, is a free map and for any
limit ordinal γ < λ, the inducedmap colimβ<γ Xβ −→ Xγ is an isomorphism, we can
choose basis �β for the partial compositions ωβ : X0 −→ Xβ , such that ωα,β(�α) ⊆
�β if α < β and the composition

X0 −→ colimβ<λXβ

is a free map with basis �λ = colimβ<λ�β .
This shows in particular that in the category of C-diagrams the notion of free maps

and freeC-diagramsof [6], as stated inDefinition2.7, coincideswith that of relative free
cell complex and free cell complex in [12, 11.5.35]. This justifies the next definition
(cf. [6, 2.4], [12, 11.6.1]).

Definition 2.9 A map of C-diagrams is called a cofibration if it is a retract of a free
map. Likewise, a C-diagram is cofibrant if it is a retract of a free diagram.

If the index category is the trivial category with one object and one morphism, then
the concept of cofibration reduces to the classical notion for simplicial sets, where a
map is a cofibration if it is injective. If we have a category with two objects a and b
and a unique non-identity morphism f : a −→ b, then a C-diagram X is free if and
only if the map X( f ) is injective.

Given a discrete group G, a simplicial set X with an action of G can be seen as
a diagram defined over the category BG with one object and the elements of G as
morphisms. This is a free diagram if and only if G acts freely on X .

For an arbitrary small category C, if Y is a simplicial set and c is an object of C,
the C-diagram ıc,∗Y is a free diagram on generators � = Y × {Idc} ⊆ ıc,∗Y (c) =
Y × EndC(c). Likewise, if f : A −→ B is an inclusion of simplicial sets, then the
induced map ıc,∗ f : ıc,∗A −→ ıc,∗B is a free map. This applies in the next definition:
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1052 C. Broto et al.

Definition 2.10 Let C be a small category. The generating cofibrations of SC are the
maps

δ̇cn −−−→ δcn, for all c ∈ Ob(C), n ≥ 0,

induced by the inclusions �̇[n] ↪→ �[n].
The generating trivial cofibrations are the maps

λcn,k ↪→ δcn, for all c ∈ Ob(C), n > 0, and 0 ≤ k ≤ n,

induced by the inclusions �k[n] ↪→ �[n].
The category of C-diagrams also inherits a simplicial model category structure

from the category of simplicial sets, with structure natural functors, external product,
function complex and exponent functor.Wewill briefly recall these constructions. The
external product with simplicial sets is defined

×: �
op
C -sets × S −−−→ �

op
C -sets

defined by (X × K )c,n = Xc,n × Kn , and with structural maps induced by those of X
and K . Notice that we can similarly define a left product with simplicial sets. We use
both form without further explanation.

Definition 2.11 The function complex

mapC : �
op
C -sets × �

op
C -sets −−−→ S,

is defined, for two C-diagrams X and Y , as the simplicial set mapC(X ,Y ) with n-
simplices MorSC (X × �[n],Y ) or equivalently, the commutative diagrams in SC

X × �[n] ε̃

pr

Y × �[n]
pr

�[n] .

Now, if g ∈ MorS(�[n] × X ,Y ), its faces di g and degeneracies si g are given by
the compositions

�[n − 1]×X
di×1

�[n]×X
g

Y and �[n + 1]×X
si×1

�[n]×X
g

Y .

Finally, there is an exponent functor and

∧ : S × �
op
C -sets −−−→ S,

with XK = mapC(K , X), where K is the constant C-diagram.
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Minimality in diagrams of simplicial sets 1053

With the above definitions, the basic theory of simplicial sets extends to C-
diagrams. Indeed, SC becomes a cofibrantly generated simplicial model category [12,
11.6.1, 11.7.3]. In the next definition we collect the axioms for later reference.

Definition 2.12 ([12, 7.1.3, 9.1.6, and 11.1.2]) Let M be a category equipped with
three classes of morphisms called fibrations, cofibrations, and weak equivalences. A
fibration (respectively cofibration) which is also a weak equivalence is called a trivial
fibration (respectively trivial cofibration). Then, M is a model category [16] if it
satisfies the following axioms:

M1: The category M is closed under small limits and colimits.

M2: Given composable maps X
g

Y
f

Z in M, if any two of f , g and
f ◦ g are weak equivalences, then so is the third.

M3: If f is a retract of g and g is a weak equivalence, fibration or cofibration, then
so is f .

M4: Suppose that we are given a commutative solid arrow diagram

U

i

X

p

V Y

where i is a cofibration and p is a fibration. If either i is a trivial cofibration
or p is a trivial fibration, then the dotted arrow exists and makes the diagram
commutative.

M5: Every map f of M has two functorial factorizations:

(a) f = p ◦ i where p is a fibration and i is a trivial cofibration, and
(b) f = q ◦ j where q is a trivial fibration and j is a cofibration.

A model category M is said to be cofibrantly generated if

(1) There exists a set I of maps (called a set of generating cofibrations) that permits
the small object argument ([12, 10.5.15]) and such that a map is a trivial fibration
if and only if it has the RLP with respect to every element of I .

(2) There exists a set J of maps (called a set of trivial generating cofibrations) that
permits the small object argument and such that a map is a fibration if and only if
it has the RLP with respect to every element of J .

If M is a model category, then it is a simplicial model category if it is enriched
over simplicial sets, and the following two axioms hold:

M6: For every two objects X and Y of M and every simplicial set K there exist
objects X ⊗ K and Y K of M such that there are isomorphisms of simplicial
sets

hom(X ⊗ K ,Y ) ∼= hom(K , hom(X ,Y )) ∼= hom(X ,Y K )

that are natural in X ,Y and K .
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M7: If i : A −→ B is a cofibration in M and p : X −→ Y is a fibration in M, then
the map of simplicial sets

(i∗, p∗) : hom(B, X) −→ hom(A, X) ×hom(A,Y ) hom(B,Y )

is a fibration that is a trivial fibration if either i or p is a weak equivalence.

Remark 2.13 From the cofibrantly generated model structure for SC and Quillen Small
Object Argument ([16], [12, 10.5.16]), we obtain that any map ∅ −→ X in SC admits

a functorial factorization ∅ QX
∼

X , where QX is free and the first map
is a cofibration while the second map is a trivial fibration [12, 10.5.2, 11.2.1–1].

The following consequence of the axioms will be useful in later sections. The proof
can be seen in [12, 9.3.8].

Proposition 2.14 LetM be a simplicialmodel category. It i : A −→ B is a cofibration,
and K ⊆ L simplicial sets, the induced map

A ⊗ L
∐

A⊗K

B ⊗ K −−−→ B ⊗ L

is also a cofibration and it is a trivial cofibration if either i : A −→ B is a trivial
cofibration or the inclusion K ⊆ L is a weak equivalence.

Corollary 2.15 Themap δ̇cn×�[m]∪δcn×�k[m] ↪→ δcn×�[m] is a trivial cofibration.

3 Minimal fibrations of diagrams of simplicial sets

In this section we develop a theory of minimal fibrations in the context of diagrams of
simplicial sets, that generalizes the classical theory for simplicial sets [1,9,10,13,15].
We will show that under some restrictions on the shape of the index category C, the
theory ofminimal fibrations carries out to the case ofC-diagrams.WeproveTheoremA
that gives sufficient conditions under which a fibration of C-diagrams is fibrewise
equivalent to a minimal fibration. Corollary 3.12 shows that two fibrewise homotopic
minimal fibrations are unique up to isomorphism, thus the associatedminimal fibration
of Theorem A is unique up to isomorphism. Recall that a fibre homotopy equivalence
between fibrations with the same base space B is a map over B that admits a homotopy
inverse, also over B. It is understood that the homotopies defining the homotopy inverse
are also maps over B.

The concept of minimal fibration in this context is defined below, in Definition 3.3.
This is somewhat technical but it extends the classical definition and it seems to be
the appropriate choice to the arguments that follow. We will show that under some
restrictions on the shape of the index category every fibration with free total C-diagram
admits a strong fibrewise deformation retract which is a minimal fibration and unique
up to isomorphism (Theorem A and Corollary 3.12). Under the same restrictions,
Lemma 3.9 gives an alternative characterization of minimality that could be used as a
more intrinsic definition of the same concept.
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Definition 3.1 If C is a small category and p : X −→ B a fibration of C-diagrams, we
say that two simplices x, y ∈ Xc,n are p-homotopic, x �p y, if there is a fibrewise
homotopy from x to y relative to the boundary; that is, there is a homotopy

H : δcn × �[1] −−−→ X ,

such that

(i) H0 : δcn −→ X is the characteristic map of the simplex x and H1 : δcn −→ X is
the characteristic map of the simplex y,

(ii) H |δ̇cn×�[1] : δ̇cn × �[1] −→ X is a constant homotopy,
(iii) p ◦ H : δcn × �[1] −→ B is a constant homotopy.

Definition 3.2 Let C be a small category and p : X −→ B a fibration of C-diagrams.
Wewill say that a simplex y ∈ X is sub-p-homotopic to x , or that x precedes y, x � y,
if there exists a morphisms f ∈ Mor(C) such that f (x) �p y. We will write:

[x,−)
def= { y ∈ X | x � y }.

The following definition generalizes the concept of minimal fibration of simplicial
sets ([11], [15, 10.1]).

Definition 3.3 Let C be a small category. A fibration X −→ B in SC is said to be
minimal if X is free and given any two generators x, y of a base � of X , x � y
implies x = y. An object X of SC is called minimal if the map X −→ ∗ is a minimal
fibration.

The next lemma shows that if the condition of this definition holds for any one base
then it holds for every other base.

Lemma 3.4 Let C be a small category and p : X −→ B a fibration of C-diagrams
where X is a free C-diagram. If there is a base � of X such that given simplices
x, y ∈ �, x � y implies x = y, then the same holds for any other base of X.

Proof Assume that �′ is a different base set for X . Then for any x ∈ �′ there is a
simplex u ∈ � and an isomorphism f ∈ Iso(C) with f (u) = x . Since � is a base,
given x ∈ �, there is a unique u ∈ �′ and a unique morphism f ∈ Mor(C) such that
f (u) = x . But �′ is a base, so there is y ∈ �′ and g ∈ Mor(C) such that g(y) = u.
Then ( f ◦ g)(y) = x , but both y and x are in �′, and hence x = y and f ◦ g is the
identity morphism on the source of g. Now we also have (g ◦ f )(u) = u and u ∈ �,
so g ◦ f is also the identity over the source of f . Thus f is an isomorphism of C with
f −1 = g.
We can now conclude that �′ satisfies the same condition as �. Assume that

x, y ∈ �′ satisfy that x � y, that is, there is ϕ ∈ Mor(C) such that ϕ(x) �p y. We will
conclude that x = y. There are u, v in � and isomorphisms f , g ∈ Iso(C), such that
f (u) = x and g(v) = y. It follows that g−1(ϕ( f (u))) = g−1(ϕ(x)) �p g−1(y) = v,
so u � v and, by the assumption on �, u = v. Then, ( f ◦ g−1)(y) = x , but both x
and y are in the base set �′, so we have x = y. �
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Let C be a small category. Given a, b ∈ Ob(C), we declare a ∼ b provided that
there are morphisms a −→ b and b −→ a in C. This is an equivalence relation and the
set of equivalence classes Ob(C)/∼ becomes a poset with the order relation defined
by [a] ≤ [b] if and only if there is an arrow a −→ b in C. Notice that the definition of
≤ does not depend on the choice of representatives in the classes [a] and [b].
Definition 3.5 Wewill say that a small category C is artinian if it satisfies the descend-
ing chain condition on the poset (Ob(C)/∼,≤). Namely, if every descending chain
[a1] ≥ [a2] ≥ [a3] ≥ . . . in Ob(C)/∼ eventually stabilizes.

Definition 3.6 Let X be a C-diagram in S. A subdiagram of X consists of a subset X ′
of simplices of X which is in itself a C-diagram. This relation is denoted by X ′ ≤ X .

The following is a classical notion (see for example [14]):

Definition 3.7 An E I -category is a category C in which every endomorphism is an
isomorphism.

We need to introduce some notation now.

Notation 3.8 Since�k[n] is the subcomplex of�[n] generated by all of the faces di ın
of �[n], except for the kth face dkın , a map α : �k[n] −→ X is thus determined by
the restrictions to that faces. Accordingly, we will denote

α = (x0, . . . , xk−1,−, xk+1, . . . , xn),

where xi = α(di ın) is the simplex of X characterized by the restriction of α to the
i th face. The analogue notation α = (x0, . . . , xk−1, xk, . . . , xn) will be used for maps
α : �̇[n] −→ X , except that there are no blanks in this case.

More generally, a map ϕ : Z × �k[n] −→ X is written

ϕ = (α0, . . . , αk−1,−, αk+1, . . . , αn),

where for each i �= k, αi is the composition Z ×�[n−1] IdZ×di−−−→ Z ×�k[n] ϕ−−−→ X .
These same conventions extend to the case of C-diagrams. If X is a C-diagram,

a map u : δ̇nc −→ X is written u = (u0, . . . , un), where ui is the composition

δ
n1
c

di−→ δ̇nc
u−→ X .

Now we are ready to prove the main result of this section. It is stated as Theorem A
in the introduction.

Proof of TheoremA Fix an artinian E I -category C, a fibration p : X −→ B of C-
diagrams, and assume that X is a free C-diagram. We will construct a strong fibrewise
deformation retract q : X̂ −→ B, which is a minimal fibration of C-diagrams.

Consider a basis � of X . Let �′ be a minimal subset of � such that:

(1) Every element of � is preceded by an element of �′, that is, for every w ∈ �

there exists some x ∈ �′ such that x � w.
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(2) �′ contains degenerate representatives whenever it is possible. That is, if x ∈ �′
and [x,−) = [w,−) with w a degenerate simplex of �, then x is a degenerate
simplex.

The set �′ exists, since C is a small artinian E I -category. Proposition A.1 allows a
choice of a minimal subset �′ satisfying condition (1), and according to Remark A.2
we can refine the choice so that condition (2) is also satisfied.

Step 1. �′ is closed under degeneracy operators.
Choose an n-simplex w ∈ �′. Given a degeneracy operator sk , k = 0, . . . , n, we

must show that sk(w) ∈ �′.
Note that � is closed under degeneracy operators, so skw belongs to �n+1. Then,

there exists a simplex x ∈ �′
n+1 such that x � sk(w). There also exists a map

f ∈ Mor(C) such that f (x) �p skw, so in particular dk f (x) = dksk(w), and then
f (dkx) = w. Since w ∈ �′ ⊆ � there exists g ∈ Mor(C) such that g(w) = dkx . By
our choice of f and g, g f is an endomorphism, and hence an automorphism, so let
(g f )−1 be its inverse map. Now x = (g f )−1g f (x) �p (g f )−1g(skw), so skw � x .
Thus, [x,−) = [skw,−) and then by condition (2), x is a degenerate simplex.

Now, we have two degenerate simplices x and y = sk(w) in � and one precedes
the other. Since x � y, there exists f ∈ C such that f (x) �p y. These are p-
homotopic degenerate simplices in a simplicial set, so f (x) = y [15, 9.3]; but x and
y are in the same orbit, and then they must coincide since both belong to �, that is,
x = y = skw ∈ �′.

Step 2. The set A = { (̂X , ̂�) | ̂X ⊆ X , ̂X is free and ̂�, and ̂� ⊆ �′ } contains
maximal elements for the order relation defined on A by inclusion, namely (̂X , ̂�) ≤
(˜X , ˜�) if and only if both ̂X ⊆ ˜X and ̂� ⊆ ˜�.

The above relation clearly defines a partial order relation on A. Moreover A is non-
empty, since it contains the pair (〈�′

0〉, ̂�′
0), where 〈�′

0〉 is the C-diagram generated by
all of the 0-simplices of �′, and ̂�′

0 consists of all of the elements of ̂�′
0 and all their

degeneracies. More precisely, 〈�′
0〉 is the C-subdiagram of X whose set of n-simplices

at any c ∈ C is

〈�′
0〉c,n = { f (x) | x ∈ sn0�′

0 and f is a morphism of C with codomain c },

and ̂�′
0 = ∐

n≥0 s
n
0 (�′

0). Now ̂�′
0 ⊂ �′ since the latter is closed under degeneracy

operators. It is also clear that 〈�′
0〉 is freely generated by ̂�′

0. Thus, (〈�′
0〉, ̂�′

0) ∈ A. If
we take a chain {(̂Xi , ̂�i )}i∈I in A, its union (∪i∈I ̂Xi ,∪i∈I ̂�i ) is a C-subdiagram of
X and it is free with base set ∪i∈I∪̂�i ⊆ �′. Hence, it belongs to A and it is an upper
bound of the chain. Now Zorn’s Lemma implies that A contains maximal elements.

Step 3. Fix a maximal element (̂X , ̂�) of A. If w is an n-simplex of X such that

(i) w is in the orbit of an element of �′, and
(ii) dk(w) ∈ ̂X for each k = 0, . . . , n,

then w ∈ ̂X .
There is x ∈ �′ and f ∈ Mor(C) such that f (x) = w. Since dkw ∈ ̂X , there

exists z ∈ ̂� ⊆ ̂X and g ∈ Mor(C) such that g(z) = dkw. In particular, dkx ,
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dkw and z are in the same orbit of simplices of X . Since z ∈ ̂� ⊆ �, there is
h ∈ Mor(C) such that h(z) = dkx , and thus dkx ∈ ̂X . As this is true for each
k = 0, . . . , n, it follows that the subdiagram ̂X1 = ̂X ∪ 〈x〉 of X is free with base
̂�1 = ̂�∪{x}∪{iterated degeneracies of x} ⊆ �′ (see 2.8). Hence, (̂X1, ̂�1) ∈ A and
(̂X , ̂�) ≤ (̂X1, ̂�1). But (̂X , ̂�) is maximal in (A,≤), and so ̂X ∪〈x〉 = ̂X . Therefore
w ∈ ̂X , since f (x) = w.

Step 4. DefineB as the set that consists of all the pairs (Y , H), whereY is a subdiagram
of X containing ̂X and H : Y × �[1] −→ X is a homotopy satisfying:

– H0 maps Y into ̂X , being H0 the composition

Y ∼= Y × �[0] 1×d1−−−→ Y × �[1] H−−−→ X .

– H1 is the inclusion of Y in X , being H1 the composition

Y ∼= Y × �[0] 1×d0−−−→ Y × �[1] H−−−→ X .

– The restriction H |
̂X×�[1] to ̂X×�[1], is constant, and then equal to the composition

̂X × �[1] pr−−→ ̂X
incl−−→ X .

– p ◦ H is also constant, hence equal to the composition

Y × �[1] pr−−→ Y
incl−−→ X

p−−→ B.

We can define a partial order ‘≤’ over B as follows: (Y , H) ≤ (Y ′, H ′) if Y ⊆ Y ′
and H ′|Y×�[1] = H . The diagram ̂X with the constant homotopy belongs toB, and so
B �= ∅. Moreover, if we take a chain {(Yi , Hi )}i∈I of B, its colimit (Y∞, H∞), given
by Y∞ = ⋃

i∈I Yi and H∞(x, t) = Hi (x, t) if x ∈ Yi , is an element ofB, which is in
turn an upper bound of the chain inB. ThenB has maximal elements again by Zorn’s
lemma.

Step 5. If (Y , H) is maximal in B, then Y = X .
Assume that Y �= X and choose a simplex z ∈ X of lowest dimension such that

z /∈ Y . It is non-degenerate (otherwise it would belong to Y ) and its faces belong
to Y . Assuming z ∈ Xd,n , let z : δdn −−−→ X be the map classified by z. Then, the
restriction to the boundary of δdn factors through Y , so we denote by ż : δ̇dn −−−→ Y
the restriction. Then, Y ⊆ Y ∪ż δdn ⊆ X . We will extend the homotopy H to Y ∪ż δdn .

To this aim, we first use the homotopy H to find a new simplex, fibrewise
homotopic to z (though not relative to boundary), with boundary inside ̂X . Since
H ◦ (ż × 1) : δ̇dn ×�[1] −→ X coincides with z : δdn ×�[1] −→ X in the intersection
δ̇dn × {1}, we have a solid arrow commutative diagram

δ̇dn × �[1] ∪ δdn × {1} H◦(ż×1)∪z

incl

X

p

δdn × �[1] p◦z◦pr

G

B.

123



Minimality in diagrams of simplicial sets 1059

As the left vertical map is a trivial cofibration (see 2.15), according to the homotopy
lifting property there is a homotopy G that makes the whole diagram commutative.
Notice that G1 = z, while G0 determines another simplex z1 ∈ X with boundary
ż1 ∈ ̂X . The restriction to the boundary is G|δ̇dn×�[1] = H ◦ (ż × 1).

Now there exists a simplex x ∈ �′ that precedes z1, x � z1, such that there exists
f ∈ Mor(C) with y = f (x) �p z1. Since ẋ = ż1 ∈ ̂X , Step 3 implies that y ∈ ̂X .
We now combine the homotopy G with a chosen fibrewise homotopy F between

z1 and y, relative to boundary. This is achieved by means of the homotopy lifting
property applied to the solid arrow commutative diagram

δdn × �0[2] ⋃

δ̇dn × �[2]
inclincl

(−,G,F)
⋃

H◦(ż×1)◦(1×s0)
X

p

δdn × �[2]

J

ct
=p◦pr B.

Let J0 be the restriction of J to the zero edge, namely, the composition

δdn × �[1] 1×d0−−→ δdn × �[2] J−−→ X .

Then, J0 is a fibrewise homotopy from y to z, with restriction to the boundary
J0|δ̇dn×�[1] = H ◦ (ż × 1). This equality makes possible an extension ˜H : (Y ∪ż

δdn ) × �[1] −→ X of H , that is defined by the push-out diagram:

δ̇dn × �[1] ż×1

incl×1

Y × �[1]

H

δdn × �[1]

J0

(Y ∪ż δdn ) × �[1]
˜H

X .

After identifying Y ∪ż δdn with its image Y ∪ 〈z〉 = Im(incl ∪ż z) ⊆ X , the pair
(Y ∪ 〈z〉, ˜H) contradicts the maximality of (Y , H). It follows that Y = X .

Step 6. The restriction q = p|
̂X is a minimal fibration.

Since p|
̂X is a retraction of p, it is a fibration. By construction ̂X is a free diagram

and if w is a generator of ̂X , then it is also a generator of X that belongs to �′. Then,
none of such simplices can be sub-p-homotopic, as otherwise theminimality condition
that satisfies �′ would be contradicted. Therefore q is a minimal fibration. �

Now we will establish a minimality condition for fibrations.
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Proposition 3.9 Let C be an artinian E I -category. Assume that X is a free C-diagram
and p : X −→ B is a fibration in SC . Then p is minimal if and only if any strong
fibrewise deformation retract of X coincides with X.

Proof Assume that p : X −→ B is minimal and let D ≤ X be a strong fibrewise
deformation retract of X , and denote by j and r the inclusion and the retraction,
respectively. There is a commutative diagram of fibrations:

D
j

p|D

X

p

r
D

p|D
B

Assume that D and X coincide up to dimension n − 1, and let z be a simplex of X of
dimension n, with characteristic map δcn

z−−→ X . Assume furthermore that z ∈ � =
�(X) belongs to the generating set of X .

Let H : X×�[1] −→ X be a fibrewise homotopy relative to D between the identity
IdX and r ◦ j . Since the boundary ż of the simplex z belongs to D, the composition

δcn × �[1] z×1−−−→ X × �[1] H−−−→ X

defines a p-homotopy z �p jr(z). If w is the generator of the orbit of jr(z), w � z.
Since both z and w are in � and p : X −→ B is minimal, they must coincide. Hence
there is an endomorphism f of C such that with f (z) = jr(z); but as C is an E I -
category, f is an isomorphism, and thus z = f −1(r(z)). Since r(z) belongs to D, it
holds that z ∈ D. So we have proved that every generator of X in dimension n belongs
to D; and as they coincide in dimension n − 1, we obtain by induction the desired
equality D = X .

The other implication is a consequence of Theorem A. �
The next proposition states a useful technical property of minimal fibrations.

Proposition 3.10 Let C be a small E I -category, p : X −→ B a fibration of C-diagrams
and Z another C-diagram. Assume that α, β : Z −→ X are fibrewise homotopic maps
and p is a minimal fibration. If β is an isomorphism, then α is also an isomorphism.

Proof Wewill show that α is an isomorphism by induction on the dimension n. Notice
that for negative dimension α is the isomorphism between empty sets. Hence, we will
assume that α is an isomorphism in dimension k < n, and will prove that it is also an
isomorphism in dimension n.

Step 1. The map α is surjective in dimension n.
It is sufficient to show that every n-simplex of � = �(X) is in the image of α. Let

x be an n-simplex of � = �(X). By induction hypothesis, ẋ ∈ Im(α), and then if
x : δcn −→ X is the characteristic map for x (that we still denote by the same symbol),
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there is a map u : δ̇cn −→ Z and a commutative diagram in SC :

δ̇cn

incl

(u0,...,un)
Z

α

δcn
x

X .

Let H : Z ×�[1] −→ X be a fibrewise homotopy from β to α, that is, H0 = β and
H1 = α. Then, the above diagram extends to a new diagram of solid arrows

δ̇cn × �[1] ∪ δcn × {1}
incl

H◦((u0,...,un)×1)∪x
X

p

δcn × �[1]

G

ct p(x)
B,

where ct p(x) is the constant homotopy of the characteristic map of the simplex p(x) ∈
B: δcn

x−−→ X
p−−→ B. Corollary 2.15 implies that the left side vertical map is a trivial

cofibration, and so Axiom M4 of 2.12 implies that there is a homotopy G : δcn ×
�[1] −→ X making the whole diagram commutative. By construction G1 coincides
with the characteristic map of x . Then,w = G0 determines a new simplexw ∈ X such
that p(w) = p(x) and w and x are homotopic, although not relative to the boundary.
In fact, G|δ̇cn×�[1] = H ◦ ((u0, . . . , un) × 1) is not necessarily a constant homotopy.

Notice that by construction ẇ = (β(u0), . . . , β(un)), and since β is an isomor-
phism, there is a simplex z ∈ Z such that β(z) = w, and then ż = (u0, . . . , un). Now,
we want to compose suitably the homotopies G from w to x and H ◦ (z× 1), which is
a homotopy from β(z) = w to α(z). This is achieved by obtaining again a lifting F :

δ̇cn × �[2] ∪ δcn × �0[2]
incl

H◦((u0,...,un)×s1)∪(−,H◦(z×1),G)
X

p

δcn × �[1] 1×d0
δcn × �[2]

F

ct p(x)
B.

The composite F ◦ (1 × d0) is now a homotopy from x to α(z). The restriction to
the boundary is F ◦ (1 × d1)|δ̇cn×�[1] = H ◦ (u × s1) ◦ (1 × d0) = H ◦ (u × d0s0),
which is the constant homotopy of H1 ◦ u, the characteristic map of α(u), and then
ẋ = α(ż) = α(u). Let y ∈ � be the generator of the orbit of the simplex α(z)
in X . We have shown that y � x , and hence y = x since both are in �. Since C
is an E I -category, there is an isomorphism f ∈ C such that f (x) = α(z). Hence,
x = α( f −1z) ∈ Im(α).

Step2. If z andw are twon-simplices of Z such thatα(z) = α(w), thenβ(z) �p β(w).
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By the induction hypothesis, z and w must have the same boundary. Since α(z) =
α(w), also α(di z) = α(diw) for all i = 0, . . . , n. But α is injective in dimension
n − 1, and thus di z = diw for all i = 0, . . . , n, that is, ż = ẇ.

As in Step 1, let H be a fibrewise homotopy from β to α. Then, H ◦ (w × 1) is
a homotopy from β(w) to α(w) (or rather the corresponding characteristic maps).
Similarly, H ◦ (z × 1) is a homotopy from β(z) to α(z). But α(w) = α(z), so we will
combine both homotopies in order to get another one between β(w) and β(z).

Notice that H ◦ (w × 1) and H ◦ (z × 1) coincide over the boundary ẇ = ż, and
denote by

h = H ◦ (w × 1)|δ̇cn×�[1] = H ◦ (z × 1)|δ̇cn×�[1]

the restriction. We have a commutative diagram of solid arrows

δcn × �2[2] ∪ δ̇cn × �[2]
incl

(H◦(z×1),H◦(w×1),−)
⋃

h◦(1×s0)
X

p

δcn × �[1] (1×d2)
δcn × �[2]

G

ct p(z)=ct p(w)
B

and so, by Corollary 2.15 and the fact that p : X → B is a fibration, there is a lift G
and the composition G ◦ (1 × d2) is a p-homotopy from β(w) to β(z).

Step 3. The map α is injective in dimension n.
Let x and y be n-simplices of Z such that α(x) = α(y). Since β : Z −→ X is an

isomorphism, Z is also a free C-diagram with base set �(Z) = β−1(�(X)). Then,
there are x0, y0 ∈ �(Z) and f , g in C such that

f (x0) = x and g(y0) = y.

Notice that f (α(x0)) = α(x) = α(y) = g(α(y0)), so there exists w ∈ �(X) and
morphisms h, l in C such that

h(w) = α(x0), l(w) = α(y0) and f ◦ h = g ◦ l.

By Step 1, α is surjective in dimension n, so there exists v ∈ Z such that α(v) = w,
and thus we have α(h(v)) = h(α(v)) = h(w) = α(x0) and α(l(v)) = l(α(v)) =
l(w) = α(y0). Therefore, we can apply Step 2 in order to conclude that

β(h(v)) �p β(x0) and β(l(v)) �p β(y0).

Now, there is also a simplex u ∈ �(X) and amorphism r inC such that r(u) = β(v).
Then h(r(u)) = h(β(v)) = β(h(v)) �p g(x0), and also l(r(u)) = l(β(v)) =
β(l(v)) �p β(y0), so we have shown that

u � β(x0) and u � β(y0).

123



Minimality in diagrams of simplicial sets 1063

However, x0, y0 ∈ �(Z), and hence the three simplices u, β(x0), β(y0) are in
�(X). Since p : X −→ B is minimal, β(x0) = u = β(y0) and h ◦ r = l ◦ r must be
an endomorphism, and then an automorphism of C. Furthermore, x0 = y0 since β is
isomorphism. Finally, we have f ◦ (h ◦ r) = ( f ◦ h) ◦ r = (g ◦ l) ◦ r = g ◦ (l ◦ r),
thus f = g. So we obtain x = f (x0) = g(y0) = y. �
Remark 3.11 It is not true in general that a minimal fibration in SC is minimal object-
wise, that is, if p : X −→ B is a minimal fibration of C-diagrams, then it is not always
true that for every object a of C, pa : Xa −→ Ba is a minimal fibration in S. The fol-

lowing is an illustrative example. Consider the category C = {a f−→ b
g←− c} and a

minimal fibration p : X −→ B, where X is a free diagram. In this case pa : Xa −→ Ba

and pc : Xc −→ Bc are minimal, but there might exist generators z ∈ Xa and w ∈ Xc

such that f (z) �= g(w) and f (z) �pb g(w), so pa : Xa −→ Ba would not be a
minimal fibration of simplicial sets.

Corollary 3.12 Any two minimal fibrations over a diagram B that are fibrewise homo-
topy equivalent, are isomorphic.

Proof Let p : X → B and q : Y → B be minimal fibrations over B and let
α : X → Y and β : Y → X be fibrewise homotopy inverses. The composition β ◦α is
then fibrewise homotopic to the identitymap of X , and so Proposition 3.10 implies that
β ◦α is an isomorphism. A similar argument shows that α ◦β is also an isomorphism,
hence both α and β are isomorphisms over B. �

We end this section with an example showing how Theorem A fails on non-artinian
index categories.

Example 3.13 Write N for the poset of non-positive integers { · · · < n < n + 1 <

· · · < −1 < 0 }. A N -diagram X is a sequence of spaces and maps

· · · fn−−−→ Xn
fn+1−−−→ Xn+1

fn+2−−−→ · · · f−1−−−→ X−1
f0−−−→ X0.

Assume that each Xi is non-empty, fibrant and connected, and that each fn is injective.
Then

(1) X is a fibrant and it is a free diagram if and only if each simplex has only a finite
number of preimages.

(2) X is never minimal and it does not contain a minimal retract.

In any case X is fibrant since each Xi is a fibrant simplicial set.
Define � as the union of the sets �n , n ≤ 0, where �n is the set of simplices of

Xn that do not belong to the image of fn : Xn−1 −→ Xn . If every simplex has a finite
number of preimages in the diagram, then every simplex is the image of an element
of � by a morphism of the index category; as since each fi is injective, � is a base
and X is a free diagram. If for some n ≤ 0 there is a simplex x ∈ Xn which is in the
image of fn ◦ · · · ◦ fm for all m < n, then X is not free. If it was free with base �′,
then there would be a generator y ∈ �′ with fn ◦ · · · ◦ fr+1(y) = x , for y ∈ Xr .
In this situation we could find a preimage x ′ of x in Xr−1, and hence there would be
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another generator z ∈ �′, z ∈ Xs for some s > r such that fr−1 ◦ · · · ◦ fs+1(z) = x ′.
But, since each fi is injective, we would also have fn ◦ · · · ◦ fr ◦ · · · ◦ fs+1(z) = x
and this would contradict uniqueness of generators mapping to a fixed simplex.

Assuming that X is free, we show that it cannot beminimal. Suppose on the contrary
that it was minimal. A base � must contain 0-simplices, so for a certain n there exists
a 0-simplex x in �n . But since the precedent Xi , i < n, are non-empty, there must be
another m < n and a 0-simplex y in �m . Since fn ◦ · · · ◦ fm+1(y) ∈ Xn , and Xn is
connected, we have y � x and this would imply x = y, that contradicts m < n.

4 C-twisted cartesian products and C-fibre bundles
This section contains the proof of Theorem B. After generalizing the concepts of
twisted cartesian product (TCP) and fibre bundle to the category of C-diagrams, we
show that the classification of C-fibre bundles reduces to the classification of principal
G-fibre bundles, always with constant base C-diagram. The theory of minimal fibra-
tions developed in Sect. 3 applies then to show that the classification of fibrations of
C-diagrams over constant base, where C is an artinian EI-category, reduces to that of
C-fibre bundles over B.

Recall that a simplicial groupG is a functorG : �op −→ Groups. It can be seen as
a sequence of groups {Gn}n≥0 together with face and degeneracy operators subject to
the same relations (1) as simplicial sets. The composition with the underlying functor
U : Groups −→ Sets gives the underlying simplicial set of a simplicial group.

Definition 4.1 Let C be a small category. A left action of a simplicial group G on a
C-diagram F is a map of C-diagrams

t : G × F −−−→ F

denoted t(g, x) = g · x , that satisfies the usual axioms for a group action, namely, for
any n ≥ 0, c ∈ Ob(C), g, h ∈ Gn and x ∈ Fc,n , g · (h · x) = (gh) · x and en · x = x
if en denotes the unit of Gn .

Given a C-diagram F , the simplicial group of automorphisms of F is the subsim-
plicial set autC(F) of mapC(F, F) which consists of the commutative diagrams

F × �[n] ε̃

pr

F × �[n]
pr

�[n]

in which the horizontal map is invertible. It clearly becomes a simplicial group that
acts on F by evaluation:

ev : autC(F) × F −−−→ F .
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That is, given ε̃ and a simplex x : δcn −→ F , ev(̃ε, x) = ε(x, ιn), where ε is the
composite of ε̃ and the projection F × �[n] −→ F .

Sometimes we express the action in its adjoint form ρ : G −→ autC(F). Notice
that in that way, an element g ∈ Gn determines an isomorphism of C-diagrams
ρ(g) : F × �[n] −→ F × �[n] over �[n]. Now, given g ∈ Gn and x ∈ Fn with
characteristic maps g : �[n] −→ G and x : δcn −→ F , the action g · x is characterized
by the composition

δcn
d−−−→ �[n] × δcn

g×x−−−→ G × F
·−−−→ F .

The classical notion of twisting function will be crucial in the sequel.

Definition 4.2 ([15, Sect. 18]) LetG be a simplicial group and B a simplicial set. Then
a twisting function t : B −→ G is a collection of functions {tn : Bn −→ Gn−1}n≥1 that
satisfy:

di tn+1(v) = tn(di+1v), i ≥ 1,

si tn(v) = tn+1(si+1v), i ≥ 0,

d0tn+1(v) = [tn(d0v)]−1 · tn(d1v),

tn+1(s0v) = en,

for all n ≥ 1.

Now we have the ingredients we needed in order to define C-twisted cartesian
products:

Definition 4.3 Let G be a simplicial group and F a C-diagram with a left action of
G. Let B be a simplicial set and t : B −→ G a twisting function, then the C-twisted
cartesian product B ×t F is the C-diagram with simplices

(B ×t F)c,n = Bn × Fc,n

and structural operators

d0(b, x) = (d0(b), t(b) · d0(x))
di (b, x) = (dib, di x), i ≥ 1,

si (b, x) = (si b, si x), i ≥ 0,

f (b, x) = (b, f (x)).

For short, we will frequently refer to a C-twisted cartesian product simply as a
C-TCP.

Once we have extended the concept of twisted cartesian product, we have to deal
with fibre bundles. To develop this notion in the context of C-diagrams of spaces we
will focus on maps p : X −→ B of SC , where B is a constant diagram to the simplicial
set B. Under this assumption, the classical concepts about local triviality, atlases and
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structural group (see [15, 11.8]) are generalized, in such a way that we can recover
again the theory of C-twisted cartesian products over a constant base space.

Definition 4.4 Let F be a C-diagram and B a simplicial set. A map p : X −→ B in SC ,
where B is regarded as a constant diagram, will be called a C-fibre bundle with fibre
F if p is an epimorphism and for every n-simplex v ∈ B there exists an isomorphism
of C-diagrams, αp(v) : �[n] × F −→ �[n] ×B X , such that the following diagram
commutes:

�[n] × F
αp(v)

∼=

proj

�[n] ×B X
ṽ

p̃

X

p

�[n]
v

B.
�

(5)

A set of isomorphisms { αp(v) | v ∈ Bn, n ≥ 0 } making commutative the diagram
(5) for each simplex v of B, is called a C-atlas for p.

Set also βp(v) = ṽ ◦αp(v). Notice that the elements αp(v) are isomorphisms over
�[n], while βp(v) ∈ mapC(F, X)n are injections such that the diagram

�[n] × F
βp(v)

proj

X

p

�[n]
v

B

(6)

is a pullback diagram of C-diagrams.
Conversely, given a map βp(v) making diagram (6) commutative and a pullback

diagram, there is a unique factorization βp(v) = ṽ ◦ αp(v), where αp(v) : �[n] ×
F −→ �[n] ×B X is an isomorphism making (5) commutative, since the right hand
square of diagram (5) is a pullback diagram.

It follows that sets ofmaps {αp(v)} and {βp(v)} determine each other.When talking
about atlases we will choose {αp(v)} or {βp(v)} depending on the context, without
further explanation when there is no possible confusion.

Given two atlases {αp(v)} and {̃αp(v)} of p, αp(v)−1α̃p(v) ∈ autC(F)n , and con-
versely, if for every v ∈ Bn we choose (γ (v)) ∈ autC(F)n , then {αp(v)γ (v)} is
another atlas.

In the sequel we translate to the context of diagrams some classical notions of
Bundle Theory.

Definition 4.5 In the previous notation, the atlas is normal provided βp(siv) =
siβp(v) ∈ HomC(F, X)n+1, for each simplex v of Bn , 0 ≤ i ≤ n.

Notice that this equality holds exactly when αp(v) ◦ (si × 1) = (̃si × 1) ◦ αp(siv).
In other words, the top left square of the following diagram commutes:
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�[n] × F
αp(v)

∼= �[n] ×B X X

p

�[n + 1] × F

si×1

αp(siv)

∼= �[n + 1] ×B X

s̃i×1

�[n] v
B.

�[n + 1]

si

siv

If {βp(v)} is an atlas, we can always redefine it over the degenerate simplices using
the following definition dimensionwise

{

β ′
p(siv) := siβp(v), v ∈ Bn, 0 ≤ i ≤ n,

β ′
p(v) := βp(v), if v is non-degenerate,

so it is shown by induction on n that the new atlas {β ′
p(v)} is well-defined and normal.

Indeed, it is clearly well-defined on 0-simplices. Assume that it is well-defined on
n-simplices and that we have two expressions siv = s jv′ for a degenerate simplex of
dimension n + 1. It follows that v′ = si d j (v) and then s jβp(v

′) = siβp(v). Thus,
upon replacing {βp(v)} by {β ′

p(v)} we can assume that a given atlas is normal. (cf. [1,
pg. 648], [5, 6.5], [15, Sect. 19]).

We turn now our attention to face operators. In general βp(div) and diβp(v) will
differ by an automorphism ξ ip(v) ∈ autC(F)n−1, diβp(v) = βp(div) ◦ ξ ip(v), as it is
shown in the following commutative diagram:

�[n − 1] × F
di×1

ξ ip(v)

�[n] × F
αp(v)

∼= �[n] ×B X X

p

�[n − 1] × F
αp(di v)

∼= �[n − 1] ×B X

˜di×1

�[n] v
B.

�[n − 1]

di

di v

(7)

We will refer to { ξ ip(v) | v ∈ Bn, 0 ≤ i ≤ n } as the set of transformation elements
associated to the atlas {αp(v)}. The following notions generalize classical properties
of the atlases:

Definition 4.6 ([1, IV.2.4], [5, 6.5], [15, 19.1])

(1) An atlas {αp(v)} is regular if for every v ∈ Bn and 1 ≤ i ≤ n, ξ ip(v) = en−1,
where en−1 is the identity element of autC(F)n−1.

(2) Assume that G is a subgroup complex of autC(F). We will say that {αp(v)} is a
G-atlas if for each simplex v of B, ξ ip(v) ∈ G.

(3) Two G-atlases {αp(v)} and {̃αp(v)} are G-equivalent if for each v ∈ B, there
exists γ (v) ∈ G such that α̃p(v) = αp(v)γ (v).

123



1068 C. Broto et al.

Now we can finally define G-C-fibre bundles:
Definition 4.7 A G-C-fibre bundle is a C-fibre bundle together with a G-equivalence
class of G-atlases. We call G the structural group of the C-fibre bundle.

Notice that the regularity condition ξ ip(v) = en−1 is equivalent to βp(div) =
diβp(v), for i > 0.

In order to work with nice atlases in our G-C-fibre bundles, we need the following
statements, that in turn generalize classical results with essentially the same proof.

Proposition 4.8 ([1, 2.5], [5, 6.6], [15, 19.2]) Every equivalence class of G-atlases
contains a regular G-atlas.

Proposition 4.9 ([15, 19.4]) The transformation elements {ξ0p(v)} of a regular G-atlas

define a twisting function ξ0p : B −→ G.

From now on, given any G-C-bundle we may suppose that we are dealing with
regular and normalized atlases. The following definition is a generalization of the
concept of G-map and G-equivalence (cf. [15, 19.1]) to the context of G-C-fibre
bundles.

Definition 4.10 If p : X −→ B and p′ : X ′ −→ B are G-C-fibre bundles with fibre
F , a G-map from p to p′ is a map of C-diagrams h : X −→ X ′ such that given G-
atlases {αp(v)}, {αp′(v)} of p and p′, respectively, there exists γ (v) ∈ Gn such that
hβp(v) = βp′(v)γ (v); that is, the following diagram commutes:

�[n] × F
αp′ (v)

�[n] ×B X ′ v̂′
X ′

p′�[n] × F

γ (v)

αp(v)
�[n] ×B X

v̂
X

p

h

�[n] − �[n]
v

B

Here we write βp(v) = ṽ ◦ αp(v) and β ′
p(v) = ṽ′ ◦ α′

p(v), as usual.
If h is a natural isomorphism we will say that p and p′ are G-equivalent. When

G = autC(F), an isomorphism h : X −→ X ′ over B is automatically an autC( f )-
equivalence. In this case we say that the two C- fibre bundles are equivalent, with no
further mention of the structural group.

Recall (cf. [15, Sect. 20]) that two twisting functions t, t ′ : B −→ G are G-
equivalent if there is a degree-preserving function γ : B −→ G such that

t ′(v) · d0γ (v) = γ (d0v) · t(v), (8)

diγ (v) = γ (div), i > 0, (9)

siγ (v) = γ (siv), i ≥ 0, (10)

and this is an equivalence relation.
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Proposition 4.11 Two G-C-fibre bundles are G-equivalent if and only if the corre-
sponding twisting functions are G-equivalent.

Proof Let p1 : X1 −→ B and p2 : X2 −→ B be two G-C-fibre bundles. Choose G-
atlases {α1(v)} and ({β1(v)}), and {α2(v)} and ({β2(v)}) for p1 and p2 respectively.

If p1 and p2 are G-equivalent, then by definition there is a function γ : B −→ G
with h ◦ β2(v) = β1(v) ◦ γ (v), for each simplex v of B. Then, if t1, t2 denote the
respective twisting functions, we have βi (d0v) ◦ ti (v) = d0(βi (v)), i = 1, 2. Hence,

β1(d0v) ◦ γ (d0v) ◦ t2(v) = h ◦ β2(d0v) ◦ t2(v)

= h ◦ d0(β2(v))

= d0(h ◦ β2(v))

= d0
(

β1(v) ◦ γ (v)
)

= d0(β1(v)) ◦ d0(γ (v)) = β1(d0v) ◦ t1(v) ◦ d0(γ (v)),

and since β1(d0v) is injective γ (d0v) ◦ t2(v) = t1(v) ◦ d0(γ (v)). This is the first
condition above (8) and the other two conditions follow similarly. Therefore, t1 and
t2 are G-equivalent.

Reading in reverse, the same argument proves that if t1 and t2 are G-equivalent,
then p1 and p2 are G-equivalent G-C-fibre bundles. �

The above notion of G-equivalence is translated to the case of C-TCP’s as follows.
Definition 4.12 Two C-TCP’s, B ×t F and B ×t ′ F , with structural group G are G-
isomorphic if there is a function γ : B −→ G such that h : B×t F −→ B×t ′ F defined
by h(v, x) = (b, γ (v)x) is an isomorphism of simplicial sets.

The twisting functions codify, in fact, the notion of G-isomorphism between C-
TCP’s:

Proposition 4.13 Two C-TCP’s B ×t F and B ×t ′ F with structural group G are
isomorphic over B if and only if the twisting functions t and t ′ are equivalent.

Proof It is easily checked that a function γ : B −→ G satisfies conditions (8), (9),
and (10) if and only if h : B ×t F −→ B ×t ′ F defined as h(v, x) = (v, γ (v)x) is
simplicial. �
Proposition 4.14 Let p : X −→ B be a C-fibre bundle with fibre F and regular G-
atlas {αp(v)}. Then the transformation elements {ξ0p(v)} define a C-twisting map

ξ0p : Bn −→ Gn−1 and thereby B ×ξ0p
F becomes a C-TCP with fibre F and group

G. Furthermore there is an isomorphism h : B ×ξ0p
F −→ X of C-fibre bundles with

group G.

Proof By Proposition 4.9, ξ0p is a twisting function. We can now form the C-TCP
B×ξ0p

G with a projection B×ξ0p
G −→ B which is indeed a principal G-fibre bundle.

Then, we obtain a new C-fibre bundle as B×ξ0p
F ∼= (B×ξ0p

G)×G F −→ B. We will

now construct a G-equivalence h : B ×ξ0p
F −→ X over B.
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For any n ≥ 0, c ∈ Ob(C), v ∈ Bn , and z ∈ Fc,n , define hc(v, z) = βpc (v)(ın, z) ∈
Xc,n . By Proposition 4.9, hc is an isomorphism for every c ∈ C. It remains to show
that for every f : c −→ d ∈ C the following square commutes:

B ×ξ0pc
Fc

hc

1×Ff

Xc

X f

B ×ξ0pd
Fd hd

Xd .

Take an n-simplex (v, z) in B ×ξ0pc
Fc and evaluate it in the above square, that

is, X f hc(v, z) = X f βpc (v)(ın, z) and hd(1 × Ff )(v, z) = hd(v, Ff (z)) =
βpd (v)(ın, Ff (z)). Since p is a C-fibre bundle it looks locally as the diagram (7),
which is commutative, and therefore X f βpc (v)(ın, z) = βpd (v)(1×Ff )(ın, z), where
βpd (v)(1 × Ff )(ın, z) = βpd (v)(ın, Ff (z)). �

Now we can prove the key correspondence between principal G-fibre bundles and
G-C-fibre bundles:
Theorem 4.15 Let C be a small category, F a C-diagram, and G a simplicial group
with a left action on F. Given a simplicial set B, there is a bijection of sets

⎧

⎨

⎩

Isomorphism classes of
principal G-fibre bundles
over B

⎫

⎬

⎭

�−−−−−−−→∼=

⎧

⎪

⎨

⎪

⎩

G-equivalence classes of
G-C-fibre bundles over B
with fibre F

⎫

⎪

⎬

⎪

⎭

which assigns the G-class of G-C-fibre bundles represented by p = ξ ×G 1 : E ×G

F −→ B to the class of a principal G-fibre bundle ξ : E −→ B.

Proof We first check that � is well-defined. A principal G-fibre bundle ξ : E −→ B
is locally trivial, hence p : E ×G F −→ B is also locally trivial, and then a C-fibre
bundle. Furthermore, the transformation elements of ξ belong to G and provide a
G-atlas for p, hence p is really a G-C-fibre bundle. Finally, if ξ and ξ ′ are isomorphic
principal G-fibre bundles, they have the same twisting functions by Proposition 4.11,
and then Proposition 4.13 implies that p and p′ are G-equivalent.

We state now the surjectivity of �. Given a G-C-fibre bundle p : X −→ B, pick
a regular G-atlas, so the transformation elements form a G-twisting function. This
function determines a C-TCP ξ : B ×t G −→ B, which is a principal G-fibre bundle.
Then we should check that �([ξ ]) = [p], that is, that there is a G-equivalence over

B: (B ×t G) ×G F
∼=−→ X . But this is Proposition 4.14.

Finally, let us check that� is injective. Let [ξ1] and [ξ2] be two isomorphism classes
of principal G-fibre bundles such that �([ξ1]) = �([ξ2]). Fix representatives of these
isomorphism classes that are C-TCP’s, ξi : B ×ti G −→ B, i = 1, 2, with twisting
functions ti : B −→ G, i = 1, 2. Then, for i = 1, 2, �([ξi ]) are represented by the
C-TCP’s B ×ti F ∼= (B ×ti G) ×G F . So, �([ξ1]) = �([ξ2]) if and only if B ×t1 F
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and B ×t2 F are G-equivalent. By Proposition 4.13 this happens if and only if the
twisting functions t1 and t2 are G-equivalent. But Proposition 4.11 implies that this
is equivalent to B ×t1 G and B ×t2 G being isomorphic principal G-fibre bundles. In
particular, [ξ1] = [ξ2]. �
Proof of Theorem B This is now an immediate consequence of Theorem 4.15 and the
classical classification of isomorphism classes of principal G-bundles. �

5 Classification of fibrations

We proceed now to the proof of Theorem C. The index category C will be assumed to
be a small artinian E I -category.

Lemma 5.1 Let C be a small category, α : A −→ B a map in S and p : X −→ B a
minimal fibration in SC over the constant C-diagram to B. Then, the pullback fibration
p̃ : A ×B X −→ A is also minimal.

Proof Let � be a basis for X in the sense of Definition 2.7. We will show that �
� =

{ (u, x) ∈ A ×B X | x ∈ � } is a basis for A ×B X . Pick an arbitrary element (u, x) ∈
�

�
, so u ∈ A and x ∈ �. Since � is closed under degeneracy operators, for each

k, sk x ∈ � and then also sk(u, x) = (sku, sk x) ∈ �
�
, thus �

�
is also closed under

degeneracy operators.
Pick now an arbitrary element (v, z) ∈ A ×B X ; now z ∈ X and there is a unique

morphism f of C and a unique x ∈ � such that f (x) = z. Then, (v, x) ∈ A×B X for
p(x) = (p ◦ f )(x) = p(z) = α(v), so in fact (v, x) ∈ �

�
, and f (v, x) = (v, z). If

there were another g ∈ Mor(C) and another (w, y) ∈ �
�
such that g(w, y) = (v, z),

we would have that (w, g(y)) = (v, z) = (v, f (x)), so w = v, and since � is a basis
for X , g = f and y = x . We have proved that A ×B X is a free C-diagram with base
�

�
.
In order to prove that the fibration p̃ : A×B X −→ A is minimal it remain to show

that given two elements of a given base for A ×B X , if one precedes the other then
they coincide. Assume that (v, z) and (w, x) are elements of �

�
and suppose that

(w, x) � (v, z). Then there exists a map f ∈ C such that f (w, x) �p (v, z), so
w = v since p-homotopic simplices are in the same fibre. We also have that x �p z,
but from minimality of p it must hold that x = z, that is, (v, z) = (w, x). �

The proof of the following lemma is analogous to that of Lemma 10.6 in Chapter
I of [10]. In the case of SC the lifting properties used in this proof can be obtained
using Proposition 2.14 and Axiom M4 (see Definition 2.11). This result will help to
establish a connection between the theory of minimal fibrations and the theory of
C-fibre bundles.
Lemma 5.2 Let C be a small category, α0, α1 : A −→ B homotopic maps in SC and
let p : X −→ B be a fibration in SC . Then the induced fibrations pα0 : A×α0

B X −→ A
and pα1 : A ×α1

B X −→ A are fibrewise homotopy equivalent.
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Definition 5.3 The fibre Fb of a C-fibration p : X −→ B over a vertex b ∈ B is defined
by the pullback diagram

Fb
˜b

p̃

X

p

�[0] b
B

We will say that the fibre of the fibration p : X −→ B is weakly equivalent to the C-
diagram F if for every vertex b ∈ B, the fibre Fb over b is weakly homotopy equivalent
to F .

Definition 5.4 Two fibrations p : X −→ B and p′ : X ′ −→ B in SC are said to be
weakly homotopy equivalent if there exists a finite zig-zag

X

p

�
X1

p1

X2

p2

� �
. . . Xn

pn

� �
X ′

p′

B B B . . . B B

(11)

of weak equivalences over B that joins p with p′ through fibrations of SC .

In the situation of the above definition, for a vertex b of B, we obtain a corresponding
zig-zag of weak homotopy equivalences between the respective fibres

Fb
�−→ (F1)b

�←− (F2)b
�−→ · · · �←− (Fn)b

�−→ F ′
b (12)

Remark 5.5 Note that we would obtain an equivalent definition to 5.4 if we did
not require the maps pi : Xi −→ B, i = 1, . . . , n to be fibrations. Indeed, if pn
is not a fibration, we can factor it as a trivial cofibration followed by a fibration

Xn
ı−→ X ′

n
p′
n−→ B, by axioms M5 (cf. Definition 2.12) and then axiom M4 would

provide liftings Xn−1
�←− X ′

n
�−→ X ′, making the diagram

Xn−1

pn−1

X ′
n

p′
n

� �
X ′

p′

B B B

(13)

commutative, with p′
n a fibration. Similarly for the other maps pi .

Lemma 5.6 If p : X −→ B is a minimal C-fibration, the fibre Fb over a vertex b ∈ B
is a minimal C-diagram. Moreover,

(a) If b′ is another vertex of B in the same connected component as b, then Fb and
Fb′ are isomorphic.
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(b) If the fibrations in the sequence of weak equivalences (11) are minimal, then the
maps in the sequence (12) are isomorphisms.

Proof Fb is minimal by Lemma 5.1.
Then, (a) follows because if b and b′ are the two vertices of an edge of B, Lemma 5.2

implies that the pullback of p along the inclusion of this edge in B provides a homotopy
equivalence between Fb and Fb′ . Now, Corollary 3.12 implies that the map is indeed
an isomorphism. In general there will be a sequence of edges joining b and b′, and we
only need to apply this same argument repeatedly along these lines.

Finally, (b) follows by similar arguments. �
Corollary 5.7 Let B be a connected simplicial set. If p : X −→ B is aminimal fibration
in SC over the constant diagram B, then p is a C-fibre bundle over B with fibre F ∼= Fb
for any vertex b ∈ B.

Proof Since �[n] is contractible, the result follows from Lemma 5.1, Corollary 3.12
and Lemma 5.2. �
Definition 5.8 A minimal cofibrant-fibrant replacement for F is a C-diagram MF ,
weakly equivalent to F , which is a minimal C-diagram in the sense of Definition 3.3.

Proposition 5.9 Let C be a small artinian E I -category.

(a) Each C-diagram F admits a minimal cofibrant-fibrant replacement. If F is a
fibrant C-diagram, there is a choice of a minimal cofibrant-fibrant replacement
MF for which there is a weak equivalence

κ : MF
�w−−−→ F . (14)

(b) If B is a connected simplicial set, any fibration of C-diagrams p : X −→ B over
the constant diagram B with fibre weakly homotopy equivalent to a C-diagram F
is weakly homotopy equivalent to a minimal fibration p̂ : MX −→ B with fibres
isomorphic to MF, a minimal cofibrant-fibrant replacement of F.

Proof (b) We build a diagram of fibrations

X

p

QX

p′

�
MX

p̂

�

B B B

(15)

by first applying Quillen’s small objects argument to the C-diagram X , thus obtaining
a trivial fibration QX −→ X with QX a free C-diagram (see Remark 2.13). The map
p′ : QX −→ B, making the square in the left of the above diagram commutative, is
then defined as the composition of two fibrations and it is therefore a fibration. By
Theorem A, p′ : QX −→ B has a fibrewise deformation retract p̂ : MX −→ B which
is a minimal fibration.
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By Lemma 5.6(a) the fibres over the different vertices of B are isomorphic. We can
set MF = (MX)b, the fibre of p̂ over a chosen vertex b ∈ B.

By pulling back the fibrations of (15) along the inclusion of the vertex b, we get
a map between the fibres of p and of p̂ which is a weak homotopy equivalence
Xb ←− (MX)b. By assumption Xb �w F are weak homotopy equivalent. MF =
(MX)b is a minimal cofibrant-fibrant C-diagram, hence a minimal cofibrant-fibrant
replacement for F .

(a) This follows now from (b) with B = ∗ a point and X = F . If F is a fibrant

C-diagram, then (15) provides the map κ : MF
�w−→ F .

If F is not fibrant, then we take first a fibrant approximation F −→ ̂F , and then

apply the above construction to ̂F and get F
�w−→ ̂F

�w←− M̂F . �
Proposition 5.10 Let C be a small artinian E I -category.

(a) Two minimal cofibrant-fibrant replacements for a C-diagram F are isomorphic.
(b) Twoweakly homotopy equivalentminimal fibrations ofC-diagramsover a constant

diagram B are isomorphic.

Proof (b) Assume that p : M −→ B and p′ : M ′ −→ B are minimal fibrations of
C-diagrams. If they are weakly homotopy equivalent, then there is a finite zig-zag of
weak equivalences of fibrations

M = X0
�w

p

X1 X2
�w �w

X3
�w

. . .
�w

Xn−1 Xn = M ′�w

p′

B B B B . . . B B.
(16)

Upon replacing Xi by QXi , i = 1, . . . , n−1 (see Remark 2.13) we can assume that all
of the Xi ’s are cofibrant C-diagrams. M , and M ′ are also cofibrant since the fibrations
p, p′ are minimal.

Whitehead theorem for model categories implies that these are indeed homotopy
equivalences. We will only sketch some small changes to the classical proof (cf. [10,
12]) that in our situation avoids the model category structure of SC↓B.

We can assume that each of the maps in the top horizontal line of diagram (16) is
either a trivial cofibration or a trivial fibration. Otherwise, factor a weak equivalence
Xi −→ Xi±1 into a cofibration followed by a trivial fibration Xi −→ Z −→ Xi±1 over
B. It turns out that Xi −→ Z is actually a trivial cofibration and Z −→ B is a fibration
with Z a cofibrant C-diagram.

Assume that one of the maps f : Xi −→ Xi±1 is a trivial cofibration. In this case,
we obtain a left inverse g of f over B as a dotted lift in the following solid diagram

Xi

f

Xi

pi

Xi±1

g

pi±1
B
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A homotopy h over B between g ◦ f and IdXi is provided by the dotted lift in the
following solid diagram

�̇[1] × Xi±1
⋃

�̇[1]×Xi
�[1] × Xi

( f ◦g∪IdXi±1 )
⋃

f ◦pr

incl×IdXi±1∪Id�[1]× f

Xi±1

pi±1

�[1] × Xi±1

h

pi±1◦pr
B

where the left vertical map is a trivial cofibration by Proposition 2.14.
A similar argument shows that if f : Xi −→ X±1 is a trivial fibration, then it is a

homotopy equivalence over B. Since each of the maps pi : Xi −→ B is a fibration,
the composition of the fibrewise homotopy equivalences of diagram (16) is a fibrewise
homotopy equivalence M −→ M ′ over B. Now, the result follows by Corollary 3.12.

(a) This follows now from (b), taking B = ∗ and M = F . �
By Corollary 5.7, and assuming that B is connected, a minimal fibration

p̂ : MX −→ B with fibres isomorphic to MF , like the one obtained in Proposi-
tion 5.9(b), is indeed a fibre bundle with fibre MF and structural group autC(MF),
by default. We will describe the homotopy type of autC(MF) in terms of the original
F , assuming that F is fibrant. This is based on work of Dwyer and Kan on function
complexes [6]. We will need to introduce now the notion of twisted arrow category.

Definition 5.11 Let C be a small category. The twisted arrow category aC of C is the
category whose objects are the morphisms f : a −→ b of C, and morphisms from
f : a −→ b to f ′ : a′ −→ b′ the pairs of morphisms (α, β), where α ∈ MorC(a′, a),
β ∈ MorC(b, b′), and the diagram

a
f

b

β

a′
α

f ′
b′

commutes in C.
Following [6], if X , Y are C-diagrams, we define a diagram of function complexes,

indexed by the twisted arrow category aC,

mapa(X ,Y ) : aC −−−→ S

that maps an object f : a −→ b to map(X(a),Y (b)) and a morphism (α, β) from f to
f ′ to the map α�β� : map(X(a),Y (b)) −→ map(X(a′),Y (b′)) induced by right and
left composition.

Naturality of these function complex diagrams is easily checked. A map of C-
diagrams θ : X ′ −→ X induce a map of aC-diagrams θ∗ : mapa(X ,Y ) −→ mapa
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(X ′,Y ), which for each ϕ ∈ map(X(a),Y (b)) is defined over every object f : a −→ b
of aC, by the precomposition θ∗

f (ϕ) = ϕ ◦ θ(a). Similarly, a map of C-diagrams
θ : Y −→ Y ′ induce a map of aC-diagrams θ∗ : mapa(X ,Y ) −→ mapa(X ,Y ′), by
postcomposition. It follows that the function complex diagram is a bifunctor

mapa(−,−) : (SC)op × SC −−−→ SaC . (17)

One clearly has an isomorphism mapC(X ,Y ) ∼= lim←−aC mapa(X ,Y ) and a natural
map

lim←−
aC

mapa(X ,Y )
�−−−→ holim←−−−

aC
mapa(X ,Y ) (18)

which according to [6, Theorem 3.3] is a weak homotopy equivalence. Recall
that the inverse limit lim←−aC mapa(X ,Y ) can be defined as the function complex
mapaC(∗,mapa(X ,Y )), where ∗ stands for a constant functor with value a single
point. Likewise,

holim←−−−
aC

mapa(X ,Y ) = mapaC
(

E(aC), mapa(X ,Y )
)

, (19)

where E(aC) is the cofibrant replacement of ∗ in the model category SaC , which for
each object f of aC, E(aC)( f ) is defined as the nerve of the overcategory aC↓ f .
E(aC) is indeed a free aC-diagram. The map in (18) is then induced by the natural
projection E(aC) −→ ∗.

Lemma 5.12 Let C be a small category and X and Y C-diagrams. Assume that Y is
fibrant, then

(a) mapa(X ,Y ) is a fibrant aC-diagram, and
(b) holim←−−−aC mapa(X ,Y ) is a Kan complex.

Proof Since Y is fibrant, for each c ∈ C, Y (c) is a Kan complex. Then, for each
object f : a −→ b in the arrow category, mapa(X ,Y )( f ) = map(X(a),Y (b)) is
also a Kan complex (cf. [15, I.6.9]), so mapa(X ,Y ) is a fibrant aC-diagram. Using
the description of the homotopy inverse limit in Eq. (19), (b) follows essentially from
axiomM7 inDefinition 2.12 (see also [10, II.3.2], [12, 9.3.1]), since E(aC) is cofibrant
and mapa(X ,Y ) is fibrant. �

For each object f : a −→ b of aC, E(aC)( f ) has a canonical base point, the vertex
v f corresponding to the terminal object of the overcategory aC↓ f . Evaluating at the
vertices vIda , a ∈ Ob(C), we obtain a map

holim←−−−
aC

mapa(X ,Y )
evId−−−→

∏

a∈aC
map(X(a),Y (a)) (20)
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such that the composition

mapC(X ,Y ) ∼= lim←−
aC

mapa(X ,Y )−→ holim←−−−
aC

mapa(X ,Y )−→
∏

a∈aC
map(X(a),Y (a))

(21)

maps a natural transformation η : X −→ Y to the sequence
{ ηa : X(a) −→ Y (a) }a∈Ob(aC) of the natural maps defined for the different objects of
C. This will help to identify the connected components of holim←−−−aC mapa(X ,Y ) that
correspond to invertible maps in mapC(X ,Y ), as stated in the following definition.

Definition 5.13 Let X be a fibrant C-diagram. We define the space hautC(X) of
self homotopy equivalences of X as the subspace

[

holim←−−−aC mapa(X , X)
]

we of
holim←−−−aC mapa(X , X) consisting of the connected components of the vertices ω

of holim←−−−aC mapa(X ,Y ) such that the evaluations evId(ω) = { ωa : X(a) −→
Y (a) }a∈Ob(C) are weak equivalences. In case X is not fibrant, we define hautC(X)

def=
hautC(̂X), where ̂X is a fibrant replacement of X .

Proposition 5.14 If X is a fibrant C-diagram, then hautC(X) is a loop space with
classifying space BhautC(X) � WautC(MX), where MX is a minimal cofibrant-
fibrant replacement for X.

Proof Notice first that according to Proposition 5.10(a), the conclusion of the propo-
sition does not depend on the choice of MX . Furthermore, we can fix a model for MX

together with weak homotopy equivalence κ : MX
�w−→ X (cf. Proposition 5.9(a)).

We need to prove that the space of loops �(WautC(MX)) is homotopy equivalent
to hautC(X), so it will be enough to show a homotopy equivalence autC(MX) �
hautC(X).

Observe that by [6, Theorem 3.3], there is a sequence of homotopy equivalences

mapC(MX , MX)
∼=−−−→ lim←−

aC
mapa(MX , MX)

�−−−→ holim←−−−
aC

mapa(MX , MX).

(22)

Since κ : MX −→ X is a weak equivalence of C-diagrams, for each object c of C,
the map κc : (MX)(c) −→ X(c) is a weak equivalence of simplicial sets. By naturality
of mapa (17), κ induces maps of aC-diagrams

mapa(X , X)
κ∗−−−→ mapa(MX , X)

κ∗←−−− mapa(MX , MX). (23)

By assumption X is fibrant and so isMX , hence byLemma 5.12, all threeaC-diagrams
in the aboveEq. (23) are fibrant. Furthermore themapsκ∗ andκ∗ areweak equivalences
in SaC . In fact, for each object f : a −→ b of aC, the natural map

κ∗
f
def= κ�

a : map
(

X(a), X(b)
) −→ map

(

(MX)(a), X(b)
)

,
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is given by precomposition with the map κa : (MX)(a) −→ X(a) which is a weak
equivalence of simplicial sets and X(b) is a Kan complex; therefore we obtain that
κ∗
f = κ

�
a is a weak equivalence (cf. [15, I.6.9]). A similar argument applies to κ∗.

Now, Bousfield-Kan homotopy lemma [4, XI.5.6] applies to show that the induced
maps

holim←−−−
aC

mapa(X , X)
holim←−−aC κ∗

−−−−−−−−−→ holim←−−−
aC

mapa(MX , X)
holim←−−aC κ∗←−−−−−−−−−

holim←−−−
aC

mapa(MX , MX) (24)

are weak homotopy equivalences. In other words, this follows from [12, 9.3.3(1)], by
our description of homotopy inverse limit in Equation (19) and because the diagram
E(aC) is cofibrant in the simplicial model category of aC-diagrams.

The weak equivalences of equations (22) and (24) combine to provide the following
zig-zag diagram

mapC(MX , MX) −−−→ holim←−−−
aC

mapa(MX , X) ←−−− holim←−−−
aC

mapa(X , X). (25)

Since the above maps are weak equivalences between Kan complexes, they are also
homotopy equivalences (cf. [10, II.1.10]) and we have already obtained a homotopy
equivalence mapC(MX , MX) � holim←−−−aC mapa(X , X). It only remains to show that
the connected components of mapC(MX , MX) that consist of isomorphisms corre-
spond to those of hautC(X) in holim←−−−aC mapa(X , X), as defined in 5.13, through the
maps in (25).

Choose a vertex η ∈ autC(MX) ⊆ mapC(MX , MX), that is, a natural iso-
morphism η : MX −→ MX of C-diagrams. The image of η along the left map in
diagram (25), will be a vertex η̃ ∈ holim←−−−aC mapa(MX , X) such that evId (̃η) =
{ η̃a : (MX)(a) −→ X(a) }a∈Ob(C) where η̃a is the composition

MX(a)
ηa−→ MX(a)

fa−→ X(a),

which is clearly a homotopyequivalence.Now, letω be avertexof holim←−−−aC mapa(X , X)

mapping to the same connected component as η̃ along the right map of diagram (25).
It follows that if evId(σ ) = { ωa : X(a) −→ X(a) }a∈Ob(C), there is a diagram

(MX)(a)

fa

ηa
(MX)(a)

fa

X(a)
ωa

X(a) ,

(26)

for each object a ∈ C, that commute up to homotopy. It follows that each ωa is a weak
homotopy equivalence, and ω is a vertex of hautC(X) by Definition 5.13.
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Conversely, choose a 0-simplex ω of hautC(X) ⊆ holim←−−−aC mapa(X , X) and write
evId(ω) = { ωa : X(a) −→ X(a) }a∈Ob(C), where each ωa is a weak homotopy equiv-
alence. Observe that ω determines a connected component in holim←−−−aC mapa(X , X).
Choose a vertex η in the corresponding connected component of mapC(MX , MX),
via the homotopy equivalences (25). We obtain a homotopy commutative diagram
like (26), above, and conclude that ηa : (MX)(a) −→ (MX)(a) is a weak homotopy
equivalence for each object a of C. Hence η : MX −→ MX is a weak equivalence of
C-diagrams. SinceMX is cofibrant-fibrant, byWhitehead’s Theorem ηa is a homotopy
equivalence. But MX is also a minimal C-diagram, hence η is indeed an isomorphism
by Corollary 3.12. Thus η is really a vertex of autC(MX). �
Proof of TheoremC We are assuming that C is a small artinian E I -category, B a
connected simplicial set, and F an arbitrary C-diagram. Let MF be a minimal
cofibrant-fibrant replacement for F .

Since MF is minimal, a C-fibre bundle over B with fibre MF , ξ : E −→ B, is
indeed a minimal fibration. For each object c of C, (MF)(c) is a Kan complex and
ξ(c) : E(c) −→ B is a fibre bundle with fibre (MF)(c), hence a fibration (cf. [1]).
Thus, ξ : E −→ B is a fibration of C-diagrams.

That ξ is minimal follows from Proposition 3.9. If ξ |D : D −→ B is a strong fibre-
wise deformation retract of ξ , then for each simplex σ of B, the pullback along the
inclusion of the simplex σ : �[n] −→ B produces a retraction

Dσ
incl

̂ξ |D

�[n] × MF
r

pr

Dσ

̂ξ |D

�[n] �[n] �[n].

Moreover, since MF is minimal, pr : �[n] × MF −→ �[n] is a minimal fibration
by Lemma 5.1. Then, Proposition 3.9 implies that incl : Dσ −→ �[n] × MF is an
isomorphism, and therefore incl : D −→ E is an isomorphism. Now, Proposition 3.9
implies that ξ : E −→ B is minimal.

Now we can define the correspondence

{

Equivalence classes of C-fibre
bundles over B with fibre MF

}

J−−−−−−−→∼=

⎧

⎪

⎨

⎪

⎩

Weak homotopy classes of fibrations of C-diagrams
over the constant diagram B and fibre weakly
homotopy equivalent to F

⎫

⎪

⎬

⎪

⎭

by assigning to the class of C-fibre bundle ξ : E −→ B the weak homotopy class of
the same map as a fibration of C-diagrams with fibre MF �w F .

Proposition 5.9(b) together with Corollary 5.7 imply that J is surjective while
Proposition 5.10(b) implies that it is injective. Then, the result follows fromTheoremB
and Proposition 5.14. �
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Appendix A: Preordered sets

Let A be a set and ‘�’ a preorder relation over A (i.e., � is reflexive and transitive).
For this set we need to find a subset A′ of A satisfying the conditions:

R1: For all w ∈ A there exists x ∈ A′ with x � w.
R2: A′ is minimal among subsets satisfying R1.

There is a simple example which shows that A′ does not always exist: consider an
infinite sequence of sets and maps

· · · An
fn · · · A1

f1
A0

with nonempty inverse limit. Let us define the relation ‘�’ over the disjoint union
A = ∐

i≥0 Ai as follows: given a ∈ A j and a′ ∈ Ak we say that a � a′ if there
exists a map f : A j −→ Ak such that f (a) = a′. In this case there is no subset
A′ ⊆ A satisfying both conditions R1 and R2. In fact, any element in the inverse limit
provides an infinite sequence a0 � a1 � · · · � ai � . . . , in A, with ai ∈ Ai , which
does not stabilize.

We can reformulate this problem by defining an order relation over a convenient
quotient of A, that is, over the preordered set (A,�) we define the following relation:
given x, w ∈ A we say that x ∼ w if x � w and w � x . Note that ‘∼’ is an
equivalence relation over A. Now, we define an partial order relation over A/∼. Given
classes [x], [w] ∈ A/∼ we set

[x] ≤ [w] if x � w.

With this new relation the couple (A/∼,≤) is a partially ordered set, and then the
existence of a subset A′ satisfying the above required conditions depends on the
existence of minimal elements in every maximal chain of A/∼.

Let C be a small category and let X : C −→ Sets be a functor. We will say that
X is a diagram of sets and equivalence relations if for every object c of C there is
an equivalence relation ∼c defined over Xc, and is natural in the sense that for every
f : c −→ d in C, if x ∼c x ′ then X f (x) ∼d X f (x ′).
Under these circumstances we can define a new induced relation� over the disjoint

union A = ∐

c∈Ob(C) Xc as follows: given x ∈ Xc and w ∈ Xd we say that x � w if
there exists a morphism f : c −→ d in C such that X f (x) ∼d w. Now, the pair (A,�)

is a preordered set.

Proposition A.1 Let C be an artinian E I -category. If X : C −→ Sets is a diagram
of sets and equivalence relations, then the set A = ∐

c∈Ob(C) Xc equipped with the
induced preorder relation � defined above contains a subset A′ satisfying the condi-
tions R1 and R2.
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Proof Define an equivalence relation ∼ on A by setting x ∼ x ′ if both x � x ′ and
x ′ � x . Write [x] for the class of x in A/∼. Now, define a partial order relation on
A/∼ by setting [x] ≤ [y] if x � y. Consider the set of all maximal chains of A/∼:

F = {

C ⊆ A/∼ ∣

∣ C is a maximal chain
}

.

Take an arbitrary maximal chain C = {[xi ]}i∈I in A/∼ with xi ∈ Xci , ci ∈ Ob(C),
for each i ∈ I . The classes [ci ] of these objects ci , i ∈ I , form a chain in C/∼, so it
stabilizes since C is artinian (see Definition 3.5). In fact, given two of these objects
ci and c j , we have elements xi ∈ Xci and x j ∈ Xc j with [xi ], [x j ] ∈ C , thus either
[xi ] ≤ [x j ] in which case there is a morphism f : ci −→ c j in C and [ci ] ≤ [c j ], or
[x j ] ≤ [xi ] in which case [c j ] ≤ [ci ].

There is a representative c0 ∈ ObC of the minimal element [c0] in the chain of
classes of objects such that there is an element x0 ∈ Xc0 with [x0] ∈ C . It turns out
that [x0] is minimal in C . Assume [z] ∈ C and [z] ≤ [x0], then z ∈ Xd for some
object d of C and there is a morphism f : d −→ c0 in C such that X( f )(z) �c0 x0.
Then, [d] belongs to the chain of objects and [d] ≤ [c0], hence [d] = [c0] since [c0]
is minimal. That is, we also have [c0] ≤ [d], so there is a morphism g : c0 −→ d.
Since C is an E I -category, the composition ϕ = g ◦ f is an automorphism of d.
Upon replacing g with ϕ−1 ◦ g we can assume that g ◦ f = Idd . It follows that
z = X(g)(X( f )(z)) �d X(g)(x0), so x0 � z and [x0] ≤ [z]. Hence [z] = [x0].

Consider now the set M of minimal elements of the chains in F , that is

M = { [x] ∈ A/∼ ∣

∣ there is C ∈ F such that [x] in minimal in C
}

By the Axiom of Choice, there is a subset A′ that contains one and only one represen-
tative in each of the classes that form the set M .

Wewill show thatM satisfies conditions R1 and R2. Fixw ∈ A, so that [w] belongs
to a maximal chain C ⊆ A/∼. Then, there is x ∈ A′ such that [x] is minimal in C . It
follows that [x] ≤ [w], thus x � w. This proves R1.

Assume that there is another subset B, B ⊆ A′ ⊆ A satisfying R1. Fix an element
w ∈ A′. There must be an element x ∈ B, x � w, since B satisfies R1. Hence
[x] ≤ [w]. By definition of A′, there is a maximal chain C in A/∼ such that [w] is
minimal in C . Then D = {[x]} ∪C is also a chain and it contains C , hence it must be
C , so [x] ∈ C . Therefore [x] = [w], but x ∈ B ⊂ A′, so both x and w are in A′, and
actually x = w. This proves that A′ ⊂ B and hence that A′ satisfies R2. �
Remark A.2 Notice that the choice of the subset A′ in Proposition A.1 could be refined
by choosing elements satisfying further properties. Let P : A → {0, 1} be a function
defined on A and, using the same notation as in the proof of the proposition, set

̂[x] =
{

[x], if P(y) = 1 for all y ∈ [x],
{ y ∈ [x] | P(y) = 0 }, otherwise.

for each class [x] of A/∼which is minimal in a chain in (A/∼,≤). Then, by choosing
an element in each of the sets ̂[x] we obtain a refined subset A′ that satisfies R1, R2,
and for each x ∈ A′, P(x) = 0 if and only if there is y ∈ [x] with P(y) = 0.
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