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Abstract

In the present academic work we implement the Nelson and Siegel Segmented Model (2017) in
order to predict the structure of interest rates. On the other hand we compare the performance of
the Segmented model with the Nelson and Siegel Classic model. The present work was done with
daily data Colombian yields between the years 2013 and 2016, the data was obtained thanks to
Precia who is the price provider for valuation in Colombia. We find that in the Segmented Model
by locally adjusting the segments provides substantial improvements inside and outside the sample
in comparison with the Classic model.

Keywords: Term structure, Nelson and Siegel model, Preferred habitat theory, Ordinary least
squares, Root Mean Squared Error, Factor Loadings.



Contents

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

0.2.1 Nelson and Siegel Segmented Model . . . . . . . . . . . . . . . . . . . . . . 2
0.2.2 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

0.3 Data and Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.4 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.5 In Sample Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.6 Forecasting Out of Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
0.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



0.1 Introduction
The term structure of interest rates is the relationship between interest rates or bond yields and
different terms or maturities. The term structure of interest rates is also known as a yield curve,
and it plays a central role in an economy. The term structure reflects expectations of market par-
ticipants about future changes in interest rates and their assessment of monetary policy conditions.

Most of the vast literature on the term structure of non defaultable securities is concerned with
using observable security prices to estimate the fair market prices of other non-observable securi-
ties. This is extremely important because fixed-income securities and their derivatives trade only
occasionally, and so must be priced based on other securities that do trade. A typical part of
estimating the price at which a bond would trade involves decomposing its price into term and
risk premiums. This analysis formally constrains the yield curve to be arbitrage-free.[ERS17]

The Nelson and Siegel model provides a parsimony specification to capture the differences in rates
along the curve (for different maturities). Its implementation in one or two stages allows to recover
the temporal variation of the factors maintaining the loads of the factors (loading factors) constant
over time. The specification of the model and the estimation methods provide a strategy of simple
implementation, which is why it also turns out to be a successful model outside the academia.

The preferred habitat theory of the term structure [MS66] advocates that local shocks may influ-
ence interest rates for each maturity. Empirical evidence related to this theory reveals that U.S.
Treasury bonds’ supply and demand shocks have nonnegligible effects on yield spreads, term struc-
ture movements, and bond risk premium. In an attempt to formalize the preferred habitat theory,
[VV09] propose an equilibrium model in which demand directly influences and determines all yields
in the term structure, in a dynamic way. According to this theory, the equilibrium yield rate for
each term is determined by the demand and supply forces for that market, in other words, the
preferences of investors on securities at that point in the curve. Investors can substitute preferences
over terms that are not available in the market for a near term but available in the market.[DK13]
note that investors act as arbitrators, guaranteeing the relationship between the demand for the
securities and the returns along the curve; and on the other hand they guarantee that the curve is
smooth, meaning that the yields for close periods are similar.

Inspired by the preferred habitat theory, and more specifically by its recent formalization by [VV09],
[AAK+18] propose a class of models that separate the yield curve into segments which present their
own local shocks, but which are simultaneously interconnected, composing the whole yield curve.
The main objective of the family of segmented models is to address the following aspects:

1. The segmented model proposes to partition the segments of the curve in such a way that
the dynamics of each segment can be determined by maturities that are represented in that
segment.

2. The implementation of the segments along the curve must be globally consistent and smooth.
This is achieved by ensuring that the rates of return are similar for the terms that connect
the segments and therefore are close to each other. This is not equivalent to imposing non-
arbitration restrictions.

0.2 Methodology

0.2.1 Nelson and Siegel Segmented Model
Let be τ̃ a vector of m observable terms ({τ1 < τ2 < τ3 < · · · < τk}). The usual specification of a
term structure model, for the set of yields Yt(τ̃), have a specification of a factorial model,

yt(τ̃) = W (τ̃)βt + εt(τ̃) (1)

where W (τ̃) is an mxK matrix of factor loadings and βt is a K vector of no observable factors.
For the three factors (1, (1−exp−λτ )

λτ , (1−exp−λτ )
λτ − exp−λτ ) Nelson and Siegel model, the loadings
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matrix is determine with the triplet: the intercept, the slope and the curvature.

To define the segmented model, we consider three segments Short Term(ST), Middle Term(MT)
and Long Term(LT) as show in Figure 1, then we define a set of nodes(border points of each
segment) φ = {τ0 < τ4 < τ7 < τ11}, with two external nodes(τ0,τ11) and two internal nodes(τ4,τ7).
In this case the curve can be expressed as,

Figure 1: Representation of the 3 segments curve: Short Term, Middle Term and Long Term

yt(τ̃) = f1
t 1τ1≤τ̃≤τ4 + f2

t 1τ4≤τ̃≤τ7 + f3
t 1τ7≤τ̃≤τ11 + εt (2)

where f it function represent the curve of each of one of the segments, such that

f it = ait + bitg(τ) + cith(τ) (3)

where g(τ) = (1−exp−λτ )
λτ and h(τ) = (1−exp−λτ )

λτ − exp−λτ .

0.2.2 Derivation
Now we are going to approach the methodology following an order according to the two aspects
that are important in the segmented model which we highlighted in the in the Introduction Section.

How we build the Segmented model using Nelson and Siegel Factor Loadings?

The reason why we are going to estimate the Nelson and Siegel factors within each segment is to
gather the notion that the behavior of that segment will be determined by the forces of supply and
demand in that segment.

In our implementation we require 11 maturities in order to compose the yield curve (τi i ∈ [1, 11]),
where i’s represent the position in the vector of available maturities. Then, we need to define
exogenous k’s elements of τ ′s vector in which we are going to make the segmentation. In our case
we define the set of partitions (Segments) with k=3 (φ = {τ1, τ4, τ7, τ11}), which means we have
(k+1=4) elements,φ are the nodes (border points) we choose for the model. On the other hand,
the remaining elements of τ are treated as observed yields (τ̃ = {τ2, τ3, τ5, τ6, τ8, τ9τ10}), which are
assumed to be measured with error. Equation 4 is the matrix representation of equations 2 and 3.

yt(τ̃) = W (τ̃)Bt + εt(τ̃) (4)

yt(φ) = W (φ)Bt (5)
The matrix of loadings (W (τi) = {1, g(τi), h(τi)}) is time invariant and only depends on maturities
and segments, it contains the factor loadings consistent with the model of Nelson and Siegel. By
contrary, the vector (Bt = {ait, bit, cit}) is time variant and also depend on the segmentation i.

g(τi) = 1−e−λτi
λτi

h(τi) = 1−eλτi
λτi

− e−λτi
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Figure 2: Factor Loadings Nelson and Siegel Model

How we guarantee smoothness across the term structure?

The implementation of the segments along the curve must be globally consistent and smooth. This
is achieved by ensuring that the rates of return are similar for the terms that connect the segments
and therefore are close to each other.

It is necessary to impose conditions to guarantee smoothness across the segments. We demand a
matrix R of restrictions that are the constrains in the estimation problem.

yt(τ) = W (τ)Bt, s.t R(φ)B = 0

In order to create the matrix R of restrictions is necessary to know the first and second derivatives
from the loadings that are placed inside the structure of R.

First Derivatives Second Derivatives

g′(τ) = e−λτ (1+λτ)
λτ2 g′′(τ) = 1

λτ3 [2− e−λτ ((λτ)2 + 2(λτ + 1))]

h′(τ) = e−λτ ((λτ)2+(λτ)+1)−1
λτ2 h′′(τ) = 1

λτ3 [2− e−λτ ((λτ)3 + (λτ)2 + 2(λτ + 1))]

R Matrix Construction

The first step is to guarantee a smoothness function through all the internal nodes in which the
segmentation is done. In our case the internal nodes of φ are the set φ̃ = {τ4, τ7} in which we need
to impose three conditions that makes possible the continuity across segments. Besides, all the j’s
yields within the same segment need to be governed by the same function (W (τj) = f it (τj)). With
the purpose too be more clear with the notation we will refer to ST (Short Term), MT (Middle
Term) and LT (Long Term) to the segments {τ1, τ4}, {τ4, τ7} and {τ7, τ11} respectively.

Smoothness Conditions

1. fST (τ4) = fMT (τ4), fMT (τ7) = fLT (τ7)

2. f ′ST (τ4) = f ′MT (τ4), f ′MT (τ7) = f ′LT (τ7)

3. f ′′ST (τ4) = f ′′MT (τ4), f ′′MT (τ7) = f ′′LT (τ7)

In total we have 3(k-1)=6 equations and 9 parameters (Bt =
{
a1
t , b

1
t , c

1
t , a

2
t , b

2
t , c

2
t , a

3
t , b

3
t , c

3
t

}
) to

be estimated, there are 9 parameters because we are going to estimate 3 factors for each of the 3
segments.

yt(φ) = W (φ)Bt, s.t R(φ̃)B = 0
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It is important to set the structural form of R and how to decomposed into a square invertible
matrix R1 and a complementary R2 in order to reduce the dimensionality of parameters to be
estimated.

Xi(τ) = [1, gi(τ), hi(τ)] X ′i(τ) = [1, g′i(τ), h′i(τ)] ;X ′′i (τ) = [1, g′′i (τ), h′′i (τ)]

R =


XST (τ4) −XMT (τ4) 01x3

01x3 XMT (τ7) −XLT (τ7)
X ′ST (τ4) −X ′MT (τ4) 01x3

01x3 X ′MT (τ7) −X ′LT (τ7)
X ′′ST (τ4) −X ′′MT (τ4) 01x3

01x3 X ′′MT (τ7) −X ′′LT (τ7)

 , dim(R) = (6x9)

R1 =


XST (τ4) −XMT (τ4)

01x3 XMT (τ7)
X ′ST (τ4) −X ′MT (τ4)

01x3 X ′MT (τ7)
X ′′ST (τ4) −X ′′MT (τ4)

01x3 X ′′MT (τ7)

 R2 =


01x3

−XLT (τ7)
01x3

−X ′LT (τ7)
01x3

−X ′′LT (τ7)

 ,
(
dim(R1) = (6x6)
dim(R2) = (6x3)

)

By construction all rows of R1 are linearly independent, then, the matrix is invertible with rank
equal to six. As we have divided the matrix R into two sub-matrix, we also require the same
process for the vector B of factors. Hence, the original constrain is re-expressed from (R(φ̃)B = 0)
to (R1(φ̃)θ1 + R2(φ̃)θ2 = 0), where the vectors {θ1, θ2} are adjusted to match the dimensionality
of sub-matrix {R1, R2}.

B =

[
θ1

θ2

]
, θ1 =

(
FSTt
FMT
t

)
, θ2 =

(
FLTt

)
, F it =

aitbit
cit

 ,

(
dim(θ1) = (6x1)
dim(θ2) = (3x1)

)
We need to state that θ1 is the vector that share neighborhood with the square invertible matrix
R1 and can be represented as an algebraic product of the form:

θ1 = −R−1
1 R2θ2, dim(θ1) = (6x1)

Unconstrained Procedure

In the process we have some yields that are observed, these yields are located inside the segments
of the term structure; In our sample the set is represented by (τ̃ = {τ2, τ3, τ5, τ6, τ8, τ9, τ10}) and
we assume that are measured with error. Given the previous information, we implement the ar-
rays division in B from R matrix to reconstruct the original representation known as measurement
equation.

yt(τ̃) = W (τ̃)Bt + εt(τ̃), B =

(
θ1

θ2

)
, dim(yt(τ̃)) = (3x1)

yt(τ̃) = w1(τ̃)θ1 + w2(τ̃)θ2 + εt(τ̃)

yt(τ̃) = [w2(τ̃)− w1(τ̃)R−1
1 R2]θ2 + εt(τ̃)

yt(τ̃) = Z(τ̃)θ2 + εt(τ̃), dim(Z(τ̃)) = mx(k + 1) = (3x3)

w1(τ̃) =

X3(τ3) 01x3

01x3 X5(τ5)
01x3 X6(τ6)

 , dim(w1(τ̃)) = (3x6)

w2(τ̃) =

 X8(τ8)
X9(τ9)
X10(τ10)

 , dim(w2(τ̃)) = (3x3)
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Figure 3: Factor Loadings Nelson and Siegel Strongly Segmented

0.2.3 Extension
Strongly Segmented Model

The strong segmentation factor loadings propose by [AAK+18] model as shown in Figure 3 are
based on the Nelson and Siegel (1987) and Svensson (1994) models. However [AAK+18] allow
different functional forms for the factor loadings to change within each segment. Despite possible
discontinuities in the loading functions at nodes (border points), the smoothing restrictions guar-
antee that the yield curve remains continuous and smooth. In this model, each segment has its own
dynamics and functional loadings, while smoothing constraints connect local to global dynamics
across maturities, reinforcing the analogy with the preferred habitat theory. [AAK+18] propose
the following form of the local loadings:

gi(τ) =
(1−−λΛi(τ))

λΛi (τ)
(6)

hi(τ) =
(1−−λΛi(τ))

λΛi (τ)
− λΛi (τ) (7)

where Λi are the functions that introduce the discontinuities in the loadings and the nodes,
[AAK+18] adopt the following linear functional form:

Λi (τ) = τ − τi (1 − p) , τ ∈ Ai, τi ∈ φ and p ∈ [0, 1] (8)

The parameter p controls the degree of loading segmentation. To go from the strong segmentation
model to the weak version we simply need to set Λi (τ) = τ for all i.

0.3 Data and Implementation
The present work was done with daily data Colombian yields between the years 2013 and 2016.
The data was obtained thanks to the Colombian price provider PRECIA for yields with maturities
of 1, 3 and 6 months and 1, 3, 5, 7, 9, 11, 13 and 15 years. The Colombian data compared to other
countries does not have a high volume of transactions per year, therefore, to have enough data
for the execution of the exercise, a pairing was performed with other PRECIA titles to obtained
historical data.

The pairing work for the current exercise was as follows: titles were searched and paired against
others with similar maturities of the following year and then year after year from 2013 to 2016.
In other words, for 2013 a title was found with expiration to one year, for 2014 no title of these
characteristics was found, but one with a maturity of 10 months, these two titles were paired,
resulting in the historical for these two years. For the following years, starting in 2015, the match
was made with maturities of one year, respectively, obtaining the historical base of this type of
maturity (1 year maturity). This exercise was performed for all available maturities.
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For empty periods (periods with out transactions), the information is completed by performing a
spline interpolation. Given the nature of the Colombian market (small market), the short-term
maturities(1, 3 and 6 months) are issued one time once a year, which is why Figure 5 has these
strange behaviors, since a greater interpolation had to be done in the data for these cases.

Figure 4: Representation of data provided by Precia for maturities of 1, 3, 5, 7, 9, 11, 13 and 15
years

Figure 5: Representation of data provided by Precia for maturities of 1, 3, 6 months

0.4 Empirical Application
It is necessary to make an empirical application since the segmented model of Nelson and Siegel
uses the long-term yields to find the adjusted values of the short and medium term yields and we
believe that this methodology does not guarantee that the adjusted values for these yields be the
right ones.

From [AAK+18] the restricted model of the paper and for three factor NS segmented model made
of 3 segmented we have the following expression, for estimating the long term (L) factors, θL2,t for
each time period t

yt,L(τ̃) = [w2(τ̃)− w1(τ̃)R−1
1 R2]θL2,t + εt(τ̃) (9)

yt,L(τ̃) = Z(τ̃)θL2,t + εt(τ̃), dim(Z(τ̃)) = mx(k + 1) = (3x3) invertible.

w1(τ̃) =

X3(τ3) 01x3

01x3 X5(τ5)
01x3 X6(τ6)

 , dim(w1(τ)) = (3x6)

w2(τ̃) =

 X9(τ9)
X10(τ10)
X11(τ11)

 , dim(w2(τ)) = (3x3)
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where yt,L(τ) = (yt,L(τ9), yt,L(τ10), yt,L(τ11)) is the vector of long term yields. Note that for the
estimation it is required that Z(τ̃) is invertible. We use OLS to estimate the long term (L) factors
θL2,t. We can obtain the short and medium term (S/M) factors from the restriction,

θ
S/M
1,t = −R−1

1 R2θ
L
2,t, dim(θ1) = [(6x6)x(6x3)x(3x1)] = (6x1)

Note that in the restricted version of the model we are not using the information of the other yields
(for example in this case yt(τ) = (yt(τ1), . . . , yt(τ8))) to fit the parameters, therefore there is no
reason to get proper fitted values for these yield, even though we can recover them.

For the fitted yields, you can follow a similar procedure for the rest of the long term yields
(yt,L(τ7), yt,L(τ8)), you just need to adjust the variables in Z(τ̃). From [AAK+18] it is men-
tioned that the equation 9 is valid for any pair of maturities and yields, that is redefining w2 and
w1,

yt,L(τ̃) = [w2(τ̃)− w1(τ̃)R−1
1 R2]θL2,t + εt(τ̃)

yt,L(τ̃) = Z(τ̃)θL2,t + εt(τ̃), dim(Z(τ̃)) = mx(k + 1) = (2x3).

w1(τ̃) =

[
X3(τ3) 01x3

01x3 X6(τ6)

]
, dim(w1(τ̃)) = (2x6)

w2(τ̃) =

[
X7(τ7)
X8(τ8)

]
, dim(w2(τ̃)) = (2x3)

the fitted short and medium term yield we can derive a similar setup (yt,S(τ1), . . . , yt,M (τ6)) that
is redefining w2 and w1, and split θS/M1,t into the short and medium term yields, θS1,t, θM1,t to get
three dimensional parameter spaces.

For the medium term (M) we have w2 and w1

yt,M (τ̃) = [w2(τ̃)− w1(τ̃)R−1
1 R2]θM1,t + εt(τ̃)

yt,M (τ̃) = Z(τ̃)θM1,t + εt(τ̃), dim(Z(τ̃)) = mx(k + 1) = (3x3).

w1(τ̃) =

X3(τ3) 01x3

01x3 X5(τ5)
01x3 X6(τ6)

 , dim(w1(τ̃)) = (3x6)

w2(τ̃) =

X7(τ7)
X8(τ8)
X9(τ9)

 , dim(w2(τ̃)) = (3x3)

For the short term (S) we have w2 and w1

yt,S(τ̃) = [w2(τ̃)− w1(τ̃)R−1
1 R2]θS1,t + εt(τ̃)

yt,S(τ̃) = Z(τ̃)θS1,t + εt(τ̃), dim(Z(τ̃)) = mx(k + 1) = (3x3).

w1(τ̃) =

X1(τ1) 01x3

X2(τ2) 01x3

01x3 X4(τ4)

 , dim(w1(τ̃)) = (3x6)

w2(τ̃) =

X7(τ7)
X8(τ8)
X9(τ9)

 , dim(w2(τ̃)) = (3x3)

Note that the difficulty with this methodology is that we have arbitrary ways to define w2 and w1

and therefore the results may be sensitive to the way we define these two matrices. Also in this
particular case since Z(τ̃) is invertible you could use it to estimate θS1,t, θM1,t, but then these would
be free parameters and may violate the restriction although they will provide a better fit for the
yields.

1

1For practical purposes we will define the Nelson and Siegel Three Factor models as NS3
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0.5 In Sample Performance
To measure the performance of the segmented models and compare them with the classic model
of Nelson and Siegel within the sample for the years between 2013 and 2016 (i.e. 1461 days) we
use the RMSE(Root Mean Squared Error) in all available dates for all the available maturities.

Figure 6: Comparison between real yield and fitted yield of NS3, NS3 Segmented and NS3 Strongly
Segmented models in period 2015-03-12

Table 1 compares the RMSE(Root Mean Square Error) of NS3 ,NS3 Segmented and NS3 strongly
segmented models. Although the NS3 Segmented and NS3 strongly models errors are almost equal
to 0, for the 7 and 9 year maturities the RMSE for the NS3 Segmented model are greater than
0 (This may be due to the way in which matrices w2 and w1 were constructed as explained in
the section Empirical Application), therefore the inside sample performance of NS3 strongly Seg-
mented is better than the NS3 Segmented model.

The segmented models in comparison with the classic show a better performance in all available
maturities. The results inside the sample of 1, 3 and 6 month maturities of NS3 show a higher than
normal RMSE, possibly due to the way in which the data were constructed for these periods(See
Figure 5 and Section Data and Implementation).

Maturity NS3 NS3 Segmented NS3 Strongly Segmented
1M 151.773420 2.449974e-11 6.879434e-13
3M 97.952827 2.412067e-11 7.182330e-13
6M 145.172881 2.173400e-12 6.270366e-13
1Y 78.856673 2.379020e-11 6.858002e-13
3Y 25.724497 1.964510e-12 5.746715e-13
5Y 13.969507 1.892531e-12 5.766169e-13
7Y 15.462041 23.35683 4.839083e-14
9Y 22.551928 23.35683 4.699260e-14
11Y 16.919568 3.323526e-13 1.851132e-13
13Y 9.448176 2.945397e-13 1.755687e-13
15Y 12.553559 3.369728e-13 1.713741e-13

Table 1: RMSE on Insample Data between 2013-01-01 and 2016-12-31

0.6 Forecasting Out of Sample
Prediction is one of the main objectives of multivariate analysis of time series. To predict the yield
curve it is necessary to first calculate the intercept, the slope and the curvature variables by using
ordinary least squares. We are going to use a VAR(1) model (Bt+1 = ΦBt + εt) to predict the
unobserved values. The loos function to evaluate the model will be the root mean squared error

RMSE =

√
(ŷt+h (τ̃)− yt+h (τ̃))

2
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where h is the length of steps ahead that have been taking for forecasting, h will be 1, 6 and 20 days
for all available maturities. When working with time series forecasting we often have to choose
between a few potential models and the method that we are going to use for the choice of these
is going to be expanding window . For a better understanding of the expanding window method
we will explain it in the following way: Suppose you have, for example, 100 observations of a
time series. First you estimate the model with the first 90 observations to forecast the observation
91. Then you include the observation 91 in the estimation sample and estimate the model again
to forecast the observation 92. The process is repeated until you have a forecast for all 10 out
of sample observations. Having already explained the methodology, for the present work we will
predict the last 64 days of our data; that is to predict the days between 2016-10-28 and 2016-12-31.

Maturity NS3 NS3 Segmented NS3 Strongly Segmented
1M 204.1277 3.4885 3.4885
3M 363.5557 0.1607 0.1607
6M 338.6277 4.7718 4.7718
1Y 129.5160 2.9995 2.9995
3Y 118.0157 0.2892 0.2892
5Y 12.8207 2.9654 2.9654
7Y 27.4832 9.7528 3.5973
9Y 46.2696 9.5275 3.7047
11Y 18.9471 3.4783 3.4783
13Y 6.0622 3.9374 3.9374
15Y 31.3396 3.6211 3.6211

Table 2: RMSE on OutSample Data 1 Day Ahead

Maturity NS3 NS3 Segmented NS3 Strongly Segmented
1M 217.8136 21.4938 21.4938
3M 362.5706 0.9725 0.9725
6M 346.0230 25.9774 25.9774
1Y 128.2185 10.7218 10.7218
3Y 118.8673 1.7191 1.7191
5Y 13.6771 10.9060 10.9060
7Y 28.2989 12.5120 12.2468
9Y 44.9838 12.8340 12.6727
11Y 20.2798 10.2613 10.2613
13Y 11.9426 11.9886 11.9886
15Y 30.2459 9.8814 9.8814

Table 3: RMSE on OutSample Data 6 Days Ahead

As shown in tables 2, 3 and 4 the results of the NS3 Segmented and NS3 strongly segmented models
RMSE are almost the same, if not identical, both show a better performance than the NS3 model
in all available maturities and in all forecasting windows, except in a 20 days ahead window the
NS3 model has a better performance than the Segmented model in 5 and 13 year maturities. The
results out of the sample of the 1, 3 and 6 month maturities of NS3 show a higher than normal
RMSE, possibly due to the way in which the data were constructed for these periods(See Figure 5
and Section Data and Implementation).
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Maturity NS3 NS3 Segmented NS3 Strongly Segmented
1M 234.6337 44.3104 44.3104
3M 361.2137 1.9699 1.9699
6M 355.6739 49.6339 49.6339
1Y 126.8352 18.9459 18.9459
3Y 119.4593 3.4911 3.4911
5Y 16.9207 19.0228 19.0228
7Y 31.2709 20.6599 20.5827
9Y 43.9985 21.2531 21.2240
11Y 23.1048 14.9574 14.9574
13Y 16.3404 16.9419 16.9419
15Y 29.5400 12.9844 12.9844

Table 4: RMSE on OutSample Data 20 Days Ahead

0.7 Conclusion
In this article we work with daily data of Colombian yields between the years 2013 and 2016,
we compare the performance in sample and out the sample of the Nelson and Siegel Segmented
model and the Nelson and Siegel Classic model. Inside the sample the Segmented and Strongly
Segmented model had an outstanding performance predicting the fitted yield almost identical to
the real yield in comparison with the Classic model, and out the sample the Segmented and the
Strongly Segmented models overcome the classic model in almost all the maturities and forecasting
windows.

The poor performance for cases less than 1 year (1, 3 and 6 months) in the Nelson and Siegel
Classic model is due to the pairing of the data.

If the segmented models are analyzed against the classic model, locally adjusting the segments
provides substantial improvements within and outside the sample.

We find that the model of Nelson and Siegel classic has a good behavior within the sample except
when the data contains strange behaviors (Figure 5).

For the next stage of this exercise we will seek to work with a more complete data, that is, one
that does not need to be paired, which will allow us to better see the performance of the model
for the short term and confirm the results obtained here.
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