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Biology

Plasmodium vivax is the second most prevalent parasite species causing malaria in humans
living in tropical and subtropical areas throughout the world. There have been few P. vivax
proteomic studies to date and they have focused on using clinical isolates, given the technical
difficulties concerning how to maintain an in vitro culture of this species. This study was thus
focused on identifying the P. vivax VCG-1 strain proteome during its blood lifecycle through LC-
MS/MS; this led to identifying 734 proteins, thus increasing the overall number reported for
P. vivax to date. Some of them have previously been related to reticulocyte invasion, parasite
virulence and growth and others are new molecules possibly playing a functional role during
metabolic processes, as predicted by Database for Annotation, Visualization and Integrated
Discovery (DAVID) functional analysis. This is the first large-scale proteomic analysis of a P. vivax
strain adapted to a non-human primate model showing the parasite protein repertoire during
the blood lifecycle. Database searches facilitated the in silico prediction of proteins proposed for
evaluation in further experimental assays regarding their potential as pharmacologic targets or
as component of a totally efficient vaccine against malaria caused by P. vivax.

Biological significance
P. vivax malaria continues being a public health problem around world. Although considerable
progress has been made in understanding genome- and transcriptome-related P. vivax biology,
there are few proteome studies, currently representing only 8.5% of the predicted in silico
proteome reported in public databases. A high-throughput proteomic assay was used for
discovering new P. vivax intra-reticulocyte asexual stage molecules taken from parasites
maintained in vivo in a primate model. The methodology avoided the main problem related to
standardising an in vitro culture system to obtain enough samples for protein identification
and annotation. This study provides a source of potential information contributing towards a
basic understanding of P. vivax biology related to parasite proteins which are of significant
importance for the malaria research community.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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1. Introduction

Malaria remains a disease causing concern for public health in
countries located in the world’s tropical and subtropical
regions. The World Health Organization (WHO) has estimated
that 207 million cases and 627,000 deaths, mostly in children
under 5 years of age, occurred in endemic countries during
2012 [1]. Most of the global burden concerning parasitic
disease is caused by Plasmodium falciparum and Plasmodium
vivax species; the latter predominates on the Asian and
American continents and is responsible for causing signifi-
cant morbidity in endemic communities [2]. Several studies
have showed that P. vivax infection can cause complicated
malaria [3,4] thereby making it a potential menace. Develop-
ing effective control strategies has therefore become a
worldwide public health priority.

Although several groups worldwide are focused on studying
P. vivax, basic research regarding this species has been delayed
by its biological complexity. For instance, it has a preference for
invadingreticulocytes, a small percentage of which are found in
peripheral blood [5], making it difficult to standardise an in vitro
continuous culture for obtaining large amounts of parasite [5].
Regarding vaccine design, the molecules involved in invasion
are highly polymorphic, i.e. the Duffy binding protein (DBP) [6],
apical merozoite antigen 1 (AMA-1) [7], reticulocyte binding
proteins (RBPs) [8,9] and merozoite surface protein 1 (MSP-1)
[10]. The picture is further complicated as latent liver forms
(hypnozoites) generate new parasites which are genetically
different from those found during the primary infection [11,12].

Just 42 molecules from the P. vivax haematic phase [13-43],
3 from the liver stage [44,45] and 3 from the sexual stage have
been identified and characterised using classical molecular
biology. A few of them are currently being evaluated in
preclinical and clinical studies [45]. Identifying the proteins
expressed by P. vivax is an important step in understanding
disease pathogeny and also in studying their role as bio-
markers [46], pharmacologic targets [47] or candidates for an
antimalarial vaccine [48,49]; P. vivax complexity means that
other methods should be used to expand knowledge regarding
its protein repertoire to find new molecules which can be
characterised in further functional studies.

Bioinformatics tools have been used for identifying P. vivax
proteins by comparing their encoding genes with genomic
annotation from other Plasmodium species. Restrepo-Montoya et
al. used probabilistic profile hidden Markov models (HMMs)
trained with several Plasmodium species proteins for which the
role in invasion has been experimentally determined. The
methodology allowed identifying 45 P. vivax genes whose
encoded proteins might have a potential role in invasion [S0].
Frech et al. found eight P. vivax exclusive genes in a non-syntenic
cluster on chromosome 6, suggesting that their encoded proteins
might play a role in invasion of reticulocytes [51]. Although
in silico analysis is a useful tool for selecting molecules having a
possible adhesion function, experimental validation is required.

On the other hand, earlier proteomic studies have helped to
characterise the protein composition of P. vivax. Acharya et al.
identified 154 proteins in clinically isolated P. vivax parasites
from information derived from mass spectrometry (MS); some
were hypothetical proteins, metabolic enzymes, chaperones and

molecules involved in virulence [47,52]. Roobsoong et al. identi-
fied 316 proteins in schizont-enriched parasite samples obtained
from symptomatic malaria patients. After separating the com-
plex sample on a 2D gel and digesting it, analysis revealed
proteins having different functions, such as binding, synthesis,
cell transport and metabolism [35]. Two immunoassay-based
studies for identifying P. vivax antigenic proteins have also been
developed. Chen et al. used the wheat germ cell-free system
(WGCEF) for the mass expression of 86 molecules; 18 of them were
recognised by sera from P. vivax infected patients (11 of them
having no functional evidence) [53]. Lu et al. expressed 152
proteins using the same WGCF expression system, 44 of which
were immunoreactive [43]. The proteomic and immunopro-
teomic studies described above led to identifying 457 P. vivax
proteins, this being a third of the P. falciparum molecules detected
during different parasite stages (1289 proteins, of which 714 have
been identified in asexual blood stages, 931 in gametocytes and
645 in gametes) [54].

More recently, the human serum proteome has been
evaluated for identifying the host immune response to
P. vivax malaria infection. Serum biomarkers (serum amyloid
A and haptoglobin) allowing P. vivax infection to be discrim-
inated from that produced by P. falciparum have been found
when sera from patients with non-complicated malaria were
compared to healthy volunteers’ sera by classical 2D gels and
novel 2D-DIGE technology followed by MALDI-TOF/TOF MS
analysis [55,56]. Comparison with P. falciparum or leptospiral
(febrile control) infected patients’ serum proteome revealed
that the Plasmodium parasite altered serum proteins involved
in the host’s physiological pathways.

Given that the P. vivax proteome has only been analysed
using parasite samples obtained from clinical isolates, this
research was thus aimed at a large-scale study of a primate
model-adapted P. vivax strain (VCG-1) proteome for increasing
knowledge about parasite protein composition. MS/MS analysis
of P. vivax enriched blood stages (i.e. ring, trophozoite and
schizont forms) complemented earlier work by adding a
significant number of new proteins to the available information
for the species. Proteins were categorised according to GO term
and potential drug target and vaccine candidates were predicted
in silico. Further experimental analysis of some molecules dealt
with here will provide deeper knowledge of P. vivax biology.

2. Materials and methods
2.1. Reagents

ACN, methanol, formic acid (FA) and water were obtained from
Fisher Scientific. Chloroform, DTT, ammonium bicarbonate (AB)
and tris(2-carboxyethyl)phosphine (TCEP) hydrochloride were
obtained from Sigma-Aldrich. Urea and 2-iodoacetamide (IAA)
were purchased from Merck. Lys-C was obtained from Wako and
trypsin from Promega. All reagents had high purity or were HPLC
grade.

2.2. Animal handling

Monkeys kept at Fundacién Instituto de Inmunologia de
Colombia (FIDIC)’s primate station (Leticia, Amazon) were
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handled in accordance with Colombian Law 84/1989 and
resolution 504/1996 and EU Directive 2010/63/EU for animal
experiments and followed established guidelines for the care
and use of laboratory animals (National Institute of Health,
USA). The animals were constantly supervised by a primatolo-
gist. The bleeding procedure for Aotus monkeys was approved
by the Ethics Committee of FIDIC’s Primate Experimental
Station and carried out in line with the conditions stipulated
by CorpoAmazonia (resolution 00066, September 13th 2006).
Nine Aotus monkeys were experimentally inoculated with
2.5 x 10° reticulocytes infected with the Vivax Colombia
Guaviare-1 (VCG-1) strain parasites, according to a previously
described protocol [57]. Infection progress was monitored daily
throughout the entire study (up to day 18) using acridine orange
staining which allowed red-orange brilliant fluorescence to be
observed in parasite cytoplasm with an ochre background.
Parasite density was determined using the following formula:
(no. of infected cells/total cells) x 100. The P. vivax infected
blood samples were collected for proteomic studies once
parasitaemia percentage was found to be between 2 and 5.
Monkeys were treated with paediatric doses of chloroquine
(10 mg/kg on the first day and 7.5 mg/kg/day until the fifth day)
and primaquine (0.25 mg/kg/day from the third to the fifth day)
at the end of the study to guarantee parasite clearance from
blood. Once experiments were over, CorpoAmazonia officers
supervised the primates’ return to their natural habitat in
excellent health.

2.3. Isolating P. vivax blood stages

A sample from each P. vivax stage was collected when that
stage represented more than 70% of all stages on a particular
slide. The readings were taken and recorded by an expert/
experienced microscopist using acridine orange staining. A
3 mL blood sample containing parasite-infected cells from its
different stages was thus collected in a heparin tube and sent
to FIDIC’s molecular biology laboratory, along with a record of
the percentage for each parasite form observed (Table 1).
Leukocytes and platelets were removed by filtering
through a CF11 column, as previously described by Sriprawat
et al. [58] and parasite percentage was confirmed again using
acridine staining (Table 1). Samples enriched in each stage
(ring, trophozoite and schizont) were pooled accordingly and
selected for proteomics analysis. Ring and/or trophozoite
stages could not be enriched to >90% purity since no density
gradient protocol was available for such purpose; however,
schizonts were enriched using a discontinuous Percoll gradi-
ent (GE Healthcare, Uppsala, Sweden), as previously described
[59]. Parasites were isolated from cells by incubating them for
5 min in 0.02 mM saponin buffer containing 7 mM K,HPOy,,

1 mM NaH,PO,, 11 mM NaHCO;, 58 mM KCl, 56 mM NacCl,
1mM MgCl, and 14 mM glucose, pH 7.5 and then were
washed intensively with PBS pH 7.0.

2.4. Protein extraction and precipitation

Whole proteins obtained from each P. vivax-enriched stage
were extracted following an established P. falciparum protocol
[60]. Briefly, parasites were disrupted by three cycles of
freezing/thawing and sonicated in digestion buffer (4 M urea,
0.4% Triton X-100, 50 mM Tris-HCl, 5 mM EDTA, 10 mM
MgSO,, pH 8.0) supplemented with protease inhibitor (1 mM
PMSF, 1 mM IAA, 1 mM EDTA and 1 mg/mL leupeptin).
Samples were spun at 13,000 rpm for 20 min at 4 °C and the
supernatant was recovered and stored at —70 °C until use.
Protein extracts were purified by precipitating them using the
methanol/chloroform method. The dried pellet was
homogenised in buffer containing 8 M urea and 50 mM AB.
Precipitated proteins were quantified with a micro BCA
protein assay kit (Thermo scientific) using a bovine serum
albumin (BSA) curve as reference and stored at —20 °C until
use.

2.5. Protein digestion and purification

Two micrograms of each parasite lysate obtained from
different blood development stages were reduced with 5 mM
TCEP at 37 °C for 1 hour. Cysteines were alkylated with 20 mM
IAA at room temperature (RT) for 30 min in the dark and
excess reagent was quenched with 10 mM DTT for 5 min at
RT. Samples were enzymatically digested at 37 °C for 2 hours
with Lys-C protease in a 1:50 enzyme:protein ratio (w/w)
followed by dilution to less than 1M urea and trypsin
digestion at 37 °C for 16 hours at an enzyme:substrate ratio
of 1:20 (w/w); the peptide mixture was then frozen at —20 °C
until use. Digestion product was re-dissolved in 0.5% FA and
desalted using Cqg StageTips columns [61]. Purified peptides
were eluted from the tips 50% ACN/0.5% FA (v/v). The samples
were dried until reaching 1 pL and stored at —20 °C until being
analysed by LC-MS/MS.

2.6. Mass spectrometry

Peptides were analysed by reversed-phased LC-MS/MS using a
nanoAcquity UPLC (Waters Corp., Milford, MA) coupled with
an LTQ-Orbitrap Velos (Thermo-Fisher, San Jose, CA). Separa-
tions were done in a BEH 1.7 pm, 130 A, 75 pm x 250 mm C18
column (Waters Corp., Milford, MA) at a 250 nL/min flow rate.
Injected samples were trapped on a Symmetry, 5 pm particle
size, 180 pm x 20 mm C18 column (Waters Corp., Milford, MA)

Table 1 - Average percentage parasitaemia of P. vivax-infected samples before and after passage through CF11.

Enriched blood stage Parasitaemia Blood stage

Initial blood sample CF11 treatment Rings Trophozoites Schizonts
Ring 5.0% 4.2% 87.2% 12.6% 0.2%
Trophozoite 3.8% 2.7% 29.6% 70.0% 0.4%
Schizont 4.0% 3.2% 5.0% 5.0% 90.0%
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and washed with 3% buffer (B) containing 0.1% FA in ACN at
7 uL/min flow rate for 3 min before starting the gradient.
Peptides were eluted off the column with a four-step gradient
using 3-7% B 1 min, 7-25% B 180 min, 25-35% B 30 min and
35-55% B 9 min.

The LTQ-Orbitrap Velos was operated in a data-dependent
MS/MS mode using Xcalibur 2.1.0.1140 software (Thermo-
Fisher, San Jose, CA) at 2.10 kV spray voltage, 325 °C and 60%
S-lens RF level. Survey scans were acquired in the mass range
400 to 1600 m/z with 60,000 resolution at m/z 400 with lock
mass option enabled for the 445.120025 ion [62]. The 20 most
intense peaks having >2 charge state and above 500 intensity
threshold were selected in the ion trap for fragmentation by
collision-induced dissociation with 35% normalised energy,
10 ms activation time, q = 0.25, +2 m/z precursor isolation
width and wideband activation. Maximum injection time
was 1000 ms and 50 ms for survey and MS/MS scans,
respectively. AGC was 1 x 10° for MS and 5 x 10® for MS/MS
scans. Dynamic exclusion was enabled for 90 s. All samples
were analysed in quadruplicate.

2.7. Peptide identification by database search

The Mascot algorithm [63] was used for searching the acquired
MS/MS spectra, using Thermo Scientific Proteome Discoverer
software (v. 1.4.0.288) against a custom database of P. vivax
parasite (5389 amino acid sequences) in silico reference prote-
ome, New World Monkey family (42,013 molecules) and
common contaminant sequences (e.g., human keratins, tryp-
sin, Lys-C and BSA), from the Uniprot protein database, release
April 2014. Search parameters were as follows: fully-tryptic
digestion with up to two missed cleavages, 10 ppm and 0.8 Da
mass tolerances for precursor and product ions, respectively,
carbamidomethylation of cysteines, variable oxidation of me-
thionine and N-terminal acetylation. Peptides having MASCOT
scores of less than 20 were not considered for analysis. One
percent false discovery rate using the Percolator was used for
peptide validation [64,65]. Only proteins with at least two
significant peptides were considered for analysis.

Identified proteins were compared with previously report-
ed proteome studies [35,47]. Transcription time for schizonts
was estimated according to Bozdech'’s study and the available
information in PlasmoDB database [66,67]. Proteins for which
there was no transcription evidence were searched using
more recent P. vivax lifecycle transcription analysis [68].

2.8. Protein annotation

The Database for Annotation, Visualization, and Integrated
Discovery (DAVID 6.7) 2003-2014 from the National Institute of
Allergy and Infectious Diseases (NIAID) [69] was used for
functional annotation. The parameters selected here were as
follows: GOTERM_BP_ALL or GOTERM_MF_ALL from the Gene
Ontology section. The analysis involved a count of 2 and EASE
score threshold was set at 0.05. Results were saved in
Microsoft Excel and txt format. Enriched Map with DAVID
output was generated using Cytoscape 3.1 software [70].
Analysis parameters involved a 0.05 p value, FDR = 0.1 and
overlap coefficient = 0.6. Clusters were circled manually and
labelled to highlight the prevalent biological functions

amongst a set of related gene-sets. Parasite proteins having
orthologues in humans were searched using the Kyoto
Encyclopedia of Genes and Genomes ortholog clusters (KEGG
OC) database for drug target analysis [71].

2.9. In silico protein characterisation

SignalP 4.1 [72] secretion signal sequence prediction and cell
localisation predicted by BaCelLo [73] were considered when
selecting proteins destined for the secretory pathway. The
Interpro database [74] was scanned in the search for putative
domains in the whole protein sequence. The presence of
transmembrane and glycosylphosphatidylinositol (GPI) an-
chor sequences was determined by using Phobius [75] and
FragAnchor [76] tools, respectively. Adhesine-like proteins
were predicted using MAAP software, using >0.7 score,
according to the recommendations [77].

3. Results
3.1. P. vivax VCG-1 strain proteome

P. vivax VCG-1 strain samples, enriched during different blood
stages, were analysed by LC-ESI-MS/MS. A total of 1309
molecules were identified by MASCOT search with a high
level of confidence (all having 1% FDR, as estimated by
Percolator: Supplementary Data 1). Eighty-six proteins had
N-terminal acetylation (supported by 101 peptides). Although
43 additional molecules were identified using the semi-tryptic
digestion as a search parameter instead of the tryptic
digestion (Supplementary Data 1), these molecules were not
considered for further analysis, since we intended to use
highly stringent parameters.

When evaluating the molecules’ description, 56.1% agreed
with P. vivax asexual stage proteins and 43.2% with the
monkeys’ proteome; the latter was due to the presence of the
primate material remaining after protein extraction; on the
other hand, there was minimal contamination with human
proteins (less than 1%). Of the 734 P. vivax asexual stage
molecules confidently identified here, 504 were new and 230
proteins were common when compared to previous P. vivax
proteomics and immunoproteomics studies (Fig. 1) (Supple-
mentary Data 2) [35,43,47,53]. This analysis has led to increasing
the overall number of reported P. vivax molecules to 960,

B New
B Common
B Previously identified

Fig. 1 - P. vivax proteins identified to date. Venn diagram
showing the proteins identified in this study compared to
early proteomic and immunoproteomic studies.
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comprising 17.8% of the in silico predicted reference proteome
reported in the Uniprot database.

22.9% of the P. vivax VCG-1 strain proteome consisted of
hypothetical proteins according to PlasmoDB database
(Supplementary Data 3). On the other hand, 69 molecules
were found which have been previously described as partic-
ipating in biological processes which are essential for
establishing Plasmodium infection or its development within
cells, such as cellular invasion (protein processing, initial
contact, reorientation and moving junction formation and
red blood cell (RBC) internalisation) [78,79], haemoglobin
degradation [80], intracellular transport [78,79,81-84], heat
shock response [85-87], antigenic variation and immune
evasion [88], erythrocyte modification [89] and drug resis-
tance [90] (Fig. 2) (Table 2).

New members of the Pu-fam family (not found previously)
predicted in the P. vivax genome in silico analysis [91] were
detected (Supplementary Data 3). Rhoptry (RAP-1 (PVX_085930),
-2 (PVX_097590), RON2 (PVX_117880), Clag (PVX_121885)) and
surface (MSP-8 (PVX_097625), -9 (PVX_124060), Pu41 (Pfs230)
(PVX_000995) and Puvl2 (PVX_113775)) proteins which have
already been identified and considered as good candidates for
inclusion in a P. falciparum vaccine were also identified [92-94].
A recently reported pre-erythrocytic (liver stage antigen
(PVX_091675)) protein was found; although this molecule is
immunogenic, its role during blood cycle has not been studied
[44].

3.2. P. vivax VCG-1 strain proteins GO function

GO terms were initially used for categorising whole proteins
identified in the P. vivax VCG-1 strain through gene-annotation
enrichment analysis using DAVID software. A total of 314
proteins were related to biological processes; the enrichment
map revealed that most of them were functionally-involved in
four processes (statistical significance: p < 0.05): protein metab-
olism and biosynthesis, nucleotide metabolism and biosynthe-
sis, cellular transport and localisation and DNA organisation
(Fig. 3) (Supplementary Data 4). On the other hand, 310
molecules were predicted as being related to a molecular
function; the most significant related functions derived from
DAVID analysis were: structural molecule activity (67 proteins,
p = 1.26E7%9), structural constituent of ribosome (58 proteins,
p = 8.28E-%), unfolded binding protein (22 proteins, p = 2.17E-%),
hydrolytic (12 proteins, p = 3.14E"%) and translation (24

43% 1.4%

31.9%

proteins, p = 4.41E-%%) activity, and nucleotide binding (149
proteins, p = 7.92E"%* - 2.03E"%) (Supplementary Data 4).
Some proteins could not be classified by DAVID, which may
have been because most were not seen to be similar to
molecules for which biological knowledge has been reported
in databases.

3.3. Transcript cf protein comparison, according to P. vivax stage

There was transcript evidence for 99.2% of the P. vivax proteins
found here when compared to the P. vivax transcriptome profile
published by Bozdech et al. [66] (Supplementary Data 5). A total
of 329 proteins from ring-enriched, 238 from trophozoite-
enriched and 727 from schizont-enriched samples were identi-
fied when analysing P. vivax extracts separately; 217 proteins
were common to all three stages, whilst 2, 16 and 107 molecules
were detected in rings/trophozoites, trophozoites/schizonts and
rings/schizonts, respectively. Some molecules were only found
in one stage: 3 in rings, 2 in trophozoites and 386 in schizonts
(Supplementary Data 5).

Interestingly, 6 proteins were found for which there was no
evidence of transcripts in Bozdech’s study; one hypothetical
conserved protein (accession number PVX_086055) was identi-
fied in a later study by Westenberger et al. [68]. The remaining 5
proteins consisted of three hypothetical proteins (PVX_091652,
PVX_091992 and PVX_118162), one HAM1 domain-containing
protein (PVX_096292) and one putative arginyl-tRNA synthetase
(PVX_123597) (Supplementary Data 5).

3.4. Pharmacological target prediction

Proteins having pharmacological potential were searched by
using previously described rules and sequence-derived prop-
erties [95]; molecules participating in parasite metabolism
which have no orthologues in humans and are possibly
involved in just one metabolic pathway were the criteria for
drug target prediction.

Proteins participating in KEGG pathways were initially
predicted using the DAVID program. The enrichment method
grouped 80 P. vivax proteins into two categories: 20 proteasome
proteins (p = 8.3E"%) and 60 ribosome proteins (p = 1.5E7Y)
(Supplementary Data 6). Despite this, all molecules were
orthologous to human proteins as predicted using the KEGG
OC database.

B Protein processing

B Initial erythrocyte contact

B Reorientation and moving junction formation
B RBC internalisation

B Haemoglobin degradation

B Intracellular transport

O Heat shock response

B Antigenic variation and immune evasion

O Erythrocyte modification

B Drug resistance

Fig. 2 - Pie chart showing the P. vivax proteins distribution related to functional classes.
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Table 2 - Proteins related to Plasmodium parasite invasion and cell infection.

Biological process Protein name and PlasmoDB ID References
Protein processing Subtilisin-like protease (PVX_097935) [78,79]
Initial erythrocyte contact MSP-1 (PVX_099980), -7 (PVX_082675), -7H (PVX_082680), -71 (PVX_082685) % SERA

(PVX_003805), -3 (PVX_003840)?, -4 (PVX_003825) and -5 (PVX_003810)?
Reorientation and moving AMA-1 (PVX_092275) and RONS (PVX_089530)
junction formation
RBC internalisation Merozoite capping protein 1 (PVX_111355), actin (PVX_101200), myosin A (PVX_083030),
actin depolymerising factor (PVX_097745)* and myosin-like protein (PVX_113830)
Haemoglobin degradation Falcilysin (PVX_115000), vivapain 1 (PVX_240290)%, -2 (PVX_091415 and PVX_091405°), -3 [80]
(PVX_091410)® and plasmepsin IV (PVX_086040)
Intracellular transport EXP 1 (PVX_091700), EXP 2 (PVX_116915), small GTP-binding protein (PVX_089930)%, rab [78,79,81-84]
GDP dissociation inhibitor beta (PVX_101040)? small GTPase Rab1l (PVX_080550)% -1A
(PVX_080610)?, -2 (PVX_124195), -5 (PVX_002970)3, -5¢ (PVX_081430), -6 (PVX_092850), -7
(PVX_098605), -11 (PVX_122840)%, -11b (PVX_082950)%, -18 (PVX_088180)%, Sec22
(PVX_095230)?, -23A (PVX_089235)3, -24 (PVX_115015), PfSec31p (PVX_002830)%, -61a
(PVX_083205), -61p (PVX_089275)2, -62 (PVX_118580) and -63 (PVX_122755)
Heat shock response HSP (PVX_098815%, PVX_002875% PVX_118295 and PVX_122065), -hslv (PVX_124160), -40 [85-87]
Pfj2 (PVX_091110), -40 Pfj4 (PVX_084600)?, -60 (PVX_095000), -70 (PVX_092310), -86
(PVX_087950), -90 (PVX_091545), -101 (PVX_091470), -110 (PVX_083105) and -110c
(PVX_087970)
Antigen variation and vir (PVX_096975 and PVX_096980) and vir-12 (PVX_002485% and PVX_022185%) [88]
immune evasion
Erythrocyte modification etramp (PVX_003565, PVX_086915%, PVX_090230 and PVX_096070) [89]
Drug resistance mrp-1 (PVX_080100), -2 (PVX_118100) and ABC transporter (PVX_124085)? [90]

& Proteins identified for the first time in this study. MSP (merozoite surface protein), SERA (serine-repeat antigen), AMA (apical merozoite
antigen), RON (rhoptry neck protein), EXP (exported protein), HSP (heat shock protein), vir (variable surface protein), etramp (early transcribed

membrane protein), and mrp (multidrug resistance protein).

A total of 177 proteins participating in 87 metabolic
pathways were found by using a recently updated PlasmoDB
application designed for such purpose in a second analysis [67];
36 proteins did not have human orthologues and 16 of them
were participating in only one pathway (Table 3). The M1-family
aminopeptidase (PVX_122425) was common with the drug
targets identified in the P. vivax studies reported by Acharya et
al. [47]. S-adenosyl-L-homocysteine hydrolase (PVX_080200),
malate:quinone oxidoreductase (PVX_113980) and leucine ami-
nopeptidase (PVX_118180) have previously been considered as
attractive drug targets for P. falciparum [96-98]. Other molecules
have been predicted representing major metabolic pathways
required for P. falciparum parasite replication and growth:
adenosine deaminase (PVX_111245) and phosphoethanolamine
N-methyltransferase (PVX_083045) involved in purine salvage
[99] and glycerophospholipid metabolism [100].

3.5. In silico predicted vaccine candidates

Vaccine candidate molecules were identified, taking the
following parameters into account: high expression at the
end of the blood lifecycle (>35 hours) (required), prediction of
being secreted (required), the presence (or not) of transmem-
brane regions or GPI-anchors, and the presence (or not) of
domains relevant for protein-protein interaction or adhesion
function, as determined by the MAAP algorithm. Proteins
having domains linked to intracellular functions determined
by Interpro scan were excluded.

The analysis led to identifying 31 molecules having the
characteristics described above (Table 5). The MSP-1 had

previously been studied in pre-clinical assays [101], others
had already been described as surface (Pv12 and Pv41) [26,38]
and rhoptry (PVRON2) [34] proteins, 8 were hypothetical
proteins and other rhoptry proteins not described as yet. Six
hypothetical proteins have not been studied in any Plasmodi-
um species; PVX_001780 had a domain involved in proteolysis,
PVX_092070 appeared to be restricted to the Plasmodium genus
and PVX_099710 had a domain characteristic of extracellular
proteins which are cell binding ligands (Table 5). Proteins
linked to parasite invasion and growth (subtilisin-like prote-
ase, EXP, and SERA proteins) and components of multigene
families (MSP-7, Pv-fam and etramp) were also predicted as
vaccine candidates.

4. Discussion

The P. vivax early proteomic study strategy has involved
analysing schizont stages isolated from several human
blood samples infected with the parasite. However, no
attempt has been made to date to analyse the P. vivax
protein repertoire using parasite samples from a source
having low variability or using different blood life cycle
stages. This study has evaluated a primate model-adapted
P. vivax strain proteome. An attempt was also made to
enrich the parasite during different intra-reticulocytes
stages (rings, trophozoites and schizonts) to analyse the
proteins expressed during different stages, report their
annotation and predict in silico potential drug targets and
vaccine candidate molecules.
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Fig. 3 - Enrichment map for the P. vivax proteins identified here. Map displaying P. vivax proteins grouped according to their
function. The size of the red node represents the number of proteins by term.

A total of 734 proteins were confidently identified; 504
were new molecules which led to increasing the number of
known P. vivax proteins to 960, which is now closer to the 1289
proteins reported for P. falciparum in intra-erythrocyte stages
[54]. It is worth noting that more than a third of the proteins
identified by previous P. vivax studies were not recognised
here (Supplementary Data 2), probably due to the high sample
variability once these had been isolated from infected
patients and then mixed and analysed by MS [35,47].

Proteins having N-terminal acetylation were also found.
This represents a major post-translational modification
which is prevalent in enzymes catalysing intermediate
metabolism in human cells [102]. Further analysis of these

proteins is thus needed to study their role in regulating
metabolic processes concerning P. vivax.

Twenty-five proteins identified here had been shown to be
antigenic in earlier immunoproteomic studies [43,53]; these
included AMA-1 and MSP-1 as the most studied P. vivax antigens
and other molecules such as MSP-7, -8, Pv41, Pu12, EXP, aspartic
protease PM5, etramp and Pu-fam protein families and hypothet-
ical proteins (Supplementary Data 3, shown with an asterisk).
Taking into account that antigenicity is one of the parameters
considered when selecting vaccine candidates [48], added to the
antigenic potential previously described for the above proteins,
additional experiments aimed at analysing the potential of the
above-mentioned proteins (mainly those which have not been

Table 3 - In silico prediction of potential drug targets.

Metabolic pathway PlasmoDB Description
ID
Phenylalanine, tyrosine and tryptophan PVX_098815 ATP-dependent heat shock protein, putative
biosynthesis (ec00400)
Glyoxylate and dicarboxylate metabolism (ec00630) PVX_111055 Haloacid dehalogenase, putative
Fructose and mannose metabolism (ec00051) PVX_099200 6-Phosphofructokinase, putative
Cysteine and methionine metabolism (ec00270) PVX_080200 Adenosylhomocysteinase (S-adenosyl-L-homocystein
e hydrolase), putative®
Pyruvate metabolism (ec00620) PVX_113980 Malate:quinone oxidoreductase, putative®
Glutation metabolism (ec00480) PVX_118180 Leucine aminopeptidase, putative®
PVX_ 118545 2-Cys peroxiredoxin, putative
PVX_122425 M1-family aminopeptidase, putative*
PVX_ 123435 Thioredoxin peroxidase2, putative
Glycerophospholipid metabolism (ec00564) PVX_083045 Phosphoethanolamine N-methyltransferase, putative®
PVX_088015 PST-A protein
Aminoacyl-tRNA biosynthesis (ec00970) PVX_002940 Asparagine-tRNA ligase, putative
PVX_082520 Glutaminyl-tRNA synthetase, putative
PVX_088145 Tyrosyl-tRNA synthetase, putative
Methane metabolism (ec00680) PVX_116710 Vacuolar ATP synthase subunit g, putative
Purine metabolism (ec00230) PVX_111245 Adenosine deaminase, putative®

& Proteins which have been suggested as being good drug targets in P. falciparum.
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studied to date) as components of an anti-malarial vaccine
against P. vivax should be undertaken. On the other hand,
although the number of proteins now identified for P. vivax has
substantially increased, further investigation is required to
discover these molecules’ importance regarding the parasite’s
biological functions, such as antigenic variability, immune
evasion, virulence, invasion process, pathogenicity and resis-
tance to drugs.

Comparing stages led to finding a difference between the
quantity of proteins detected in ring and trophozoite stages vs.
schizonts. This could be explained by there being fewer parasites
during early lifecycle phases (early/late rings and trophozoite)
and therefore low protein amount and a greater abundance of
primate molecules masking P. vivax peptide detection (49% for
ring-enriched and 66% for trophozoite-enriched samples)
(Table 4), this being consistent with one of the main difficulties
in proteome analysis [103]. On the other hand, most proteins
were found in 2 out of the 3 stages (Supplementary Data 5: see
expression time) which might have been because the MS
technique used here allows peptides to be detected but does not
measure their abundance. Thus the annotation of all proteins
identified here could only be determined, which provided an
insight into cellular processes in which some proteins partici-
pated during parasite development inside a target cell (Fig. 3),
whilst no functional preference by stage could be evaluated. A
quantitative proteomic analysis is required for determining
whether there was a correlation between proteins identified by
stage cf their encoding mRNA abundance.

Some proteins identified here had no transcript evidence
when compared to transcriptomic studies [66,68]. Previous
studies have shown a significant difference in the total mRNA
levels of 249 genes in three P. vivax clinical isolates from
Thailand [66] and in gene expression profiles when compared
to Peruvian P. vivax isolates [68]. The discrepancy between
VCG-1 and the P. vivax clinical isolates could thus be
explained by their different transcriptional profiles during
the intra-reticulocyte cycle; however, a gene transcription
profile study regarding P. vivax VCG-1 strain is thus needed to
confirm such hypothesis.

The search for therapeutic targets against malaria has
become an important line of research, given that resistant
P. vivax strains continue emerging and threatening the health
of millions of people in endemic areas [104]. Sixteen candi-
dates were predicted in this study, some of them being
orthologous to P. falciparum proteins which have been
considered potential pharmacological targets (Table 3). Al-
though several molecules have been suggested as possible

Table 4 - Proteins recognised by stage and their amount.

Stage Total  P.vivax Primate Contaminants?
proteins
Ring 661 330 (50%) 323 (49%) 8 (1%)
Trophozoite 731 238 (33%) 485 (66%) 8 (1%)
Schizont 1042 727 (70%) 310 (29%) 6 (1%)

Numbers in brackets indicate the percentage of total proteins
detected by stage.
& Main contaminants were human keratins.

P. vivax drug targets by Acharya et al. [52] not all were
identified here because such proteins did not meet the
inclusion criteria established for this study [95]. The absence
of these predicted proteins in mammals makes them ideal
targets for designing novel antimalarial drugs. However,
further assays orientated towards evaluating structural ho-
mology with other human proteins and the toxicity of the
drugs used against these targets in in vitro controlled trials are
needed to ascertain pharmacological potential.

The difficulties in studying the role of P. vivax molecules
in invasion when working with this parasite species in the
laboratory [5] have highlighted bioinformatics tools as an
interesting alternative for selecting and characterising
potential vaccine candidates [45]. It was particularly inter-
esting that several vaccine candidates predicted in silico
could induce an immune response during natural infection,
according to previous immunoproteomic studies (Table 5)
[43].

The in silico prediction led to identifying Pv-fam-a proteins
in which some members have been shown to bind erythro-
cytes [105], Pu-fam-d for which there is no functional evidence
data to date and etramps orthologues to P. falciparum proteins
whose red blood cell binding role has been shown (Table 5)
[106]. Other important proteins found were two MSP-7, two
SERA and five malarial adhesins, which have been considered
good vaccine candidates as they mediate cell binding [79,107].
One Pv-fam (PVX_112685) and one etramp (PVX_096070) pro-
teins were predicted by MAAP, as well as one hypothetical
protein (PVX_084720), the MSP-1 (PVX_099980) which has been
extensively studied in Plasmodium species, and one conserved
rhoptry protein (PVX_096245) which is important but not
essential for P. falciparum invasion, as shown in a gene
knockout study [108].

Rhoptry and surface proteins are important candidates
given that they are required for host cell attachment and
parasite invasion [109,110]; therefore, RON-2 (PVX_117880), -3
(PVX_101485), -5 (PVX_089530), the rhoptry protein above
mentioned (PVX_084720), one member of the cytoadherence
protein family (PVX_121885), and Pv12 (PVX_113775) and Pv41
(PVX_000995) could be good candidates.

Interestingly, according to the PlasmoDB information, 2
Pu-fam family proteins (PVX_112685 and PVX_121910) and one
hypothetical protein (PVX_096055) had no orthologues in
P. falciparum but were present in Plasmodium cynomolgi, a
monkey parasite which is a closely P. vivax-related species
and also infects reticulocytes (Table 5) [111]. This supports the
notion that these proteins are possibly related to P. vivax
cellular preference for invasion. Further characterisation of all
the aforementioned molecules should be considered for
testing their role in reticulocyte adhesion or invasion.

5. Conclusions

This is the first proteomic analysis involving a P. vivax strain
adapted to a non-human primate infection model for evalu-
ating its protein repertoire during blood stages. A total of 504
new P. vivax proteins not reported in earlier studies were
found here, thus providing relevant data concerning the
biology of the P. vivax VCG-1 strain related to proteins



276

JOURNAL OF PROTEOMICS 113 (2015) 268-280

Table 5 - Predicted P. vivax vaccine candidates in silico.

PlasmoDB Description MET SP Bacello Interpro Scan Phobius MAAP GPI-anchor
ID
PVX_000995% Transmission-blocking target 35 X X s48/45 domain (IPR010884) - - -
antigen Pfs230, putative (P41)
PVX_001780 Hypothetical protein, conserved 35 X X Aspartic peptidase domain 1 - -
(IPRO21109)
PVX_003805% Serine-repeat antigen (SERA), 35 X X Papain domain (IPRO00668) - - -
putative
PVX 003810  Serine-repeat antigen 5 (SERA), 35 X X - - -
putative
PVX_082675 Merozoite surface protein 7 (MSP7) 40 X X Merozoite surface protein, - - -
PVX_082680% Merozoite surface protein 7 (MSP7), 35 X X C-terminal (IPR024781) - - -
putative
PVX 084720% Hypothetical protein, conserved 40 X X - - X -
PVX_086915 Early transcribed membrane 35 X X etramp family (IPR006389) 1 - -
protein (ETRAMP)
PVX_089530 Rhoptry neck protein 5, putative 35 X X — 2 — —
(RON5)
PVX_090230 Early transcribed membrane 35 X X etramp family (IPR006389) 2 - -
protein (ETRAMP)
PVX_090945 Hypothetical protein, conserved 35 X X - 1 - -
PVX_091700%  Circumsporozoite-protein 40 X X Circumsporozoite-related antigen 1 - -
related family (IPR009512)
antigen, putative (EXP1)
PVX_092070% Hypothetical protein, conserved 40 X X Protein of unknown function - - -
DUF3271 (IPR021689)
PVX_096055°  Hypothetical protein 43 X X - 2 - -
PVX_096070 Early transcribed membrane 43 X X etramp family (IPR006389) 1 X -
protein (ETRAMP)
PVX_096245 Rhoptry-associated leucine 35 X X - - X -
zipper-like protein 1
PVX_096950  Tryptophan-rich antigen 43 X X Tryptophan/threonine-rich - - -
(Pv-fam-a) domain (IPR022089)
PVX_096990 Pu-fam-d protein 40 X X - 1 - -
PVX_097935 Subtilisin-like protease 40 X X $8/S53 domain (IPR0O00209) - - -
precursor,
putative
PVX_099710 Hypothetical protein, conserved 40 X X Calycin-like domain (IPR011038) - - -
PVX_099980% Major blood-stage surface antigen 35 X X 1 X HP
Pu200 EGF domain (IPR010901,
IPR024730, IPR024731)
PVX_101485 Rhoptry neck protein 3, putative 35 X X - 3 - -
(RON3)
PVX 112665  Tryptophan-rich antigen (Pv-fam-a) 43 X X Tryptophan/threonine-rich - - -
PVX_112685*" Tryptophan-rich antigen (Pu-fam-a) 40 X X domain (IPR022089) - X -
PVX_113225 Plasmodium exported protein, 40 X X Protein of unknown function 3 - -
unknown function DUF3671 (IPR022139)
PVX_113775%  6-cysteine protein (P12) 35 X X s48/45 Domain (IPR010884) 1 - HP
PVX_117880 Rhoptry neck protein 2 (RON2) 35 X X - 3 - -
PVX_121885 Cytoadherence linked asexual 35 X X Cytoadherence-linked asexual 2 = =
protein, CLAG, putative protein family (IPRO05553)
PVX_121910*° Py-fam-d protein 40 X X = 2 = =
PVX_122910 Hypothetical protein, conserved 43 X X - 1 - -
PVX_124090 Hypothetical protein, conserved 35 X X - 1 - -

MET: maximum expression time; SP: signal peptide; GPI: glycosylphosphatidylinositol; HP: highly probable.

& Previous evidence of antigenicity.
® Proteins with orthologues in P. cynomolgi only.

involved in parasite growth, antigenic variability, invasion
and others having a GO term linked to metabolic pathways.
The study has presented an important source of information
for molecule selection, providing the potential for establishing

suitable control strategies aimed at preventing or treating
P. vivax malaria infection. Further studies are needed to
confirm the potential use of the in silico predicted drug targets
and vaccine candidates here described.
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