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Abstract

Simulations and empirical studies suggest that incorporating a discontinu-
ous jump process in asset pricing models improve volatility forecasting, pricing
of instruments, and hedging positions in a portfolio. In this paper we analyze
high frequency market data of Colombian sovereign bonds in order to study
the presence or absence of discontinuities in the price generating process. We
find that Colombian sovereign debt experiments jumps across all maturities
but with different frequencies, in particular, we do not find that long term
bonds jump less frequently than short term bonds. Furthermore, bonds with
closer maturities cojump in greater magnitude than those with a greater dis-
tance between them. Finally, we find significant day-of-the-week effects, as
well as an important increase in the jump frequency due to surprises in eco-
nomic information related to US monetary policy and no effect due to direct
monetary policy announcements in Colombia or the US.

Keywords: Jumps, Realized Variance, High Frequency, Preferred habitat
theory, Monetary Policy Announcements.

JEL codes: G12, E43, C58.

1 Introduction
The mathematical modelling of financial assets is a key aspect of quantitative port-
folio management. Stock market participants use it for pricing instruments, hedg-
ing positions, and forecasting uncertainty. Pricing models assume that an asset’s
log-price follows a time-continuous diffusion process, usually a geometric brownian
motion. However, empirical studies and simulations suggest that incorporating pure
jump processes is necessary for a correct specification of these models Johannes
[2004]. Additionally, Johannes [2004] and Andersen et al. [2007] find that explicitly
expressing discontinuities in price models improves volatility forecasting, while Pi-
azzesi [2005] finds improvements in the pricing of US treasuries when incorporating
FOMC news announcements as determinants of potential jump times.
∗The authors would like to thank Bolsa de Valores de Colombia for providing a sample of

historical bond prices.
†Axa-Colpatria
‡Universidad del Rosario. Corresponding author: carlos.castro@urosario.edu.co
§Universidad del Rosario
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Recent literature extends the notion of price jumps to include cojumps, i.e.,
simultaneous jumps present in different assets; these cojump phenomena were first
studied in Barndorff-Nielsen and Shephard [2004a]. Bollerslev et al. [2008] find
strong evidence for modest-sized but highly significant cojumps in a panel of high-
frequency stock return data. Additionally, Novotnỳ and Urga [2017] find common
discontinuities in stock prices within a portfolio. They prove these cojumps can be
diversified by means of a correct combination of assets, though a method to find the
combination which eliminates these jumps is left as a future endeavor.

Most of the work previously cited is focused on the equity market. Unlike stocks,
fixed income instruments share many characteristics among themselves, and are usu-
ally only differentiated by maturity and coupon. Dungey et al. [2009] find “significant
evidence of jumps and cojumps in the US term structure” in response to macroe-
conomic news announcements. Furthermore, around one fifth of cojump activity
occurs independently of news. The authors look at this cojump activity and inter-
pret their findings in the light of several theories about the formation and evolution
of the term structure of the yield curve.

In order to test the presence of jumps, many of the previous literature uses the
test statistic developed by Barndorff-Nielsen and Shephard [2004b] in which two
measures of realized volatility are compared and contrasted: realized variance (RV)
and bi-power variation (BV). By taking the difference between the former and the
latter, we can obtain a notion of the size of a potential discontinuity (see Barndorff-
Nielsen and Shephard [2004b], Andersen et al. [2003a], Huang and Tauchen [2005]).
Intuitively, jumps are interpreted as the discrepancy between these two measures of
realized volatility.

In this paper we test for the presence of jumps using high frequency Colombian
sovereign bond data. Second, jump behaviour is described and characterized by
analyzing the frequency and magnitude of its activity. Third, following the procedure
presented in Dungey et al. [2009], cojumps across various assets are compared in
the context of the two main theories of term structure formation: the expectation’s
theory of the term structure and the market segmentation/preferred habitat model.
Finally, we look whether there are day-of-the-week effects or the relationship between
jump frequency and economic announcements and surprises.

Results indicate that bonds distributed throughout the Colombian yield curve
commonly experience jumps independently of maturity, this is different than what
is found in the US data where long term bond show less jump activity than short
term bonds. One possible explanation it that 15 year bonds in Colombia are less
liquid than short term bond and hence there are important jumps in these types of
assets. Furthermore, an average of 46.989% of jumps occur simultaneously across
two assets. Most commonly, it is the bonds in the shorter end of the term structure
which jump simultaneously, though illiquidity hinders a robust analysis for assets
on the long end of the yield curve. Daily seasonalities are found in both univari-
ate and multivariate jump activity, with both types of jumps being least likely to
occur on Monday. Cojumps are most likely to occur on Wednesdays or Thursdays,
depending on the sampling frequency. Furthermore, a panel logit model finds a per-
sistent Thursday effect of an increase of 7% in the frequency of jumps for almost all
sampling frequencies. In addition we find that investors in the Colombian sovereign
bond market are more sensitive to external surprises that may impact a change in
US monetary policy than local changes in monetary policy or any other economic

2



announcement. In particular, during 2017-2018 unexpected changes in CPI inflation
in the US created a 37% increase on the probability of observing a jump, using 5
minute data.
This paper contributes to understanding the dynamics of bond markets in emerging
economies and also provides empirical evidence regarding conflicting theories on the
terms structure of interest rates (liquidity preference vs preferred habitat hypothe-
sis). In particular, measuring the importance of co-jumps across different segments
of the yield curve provides evidence regarding the behavior of investors along the
curve.

The rest of the document is organized as follows. Section 2 discussed how dif-
ferent theories regarding the term structure of interest rate provide can lead to
different hypothesis regarding the timing frequency of jumps in different maturities
along the yield curve. Section 3 present the methodologies used to quantify and test
for jumps using high-frequency transaction data. Section 4 contains an overview of
the bond transaction database, along with considerations about sampling frequen-
cies and methods. Section 5 presents an in-depth showcasing of results and the
corresponding discussion. Finally, section 6 concludes.

2 Investor preference and the yield curve
Measuring jumps on bond has to consider the term structure of interest rates.
Whereas jumps in specific stocks can be analyzed in isolation, jumps in bonds must
have an important relationships among the different maturities. Term structure
models are based on the idea that there exist a lower dimensional set of variables
(factors) that capture most of the movements across the different maturities. So it is
important to consider how much of these co-movement are related to discontinuities
components of the data generating process. Although this is beyond the scope of the
paper we empirically test for the relationship among jumps in different maturities.

The theories of liquidity preference and preferred habitat/market segmentation
are two theories about how the term structure of the yield curve forms and evolves
in time. Liquidity preference argues that yields of longer dated bonds are higher
due to a liquidity risk premium. This liquidity risk premium arises from the greater
possibility of capital loss in long term bonds in comparison to shorter term debt.
Consequently, a greater risk of loss would imply that long dated bonds are more
reactive to macroeconomic news announcements and external shocks than short
bonds. Thus, we would expect to find greater jump activity in bonds of large
maturities.

On the other hand, the preferred habitat hypothesis argues that individual in-
vestors operate in different segments of the term structure according to their own
particular interest. Thus, movements in the yield curve respond to supply and de-
mand pressures of investors who populate different sections of the market. For ex-
ample, speculators who want to maximize profits may be more interested in trading
short maturity bonds due to their liquidity. In contrast, pension funds or insurance
companies may choose to trade long term bonds to fund future liabilities. Originally,
this models assumes a rigid segmentation of markets. Modigliani and Sutch [1966]
argue against this premise, proposing that investors may operate outside of their
preferred segments if a risk premium compensates their aversion to reinvestment
risk.
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In this context, since prices respond to local behaviour of different investors, the
short, medium, and long term yields would be independent of one another. Thus, it
is reasonable to expect that if speculators and arbitrageurs tend to operate in the
short end of the term structure, news and announcements may cause greater impact
on short yields. At the same time, long bonds would be reactive to news relevant
to the long term state of the economy. This qualitative overview of two theories of
term structure behaviour will give us the guiding principles in our analysis of jump
behaviour. In addition, under the preferred habitat hypothesis we would expect that
bond with similar maturities would "jump together" more frequently than bond that
are further apart. We explore this specific hypothesis in section 5.3.

3 Measuring and testing for jumps
Continuous time diffusion models are a vital tool in modelling the price evolution
of financial instruments. Their analytic convenience makes them an extremely use-
ful tool for drawing interpretations and simplifying hedging calculations on which
modern financial derivatives are based on. These models commonly assume that the
change of an asset’s log-price pt follows the stochastic differential equation:

dpt = µtdt+ σtdWt (1)

where µt is the instantaneous drift given by a locally bounded variation process and
σt is a strictly positive volatility process with well defined limits. Wt is a Brownian
motion. Under the premise of equation (1) the j-th intraday log-return is defined
as rt,j = pt,j − pt,j−1. The associated quadratic variation of this model is given by:

〈r, r〉t =

∫ t

0

σ2
sds (2)

In what follows we assume that the data generating process for a bond’s log-price
is given by:

dpt = µtdt+ σtdWt + dLJ(t) (3)

The new third term is a pure jump Levy process, where LJ(t)−LJ(s) =
∑

s≤τ≤t κ(τ)
is the jump size. We assume that this is a particular case of Levy process known as
a Poisson compound process. Additionally, we also assume constant jump intensity
λ and jump size κ(τ) as an identically distributed (i.i.d.) random variable. Now,
the quadratic variation for this model is:

〈r, r〉t =

∫ t

0

σ2
sds+

Nt∑
j=1

κ2
t,j (4)

In the more general process, expression (3), the quadratic variation includes the
jump size.
Asymptotically, realized variance (RV) can give us a good approximation of the
quadratic variation:

Definition 1 Realized variance:

RVt =
M∑
j=1

r2
t,j
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This means that, for our jump-diffusion model, the realized variance converges to
expression (4) in the limit:

lim
M→∞

RVt =

∫ t

t−1

σ2
sds+

Nt∑
j=1

κ2
t,j (5)

Equation (5) gives us an estimate of daily volatility which captures the effect of the
volatility process σt as well as the magnitude of variance attributed to discontinuous
jumps, given by

∑Nt

j=1 κ
2
t,j

Barndorff-Nielsen and Shephard [2004a] and their following extensions in Barndorff-
Nielsen and Shephard [2005a] and Barndorff-Nielsen and Shephard [2005b] suggest
that, under reasonable assumptions, bi-power variation enables a consistent estima-
tor of quadratic variation that is robust to jumps:

Definition 2 Bi-power variation:

BVt = µ−2
1

M

M − 1

M∑
j=2

|rt,j||rt,j−1|

This definition of bipower variation (BV) is multiplied by a coefficient of standard-
ization µk which allows for a direct comparison with RV. This coefficient is given by
µk ≡ 2k/2Γ [(k + 1)/2] /Γ (1/2) for k > 0. Asymptotically, we have:

lim
M→∞

BVt =

∫ t

t−1

σ2
sds (6)

We can use the fact that BV is robust to jumps, while RV is not, in order to
obtain a notion of the size of a jump. By taking the difference between (5) and (6),
asymptotically, we get:

RVt −BVt →
∑

t−1≤τ≤t

κ2
τ (7)

Equation (7) implies that we can obtain a consistent estimate for the size of daily
jumps. Despite this, for finite samples, the difference between RV and BV is not
guaranteed to be positive. Nonetheless we can truncate its value at zero and consider
only positive values.

Instead of analyzing the magnitude of jumps, it is more interesting to study the
relative contribution of jumps to price variance. Thus, an initial expression the jump
statistic (JS) in Barndorff-Nielsen and Shephard [2004a] is given by:

JSt =
RVt −BVt√(

µ−4
1 + 2µ−2

1 − 5
) ∫ t

t−1
σ4
sds
→ N (0, 1)

Where the original difference in volatilities is now divided by a coefficient which stan-
dardises the statistic’s distribution. This coefficient introduces the term

∫ t
t−1

σ4
sds,

which determines the scale of equation (7) in units of conditional standard deviation
(see Huang and Tauchen [2005]). A jump-robust estimate of this term is given by
tripower quarticity (TQ):
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Definition 3 Tripower quarticity

TQt = Mµ−3
4/3

(
M

M − 2

) M∑
j=3

|rt,j−2|4/3|rt,j−1|4/3|rt,j|4/3 →
∫ t

t−1

σ4
sds

TQ is accompanied by the scale normalizing constant M since each absolute return
is of the order

√
∆t. Since M is of order 1

∆t
, the whole expression approaches a well

defined limit.
Even so, Huang and Tauchen [2005] find that simply using TQ tends to over-

reject the null hypothesis of no jump. In its place, they propose the following
modification:

JSt =
RVt −BVt√(

µ−4
1 + 2µ−2

1 − 5
)

max (BV 2
t , TQt)

(8)

Several authors (Barndorff-Nielsen and Shephard [2005a], Andersen et al. [2001],
Andersen et al. [2003b]) argue that finite sample performance may be improved by
basing the jump test on the log-difference of the realized measures, i.e.:

JSt =
log(RVt)− log(BVt)√(

µ−4
1 + 2µ−2

1 − 5
)

max (BV 2
t , TQt)

(9)

This implies that the numerators of equations (8) and (9) have the same asymptotic
distribution. According to Huang and Tauchen [2005] this is due to the fact that the
first-order Taylor expansion term of both numerators, centered around the asymp-
totic mean of RV and BV (i.e.

∫ t
t−1

σ2
sds), have the same distribution. Then, the

difference of both realized (and log-realized) measures generate the same asymptotic
distribution. Thus, equation (9) is the expression used to test the presence of jumps
in our empirical application.

4 Data
Our database consist of intraday transactions on the Mercado Electrónico Colom-
biano (MEC) operated by the Bolsa de Valores de Colombia (BVC). Data entries
span dates from January 2nd, 2017 to December 28th, 2018. This includes oper-
ations for a total of 485 trading days in these years. Colombian sovereign debt is
issued in Colombian peso (COP) and Unidad de Valor Real (UVR)1. Despite having
data for both types of assets, only COP issuances are considered since they are more
liquid.

Mnemonic conventions for Colombian debt titles enconde information about the
bond’s coupon, year of issuance, and maturity. For example, TFIT16240724 is a
fixed coupon treasury (TFIT) issued in 2016 (TFIT16) with expiration date 24th of
July 2024 (TFIT16240724). For the sake of brevity we will denote bonds only by
their expiration year in our discussions, i.e., we will refer to TFIT16240724 as T24.

1A Unit of Real Value (UVR) represents the acquisitive power of the Colombian peso, and is
defined as the price of a predetermined bag of goods and services.
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4.1 Bond selection criteria

Bonds are selected for analysis according to the following criteria: i) Liquidity: since
the jump detection approach detailed in the theoretical framework is based on the
asymptotic distributions of realized measures of variance, the most active assets will
return the best results; ii) Maturity: the two theories of term structure formation
discussed in section 2 give us preemptive expectations of the jump activity of bonds
of different maturities (from 1 year up to 15 years). Thus, choosing bonds with
maturities distributed along the term structure allows for an interesting comparison
of jump behaviour in light of those hypothesis.

For the case study of Colombia, these two criteria present a serious challenge.
The local market has few agents trading day to day, which means liquidity is gen-
erally low. Additionally, most of these agents trade mainly short and medium term
bonds. This means long term debt is much more illiquid since market participants
buy or sell long term bonds mostly to comply with regulations and to match long
term liabilities. Consequently, analysis at the shorter end (less than 5 years) of the
term structure will be much richer in comparison to the longer end (more than 10
years).

To aid in bond selection, table 1 displays daily descriptive statistics for all bond
transactions. Maturity, total trading days, and average and median transactions are
presented, as well as average and median inter-arrival times (IAT). IAT is defined
as the time interval between transactions, thus, IAT is lower for more liquid assets
and greater for illiquid ones. Values reported in this table help us quantify the daily
liquidity of each title. For example, the T24 bond averages 189.971 transactions
each day. Furthermore, IATs suggests that each transaction occurs every minute
and 29 seconds on average. This means that this bond is much more liquid that the
T20 title, which trades around 24 times each day, with each transaction occurring
every 7 minutes and 18 seconds on average.

The bonds chosen for analysis are: TFIT06211118, TFIT06110919, TFIT15240720,
TFIT-10040522, TFIT16240724 and TFIT16300632, hereafter T18, T19, T20, T22,
T24, T32. In other words, if we take 2017 as a base year we are considering bonds
with 1,2,3,5,7 and 15 years to maturity.

Even though these are the bonds which trade the most, illiquidity remains a real
challenge. Only T18, T20 and T24 average more than 10 transactions per day, while
the only long term bond (T32) averages 4.25 transactions per day. The most traded
bond is T24 with 189.971 daily operations on average.

4.2 Data sampling and microstructure noise

In order to apply the jump test in equation (9), our trade data must be sampled
at equal discrete time intervals Dungey et al. [2009]. Sampling high frequency data
entails the following trade-off: choosing a high sampling frequency captures more
information about the evolution of the real-time price formation process at the cost
of greater microstructure noise. On the other hand, a lower sampling frequency min-
imizes noise, at the expense of masking information about the asset’s instantaneous
market price.

Even though optimal sampling frequency tests exist, their results differ for dif-
ferent bond maturities (Zhang et al. [2005], Bandi and Russell [2006]). Different
sampling frequencies for different bonds makes comparisons across different assets
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Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT
TFIT16240724 7 485 189.971 198 1m 29.047s 13s
TFIT15240720 3 472 23.961 18 7m 18.138s 1m 16s
TFIT06211118 1 435 15.573 11 8m 32.520s 1m 40.5s
TFIT10040522 5 455 6.771 5 18m 42.474s 5m 56s
TFIT06110919 2 394 5.233 4 18m 54,712s 4m 16s
TFIT16300632 15 352 4.258 2 20m 04.405s 5m 35s
TFIT15260826 9 315 3.404 1 19m 42.871s 6m 35s
TFIT08261125 8 133 0.891 0 27m 06.659s 9m 30s
TFIT16180930 13 92 0.625 0 24m 55.545s 7m 36s
TFIT11241018 1 105 0.559 0 27m 40.795s 10m 25.5s
TFIT16280428 11 75 0.285 0 28m 51.778s 8m 00s

Table 1: Descriptive statistics of daily transactions throughout our sample; e.g.,
T24 averages 189.971 daily transactions in our database, with each trade happening
almost every minute and a half on average. Maturities are in reference to 2017.

impossible. For this reason, instead of using optimal frequency tests, empirical liter-
ature cited so far applies several sampling frequencies for assets under consideration
in order to compare and contrast the effects which sampling frequency has on the
jump test. We will replicate this procedure, sampling at 5, 10, 15, and 30 minute
intervals.

The optimal sampling method is also a source of debate among academics.
Dungey et al Dungey et al. [2009] take the last price within a time bucket as repre-
sentative of the market price within that interval. Sheppard [2006] argues that this
approach may lead to scrambling problems2 and could also bias the covariance of
returns to zero for larger sampling frequencies.

On the other hand, Lee and Mykland Lee and Mykland [2012] propose a non-
parametric approach which assumes that market noise has a zero-mean distribution.
This way, taking local averages of prices within time intervals asymptotically removes
noise from the underlying market price. Even though the authors assume that data
is of ultra high frequency, we will adopt this method as our sampling procedure
since scrambling problems are of greater magnitude for the more illiquid assets we
are studying.

4.3 Additional statistics

This section presents additional information about daily bond transactions. Tables
2 and 3 present the same statistics as table 1 for each year in our sample. As
previously mentioned, IAT for more liquid assets are smaller than for illiquid assets
since the time between transactions is shorter, thus, their values would cluster near
zero in the distribution. We have decided to crop IAT values at 3600 seconds since
intervals larger than an hour are uncommon.

Figures 1 through 6 showcase the number of transactions of the selected bonds
during all trading days of 2017-2018. Additionally inter-arrival time distributions
for the selected bonds are included. This information on the trading activity in the
bond market also show the impact on expected changes on the incentives on market
makers in the bond market. At the end of 2018 the treasury reduced the financial

2Taking the last price in each time bucket could result in intervals of uneven length. Since we
need equal length intervals, this problem is known as scrambling.
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incentives for financial institutions that participate in the primary bond market. The
incentive system in the Colombian bond market was established in the late nineties
to foster the development of the bond market. However, recent studies indicated that
the level of incentives was not necessary and created unnecessary trading activity
from financial institutions in the secondary market in order to obtain the incentives
in the primary market3. In particular in Figure 5 we observe a large drop in the
number of transactions at the end of 2018 for the most actively traded bond, T24.

Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT
TFIT16240724 7 242 233.636 226 1m 15.378s 12s
TFIT15240720 3 229 10.463 8 14m 47.167s 4m 17s
TFIT06211118 1 242 25.727 24 7m 9.708s 1m 24s
TFIT10040522 5 220 5.095 4 22m 4.609s 7m 39s
TFIT16300632 15 142 2.244 1 26m 43.930s 9m 17s
TFIT06110919 2 214 6.711 5.5 19m 19.944s 5m 51,5s
TFIT15260826 9 196 5.500 2 17m 23.907s 5m 33s
TFIT08261125 8 0 0 0 — —
TFIT16180930 13 78 1.178 0 24m 21.121s 7m 8s
TFIT11241018 1 96 1.062 0 27m 38.963s 10m 27s
TFIT16280428 11 20 0.165 0 19m 9.950s 1m 23.5s

Table 2: Descriptive statistics of daily transactions during 2017.

Mnemonic Maturity Trading days Avg. trans. Median trans. Average IAT Median IAT
TFIT16240724 6 243 146.486 137 1m 50.813s 14s
TFIT15240720 2 243 37.403 34 5m 21.236s 58s
TFIT06211118 – 193 5.461 4 15m 49.509s 4m 44.5s
TFIT10040522 4 235 8.440 7 16m 49.719s 5m 7s
TFIT16300632 14 210 6.263 4 18m 2.294s 5m 16.5s
TFIT06110919 1 180 3.761 2 19m 32.676s 5m 34.5s
TFIT15260826 8 119 1.317 0 32m 47.567s 16m 57s
TFIT08261125 7 133 1.778 1 27m 6.659s 9m 30s
TFIT16180930 12 14 0.074 0 54m 37s 45m 56.5s
TFIT11241018 – 9 0.058 0 28m 39.800s 3m 42s
TFIT16280428 10 55 0.403 0 33m 22.395s 12m 16s

Table 3: Descriptive statistics of daily transactions during 2018.

3 Here is a recent post (in spanish) that describe the regulatory changes.
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Figure 1: TFIT06211118: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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Figure 2: TFIT06110919: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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Figure 3: TFIT15240720: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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Figure 4: TFIT10040522: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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Figure 5: TFIT16240724: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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Figure 6: TFIT16300632: a) Daily transactions for 2017-2018; b) Inter arrival time dis-
tribution cropped at 3600 seconds
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5 Empirical Results

5.1 Univariate jumps

Table 4 summarizes the results of applying equation (9) for 5, 10, 15, and 30 minute
sampling frequencies at a 5% significance level. Despite trading for 472 out of the 485
total days, the T20 bond exhibits the most active jump behaviour at all frequencies
except 30 minutes; jumping 68.4% of the time at 5 minute frequency and 55.2% on
average. On the other hand, the T24 and T32 bills are among the least likely to
jump. T24 jumps 55.7% of the time at the 5 minute sampling frequency, but this
rejection rate quickly drops below 30% for all other frequencies. Meanwhile, the T32
rejection frequency increases for lower sampling frequencies.

This trend of lower sampling frequency resulting in higher rejection rates is un-
expected, since the presence of noise in higher sampling frequencies should generate
more rejections of the test statistic. Out of the six bonds studied, this inverse rela-
tionship between frequency and rejection is present in the more illiquid assets: T19,
T22, and T32. Table 4 reveals that these assets increase the number of detected
jump days when the sampling frequency decreases, which may indicate that the
lower sampling frequency captures more information about transaction dynamics in
illiquid assets. Thus, when the average of the time buckets is taken, the longer time
intervals allow for a more representative average price.

On the other hand, more liquid bonds generate larger rejection rates as the
sampling frequency increases. For example, the rejection rate for T24 grows from
0.14, 0.245, 0.272, and 0.557 as the sampling frequency increases from 30, 15, 10 to 5
minutes. This result is consistent with intuition that greater data granularity comes
with greater noise, as well as with conclusions presented by Dungey et al. [2009] in
their empirical study of US treasuries. Unlike their work, which finds that jumps
are not as prevalent for longer term bonds in comparison with short term bonds, we
find no relation between maturity and univariate jump rejection frequency.

Graphical representation of jump test results for the 30 minute sampling fre-
quency are shown in figure 7. This plot shows the value of the jump statistic for
each day in proportion to its critical value. It is clear by observation that jumps
are a common occurrence for fixed income instruments, which suggests that simul-

Mnemonic Avg. trans. Rejection freq. No. of jump days Rejection freq. No. of jump days
5 minutes 10 minutes

TFIT06211118 15.573 0.623 271 0.568 247
TFIT06110919 5.233 0.340 134 0.365 144
TFIT15240720 23.961 0.684 323 0.606 286
TFIT10040522 6.771 0.352 160 0.418 190
TFIT16240724 189.971 0.557 270 0.272 132
TFIT16300632 4.258 0.276 97 0.304 107

15 minutes 30 minutes
TFIT06211118 15.573 0.494 215 0.386 168
TFIT06110919 5.233 0.411 162 0.398 157
TFIT15240720 23.961 0.547 258 0.369 174
TFIT10040522 6.771 0.411 187 0.426 194
TFIT16240724 189.971 0.245 119 0.140 68
TFIT16300632 4.258 0.307 108 0.318 112

Table 4: Rejection frequency of the jump test for all sampling frequencies
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Figure 7: Time series of jump test results in proportion to the critical value at 30
minute sampling frequency and at a 95% confidence interval.

taneous jumps across different assets are a real possibility. We study the cojumping
behaviour in detail in the next section. Univariate test results for different sampling
frequencies are included in section 7.

5.2 Multivariate jumps

As a complement to the univariate jump test, we can also consider the case of multi-
ple bonds of different maturities jumping on a given day. This cojump behaviour can
be gauged by studying coexceedances, an approach developed by Bae et al. [2003] in
the context of financial contagion and occurrence of extreme events. A coexeedance
occurs when, on a particular day, a bond of maturity i exceeds the jump statistic’s
critical value given that a bond of maturity j has also surpassed the critical value
for the same day. This would imply that the assets have jumped synchronically at
the daily level.

More formally, the procedure is as follows. We begin by looking at the individual
time series of JSi,t values for each bond. A dummy variable di,t indicates if a bond
of maturity i exceeds the statistic’s critical value at day t:

di,t =

{
1 JSi,t > JScritical

0 otherwise

With the series of dummy values for each bond, the number of coexceedances will
be given by the sum of all di,t for i 6= j given that j = 1:

Ej,t|dj,t=1 =
n∑

i=1, i6=j

di,t (10)
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Mnemonic Co-exceedances Total jumps Mnemonic Co-exceedances Total jumps
0 1 2 3 0 1 2 3

5 minute sampling 10 minute sampling
TFIT06211118 47 132 76 16 271 TFIT06211118 69 120 51 7 247
TFIT15240720 39 166 102 16 323 TFIT15240720 78 141 60 7 286
TFIT16240724 27 129 98 16 270 TFIT16240724 22 66 37 7 132
TFIT16300632 4 29 48 16 97 TFIT16300632 12 47 41 7 108

15 minute sampling 30 minute sampling
TFIT06211118 66 104 40 5 215 TFIT06211118 76 70 20 2 168
TFIT15240720 91 123 39 5 258 TFIT15240720 74 75 23 2 174
TFIT16240724 27 54 33 5 119 TFIT16240724 15 36 15 2 68
TFIT16300632 23 51 29 5 108 TFIT16300632 43 47 20 2 112

Table 5: Number of coexceedances for each bond at all sampling frequencies.

We have decided to limit the cojump analysis to the T18, T20, T24, and T32
emissions, since the first three are the most liquid and T32 is the longest dated bond
in our database. This means that the number of coexceedances will range in values
from 0 to 3, where 0 indicates the number of unique jumps and 3 the number of
times when all bonds jump in a given day.

Table 5 presents the coexceedance results for all sampling frequencies as well as
the total number of jumps. Interestingly, jumps of two assets are the most common
event by a wide margin, followed by unique jumps. The least common occurrence is
the simultaneous jump of all four bonds. Furthermore, these results persist across
all maturities and sampling frequencies, which may point to an underlying dynamic
which causes this behaviour in Colombian sovereign bond market.

Averaging the 2 asset cojump proportions across bonds and maturities (except
for T32 at 5 minutes) accounts for 46.989% of all jump activity. This implies that
when the term structure experiences a jump, it generally does so in tandem with
another part of the curve. Identifying which ends move with which is difficult since
all coexceedances of two assets are very similar in proportion, though, in magnitude,
it is clear that T18 and T20 experience much more 2-asset co jumps at all frequencies.
In section 5.3, the phenomenon of cojump pairs is described in more detail.

5.3 Cojump pairs

By limiting our view to coexceedances of only two assets, we can see how their
cojump behaviour evolves in time. We do this by defining a counter which keeps
track of every time a coexceedance occurs for a pair of bonds. Everytime Ej,t|dj,t=1 =
1, the counter goes up by 1. When graphing this counter’s values as a time series,
this procedure has a convenient interpretation, since the steepest curve indicates
the most active pairing of cojumping bonds. Figure 8 shows the evolution of the
cojump pairs for all sampling frequencies considered: T18-T20 as a green dashed
and dotted line; T18-T24 as a solid orange line; and T20-T24 as a dashed blue line.
Figure 9 graphs the same dynamic for the T24-T32 (dash and dot), T20-T32 (solid),
and T18-T32 (dashed) pairs.

Our interest lies in comparing cojump behaviour of bonds distributed throughout
the term structure. Thus, the analysis that follows is made more clear by referring to
these pairs by the difference of their constituent’s bond maturities. From smallest to
largest difference, the pairs will be: T18-T20: 2Y pair; T20-T24: 4Y pair; T18-T24:
6Y pair. The second set would be T24-T32: 8Y pair; T20-T32: 12Y pair; T18-T32:
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14Y pair.
Results at 5 minute sampling tend to align with the preferred habitat theory,

since the two pairs of closest maturities, 4Y and 2Y, show the most (and second
most) cojump activity. 4Y jumps 185 times, 2Y does so 161 times, while 6Y counts
129 coexceedances in our sample. Comparisons with the 10, 15 and 30 minute sam-
plings show that 2Y is consistently the most active pair, with 4Y and 6Y being
second and third. These results strengthen the case for cojump behaviour following
the market segmentation hypothesis, which foresees bonds of nearer maturities re-
acting similarly to external shocks. Yet, for sampling frequencies of 10, 15, and 30
minutes, the 4Y and 6Y pairs tend to move more in tandem with one another. This
low cojump number is explained by the low univariate activity of the T24 bond at
those frequencies, since T24 only jumps on 132, 119, and 68 days respectively (see
table 4). Thus, pairs which contain T24 will have fewer days on which a possible
coexceedance may occur.

Meanwhile, casual observation of figure 9 tells us that pairs of dissimilar matu-
rities are much less active than ones with similar maturities. Across all samplings,
12Y shows the most coexceedances, followed by 14Y (except at 5 minutes) and 8Y.
Thus, we find no constructive evidence for either theory of the term structure of in-
terest rates. Yet, we may replicate the argument that low univariate jump activity
is responsible for the low cojump count for these pairs. In this case, it is the low
activity of T32 which constrains the number of days for a coexceedance to occur.
Since T20 is the most active bond, it has the most chance of cojumping with the
T32 bond. By the same logic, T24 is the least active bond, making the T24-T32
pair the least likely to cojump. Our results for sampling frequencies other than 5
minutes reflect that this is indeed the case.
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Figure 8: Time evolution of cojump pair activity at a) 5 minute sampling; b) 10
minute sampling; c) 15 minute sampling; d) 30 minute sampling frequency for pairs
of 2Y, 4Y, and 6Y difference in maturity.
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Figure 9: Time evolution of cojump pair activity at a) 5 minute sampling; b) 10
minute sampling; c) 15 minute sampling; d) 30 minute sampling frequency for pairs
of 8Y, 12Y, and 14Y difference in maturity.

5.4 Stylized facts of the Colombian bond market

This section studies daily jump seasonalities in two ways: first, the daily distribution
of the jump test results is studied in subsection 5.4.1. This allows us to more formally
define a panel logistic regression model for a binary outcome of jump versus no
jump. This approach lets us include central bank announcements. These results are
presented in subsection 5.5.

5.4.1 Daily distribution of jumps

It is possible that both univariate and multivariate jumps exhibit daily seasonalities.
For example, Das [2002] explicitly models day-of-the-week effects on jump behaviour
and finds that jumps are more likely to jump on Wednesdays due to option expiry
effects. Even though the procedure we have followed does not capture daily effects,
we can observe the distribution of jumps and cojumps to check for daily patterns.
Results of this analysis are presented in table 6.

For all sampling frequencies and almost all bonds, the least likely day for a jump
to occur is Monday. Only T18, and T19 at 30 minute sampling, deviated from this
behaviour. On the other hand, the assets studied did not reflect any particular
seasonality for a most common jump day. On average, Wednesday was the most
likely day for jumps at 10 and 30 minute sampling frequencies, with 22.1% and
22.4% of jumps happening on this day of the week on average. At 5 and 15 minute
sampling frequencies, Thursday was the most common jump day, with 22.5% of
jumps occurring that day for both frequencies.

Results for cojumps exhibit some similarity to univariate jumps. Analyzing only
jumps of more than one asset (coexceedance > 0) no particular day at any sampling
frequency stands out as one where a cojump is most likely to happen. As was
the case for univariate jumps, least likely day for cojumps is once again Monday.
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Mnemonic Weekdays Mnemonic Weekdays
M T W Th F M T W Th F

5 minute sampling 10 minute sampling
TFIT06211118 0.193 0.226 0.181 0.189 0.211 TFIT06211118 0.235 0.189 0.205 0.182 0.189
TFIT06110919 0.155 0.238 0.195 0.214 0.198 TFIT06110919 0.140 0.241 0.185 0.227 0.206
TFIT15240720 0.148 0.214 0.218 0.196 0.225 TFIT15240720 0.145 0.178 0.255 0.206 0.215
TFIT10040522 0.106 0.206 0.275 0.250 0.163 TFIT10040522 0.116 0.221 0.221 0.237 0.205
TFIT16240724 0.104 0.201 0.179 0.276 0.239 TFIT16240724 0.104 0.201 0.215 0.250 0.229
TFIT16300632 0.072 0.237 0.278 0.227 0.186 TFIT16300632 0.112 0.178 0.243 0.215 0.252
Daily avg. 0.130 0.220 0.221 0.225 0.204 Daily avg. 0.142 0.201 0.221 0.220 0.216
Coexceedance 0.168 0.211 0.211 0.205 0.205 Coexceedance 0.160 0.208 0.219 0.205 0.208

15 minute sampling 30 minute sampling
TFIT06211118 0.210 0.210 0.185 0.193 0.202 TFIT06211118 0.221 0.132 0.250 0.235 0.162
TFIT06110919 0.147 0.225 0.236 0.209 0.182 TFIT06110919 0.195 0.155 0.224 0.207 0.218
TFIT15240720 0.135 0.172 0.233 0.233 0.228 TFIT15240720 0.155 0.208 0.214 0.196 0.226
TFIT10040522 0.128 0.230 0.182 0.262 0.198 TFIT10040522 0.134 0.222 0.232 0.227 0.186
TFIT16240724 0.142 0.216 0.204 0.222 0.216 TFIT16240724 0.102 0.242 0.210 0.236 0.210
TFIT16300632 0.111 0.222 0.241 0.231 0.194 TFIT16300632 0.134 0.214 0.214 0.232 0.205
Daily avg. 0.146 0.213 0.214 0.225 0.203 Daily avg. 0.157 0.196 0.224 0.222 0.201
Coexceedance 0.151 0.202 0.221 0.214 0.212 Coexceedance 0.157 0.197 0.217 0.206 0.223

Table 6: This table shows the daily distribution of jump test results which exceeded
the critical value at 5% significance for all sampling frequencies.

The apparent monday effect found in idiosyncratic jumps and cojumps contradicts
findings for US treasuries presented by Dungey et al. [2009], where the authors do
not find any evidence of daily seasonalities for neither jumps nor cojumps. Day of
the week effects are studied more formally in the next subsection, as well as the
effect of economic announcements on jump activity.

5.5 Economic announcements and jump activity

Having found daily seasonalities in both jump and cojump behaviour, we can now
search for the impact of different economic announcements in jump activity. To do
this, we define a panel logistic model which specifies the event of a jump occurring
as a function of weekdays and economic announcements. The model is specified as
follows:

I(J∗i,t ≥ 1) = β0 +
4∑
j=1

βkDk + αDAnnouncement + εi,t (11)

where J∗i,t is the result of the jump test applied to bond i at day t in proportion
to the critical value. The identity function transforms the continuous values of the
jump test into a binary outcome model which takes a value of 1 when the critical
value is exceeded and zero otherwise. The Dk terms control for day of the week,
from Tuesday through Friday. We expect the βk coefficients to be positive since
we found that Monday is the least likely day for a jump to occur. We estimate a
random effects model,

εi,t = τi + ei,t

Where, ei,t ∼ iidN (0, σ2
e) and τi ∼ iidN (0, σ2

τ ), captures the unobserved hetero-
geneity across the propensity of different maturities to jump.
We consider different types of announcements and sources. First, we consider an-
nouncement as an indicator variable (i.e, DAnnouncement takes a value of 1 and 0
otherwise) on days that denotes the date of news releases or the day after if the
release is after the market closes. The announcements are regarding macroeconomic

17



information from Colombia and the US: Monetary policy (interest rate announce-
ments and FOMC meetings), CPI, Unemployment rate, Underemployment rate ,
GDP, Consumer confidence, trade balances, durable goods and rating changes on
Colombian sovereign debt. Second, we also consider a different indicator variable
that takes a value of 1 if the indicator that is released deviates from the expected
value (from a survey of forecasters). This second definition provides a way to con-
trol for the content of the announcement and whether the surprise contained in the
information is related to the jump rather than just the type of information that is
being released to the public.4

Table 7 presents logistic regression results and the average marginal effects for
the most relevant variables in terms of statistical significance.

Several day-of-the-week effects are found for 5, 10, and 15 minute samplings.
We report positive Tuesday and Thursday effects, the former is specially important
because it is consistently significant. At these frequencies, jumps are about 7.6%
more likely to occur on Tuesdays and about 6% more likely to occur on Thursdays.
The Thursday effect is robust to the introduction of different types of economic
announcements. This results deviates from what is observed in Table 6 where we
find a relatively similar distribution of jumps along weekdays, with a lower amount
on Mondays and a larger amount on Wednesdays.

With respect to economic announcements and surprises we have mixed results.
Overall, we find that very few variables have an impact on the jump frequency, in
particular at the 15 minute sampling frequency we do not find any significant effects.
Among the different sampling times we do not find common variables that increase
the jump frequency, in particular we find that CPI inflation surprises regarding US
data are more important for the 5 minute and 15 minute sampling frequencies. For
the 10 minute sampling frequency surprises related to the Colombian trade Balance
increase the probability of a jump by 8.7%. However, it is specific shocks rather
than US (αNewsUS) or Colombian shocks (αNewsCOL) that are relevant because when
we aggregate all types of announcement or surprise’s by country the effect is not
statistically significant. During the sample we also observed two announcement re-
garding a stable and one negative outlook (by Fitch on the 22 of February of 2018)
on Colombian sovereign rating, however, we find no statistically significant effect on
the jump frequency and also there are mixed results regarding the sign across the
different sampling frequencies.

Looking closely at the 5 minute sampling frequency and the 37% increase in the
jump frequency due to the increase in the CPI inflation surprise in US, we find a
possible explanation of the importance of external shocks to internal shocks. During
the sampling period 2017-2018 and further on in 2019, there was a succession of US
CPI inflation reports that have been significantly above expectations; these reports
raised questions regarding the tightening of monetary policy5. On the other hand,
during the same period 2017-2018 CPI inflation in Colombia was in line with the
Central Bank’s target. So it is not surprising that during the period investors in the
Colombian sovereign bond market were more sensible to changes in the monetary
policy in the US than any local shock.

4We obtain the dates of the announcement and the information regarding the observed and the
expected macroeconomic indicator from Bloomberg.

5A discussion by Gregory Mankiw in The New York Times.
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Panel βTUE βTHU αNews αNewsCOL αNewsUS αRating Marginal effect
5 Minutes 0.303** 0.239* 0.076**

(0.138) (0.138) (0.034)
0.301** 0.220 1.768*** 0.369***
(0.139) (0.138) (0.657) (0.094)
0.308** 0.227 -0.0512 0.129 0.032
(0.139) (0.139) (0.130) (0.147) (0.037)
0.308** 0.244* -0.438 -0.106
(0.138) (0.138) (0.510) (0.118)

10 Minutes 0.138 0.258* 0.063*
(0.139) (0.138) (0.034)
0.129 0.263* 0.378* 0.094*
(0.139) (0.138) (0.222) (0.055)
0.131 0.254* 0.107 0.0736 0.017
(0.139) (0.139) (0.128) (0.146) (0.035)
0.137 0.257* 0.0630 0.015
(0.139) (0.138) (0.493) (0.121)

15 Minutes 0.143 0.250* 0.06*
(0.138) (0.137) (0.033)
0.146 0.250* 0.194 0.056
(0.138) (0.137) (0.464) (0.124)
0.139 0.250* 0.0612 0.0127 0.003
(0.138) (0.138) (0.128) (0.146) (0.035)
0.142 0.248* 0.148 0.036
(0.138) (0.137) (0.488) (0.119)

30 Minutes -0.0246 0.0993 0.022
(0.143) (0.142) (0.031)
-0.0191 0.106 0.377* 0.087*
(0.143) (0.142) (0.218) (0.052)
-0.0221 0.0908 -0.0203 0.0993 0.022
(0.144) (0.142) (0.134) (0.150) (0.033)
-0.0244 0.0996 -0.0225 -0.005
(0.143) (0.142) (0.513) (0.112)

Table 7: Logistic regression results and Marginal effects for selected variables. The
last column indicates the marginal effect. For the panel based on 5 and 15 minute
sampling data the marginal effects reported are for: Tuesday, CPI inflation surprise
in the US, US news and Credit rating announcements, respectively. For the panel
based on 10 minute sampling data the marginal effects reported are for: Thursday,
Trade Balance surprise in Colombia, US news and Credit rating announcements,
respectively. For the panel based on 30 minute sampling data the marginal effects
reported are for: Thursday, Underemployment rate announcements in the US, US
news and Credit rating announcements, respectively.

We consider a broad range of announcements and surprises regarding economic
conditions and consider both internal and external shocks (US) and find that the
jump frequency is sensitive to specific shock that can have an incidence on monetary
policy but not the policy announcement themselves. It is also important to note
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that external shocks seem to be more relevant than local shocks. Furthermore, we
find systematic day-of-the-week effects that should be analyse further to determine
whether they provide arbitrage opportunities.

6 Conclusions
In document we have found that price discontinuities are a common occurrence
for Colombian sovereign bonds. Results presented in sections 5.1 and 5.2 show the
extent of this activity, though no relation was found between maturity and univariate
jump presence. Furthermore, no issuance was found to consistently be the one which
jumps the most for the sampling frequencies studied, though T24 was the least active
title for all sampling frequencies except 5 minutes.

By looking at the daily coexceedances, we can extend the notion of jumps to
include simultaneous discontinuities across assets, which is interesting because of
its effects on the yield curve. Analyzing results, almost half of all jump activity
consists of the cojumping of two bonds. In particular, the assets which cojumped
the most were the ones with shortest distance between maturities . This seems to
suggest that the behaviour of the local market falls more in line with the market
segmentation theory, as opposed to the liquidity risk premium hypothesis.

The widespread presence of jumps in bond prices allows for an interesting study
of their weekly distribution. For both univariate and multivariate jumps, the least
common jump day is Monday. For 10 and 30 minute sampling frequencies, the
preferred cojumping day is Wednesday, while at 5 and 15 minute samplings the
preferred cojumping day is Thursday. On the other hand, no particular day stood
out as more prevalent for univariate bond jump activity.

A panel logit model for 6 bonds allows for a formal study of daily jump season-
alities and the effects of economic announcements and surprises. As we expected,
there are multiple positive and significant day-of-the-week effects which diminish in
number and significance with sampling frequency. In particular, a persistent Thurs-
day effect was found for every sampling frequency except 30 minutes. We also find
that jumps are determined by surprises and specific economic variables rather just
the announcements. In addition we find that investors in the Colombian sovereign
bond market are more sensitive to external surprises that may impact a change in
US monetary policy than local changes in monetary policy or any other economic
announcement.
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7 Appendix: Complementary results
This section includes the remaining results omitted in this chapter’s previous dis-
cussions. Proportion of exceedance results are shown in figures 10, 11, and 12 for 5,
10, and 15 minute sampling frequencies. These results help highlight the interpreta-
tions given above, as well as illustrating the difficulty that liquidity imposes on our
analysis.
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Figure 10: Jump statistic results in proportion to the critical value, 5 minute sam-
pling
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Figure 11: Jump statistic results in proportion to the critical value, 10 minute
sampling
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Figure 12: Jump statistic results in proportion to the critical value, 15 minute
sampling
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