
Performance Evaluation 91 (2015) 80–98

Contents lists available at ScienceDirect

Performance Evaluation

journal homepage: www.elsevier.com/locate/peva

QD-AMVA: Evaluating systems with queue-dependent
service requirements
Giuliano Casale ∗, Juan F. Pérez, Weikun Wang
Department of Computing, Imperial College London, SW7 2AZ, London, UK

a r t i c l e i n f o

Article history:
Available online 2 July 2015

keywords:
Closed queueing network
Product-form
Approximate mean value analysis
State-dependent service

a b s t r a c t

Workload measurements in enterprise systems often lead to observe a dependence be-
tween the number of requests running at a resource and theirmean service requirements.
However, multiclass performance models that feature these dependences are challenging
to analyze, a fact that discourages practitioners fromcharacterizingworkloaddependences.
We here focus on closed multiclass queueing networks and introduce QD-AMVA, the first
approximate mean-value analysis (AMVA) algorithm that can efficiently and robustly an-
alyze queue-dependent service times in a multiclass setting. A key feature of QD-AMVA
is that it operates on mean values, avoiding the computation of state probabilities. This
property is an innovative result for state-dependent models, which increases the compu-
tational efficiency and numerical robustness of their evaluation. Extensive validation on
random examples, a cloud load-balancing case study and comparison with a fluid method
and an existing AMVA approximation prove that QD-AMVA is efficient, robust and easy to
apply, thus enhancing the tractability of queue-dependent models.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Performance analysis of real-world systems often relies on analytical performance models such as queueing networks
to capture limits on the maximum concurrency levels and pooling at software and hardware servers. In particular, when
the model focuses on describing contention at CPUs, the scheduling assumed at the resources is processor-sharing and
queueing network models become tractable thanks to the product-form result by Baskett et al. [1] and the availability of
several approximate mean-value analysis (AMVA) algorithms for load-independent models [2]. Load-independent AMVA
algorithms have been very successful since they are both efficient and accurate. These methods have found application,
for instance, in the analysis of batch jobs in large databases [3], and in the prediction of memory contention on multi-
core servers [4]. Load-independent AMVAmethods are also extensively used in the analysis of Layered Queueing Networks
(LQNs) [5–7], a class of queueing networks well-suited for the analysis of software systems.

Although the evaluation of load-independent models is a mature area, a common problem in real-world studies is the
fact that the service requirements of an application are seldom independent of themix and number of requests in execution,
even if one considers the average service time only. A typical example occurs in servers with multiple CPUs. Parallel jobs
may utilize multiple cores to process sub-tasks concurrently, leading to a variable service rate [8], i.e., the effective service
rate depends on the load, specifically on the number of sub-tasks in execution. Databases deployed on multiple servers
have also been modeled as load-dependent servers [9]. Similarly, in disks it has been shown [10] that the mean seek
time depends on the number of requests queueing at the disk, resulting in a variable disk service rate that depends on

∗ Corresponding author.
E-mail addresses: g.casale@imperial.ac.uk (G. Casale), j.perez-bernal@imperial.ac.uk (J.F. Pérez), weikun.wang11@imperial.ac.uk (W. Wang).

http://dx.doi.org/10.1016/j.peva.2015.06.006
0166-5316/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

http://dx.doi.org/10.1016/j.peva.2015.06.006
http://www.elsevier.com/locate/peva
http://www.elsevier.com/locate/peva
http://crossmark.crossref.org/dialog/?doi=10.1016/j.peva.2015.06.006&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:g.casale@imperial.ac.uk
mailto:j.perez-bernal@imperial.ac.uk
mailto:weikun.wang11@imperial.ac.uk
http://dx.doi.org/10.1016/j.peva.2015.06.006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 81

the load (number of requests) being processed. Furthermore, the congestion control mechanisms common in broadband
networks [11] are also a source of variable service rates. Another example of load-dependent behavior arises in enterprise
web applications [12], which are complex transaction-based systems that are known to display different behaviors in low
and high loads due to caching and shared data structures. Even if one characterizes these dependences from empirical data,
the limiting factor for the subsequent analyses is the lack of methods to efficiently evaluate the resulting queueing network
models, unless themodel is small. On the other hand, relying on load-independent AMVAmethods limits the expressiveness
of the performance models. This has become apparent also in recent systems research, which is increasingly advocating
the use of mix-dependent methods for performance prediction and control [13,14]. Another area where load-dependent
behaviors have been consistently observed are call centers [15]. Here the dependence arises from the agent heterogeneity
due to their different skill sets, training, and fatigue levels, among others.

To support the raising interest for characterizing load dependence in queueing networks, this paper introduces
QD-AMVA, a novel AMVA algorithm for queue-dependent models, i.e., models of systems where the service requirements
depend on the number andmix of requests in execution at the resource where the request executes. Although AMVAmeth-
ods for load-dependent models exist [1], these methods have severe limitations in the multiclass setting, including exces-
sive computational requirements, numerical instabilities, and being restricted to the simplest types of queue-dependence
[16,17]. This has led to multiclass state-dependent networks being seldom used in real-world studies. Moreover, existing
methods are perceived as complex since they focus on evaluating state probabilities even when mean values are sufficient
for basic performance assessment.

QD-AMVA is a queue-dependent AMVA algorithm that operates on mean values only, avoiding the computation of state
probabilities. This feature implies that the algorithm is efficient, since its computational requirements become independent
of the population size, and it is also numerically stable. Our algorithm is applicable to a large family of dependence functions
satisfying mild differentiability assumptions. Furthermore, we prove that the AMVA equations always admit a solution and
this solution can be guaranteed to be unique under monotonicity assumptions for the dependence functions. A noticeable
case that falls under these monotonicity conditions is the multi-server queue, which can be readily evaluated by the
QD-AMVA technique. In this setting, we show that our approximation of the multi-server queue improves over existing
AMVA approaches for multi-server queues and it is also better than a well-known fluid approximation.

We then investigate theoretical properties of themethod, including existence and uniqueness of the QD-AMVA solutions,
and develop exact formulas for sensitivity analysis of queue-dependent performance measures. A by-product of this
investigation is that we find it possible to evaluate the normalizing constant of the state probabilities for a queue-dependent
model by combining QD-AMVA sensitivity formulas with an existing approximation scheme for load-independent models.

We illustrate the efficiency and accuracy of QD-AMVAusing random test instances, a running case, and a comparisonwith
existing approximations. We also showcase the applicability of our methodology to real-world systems in a load-balancing
use case for a cloud application. Using real-world measurements from a multi-tier enterprise application deployed on the
Amazon EC2 cloud, which shows queue-dependent behavior, we show that amodel solvedwith QD-AMVA provides a better
configuration of the load-balancing weights compared to those recommended by an ordinary load-independent AMVA.

Summarizing, the present paper considers performance evaluation of systems under queue-dependent workloads and
makes the following main contributions:
• QD-AMVA, a novel approximate algorithm for evaluating closed queue-dependent queueing networks in a numerically

stable and efficient manner, without computing state probabilities;
• A characterization of the properties of QD-AMVA, including existence and uniqueness of the solutions;
• Sensitivity analysis results to compute gradients of performance measures in queue-dependent models;
• Extension of an existing approximation for the normalizing constant of queue-dependent models, which enables

assessment of probabilistic measures;
• Validation against randommodels, a case study, and two approximations for multi-server queues.

The rest of the paper is organized as follows. After providing background in Section 2, we further discuss motivation in
Section 3. The AMVAmethod for queue-dependent models is defined in Section 4 and characterized in Section 5. Extensions
to compute normalizing constants and sensitivity measures are given in Section 6. Evaluation of the methods is given in
Sections 7 and 8. Finally, Section 9 gives final remarks.

2. Background

2.1. Queue-dependent product-form solution

We begin by reviewing exact results for queue-dependent closed networks considered by the BCMP theorem [1]. The
reference model is composed of M stations and R job classes; indexes k, i ∈ {1, . . . ,M} are used throughout to reference
stations, while indexes r, s ∈ {1, . . . , R} reference classes. Each class r has a constant population of Kr ≥ 1 jobs. The total
job population in themodel is denoted by K =

R
r=1 Kr . Scheduling at queueing stations is assumed to be processor sharing

(PS) or any other scheduling discipline satisfying the BCMP theorem assumptions [1]. The state of the system is described
by anM × Rmatrix nwith generic element nk,r being a random variable counting the number of jobs of class r at station k.
We define nk =

R
r=1 nk,r to be the total number of jobs at station k.

82 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

The equilibrium probability π(n) of state n is given by the BCMP product-form solution for a queue-dependent network,
which may be written as

π(n|K) = G−1
M

k=1

Ck(nk)Fk(nk), n ∈ S, (1)

where nk is the kth row of n describing the state of station k, Ck(nk) = nk!(
R

r=1 nk,r !)
−1,G is a normalizing constant

relatively to the state-space

S =


n|nk,r ≥ 0,

M
k=1

nk,r = Kr , for all r = 1, . . . , R


,

and the product-form factors Fk(·) are recursively defined by

Fk(nk) = Dk,r(nk)Fk(nk − 1r), (2)

for any station k and class r such that nk,r ≥ 1, where 1r is a vector with a 1 in position r and 0 elsewhere. This recurrence
relation has termination condition Fk(0) = 1 where 0 = (0, . . . , 0).

We assume that jobs are routed across the network according to an irreducible discrete-time Markov chain. Under this
assumption, each state-dependent function Dk,r(nk) is given by the mean number of visits of class-r jobs to station k, with
respect to an arbitrary reference station, divided by the class-r service rate at station k when this station is in state nk. We
assume Dk,r(nk) to be either a positive function or, if class r does not visit station k, to be identically zero for all values of
its argument. In the case where all stations are load-independent, Dk,r(nk) = θk,r , where θk,r is the mean service demand of
class r at station k, the formula becomes thewell-known expression of the BCMP theorem for load-independent stations [1].

Throughout the paper, we focus on networks where one or more classes have queue-dependent service requirements
specified through the functions Dk,r(nk). Following [18], it is known that a function Dk,r(nk) preserves the product-form
property (1) if and only if, in addition to (2), it also satisfies the constraint

Dk,s(nk − 1r)Dk,r(nk) = Dk,r(nk − 1s)Dk,s(nk), (3)

for all population vectors nk and classes r and s such that nk,s ≥ 1 and nk,r ≥ 1. This requirement stems from the observation
that, if nk,r ≥ 1 for multiple values of r , then (2) can be expanded recursively in different ways according to the choice of r .
The constraint (3) simply ensures that all the possible recursion branches terminate providing an identical value for Fk(nk).

2.1.1. Performance measures
To simplify notation, unless needed we omit the dependence of performance measures on K , but we keep explicit the

dependence on related population vectors such as K − 1r . Common performance measures for state-dependent models
include the class-r throughput [19], Tr = G(K − 1r)/G, and themean queue-length of class-r jobs at station k [17],

xk,r =


nk∈N

nkTrDk,r(nk)π(nk − 1r |K − 1r), (4)

where N ≡ N (k, r) = {n ∈ S|1 ≤ nk,r ≤ Kr},N ⊂ S, and π(nk|K − 1r) is the marginal probability of station k being
in state nk in a model with K − 1r jobs. Note that due to the closed nature of the model, the sum of mean queue-lengths is
constant for each class, i.e.,

M
k=1 xk,r = Kr . Finally, we will group mean queue-lengths into a vector xk = (xk,1, . . . , xk,R),

and use the shorthand notation xk =
R

r=1 xk,r .

2.2. Product-form queue-dependence

In general, it is difficult to find a class of queue-dependent functions Dk,r(nk) that satisfies (3) and at the same time al-
lows for fairly general behaviors as a function of nk. However, this flexibility is needed, since real-world workload mea-
surements can show complex trends. To allow for more flexibility, we restrict our attention to functions of the type
Dk,r(nk) ≡ Dk,r(nk, nk,r) = θk,rβk,r(nk,r)γk(nk), where we assume βk,r(nk,r) and γk(nk) are bounded strictly-positive func-
tions in the range 1 ≤ nk,r ≤ Kr and 1 ≤ nk ≤ K , respectively. This form encompasses the most popular types of queue-
dependent functions used in the literature,1 for example, in the so-called load-dependent models, these functions reduce to
Dk,r(nk, nk,r) = θk,rγk(nk) [17].

1 Forms that do not satisfy this form are seldom used in the literature. One such example is the multiclass flow-equivalent server [20]. However, in a
multiclass flow-equivalent server the form of the service demands is dictated by the throughput of the subnetwork that it replaces. Thus, in these models,
it is not possible to use arbitrary mathematical expressions for the queue-dependence. A few other examples can be found in [17], however none of these
other forms can be efficiently analyzed in multiclass models of practical size.

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 83

We refer to the queue-dependent service requirements in the form Dk,r(nk) = θk,rβk,r(nk,r)γk(nk) as product-form
demands. Their key property is that they always satisfy condition (3) since

Dk,r(nk)

Dk,s(nk)
=
βk,r(nk,r)

βk,s(nk,s)
=

Dk,r(nk − 1s)

Dk,s(nk − 1r)
,

for all nk,r ≥ 1 and nk,s ≥ 1, regardless of the expressions of βk,r(nk,r) and γk(nk). Thus, arbitrary mathematical expressions
can be used to specify the queue-dependent functions βk,r(nk,r) and γk(nk). This dependence is therefore rather flexible,
and its main limitation is that it allows the service time of a job of class r to depend on the number of jobs of classes s ≠ r
only through the total queue-length value nk. Assumptions of this kind are rather common for tractability, for example they
arise in mean-field analysis techniques [21] and in the analysis of state-dependent behaviors that preserve the M ⇒ M
property [22].

Without loss of generality, we define θk,r = Dk,r(1r), such that θk,r represents the service demand of a single job of class
r when this is served alone at resource k, from service start to completion. With this definition, we can assume from now
on that βk,r(1) = 1 and γk(1) = 1.

3. Motivation

In this section, we provide evidence that the class ofmodels described in the previous section is intractable with state-of-
the-art methods. We first review existing methods, and then introduce a running case for the paper that cannot be analyzed
efficiently with existing techniques as the number of classes grows.

3.1. Related work

Load-dependent queueing systems have been recognized as an important modeling tool. In open systems, particular
attention has been paid to the single-station case. For instance, [23,24] study a queueing system where the service times
change according to the queue length, while [25] considers the case where the service time depends on the waiting time
experienced by the job in process.

In closed systems, the analysis of closed networkswith queue-dependent stations is an unsolved problem from a compu-
tational standpoint, since multiclass methods require exponentially large time and space as the number of classes and jobs
in the system grows [18,17]. Computational limitations have led previous work to focus on simpler load-dependent mod-
els, which are a subset of the class of models considered in this paper. Exact analysis of load-dependent models has been
derived in [26], which introduces the multiclass convolution method, and in [19], which defines exact mean-value analy-
sis (MVA) for multiclass models, including load-dependent models. However, load-dependent algorithms are notoriously
unstable, and scalable and stable computational algorithms exist only for single-class models with a single load-dependent
queue [27]. Also, [16] reports numerical difficulties for the queue-dependent MVA and proposes a correction for the single-
class case. A systematic review of the state-of-the-art for single-class andmulticlass models is provided in [17,18]. Themain
limitation of these algorithms is that their computational requirements grow exponentially with the model size, becoming
soon prohibitive on networks with more than a few jobs. The community has later tried to address this issue by extending
AMVA methods to the queue-dependent case [28,29], but the resulting methods are brittle and difficult to implement, not
really addressing the problem. For this reason, several other works have proposed approximations based on non-AMVA
approaches, such as asymptotic expansions [30,31], throughput bounds [32], and probabilistic methods [33].

The QD-AMVA method we propose differs from existing techniques as it encompasses a much wider class of queue-
dependence, where service requirements of class r at station k can depend on both nk,r and nk, not just on nk as in the
above works. Existing approaches for open load-dependent queueing systems focus on the case of a single station with a
single server and single-class customers, which is analyzed by means of Markovian processes for either the queue lengths
or the waiting times. Instead we focus on the case of a closed queueing network made of many stations, which we analyze
iteratively by means of an AMVA algorithm especially designed for queue-dependent services. Furthermore, our method
is straightforward to implement, provides guarantees on existence and uniqueness of the solutions, and delivers accurate
results. Finally, since our technique operates directly onmean values, its computational costs are O(MR), for amodel withM
stations and R classes, and thus independent of the population size K . Conversely, all existingmethods formulticlassmodels
need to recursively or iteratively evaluate at least O(MRK) state probabilities. This makes the overall cost of exact analysis
of queue-dependent models O(MRK R+1) in the total population size depending on the solution approach [16].

3.2. Running case

To illustrate our results throughout the paper, we introduce a running case. We consider a small closed network
composed of M = 2 tandem queues; station 1 is an infinite server (i.e., a −/GI/∞ station), station 2 is a processor-sharing
queue. There are R = 2 workload classes, with identical population sizes K1 = K2 = K/2. The mean processing time of a
class-1 request is θ1,1 = 90.0 at station 1, and θ2,1 = 1.0 at station 2; similarly, for class-2 requests we set θ1,2 = 90.0 and
θ2,2 = 1.0.

84 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

(a) Approximation error for x1,1 if
queue-dependence at the processor
sharing station 2 is ignored.

(b) Execution times (s) — 2 classes. (c) Execution times (s) — 4 classes.

Fig. 1. Running case — xdep1,1 and xindep1,1 refer respectively to the mean queue-length x1,1 in queue-dependent and load-independent models.

As the stations are assumed to be processor-sharing, we can model the infinite-server station by defining γ1(n1) = n−1
1 .

Thus, we use this representation in the running case. For the processor-sharing queue, we assume that jobs of class 1 execute
sequentially and place a queue-dependent demand that is captured by a polynomial function β2,1(n2,1) = θAn2

2,1 + θBn2,1 +

θC , where θA, θB, θC are scalar parameters that we vary to explore the sensitivity of the results. The requirement β2,1(1) = 1
implies θC = 1 − θA − θB. All queue-dependent functions other than γ1(n1) and β2,1(n2,1) are set equal to 1 for all inputs.

3.2.1. Impact of queue-dependence
To illustrate the large impact that queue-dependence can have in performance predictions, we illustrate the

approximation error incurred by ignoring queue-dependence at station 2. Fig. 1(a) shows numerical results obtained by
evaluating exactly with the convolution algorithm in [26] the running case (dep) and its load-independent variant where
we ignore the queue-dependence at station 2 (indep). In all experiments, we assume θA = 10 and θB = 1. The results
indicate that ignoring queue-dependence yields a very large error, above 1000% in some cases. Conversely, in low and heavy
load, this network is well-approximated by a load-independent model. This overall indicates that, even for a small model,
the practical implication of ignoring queue-dependence can be significant.

Furthermore, while in this example it is possible to span a range of populations from low to heavy load, in more realistic
models with several queues and classes, the scalability of the convolution algorithm is limited. This is already apparent in
Fig. 1(b). For K = 64, the convolution algorithm takes 0.4 s to complete on a commodity desktop,2 but for K = 256 the
algorithm takes 17.6 s to complete and returns an incorrect answer due to the normalizing constant exceeding the floating-
point range. In general, with R classes, the convolution algorithm takes O(MRK R+1) to complete; for instance, adding to the
running case two new classes identical to class 2, so that the model has R = 4 classes, the completion time for K = 64 jobs
of the convolution algorithm grows from 0.2 s to 490 s, as depicted in Fig. 1(c). Further increasing the total population to
K = 128 requires an execution time of over 36 h, making the analysis impractical, especially for optimization studies that
may require the evaluation of thousands of models.

4. Approximate analysis

4.1. Approximating mean performance

We begin by deriving some foundational results for the QD-AMVA algorithm. Our main finding is that, using first-
order Taylor approximations, it is possible to obtain a novel recurrence equation operating only on the mean values of
the performancemetrics. To apply this method, we assume that the scaling factors βk,r(nk,r) and γk(nk), in addition to being
bounded and strictly positive, are differentiable functions in the range 1 ≤ nk,r ≤ Kr and 1 ≤ nk ≤ K , respectively. Notice
that the following results involve the mean queue-lengths xk and xk,r , instead of the discrete variables nk and nk,r , which
are real quantities in the range 1 ≤ xx,r ≤ Kr and 1 ≤ xk ≤ K , respectively. The statement is given for the general case of
queue-dependent scaling factors Dk,r(nk), from which the specialization to the scalings Dk,r(nk, nk,r) is immediate.

Theorem 1. Consider a queue-dependent closed queueing network where the real-valued functions Dk,r(·) are differentiable on
{x ∈ RM×R

|xk,r ≥ 0,
M

k=1 xk,r = Kr ,
R

r=1
M

k=1 xk,r = K}. Then, the first-order Taylor approximation of the mean queue-
lengths at population K is

xk,r = TrDk,r(1r + xk(K − 1r))(1 + xk(K − 1r)), (5)

for all stations 1 ≤ k ≤ M and classes 1 ≤ r ≤ R.

2 The running case experiments have been performed on a desktop with 16GB RAM and an Intel Core i7-2600 CPU at 3.40 GHz.

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 85

The proofs of this theorem and the other results in the paper are provided in the Appendix. From this result, we readily
have that under product-form scaling factors the first-order expansion of the mean queue-lengths becomes

xk,r = Trθk,rβk,r(1 + xk,r(K − 1r))γk(1 + xk(K − 1r))(1 + xk(K − 1r)), (6)

for all stations 1 ≤ k ≤ M and classes 1 ≤ r ≤ R. By Little’s law, the mean response time of class-r requests at station k is
then Wk,r =

xk,r
Tr

. Exploiting the population constraints
M

k=1 xk,r = Kr , 1 ≤ r ≤ R, it is useful to note that Little’s law also

implies Tr = Kr(
M

i=1 Wi,r)
−1. Similarly, the utilization will be Uk,r = TrEnk,r≥1[Dk,r(n)], where the expectation Enk,r≥1[·]

is defined for states n where nk,r ≥ 1. As we assume that Dk,r(n) are differentiable functions, then the utilization may be
similarly approximated by a first-order Taylor approximation as Uk,r ≈ TrDk,r(x) = Trθk,rβk,r(1 + δrxk,r)γk(1 + δxk).

4.1.1. Running case
Using Theorem 1, we consider the running case and compare against the convolution method, to determine the errors

introduced by the approximate analysis. For K = 64, R = 2, θA = 10 and θB = 1, we find that the approximate mean
queue-lengths obtained by the above first-order approximations are x1,1 = 0.2011, x1,2 = 21.7008, x2,1 = 31.7989, x2,2 =

10.2992. The exact values for these mean queue-lengths obtained by the convolution algorithm are x1,1 = 0.2010, x1,2 =

21.7008, x2,1 = 31.7990, x2,2 = 10.2992, thus the first-order approximation has negligible error. Varying the population
from K = 2 to K = 64, on average the worst-case error on xk,r is just 1.45% of the total class-r population.

4.2. AMVA for queue-dependent models

Using Theorem1 it is simple to develop anAMVAalgorithm.Weuse the followingAMVAapproximations for the per-class
and aggregate mean queue-lengths

xk,r(K − 1s) =


δrxk,r , ∀k, r, s : s = r,
xk,r , ∀k, r, s : s ≠ r, (7)

xk(K − 1s) = δxk, ∀k, s, (8)

where xk,r ≡ xk,r(K), δr = (Kr −1)K−1
r , and δ = (K−1)K−1. It should be noted thatwhile the approximation for xk,r(K−1s)

is standard and corresponds to the one used by the Bard–Schweitzer AMVA algorithm [34,2], the approximation used for
xk(K − 1s) is non-standard and we adopt it to interpolate the mean queue-length in a class-independent manner to ensure
the uniqueness guarantees for the resulting AMVA solution, as we discuss later in Section 5.

Using (7)–(8), we can rewrite (6) as

xk,r = Trθk,rβk,r(1 + δrxk,r)γk(1 + δxk)(1 + δxk), (9)

for 1 ≤ k ≤ M, 1 ≤ r ≤ R. Exploiting that the population is constant, i.e.,


k xk,r = Kr , we can obtain Tr and write the MR
equations (9) as a non-linear system

xk,r =
Krθk,rβk,r(1 + δrxk,r)γk(1 + δxk)(1 + δxk)
M
i=1
θi,rβi,r(1 + δrxi,r)γi(1 + δxi)(1 + δxi)

, (10)

1 ≤ k ≤ M, 1 ≤ r ≤ R, where xi =
R

s=1 xi,s. This is a set of MR non-linear equations in the MR unknowns xk,r . Existence
and uniqueness of the solutions to this system of equations are discussed in Section 5.

Starting from a random, but feasible, initial guess, the non-linear system may be solved for the mean queue-lengths xk,r
using the successive substitutions method, as in established AMVA algorithms. This involves seeking for a fixed point of a
continuous mapping

xn+1
k,r =

Krθk,rβk,r(1 + δrxnk,r)γk(1 + δxnk)(1 + δxnk)
M
i=1
θi,rβi,r(1 + δrxni,r)γi(1 + δxni)(1 + δxni)

, (11)

where xni =
R

s=1 x
n
i,s and n ≥ 1 is the iteration index. A pseudo-code summarizing the procedure is shown in Algorithm 1

in the Appendix. The algorithm uses an initial guess for the queue-length xk,r proportional to θk,r , but other initializations
may be considered.

It should bementioned that known cases exist, in themathematical literature,where the successive substitutionsmethod
does not converge on well-behaved mappings. However, we are not aware of this behavior having been observed before in
existing AMVAmethods [2]. Using QD-AMVA, we have evaluated thousands of models, as documented in Section 7, and we
have never experienced a failure of the successive substitutionmethod to converge. Therefore, while it remains possible that
the method may not converge in some instances, the impact of this seems likely to affect only contrived examples. For such
instances, one may consider adopting a different approach to solve the AMVA system (10), such as Newton-type methods
that can provide guaranteed convergence under some assumptions [35].

86 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

4.3. Running case

For the running case introduced in Section 3.2, we consider an instance with K = 64 jobs, R = 2 classes, θA = 10, and
θB = 1. We find the approximate queue lengths with the method introduced in this section, and compare against the exact
results obtained with the convolution algorithm. The maximal relative error obtained with QD-AMVA is just 0.17% of the
per-class populations. The AMVA algorithm returns this solution after 12 iterations in just 2ms, which in this small example
is already about 35 times faster than convolution. AMVA memory requirements are negligible, below 1MB. Considering
again the scenario with K = 64 jobs and R = 4 classes discussed in Section 3.2, the AMVA algorithm requires 13 iterations,
with a completion time of 3 ms instead of the 1341 s required by the convolution algorithm.

5. Characterization

We now focus on characterizing existence and uniqueness of the solutions for the AMVA system (10). This is a relevant
problem, since the generality of the scaling factors makes it possible for the domain of the solution of (10) to be non-
convex and therefore multiple feasible solutions may be possible for the AMVA equations. In the following we focus on
the K > 1 case, as in the single-job case (K = 1) the AMVA equations clearly have a single solution. To see this, recall that
δ = (K − 1)K−1 and δr = (Kr − 1)K−1

r , thus K = 1 implies Kr = 1 and δ = δr = 0. Further, from the definition of βk,r(·)

and γk(·) we know that βk,r(1) = γk(1) = 1. Replacing in (10), we obtain xk,r = θk,r/
M

i=1 θi,r , which is the only solution
to this system.

In addition, to avoid unnecessary notation complexity, in the followingwe assume that θk,r > 0 for every 1 ≤ k ≤ M, 1 ≤

r ≤ R. All the results can be generalized to the case where some θk,r = 0 as in this case the vector of mean queue-lengths x
only needs to consider (k, r) tuples such that θk,r > 0, as all others are simply zero.

5.1. Existence of solutions

In order to prove existence, we first prove that the mean queue-lengths xk,r obtained from the AMVA system are strictly
positive, whenever the demands θk,r are positive.

Proposition 1. Let x be a solution of the AMVA equations (10) such that 0 ≤ xk,r ≤ Kr , 0 ≤ xk ≤ K . Then the solution x must
be strictly positive, with xk,r ≥ x−

k,r > 0, where

x−

k,r =

Krθk,r min
1≤ur≤Kr

βk,r(ur) min
1≤u≤K

γk(u)

K
M
j=1
θj,r max

1≤ur≤Kr
βj,r(ur) max

1≤u≤K
γj(u)

,

1 ≤ k ≤ M, 1 ≤ r ≤ R. Moreover, if K > 1, xk,r > x−

k,r .

We are now ready to prove existence of solutions using the Brouwer fixed point theorem.

Theorem 2. Under the assumptions of Theorem 1, and given the definitions in Proposition 1, the continuous mapping (10)maps
each point in the compact set

B =


x ∈ RM×R

:

M
k=1

xk,r = Kr; xk,r ≥ x−

k,r ,∀k, r


, (12)

to B itself. Thus, (10) has at least one fixed point x∗
∈ B .

It is possible to show examples where, even in the basic load-independent case, the non-linear system (10) admits in
general multiple solutions if initialized at arbitrary real points x ∉ B. However, this does not happen if the initial point is
in B. From now on, we therefore always assume that the initial point used in the AMVA system (10) belongs to B, which is
the case for the initial point used in Algorithm 1.

5.2. Optimization-based reformulation

With the goal of characterizing the number of solutions of the AMVA equations, we now introduce a reformulation of
the nonlinear system (10) as an optimization program. Recall that xk =

R
s=1 xk,s, and introduce the following function

f (x) =

M
k=1

R
r=1

 xk,r

0
log


uk,r

θk,rβk,r(1 + δk,ruk,r)


duk,r −

M
k=1

 xk

0
log ((1 + δuk)γk(1 + δuk)) duk, (13)

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 87

for x ∈ B andB defined as in (12). Assuming the scaling factors are twice differentiable, then f (x) is also twice differentiable
in B, since the first summation in (13) is on strictly positive values of xk,r ≥ x−

k,r > 0 and thus the first derivative does not
require to evaluate logarithms at zero. The key property of f (x) is that

∂ f (x)
∂xk,r

= log


xk,r
θk,rβk,r(1 + δrxk,r)γk(1 + δxk)(1 + δxk)


,

which by (9) may be seen as the logarithm of the AMVA throughput Tr . It should be noted that this relationship exists just
because we interpolate the total queue-length in a class-independent manner, i.e., xk(K − 1r) ≈ 1 + δxk, where δ does
not depend on r . This, together with the dependence of the scaling factors Dk,r(nk,r , nk) only on the random variables nk,r
and nk, simplifies the expression of the partial derivative and allows us to draw a connection between f (θ) and the AMVA
throughput Tr .

Stemming from this connection, we can now prove that the AMVA solutions satisfy the necessary conditions to be
stationary points for a minimization of f (x) in B, which are provided by the first-order Karuhn–Kuhn–Tucker (KKT)
conditions [35].

Lemma 1. If all the queue-dependent functions βk,r(1+ δrxk,r) and γk(1+ δxk) are twice differentiable in B , then the solutions
of the AMVA equations (10) in B satisfy the first-order KKT conditions for the constrained nonlinear program

min
x∈B

f (x). (14)

5.2.1. Specialization to load-independent models
An important property of (14) for load-independent models is that the class-independent interpolation of xk,r(K − 1r)

allows us to prove strict convexity of the minimization program in this case. This readily implies uniqueness of the solution.

Theorem 3. For a load-independent model, the minimization program (14) has a unique solution, and therefore the QD-AMVA
equations (10) have a unique solution in B .

Theorem 3 implies that for load-independent models with finite populations, a solution to the AMVA equations exists
and is unique in the feasible set B. To the best of our knowledge, uniqueness of AMVA results in the sub-asymptotic case
is established for throughputs [36,37], but has not been proved before for queue-lengths ([37], Table 1, Fixed Point, case
J > 1).

5.2.2. Uniqueness of solutions for queue-dependent models
Stemming from these results, we are now able to prove the main characterization result for the solutions of the AMVA

system (10).

Theorem 4. If all queue-dependent functions βk,r(1 + δrxk,r) and γk(1 + δxk) are twice differentiable in B , and respectively
non-increasing in 0 ≤ xk,r ≤ Kr and 0 ≤ xk ≤ K, then the QD-AMVA equations (10) have a unique solution in B .

The significance of Theorem 4 is that, when combined with the results in the previous sections, it sheds light on the
guarantees that QD-AMVA offers. For queue-dependent models that satisfy the assumptions of Theorem 4, the fixed point
exists and it is unique. This class of models is broad. For example, non-increasing queue-dependent functions are a natural
way to express parallelism in the service at a queue, see Section 7.2.

It is also important to note that for queue-dependent models that do not satisfy the assumptions of the theorem,
Theorem 4 does not exclude the existence of a unique solution in B. For example, despite using an exhaustive search based
onhomotopy continuation [38],wehave beenunable to find for the running casemultiple solutions inB, even though it does
not satisfy themonotonicity assumptions of Theorem4.More generally, despite having evaluated by homotopy continuation
thousands of queue-dependent models, we have never observed the case where AMVA has multiple solutions in B for
a given model. Our investigation has been primarily focused on models with polynomial and rational queue-dependent
functions, thus not excluding in principle that multiple solutions may arise in presence of other types of dependence
functions. However, our experience provides circumstantial evidence that the issue may not arise frequently enough to
represent a problem for applications of the QD-AMVA method.3

3 In the hypothetical situation where one has to discriminate between multiple feasible solutions for QD-AMVA, the following heuristic might help in
choosing a solution. Lemma 1 ensures that all such solutions are also feasible solutions for (14). This implies that we can score all such solutions x∗ using
the objective function f (x∗) and select the one that minimizes the objective function as the preferred solution. Ties may be resolved differently depending
on the application area, for example in capacity planning onemay select themost conservative solution according to some criteria other than the objective
function (e.g., cost).

88 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

6. Further applications

6.1. Normalizing constant

We now consider the normalizing constant for a queue-dependent model, given by G =


n∈S

M
k=1 Ck(nk)Fk(nk).

Recently, the authors of [39] have shown that the normalizing constant for a load-independent model can be computed
recursively through a Taylor approximation and AMVA. The proposed method is based on the first-order Taylor
approximation of G(θ + ∆θk,r) ≈ G(θ) +

∂G(θ)
∂θk,r

∆θk,r , exploiting the property that the derivative of logG with respect to
θk,r depends only on the mean queue length xk,r , which can be computed with load-independent AMVA methods. Then G
can be iteratively evaluated along each dimension θk,r by gradually increasing it with a step size∆θk,r . In addition, the initial
value of G comes from a degenerate model for which G is trivial to compute. The approach has a computational complexity
of O(M2R2) per iteration using the Bard–Schweitzer algorithm to estimate xk,r . Compared to the convolution algorithm,
which has O(M

R
r=1 Kr) complexity, this approach is significantly more efficient since normally K is much larger than M

and R. It is known that the above-mentioned property of the derivative of logG is true for both load-independent [40] and
load-dependent models [33], but we are not aware of this problem having been considered before for queue-dependent
models, which also include dependence on the number of jobs for each class. We now show that this property holds also in
this setting.

Theorem 5. For a closed queueing network model with product-form demands

∂ logG
∂θk,r

=
xk,r
θk,r

, (15)

for all stations 1 ≤ k ≤ M and classes 1 ≤ r ≤ R.

Therefore, we can combine QD-AMVA with the method in [39] to approximate G. A pseudo-code summarizing the
required approximation steps is given in the Appendix, together with an assessment on our running case.

6.2. Sensitivity analysis

The definitions given in Section 2.1.1 suggest that the derivatives of the performance measures with respect to an
arbitrary parameter of the model require to differentiate G. This need commonly arises in optimization-driven search,
which finds application in load balancing problems and maximum-likelihood estimation. In this section, we prove that
these gradients can be accurately approximated in terms of mean queue-lengths. This means that the QD-AMVA method
can be directly applied for computing the expression of the gradients, thus avoiding the need of probabilistic analysis. This
is especially important for the integration of QD-AMVA in numerical optimization programs, where accurate computation
of the Jacobian matrix through explicit expressions is preferable to finite-difference schemes.

Let us assume that the queue-dependent functionsmay be expressed in terms of a parameter set θk,r = (θk,r,1, . . . , θk,r,p,
. . . , θk,r,P), such that Dk,r(nk) ≡ Dk,r(nk,r , nk) ≡ Dk,r(nk,r , nk, θk,r) is determined by an arbitrary set of P real-valued
parameters. For example, these may be coefficients of a polynomial defining a queue-dependent function. We assume Fi(ni)
to be independent of θk,r,p for i ≠ k, and otherwise we assume Fk(nk) to be dependent on θk,r,p unless station k has no jobs
of class r (i.e., nk,r = 0).

We now extend (15) to cover sensitivity with respect to an arbitrary parameter θk,r,p ∈ θk,r . Notice that, thanks to
the identity ∂ logG/∂θk,r,p = 1/G ∂G/∂θk,r,p, computing the logarithmic derivative ∂ logG/∂θk,r,p is enough to obtain the
derivative ∂G/∂θk,r,p.

Theorem 6. For a function g(x), let Sxi [g(x)] =
xi

g(x)
∂g(x)
∂xi

be the elasticity of g(x)with respect to variable xi. Then the logarithmic
derivative of the normalizing constant with respect to a parameter θk,r,p is

∂ logG
∂θk,r,p

= θ−1
k,r,pEnk,r≥1

nk,r−1
u=0

Sθk,r,p

Dk,r(nk − u1r)


,

where Enk,r≥1(·) denotes expectation over states n with nk,r ≥ 1.

The above expression can be approximated in terms of xk,r in two ways. If the product-form queue-dependent functions
allow to explicitly compute the summation over the elasticities, a first-order Taylor approximation may be applied to the
result if it is a continuous function.We showone such instance below in Section 9. Conversely, define g(u) = Sθk,r,p [Dk,r(nk−

u1r)], then by the asymptotic Euler–Cauchy formula
nk,r−1
u=0

g(u) ≈
g(0)+ g(nk,r − 1)

2
+

 nk,r−1

u=0
g(u)du,

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 89

Table 1
Parameters.

θk,r = Unif.Integer(1, 100)
M ∈ {2, 3, 4}
R ∈ {1, 2, 4}
K ∈ {R, 2R, 4R}
Kr/K = 1/R
βk,r (·) ≡ 1,∀(k, r) ≠ (1, 1)
γk(·) ≡ 1,∀k

and applying a first-order Taylor approximation to the expectation Enk,r≥1(·) we find with the AMVA queue-length
approximation

∂ logG
∂θk,r,p

≈ θ−1
k,r,p


g(0)+ g(δrxk,r)

2
+

 δr xk,r

u=0
g(u)du


. (16)

Based on this first-order approximation, we can readily approximate the sensitivity of performance measures using the
QD-AMVA results. For example, differentiating log Tr , we find

∂ log Tr
∂θk,r,p

= Tr


∂ logG(K − 1r)

∂θk,r,p
−
∂ logG
∂θk,r,p


.

Using the definitions in Section 2.1.1, similar expressions can be generated for other performance measures. An example of
this analysis is provided in the Appendix for the running case.

7. Validation

We now describe the validation methodology used to evaluate the QD-AMVA algorithm.

7.1. Random models

We have first evaluated the QD-AMVA algorithm under a range of randomly generated model instances. Our evaluation
covers about 11,000 models, for different choices of the number of queues, classes, job populations, and queue-dependent
functions. Table 1 summarizes the choices of parameters used in the randommodel generation. A few remarks are needed:
• For each choice of M, R, K , and queue-dependent functions, we re-run the experiment 50 times with different sets of

random demands θk,r . The same assignment of the demands is considered for increasing values of the population K .
• For ease of interpretation, we consider a single service demand to be queue-dependent, i.e., for station k = 1 and class

r = 1. In particular, we assign β1,1(·) to be queue-dependent, since this is generally more challenging than assigning
γ1(·), which would not depend on the per-class populations. All other queues and classes are load-independent.

• For each choice of queue-dependent function β1,1(·), we also run experiments for its reciprocal β−1
1,1(·). This means that

our experiments consider both increasing and decreasing functions in the same proportions.
• Models are either small-sized or medium-sized, since we need to consider a number of jobs and classes that allow us to

solve the model exactly using the convolution algorithm. Larger models can only be evaluated approximately, due to the
excessively high cost of the convolution algorithm, thus complicating the error assessment for the AMVA method. We
evaluate some large models in Section 7.2.

The QD-AMVA algorithm is implemented with tolerance τ = 10−6 and no bounds on the maximum number of iterations.
Let xexactk,r be the mean number of jobs for class r at station k in the exact solution and let xapproxk,r be the corresponding
approximation computed by QD-AMVA. To assess the performance of the AMVA method, we consider these metrics:

ϵavg =
1
MR


k,r

|xexactk,r − xapproxk,r |

Kr
, ϵmax = max

k,r

|xexactk,r − xapproxk,r |

Kr
. (17)

Therefore ϵavg is the average fraction of jobs, relatively to the class population, that is misplaced in the AMVA solution
compared to the exact one determined by the convolution algorithm; ϵmax is similarly defined as the maximum misplaced
fraction of jobs.
Validation results

Table 2 summarizes the results, which are aggregated based on the choice of the queue-dependent function β1,1(·). The
results indicate that the QD-AMVA has low errors in all cases, always between 1.5% and 6%. An interesting pattern that
emerges from the experimental results is that the number of iterations and the errors are generally lower for functions that
are non-increasing. These correspond to functions that satisfy the uniqueness conditions of Theorem 4.We also see that the
non-increasing functions have a number of iterations that is generally in the range 8–10, whereas for increasing functions
this is in the range of 10–12 iterations. Coupledwith Theorem4, this finding strengthens the observation that non-increasing
queue-dependent functions are better suited to use in queue-dependentmodels. In these experiments the instancewith the
longest execution time required 200 ms, while the average execution time was under 10 ms.

90 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

Table 2
Results for randommodels.

β1,1(x) β−1
1,1(x)

ϵavg ϵmax iterations ϵavg ϵmax iterations

x 0.020 0.040 12.7 0.015 0.031 8.3
x(x −

1
2) 0.029 0.059 12.6 0.019 0.037 9.8

x(x +
1
2) 0.024 0.049 12.9 0.016 0.032 9.9

x(x2 +x+
5
4) 0.023 0.048 12.0 0.016 0.034 8.8

min(x, 2) 0.020 0.039 13.4 0.016 0.032 8.8
log(e+x−1) 0.017 0.034 12.1 0.015 0.030 9.5
ex 0.023 0.046 12.1 0.016 0.033 8.1

(a) Test model — m1 = m2 = 4. (b) θ2,1 = 0.1, θ2,2 = 0.2. (c) θ2,1 = 1, θ2,2 = 2.

Fig. 2. Comparing AMVA to a fluid limit and MOL.

7.2. Comparison with other methods

We now compare the performance of QD-AMVA with fluid approximation methods [41]. We focus on a specific type of
queue-dependence, which describes well processor-sharing multi-server stations, and fits within the density-dependent
models that enable a fluid approximation in the sense of [41]. Assumingmk servers in station k, the mean demand of class-r
jobs at station k is given by Dk,r(nk, nk,r) = θk,rnk(min{nk,mk})

−1, such that βk,r(nk,r) = 1 and γk(nk) =
nk

min{nk,mk}
. With

this definition, when nk ≤ mk, the job mean demand is θk,r , while when nk > mk, this becomes θk,rnk/mk. Notice that γk(nk)
does not have a continuous derivative at nk = mk, but this function can be approximated arbitrarily close using the smooth
softmin function

γ̂k(nk) =
nkeαnk + mkeαmk

eαnk + eαmk
nk, (18)

which converges to γk(nk) as α → −∞. We use the associated rate function to define a fluid limit [41], which is a system
of non-linear differential equations, and use the fixed-point of this system, obtained numerically, to approximate the mean
queue-lengths. We compare the mean queue-length obtained with the fluid limit with the QD-AMVA solution, using the
tandem network in Fig. 2(a), which is made of one infinite server and two processor sharing stations, each with 4 servers,
serving 2 job classes. We also set the parameter α in (18) to be equal to 20. The demand at the infinite server is set to
θ3,1 = θ3,2 = 10 for both job classes, while the mean demands in the processor sharing station 1 are set to θ1,1 = 1, and
θ1,2 = 2, and those in the processor sharing station 2 are θ2,1 = 0.1, and θ2,2 = 0.2. Fig. 2(b) depicts the mean error ϵavg ,
as defined in (17), obtained with the fluid and the QD-AMVAmethod for an increasing number of jobs of each class. Clearly,
the QD-AMVA method offers smaller errors than the fluid for small populations, but it shows a slower convergence to the
asymptotic solution than the fluid method. In Fig. 2(c) wemodify the demands in the processor sharing station 2 to be equal
to those of station 1, that is, θ2,1 = 1, and θ2,2 = 2. In this case, the fluidmethod hasmuch larger errors than QD-AMVA, even
for large populations. In fact, we have observed that in cases like this one, where the demands at the processing stations are
balanced, the fluid shows very different errors depending on its initial conditions. The QD-AMVA method, instead, offers a
similar performance than in the previous case, not being affected by the change in the service demands. Fig. 2 also compares
QD-AMVA with the results obtained with the approximation used in the Method of Layers (MOL) [5] to model multi-server
stations. Although the error is similar to the fluid and the AMVA for small populations, it becomes very large when the
population increases. Similar trends to those in Fig. 2 can be observed for different choices of the number of servers at the
two nodes.

Summarizing, this comparison highlights that QD-AMVA is generally more robust than two existing approximations. It
consistently delivers low approximation errors, in particular on models with non-asymptotic populations that are difficult
to analyze with fluid methods.

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 91

Fig. 3. Measured queue-dependent service.

Table 3
Demand θkr for the load balancing model in seconds.

VM Class 1 Class 2 Class 3 Class 4

Inf. Server 0.10 0.20 0.40 0.80
VM1 0.50 2.28 1.29 2.66
VM2 0.26 1.23 0.69 1.44
VM3 0.16 0.77 0.44 0.91
VM4 0.11 0.52 0.30 0.61

8. Case study

To illustrate the benefits of considering queue-dependence when modeling real systems, we consider a load balancing
problem for an e-commerce application deployed on the cloud. The deployment consists of a set of heterogeneous front
servers, each of which contains an instance of both the application and database servers. These servers are deployed on
Amazon EC2, using virtual machines (VMs) of different characteristics, e.g., CPU speed, memory. The application requests,
submitted by an application-specific workload generator, are handled by a load-balancer, which forwards them according
to a weighted round-robin policy. The problem under study is to define the routing weights that maximize the application
throughput. A commonapproximation for this consists in formulating a probabilistic routing problemandusing the resulting
probabilities to configure the load-balancer weights. We thus formulate an optimization problem to determine the routing
probabilities that maximize the application throughput, as in, for instance, [42]. The application servers are modeled as
processor-sharing stations, considering both queue-dependent and load-independent descriptions.

To parameterize the queueing-network model, we have run a large number of experiments using a real-world
application, Apache OFBiz,4 observing that some of the application requests clearly show queue-dependent service times.
This is exemplified in Fig. 3, where we depict the observed request service demands as a function of the queue-lengths. We
fit the observed measurements using a power function, and obtain the monotone decreasing γk(nk) = n−0.9805

k function
leading to the trend in the figure.

Specifically, we consider an EC2 deployment with M = 4 frontend servers (VMs) and R = 4 session types (classes).
These user classes are emulated with the workload generator, which submits a different sequence of application requests
for each user class. The demand of each user class is obtained by summing up the demand for each request as profiled
for each VM. In addition to the four processor-sharing stations that model the frontend servers, we add an infinite-server
station tomodel the user think times. In the queueingmodel that we use to find the optimal load-balancing probabilities, we
assume all the VMs are load-dependent, following the real scaling function depicted in Fig. 3. Themean demands for the load
balancing model are shown in Table 3. The number of jobs of each class Kr is chosen in {5, 25, 50} to consider different load
levels.

Using the queueing-network model to evaluate a set of routing probabilities, we use MATLAB’s fmincon solver to obtain
the optimal routing probabilities of each class to each VM such that the overall throughput is maximized. We consider two
runs of the solver and for each of them we adopt a multi-start approach to cope with the presence of multiple local optima.
In the first run, we use QD-AMVA, as defined in Algorithm 1, to evaluate the throughput of the model for each feasible
allocation of the routing probabilities. In the second run, we use a load-independent AMVA, the Bard–Schweitzer algorithm,
parameterized just with themean demands in Table 3, but without the scaling function γk(nk) that cannot be expressed in a
load-independent model. After solving the optimization program, we use the obtained optimal routing probabilities within
a discrete-event simulation tool and obtain the simulated throughput under the queue-dependent behavior. Simulation

4 Apache OFBiz: http://ofbiz.apache.org/.

http://ofbiz.apache.org/

92 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

is required since the models are too large for exact analysis. The result is shown in Fig. 4, where QD stands for queue-
dependent and LI stands for load-independent. By relying on QD-AMVA, the throughput-optimization problem achieves
a marked improvement in overall throughput compared to the load-independent AMVA. This illustrates how explicitly
considering queue-dependent service times can be exploited to improve the application performance.

9. Conclusion

This paper has proposedQD-AMVA, the first approximatemean value analysis (AMVA) algorithm that can evaluate closed
queueing networks with queue-dependent nodes operating only on mean values. The algorithm does not need to compute
state probabilities and therefore is numerically stable and its computational requirements are independent of the number
of jobs in the system. Future work may explore the integration of QD-AMVA method in layered queueing network solvers,
which are AMVA-based but are currently unable to deal with load-dependence, and applications to resource management
at run-time.

Acknowledgments

The research presented in this paper has received funding from the Engineering and Physical Sciences Research
Council (EPSRC) under grant agreement No. EP/M009211/1 (OptiMAM), from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No. 644869 (DICE), and from an Amazon Web Services (AWS)
in Education Research Grant. This publication reflects only the authors’ view and the European Commission is not
responsible for any use that may be made of the information it contains. The data generated in this paper is available at
http://wp.doc.ic.ac.uk/optimam/datasets.

Appendix

Pseudocode of the QD-AMVA algorithm

Algorithm 1 QD-AMVA Algorithm
Require: M, K , R, Kr , θk,r , βk,r(·), γk(·), for 1 ≤ r ≤ R, 1 ≤ k ≤ M , τ = tolerance
δ = K−1(K − 1), δr = K−1

r (Kr − 1)
n = 0
for r = 1, . . . , R do

for k = 1, . . . ,M do
x0k,r = Krθk,r(

M
i=1 θi,r)

−1,
end for

end for
while n < 1 or maxk,r{xnk,r − xn−1

k,r } > τ do
for k = 1, . . . ,M do

xnk =
R

s=1 x
n
k,s

end for
for r = 1, . . . , R do

for k = 1, . . . ,M do

xn+1
k,r =

Krθk,rβk,r(1 + δrxnk,r)γk(1 + δxnk)(1 + δxnk)M
i=1 θi,rβi,r(1 + δrxni,r)γi(1 + δxni)(1 + δxni)

end for
end for
n = n + 1

end while
return Mean queue lengths xnk,r , for 1 ≤ r ≤ R, 1 ≤ k ≤ M

Normalizing constant approximation
The method, which has the pseudocode shown in Algorithm 2, initially evaluates the normalizing constant on a degen-

erate model with a single station. Then, it progressively increases the service demand values for the other stations, updating
at each iteration the mean queue-length estimates. This can be done efficiently if one uses as initial point in Algorithm 1 the
mean queue-length values obtained in the previous inner iteration of the algorithm, since small increases of service demand
typically imply negligible changes in mean queue-lengths.

http://wp.doc.ic.ac.uk/optimam/datasets

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 93

Algorithm 2 Normalizing constant approximation
Require: σ = step size

Compute explicitly G for M = 1, i.e.,
logG = log K ! +

R
r=1


Kr log θ1,r +

Kr
u=1 logβ1,r(u)


+
K

u=1 log γ1(u)−
R

s=1 log Ks!

θ ′

1,r = θk,r , for 1 ≤ r ≤ R
θ ′

k,r = 0, for 2 ≤ k ≤ M, 1 ≤ r ≤ R
for k = 2 : M do

for r = 1 : R do
while θ ′

k,r < θk,r do
θ ′

k,r = θ ′

k,r + σ

Compute xi,c by QD-AMVA using demands θ ′

k,r ,∀k, r
logG = logG + log(1 + xi,c)σ (θ ′

k,r + σ)−1

end while
end for

end for
return logG

Running case
We apply the approximation described above to the evaluation of the running case. We consider again the model for

parameters K = 64, θA = 10, θB = 1. We apply the algorithm by computing first the value of logG on the processor sharing
node, and then iterating on the demands of the infinite servers. The step size is set to σ = 10−2. We obtain an approximate
normalizing constant value of 1.9873 ·1047, against an exact value of 2.0064 ·1047, with a 0.95% error. The iterations require
25 s to complete and negligible memory usage. Importantly, if one neglects the queue-dependence at the processor sharing
node, the normalizing constant becomes G = 1.2062 · 1036. This proves that combining QD-AMVA with the scheme in [39]
effectively paves the way to computing normalizing constants in queue-dependent models. We are not aware of any other
existing scheme that can deliver this result.
Sensitivity analysis

For illustration, we first consider the running case for θA = 0, K = 64 and θB ∈ [2, 10], such that the queue-dependent
function at the processor sharing node is now β2,1(n2,1) = θBn2,1 + 1 − θB. The elasticity with respect to θB is therefore

SθB(D2,1(n2 − u11)) = SθB(β2,1(n2,1 − u)) =
θB(n2,1 − u − 1)

θB(n2,1 − u − 1)+ 1
.

In the range of definition of θB, we can explicitly close the summation in Theorem 6 as

∂ logG
∂θB

= θ−1
B En2,1≥1

n2,1−1
u=0

SθB(β2,1(n2,1 − u))


= θ−1

B En2,1≥1


n2,1 + θ−1

B ψ(1 − θ−1
B)− θ−1

B ψ(1 − n2,1 − θ−1
B)


,

where ψ(·) is the digamma function. Recall that we can write Enk,r≥1(nk,r) = Er(1 + nk,r) ≈ 1 + δrxk,r , where Er is the
expectation with respect to the probabilities π(·|K − 1r). Since the summation can be expressed directly as a continuous
function, we can immediately apply a first-order approximation without resorting to the Euler–Cauchy formula and write
∂ logG/∂θB ≈ θ−1

B


1 + δ1x2,1 + θ−1

B ψ(1 − θ−1
B)− θ−1

B ψ(−δ1x2,1 − θ−1
B)


. Fig. 5 compares the approximation against the

exact values obtained by the convolution algorithm, showing a very good approximation accuracy. Here we focus on values
above 1 since ∂ logG/∂θB has a discontinuity at θB = 1.

We now illustrate the approach with the Euler–Cauchy summation. For this we revert to the queue-dependence used
in the previous examples, i.e., β2,1(n2,1) = θAn2

2,1 + θBn2,1 + 1 − θA − θB and set θA = 10 and K = 64. We consider
again the sensitivity with respect to θB. Following the definitions, we have that the integrand in the Euler–Cauchy formula
is g(u) = θB(u− K2 + 1)/(θB − θB(K2 − u)− 10(K2 − u)2 + 9). Using (16), we find that the Euler–Cauchy approximation is
∂ logG/∂θB ≈ 0.27334. Using convolution, we find an exact value of ∂ logG/∂θB = 0.25295, with a 8.1% error.
Proof of Theorem 1. Webegin by observing thatwe can rewrite the definition of themean queue-lengths as an expectation
Er [·] defined over the probabilities π(·|K − 1r). Let N ≡ N (k, r) = {n ∈ S|1 ≤ nk,r ≤ Kr} and N ′

≡ N ′(k, r) = {n′
∈

S|0 ≤ n′

k,r ≤ Kr − 1}. Recalling that nk is the kth row of n, and using expression (4) for the mean queue-lengths, then

xk,r =


nk∈N

nkTrDk,r(nk)π(nk − 1r |K − 1r)

= Tr


n′
k∈N ′

Dk,r(n′

k + 1r)π(n′

k|K − 1r)+


n′
k∈N ′

n′

kDk,r(n′

k + 1r)π(n′

k|K − 1r)


= Tr


Er [Dk,r(n′

k + 1r)] + Er [n′

kDk,r(n′

k + 1r)]

.

94 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

Fig. 4. Comparison between queue-dependent and load-independent AMVA results.

Using standard results for the expectation of a function of random variables, we can consider a first-order Taylor approxi-
mation of the last expression and write

xk,r = Tr


Er [Dk,r(n′

k + 1r)] + Er [n′

kDk,r(n′

k + 1r)]


≈ Tr

Dk,r(Er [n′

k + 1r])+ Er [n′

k]Dk,r(Er [n′

k + 1r])


= TrDk,r


Er [n′

k + 1r]


1 + Er [n′

k]


= TrDk,r


1r + xk(K − 1r)


1 + xk(K − 1r)


. �

The last step follows since Er is precisely the expectation based on the probabilities π(·|K − 1r).

Proof of Proposition 1. Since 0 ≤ xk,r ≤ Kr , 0 ≤ xk ≤ K , and βk,r(·) and γk(·) are bounded and strictly positive in the
range 1 ≤ uk,r ≤ Kr and 1 ≤ uk ≤ K , respectively, we get

xk,r =
Krθk,rβk,r(1 + δrxk,r)γk(1 + δxk)(1 + δxk)
M
j=1
θj,rβj,r(1 + δrxj,r)γj(1 + δxj)(1 + δxj)

≥

Krθk,r min
1≤ur≤Kr

βk,r(ur) min
1≤u≤K

γk(u)

M
j=1
θj,r max

1≤ur≤Kr
βj,r(ur) max

1≤u≤K
γj(u)(1 + δxj)

≥

Krθk,r min
1≤ur≤Kr

βk,r(ur) min
1≤u≤K

γk(u)

K
M
j=1
θj,r max

1≤ur≤Kr
βj,r(ur) max

1≤u≤K
γj(u)

= x−

k,r > 0.

The last inequality follows from the strict positivity assumed for βk,r(·) and γk(·). The strict inequality xk,r > x−

k,r follows
now by revisiting the steps above to notice that

xk,r =
Krθk,rβk,r(1 + δrxk,r)γk(1 + δxk)

M
j=1
θj,rβj,r(1 + δrxj,r)γj(1 + δxj)(1 + δxj)

(1 + δxk)

≥

Krθk,r min
1≤ur≤Kr

βk,r(ur) min
1≤u≤K

γk(u)

M
j=1
θj,r max

1≤ur≤Kr
βj,r(ur) max

1≤u≤K
γj(u)(1 + δxj)

(1 + δxk)

≥

Krθk,r min
1≤ur≤Kr

βk,r(ur) min
1≤u≤K

γk(u)

K
M
j=1
θj,r max

1≤ur≤Kr
βj,r(ur) max

1≤u≤K
γj(u)

(1 + δxk) = x−

k,r(1 + δxk).

Thus xk,r > x−

k,r whenever K > 1, as in this case δ = (K − 1)K−1 > 0.

Proof of Theorem 2. Since the scaling factors are continuous and positive functions, (10) defines a continuous mapping
that we denote by Y . Let x ∈ B and consider y = Yx. The point y also belongs to B since


k yk,r = Kr by the structure

of Y , the right-hand side of (10) sums to Kr , and yk,r ≥ x−

k,r , since x−

k,r is defined as a lower bound on the mapping; thus,
Y : B → B. Since B is a compact set, the continuous mapping Y therefore admits at least a fixed point x∗ by the Brouwer
fixed point theorem.

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 95

Fig. 5. Running case. Sensitivity of logG to a queue-dependent function parameter.

Proof of Lemma 1. Let µk,r be the Lagrange multiplier of the constraint xk,r ≥ x−

k,r and let µr be the multiplier of the
constraint

M
k=1 xk,r = Kr . The KKT conditions for (14) are

−
∂ f (x)
∂xk,r

= µr − µk,r , ∀k, r : θk,r > 0, xk,r ≥ x−

k,r , ∀k, r

(xk,r − x−

k,r)µk,r = 0, ∀k, r, µk,r ≥ 0, ∀k, r,
M

k=1

xk,r = Kr , ∀r.

(19)

We immediately verify that every AMVA solution satisfies the conditions associated to primal feasibility as every solution x
is in B. Further, from Proposition 1 we know that, for K > 1, xk,r > x−

k,r , thus we set the associated multipliers to µk,r = 0,
verifying dual feasibility and complementary slackness. Also, the first condition becomes

log


xk,r
θk,rβk,r(1 + δrxk,r)γk(1 + δxk)(1 + δxk)


= −µr , θk,r > 0.

Letting Tr be themean throughput in an AMVA solution, and settingµr = − log(Tr), we immediately see from (9) that every
AMVA solution complies with the KKT conditions.

Proof of Theorem 3. In the load-independent case, βk,r(·) ≡ γk(·) ≡ 1,∀k, r . Note that f (x) is twice differentiable in
B, since x−

k,r > 0. Let H(x) be the Hessian matrix for f (x). It is sufficient to show that, for any x ∈ B and direction
w ∈ RMR/{0}, V = wTH(x)w > 0.We denote bywk,r the element ofw corresponding to variable xk,r . Also, for a continuous
positive function g(x), defineΛx(g(x)) = ∂ log g(x)/∂x to be its logarithmic derivative. Simple calculations yield

V =

M
k=1

 R
r=1

w2
k,rΛxk,r (xk,r)−

R
r=1

R
s=1
s≠r

wk,rwk,sΛxk(1 + δxk)


=

M
k=1


R

r=1

w2
k,r

xk,r
−

R
r=1

R
s=1

δwk,rwk,s

(1 + δxk)


. (20)

To show that V > 0 we start by noting that this is true if δ = 0, which occurs when K = 1, as in this case the second set of

sums in (20) is zero, and
M

k=1
R

r=1
w2
k,r

xk,r
> 0 because xk,r > 0 andw is a nonzero vector. Now we focus on the case δ > 0.

Let us write V =
M

k=1 Vk, where

Vk =

R
r=1

w2
k,r

xk,r
−

R
r=1

R
s=1

δwk,rwk,s

(1 + δxk)
.

It is proved in [43, Lemma 6.3] that, for a superset of B,

R
r=1

w2
k,r

xk,r
−

R
r=1

R
s=1

wk,rwk,s

xk
≥ 0, k = 1, . . . ,M. (21)

Multiplying Vk by (1 + δxk)/(δxk) > 0, we obtain

Vk
1 + δxk
δxk

=
1
δxk

R
r=1

w2
k,r

xk,r
+

R
r=1

w2
k,r

xk,r
−

R
r=1

R
s=1

wk,rwk,s

xk
≥

1
δxk

R
r=1

w2
k,r

xk,r
≥ 0,

96 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

where the first inequality follows from (21), and the second from noting that δxk > 0 and xk,r > 0. We therefore conclude
that Vk ≥ 0, thus V ≥ 0. To prove V > 0 we reconsider the expression above, summing over k, thus

M
k=1

Vk
1 + δxk
δxk

=

M
k=1


1
δxk

R
r=1

w2
k,r

xk,r
+

R
r=1

w2
k,r

xk,r
−

R
r=1

R
s=1

wk,rwk,s

xk


≥

M
k=1

1
δxk

R
r=1

w2
k,r

xk,r
> 0.

The last inequality follows since δ, xk, and xk,r are strictly positive, and w is a nonzero vector. As a result, we have thatM
k=1 Vk

1+δxk
δxk

> 0, and since we know that each Vk ≥ 0 and 1+δxk
δxk

> 0, at least one Vk must be strictly positive, thus V > 0.
This implies that f (x) is strictly convex in B, and therefore (14) has a unique global minimum in B. Since f (x) is convex
and the constraints in (14) are affine, the KKT conditions are both necessary and sufficient for optimality, thus, by Lemma 1,
every solution of the AMVA equations is an optimal solution of (14). As f (x) is strictly convex, this solution must be unique.

Proof of Theorem 4. We use a similar notation as in the proof of Theorem 3. In the general case, the Hessian can be written
as

V = wTH(x)w = wT (HLI(x)+ Hγ (x)+ Hβ(x))w,

where HLI(x) is the Hessian as in Theorem 3, while Hγ (x) and Hβ(x) group the contributions of the γk(·) and βk,r(·) factors,
for all r, k. Since, from Theorem 3, we know that wTHLI(x)w > 0, we only need to prove that Vγ = wTHγ (x)w ≥ 0 and
Vβ = wTHβ(x)w ≥ 0. Recall thatΛx(g(x)) = ∂ log g(x)/∂x for a positive function g(x). After simple passages we find

Vβ =

R
r=1

−w2
k,rΛxk,r (βk,r(1 + δrxk,r)).

Thus, Vβ ≥ 0 if the βk,r(·)’s are monotone non-increasing.
For Vγ ,Hγ (x) has the property of being a block-diagonal matrix with M blocks of size R. Letting block k, corresponding

to station k, be H(k)γ (x), and partitioning in a similar wayw = [w1, . . . ,wM], we can write

Vγ = wTHγ (x)w =

M
i=1

wT
k H

(k)
γ (x)wk.

For each of the terms in the sum we observe that

H(k)γ (x) = −Λxk(γk(1 + δxk))1R×R,

where 1R×R is an R × R matrix of ones, which is positive semi-definite. It therefore follows that wT
k H

(k)
γ (x)wk ≥ 0 since

Λxk(γk(1 + δxk)) ≤ 0 as γk(·) is monotone non-increasing. As a result, Vγ ≥ 0, and thus V > 0, which ensures that f (x) is
strictly convex in B, so it has a unique minimizer that corresponds to the AMVA solution by Lemma 1.

Proof of Theorem 5. Observe that

∂ logG
∂θk,r

= G−1(K)


n:nk,r≥1

Ck(nk)
∂Fk(nk)

∂θk,r


i≠k

Fi(ni), (22)

thus differentiating (2), we find

∂Fk(nk)

∂θk,r
= βk,r(nk,r)γk(nk)Fk(nk − 1r)+ Dk,r(nk)

∂Fk(nk − 1r)

∂θk,r
.

Letting Sθk,r (Fk(nk)) = (θk,r/Fk(nk))∂Fk(nk)/∂θk,r and using (2), the last expression can be rewritten as

Sθk,r (Fk(nk)) = 1 + Sθk,r (Fk(nk − 1r)) = nk,r ,

where the last passage is obtained after telescoping the recurrence relation on nk,r , with terminating condition Sθk,r (Fk(nk −

nk,r1r)) = 0. Plugging this result in (22), we obtain

∂ logG
∂θk,r

= G−1(K)


n:nk,r≥1

Ck(nk)
nk,r

θk,r

M
i=1

Fi(ni) =
xk,r
θk,r

.

G. Casale et al. / Performance Evaluation 91 (2015) 80–98 97

Proof of Theorem 6. Generalizing the derivation of (15), we find

∂Fk(nk)

∂θk,r,p
=
∂Dk,r(nk)

∂θk,r,p
Fk(nk − 1r)+ Dk,r(nk)

∂Fk(nk − 1r)

∂θk,r,p
=
∂Dk,r(nk)

∂θk,r,p

Fk(nk)

Dk,r(nk)
+ Dk,r(nk)

∂Fk(nk − 1r)

∂θk,r,p

=
Fk(nk)

Dk,r(nk)


∂Dk,r(nk)

∂θk,r,p
+

Dk,r(nk)

Fk(nk − 1r)

∂Fk(nk − 1r)

∂θk,r,p


.

Therefore
Dk,r(nk)

Fk(nk)

∂Fk(nk)

∂θk,r,p
=
∂Dk,r(nk)

∂θk,r,p
+

Dk,r(nk)

Dk,r(nk − 1r)

Dk,r(nk − 1r)

Fk(nk − 1r)

∂Fk(nk − 1r)

∂θk,r,p

= Dk,r(nk)

nk,r−1
u=0

1
Dk,r(nk − u1r)

∂Dk,r(nk − u1r)

∂θk,r,p
,

which finally yields

∂F(nk,r)

∂θk,r,p
= Fk(nk)

nk,r−1
u=0

1
Dk,r(nk − u1r)

∂Dk,r(nk − u1r)

∂θk,r,p


= θ−1

k,r,pFk(nk)

nk,r−1
u=0

Sθk,r,p

Dk,r(nk − u1r)


.

The final result is obtained by using the last expression in the derivative of logG with respect to θk,r,p, see (22) in the proof
of Theorem 5.

References

[1] F. Baskett, K.M. Chandy, R.R. Muntz, F.G. Palacios, Open, closed, andmixed networks of queueswith different classes of customers, J. ACM 22 (2) (1975)
248–260.

[2] P. Cremonesi, P.J. Schweitzer, G. Serazzi, A unifying framework for the approximate solution of closed multiclass queuing networks, IEEE Trans.
Comput. 51 (2002) 1423–1434.

[3] M.N. Bennani, D. Menasce, Resource allocation for autonomic data centers using analytic performance models, in: ACM ICAC, 2005, pp. 229–240.
[4] S. Bardhan, D. Menasce, Predicting the effect of memory contention in multi-core computers using analytic performance models, IEEE Trans. Comput.

(2014).
[5] J. Rolia, K. Sevcik, The method of layers, IEEE Trans. Softw. Eng. 21 (1995) 689–700.
[6] G. Franks, T. Al-Omari, M. Woodside, O. Das, S. Derisavi, Enhanced modeling and solution of layered queueing networks, IEEE Trans. Softw. Eng. 35

(2009) 148–161.
[7] G. Franks, L. Li, Efficiency improvements for solving layered queueing networks, in: ACM/SPEC ICPE, 2012.
[8] A. Kattepur, M. Nambiar, Performance modeling of multi-tiered web applications with varying service demands, in: IPDPS Workshops, 2015.
[9] D.A. Menasce, V.A. Almeida, L.W. Dowdy, Performance by Design: Computer Capacity Planning by Example, Prentice Hall Professional, 2004.

[10] J. Padhye, A.D. Rahatekar, L.W. Dowdy, A simple LAN file placement strategy, in: Int. CMG Conference, 1995, pp. 396–406.
[11] K.K. Leung, Load-dependent service queues with application to congestion control in broadband networks, Perform. Eval. 50 (1) (2002) 27–40.
[12] D. Kumar, L. Zhang, A. Tantawi, Enhanced inferencing: Estimation of a workload dependent performance model, in: Valuetools, 2009.
[13] C. Stewart, T. Kelly, A. Zhang, Exploiting nonstationarity for performance prediction, in: Proc. EuroSys, 2007.
[14] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, S. Singhal, Autoparam: Automated control of application-level performance in virtualized server

environments, in: FeBid, 2007.
[15] N. Gans, N. Liu, A. Mandelbaum, H. Shen, H. Ye, Service times in call centers: Agent heterogeneity and learning with some operational consequences,

IMS Collect. 6 (2010) 99–123.
[16] M. Reiser, Mean-value analysis and convolution method for queue-dependent servers in closed queueing networks, Perform. Eval. 1 (1981) 7–18.
[17] S.C. Bruell, G. Balbo, P.V. Afshari, Mean value analysis of mixed, multiple class BCMP networks with load dependent service stations, Perform. Eval. 4

(1984) 241–260.
[18] C.H. Sauer, Computational algorithms for state-dependent queueing networks, ACM Trans. Comput. Syst. 1 (1) (1983) 67–92.
[19] M. Reiser, S.S. Lavenberg, Mean-value analysis of closed multichain queueing networks, J. ACM 27 (2) (1980) 312–322.
[20] P.S. Kritzinger, S. vanWyk, A.E. Krzesinski, A generalisation of Norton’s theorem formulticlass queueing networks, Perform. Eval. 2 (2) (1982) 98–107.
[21] J.L. Boudec, D. McDonald, J. Mundinger, A generic mean field convergence result for systems of interacting objects, in: QEST, 2007.
[22] R.R. Muntz, Poisson Departure Processes and Queueing Networks, IBM Research Report RC-4145, 1972.
[23] B.I. Choi, C. Knessl, C. Tier, A queueing system with queue length dependent service times, with applications to cell discarding in ATM networks,

J. Appl. Math. Stoch. Anal. 12 (1999) 35–62.
[24] B.D. Choi, Y.C. Kim, Y.W. Shin, C.E.M. Pearce, The MX /G/1 queue with queue length dependent service times, J. Appl. Math. Stoch. Anal. 14 (2001)

399–419.
[25] R. Bekker, G.M. Koole, B.F. Nielsen, T.B. Nielsen, Queues with waiting time dependent service, Queueing Syst. 68 (2011) 61–78.
[26] M. Reiser, H. Kobayashi, Queueing networkswithmultiple closed chains: Theory and computational algorithms, IBM J. Res. Dev. 19 (3) (1975) 283–294.
[27] G. Casale, A note on stable flow-equivalent aggregation in closed networks, Queueing Syst. 60 (2008) 193–202.
[28] A.E. Krzesinski, J. Greyling, Improved linearisermethods for queueing networkswith queue dependent centres, in: ACM SIGMETRICS, 1984, pp. 41–51.
[29] J. Zahorjan, E.D. Lazowska, Incorporating load dependent servers in approximate mean value analysis, in: ACM SIGMETRICS, 1984, pp. 52–62.
[30] D. Mitra, J. McKenna, Asymptotic expansions for closed markovian networks with state-dependent service rates, J. ACM 33 (3) (1985) 568–592.
[31] A.I. Lyakhov, Closed queue networks with load-dependent servers: an asymptotic analysis, Automa. Remote Control 58 (3) (1997) 435–444.
[32] J. Shanthikumar, D.D. Yao, Throughput bounds for closed queueing networks with queue-dependent service rates, Perform. Eval. 9 (1) (1988) 69–78.
[33] I.F. Akyildiz, A. Sieber, Approximate analysis of load dependent general queueing networks, IEEE Trans. Softw. Eng. 14 (11) (1988) 1537–1545.
[34] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978) 461–464.
[35] J. Nocedal, S.J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[36] E. de Souza e Silva, S.S. Lavenberg, R.R. Muntz, A perspective on iterative methods for the approximate analysis of closed queueing networks, in: The

Intl. Workshop on Computer Performance and Reliability, 1984.
[37] K.R. Pattipati, M.M. Kostreva, J.L. Teele, Approximate mean value analysis algorithms for queueing networks: Existence, uniqueness, and convergence

results, J. ACM 37 (1990) 643–673.

http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref1
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref2
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref4
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref5
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref6
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref9
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref11
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref15
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref16
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref17
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref18
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref19
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref20
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref22
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref23
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref24
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref25
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref26
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref27
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref30
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref31
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref32
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref33
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref34
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref35
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref37

98 G. Casale et al. / Performance Evaluation 91 (2015) 80–98

[38] J. Verschelde, Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Software 25
(2) (1999) 251–276.

[39] W. Wang, G. Casale, Bayesian service demand estimation using Gibbs sampling, in: IEEE MASCOTS, 2013, pp. 567–576.
[40] E. de Sousa e Silva, R.R. Muntz, Simple relationships among moments of queue lengths in product form queueing networks, IEEE Trans. Comput. 37

(9) (1988) 1125–1129.
[41] S.N. Ethier, T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, 1986.
[42] S.K. Tripathi, C.M. Woodside, A vertex-allocation theorem for resources in queuing networks, J. ACM 35 (1) (1988) 221–230.
[43] N.S. Walton, Proportional fairness and its relationship with multi-class queueing networks, Ann. Appl. Probab. 19 (2009) 2301–2333.

Giuliano Casale is a Lecturer in performance analysis and operations research at the Department of Computing of Imperial
College London. Prior to this, he was a full-time researcher at SAP Research UK. His research interests include cloud computing,
modeling, and resource management, topics on which he has published more than 70 refereed papers in international
conferences and journals. He has served as co-chair for several conferences in the area of performance engineering, such as ACM
SIGMETRICS/Performance 2012, IEEE MASCOTS, USENIX ICAC and ACM/SPEC ICPE. He is member of the IFIP WG 7.3 group on
Computer Performance Analysis and the ACM SIGMETRICS Board of Directors.

Juan F. Pérez is a Research Associate in performance analysis at Imperial College London, Department of Computing. He obtained a
Ph.D. in Computer Science from the University of Antwerp, Belgium, in 2010. His research interest centers around the performance
analysis of computer systems, especially on cloud computing and optical networking.

Weikun Wang is a Ph.D. student and research assistant in performance analysis at Imperial College London, Department of
Computing, since January 2013. He obtained a Master in Computing from Imperial College London in 2012. His research interest
focuses on performance modeling of computer systems deployed in cloud.

http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref38
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref40
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref41
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref42
http://refhub.elsevier.com/S0166-5316(15)00054-1/sbref43

	QD-AMVA: Evaluating systems with queue-dependent service requirements
	Introduction
	Background
	Queue-dependent product-form solution
	Performance measures

	Product-form queue-dependence

	Motivation
	Related work
	Running case
	Impact of queue-dependence

	Approximate analysis
	Approximating mean performance
	Running case

	AMVA for queue-dependent models
	Running case

	Characterization
	Existence of solutions
	Optimization-based reformulation
	Specialization to load-independent models
	Uniqueness of solutions for queue-dependent models

	Further applications
	Normalizing constant
	Sensitivity analysis

	Validation
	Random models
	Comparison with other methods

	Case study
	Conclusion
	Acknowledgments
	Appendix
	References

