Universidad del

*ﬁﬁg Rosario

Escuela de Ingenieria,
Ciencia y Tecnologia

000000 MACC
S soss Matematicas Aplicadasy
o0 8808y Ciencias de la Computacion

UNIVERSIDAD DEL ROSARIO

School of Engineering, Science and Technology
Applied Mathematics and Computer Science

UNDERGRADUATE THESIS

Automatic Determination of the Learning
Rate for Multivariate and Multinomial
Regression Models

Author: Manuela Acosta Fajardo Supervisor: Alexander Caicedo
Dorado

A thesis submitted in fulfillment of the requirements
for the degree of Professional in Applied Mathematics and Computer Science

November 2022

https://www.urosario.edu.co/
https://www.urosario.edu.co/Escuela-de-Ingenieria-Ciencia-y-Tecnologia/Inicio/
https://www.urosario.edu.co/Escuela-de-Ingenieria-Ciencia-y-Tecnologia/Inicio/

Abstract

Throughout the years, artificial intelligence has developed into a widely researched
and applied field, as a result of the significant advancements in technology and the
expansion in computer resources. Artificial intelligence attempts not only to un-
derstand how the human mind works, but also to develop systems that can mimic
human behaviour.

Machine learning is one of the main branches of artificial intelligence, and it aims
to build and improve models that can learn from a set of data, and from experience,
via computational methods, with no need to be explicitly programmed. Machine
learning algorithms build models based on sample data, in order to make predic-
tions or decisions, and are used in different applications, such as medicine, computer
vision, image classification, among others.

A machine learning algorithm is a program that finds patterns or makes predic-
tions from previously unseen data. Depending on the goals of the algorithm, as well
as on the data used, there are different types of learning models: supervised learn-
ing, unsupervised learning and reinforcement learning. One of the most common
learning algorithms is Gradient Descent, which is used to find a local minimum of
a differentiable function. It works by taking repeated steps in the opposite direction
of the gradient of the function.

The size of the steps taken by the gradient descent algorithm is determined by
an hyper-parameter known as the Learning Rate. This parameter indicates how fast
or slow is the movement towards the optimal parameters of the algorithm. Usually,
it is set manually. However, in order to reach the function minima it is necessary
to set an appropriate learning rate, i.e. neither too big, nor too small. In the first
case, the steps taken are too big, and the algorithm can diverge as a consequence.
On the contrary, if the learning rate is too small, it results in slow learning, and the
algorithm could also never converge.

Most of the times a fast learning is desired, so high learning rates might be se-
lected. Nevertheless, it is important to select the proper value for this parameter,
so one can guarantee the convergence of the algorithm. A method to determine an
upper-bound for the learning rate of models based on linear regression models was
presented in [1], doing an analysis of the gradient descent algorithm as a discrete
dynamical system.

This thesis work aims to extend these results to models based in classification
and multinomial regression. We also seek to find an optimal value for the learn-
ing rate for these methods. Throughout this thesis an algorithm that automatically
determines an optimal value for the learning rate of classification and regression
models is developed. In the first place, the results obtained for the linear regression
models are generalized to other activation functions. As a result, an upper-bound
and an optimal value for the learning rate are found for models using regression and
classification. Then, the results obtained are extended to a multinomial regression
model.

We propose an analysis of the gradient descent as a discrete dynamical system,
where the upper-bound arises as a criteria to determine the stability of this system.
Besides, we present an optimal value for the learning rate, which minimizes the sum
of the distance of the extreme poles of the dynamical system studied. This analysis is
done by linearizing the gradient descent algorithm, and applying it to linear, logistic
and multinomial regression. The upper-bound and the optimal value of the learning

iv

rate are approximations to the optimal value that guarantee the fastest convergence
of the algorithm.

We present simulations and experiments to test the results obtained. We first test
them with toy examples, by manually creating the data to study the behaviour of
the algorithm for the linear and the logistic regression model. Then, we validate our
approach in real datasets.

The results show that, although the maximum learning rate, which is given by
the upper-bound, seems to make the algorithm converge faster than the optimal
learning rate for the logistic and multinomial case, it is better to use this last value,
as it guarantees a smooth and relatively fast convergence to the minimum in all
cases.

Acknowledgements

I want to thank my tutor, Professor Alexander Caicedo Dorado for his uncondi-
tional support throughout the development of this thesis, for his good disposition,
and for his will to help and to make this process enjoyable. I also want to thank
Professor Edgar Andrade, for his readiness to help in anything I needed along this
process. I extend my thanks to my closest friends for being an emotional support
during this whole time. Finally, thanks to my family for always supporting me, and
for believing in my capability to achieve my goals.

Contents

Abstract
Acknowledgements

1 Introduction

1.1 MachineLearning o o L.
1.2 Learning Algorithms,
1.2.1 GradientDescent
122 LearningRate
1.3 Stateoftheart e
14 Problem Statement

1.5 Objectives .

2 Dynamical Systems
2.1 Dynamical Systems o oo
2.2 Gradient Descent and Dynamical Systems
221 Gradient Descent as a Dynamical System
2.2.2 Effects of the Learning Rate on the Convergence of Gradient
Descent Algorithm

3 Automatic estimation of the Learning Rate

3.1 Regression .

3.1.1 LinearRegression.
312 LogisticRegression
3.2 Determination of the upper-bound for the Learning Rate
321 Logistic Regression Problem
3.2.2 Extension to other Activation Functions
3.3 Determination of the optimal Learning Rate
3.4 Generalization to a Multinomial Regression

4 Simulations and Results
41 Datadiscussion i i e
42 Simulationsdesign L L L Lo oL

43 Results . ..

5 Discussion

6 Conclusions and Future Work

6.1 Conclusions
6.2 Future Work

Bibliography

vii

iii

11
11
11
12
13
13
17
17
19

21
21
22
23

27

29
29
29

31

iX

A mi familia, a los profesores que me apoyaron en este proceso,
Yy a mis amigos mds cercanos.

Chapter 1

Introduction

1.1 Machine Learning

For many years, people have tried to understand how the human mind works, i.e.
how we think. Artificial Intelligence, also known as Al, attempts not only to un-
derstand this, but also to build intelligent entities, and to develop systems that can
mimic human behaviour [2]. Al is one of the newest fields in science and engi-
neering, and it has different approaches, depending on the goals in mind. These
approaches depend on whether one is concerned with thinking or behaviour, and if
one wants to model either humans or work from an ideal standard [2]. The founda-
tions of Al come from different disciplines that contributed with ideas, techniques
and viewpoints, such as: philosophy, mathematics, economics, neuroscience, psy-
chology, computer engineering, control theory and cybernetics and linguistics.

Machine Learning is one of the main branches of Artificial Intelligence. Its pur-
pose is to develop techniques that allow computers to learn, as well as to create com-
puter systems that automatically improve their performance through experience [3].
That is, methods that leverage data to improve performance on some set of tasks [4].
A different definition of machine learning is that it is the technique that improves
system performance by learning from experience via computational methods [5]. In
computer systems, this experience exists in the form of data. Machine learning al-
gorithms build a model based on sample data, known as training data, in order to
make predictions or decisions [6]. These algorithms are used in different applica-
tions, including medicine, computer vision, speech recognition, image classification
and e-mail filtering. These fields have in common that it is difficult to develop a
conventional algorithm to achieve the goals and perform the required tasks.

When we talk about machine learning, and machine learning algorithms, it is
important to understand what learning means. Learning can be understood as the
ability to change according to external stimuli and remembering most of all previous
experiences. So machine learning gives maximum importance to the techniques that
improves or increases the propensity for changing adaptively [7]. Therefore, the
main goal of this field is to study and improve mathematical models, also known as
algorithms, that can be trained with context-related data to make decisions without
knowing all influencing elements, i.e. external factors.

1.2 Learning Algorithms

A machine learning model, or algorithm, is a program that can find patterns or make
decisions from previously unseen dataset [8]. It is also defined as a mathematical

2 Chapter 1. Introduction

representation of the output of the training process [9]. These models are repre-
sented as a mathematical function that makes predictions on the input data, and
provides an output. The models are first trained over a set of data and then they
are provided an algorithm to reason over data. Afterwards, they extract the pattern
from fed data, and learn from it. Once the models are trained, they are used to pre-
dict unseen data [9].

There are different types of machine learning models, depending on the goals
and datasets. The three main categories are: supervised learning, unsupervised
learning and reinforcement learning. Supervised learning is the simplest model. Here,
the algorithm is provided input data, with a known label, and is optimized to meet
a set of specific outputs [8]. Supervised learning is divided into two categories: clas-
sification and regression. Classification is used in situations when there is only a
discrete number of possible outcomes, which are called categories. On the other
hand, regression is used if the problem is based on continuous output [7]. Some of
the most common applications of this type of models are pattern detection, spam de-
tection, automatic image classification, Natural Lenguage Processing, among others.

In contrast, when we talk about unsupervised learning, the algorithm is also pro-
vided an input dataset, but is not optimized to specific outputs. Instead, it is trained
to group objects by common characteristics [8]. This approach is based on the ab-
sence of any supervisor, and its useful when it is necessary to learn how a set of
elements can be grouped, or clustered, according to their similarity, or distance mea-
sure [7]. This category is also subdivided into: clustering, association rules, and
dimensionality reduction; and some of its applications are object segmentation, au-
tomatic labeling and similarity detection.

Finally, in reinforcement learning the algorithm is made to train itself using many
trial and error experiments. In this case, the algorithm interacts continually with
the environment [8], thus, this approach is also based on feedback provided by the
environment. This feedback is known as reward, and it is used to understand if a
performed action is positive or not.

In this section we discuss different characteristics of one of the most common
learning algorithms: Gradient Descent. We explain the algorithm itself, its different
variations, as well as the influence of an specific hyper-parameter (the learning rate),
and its initialization.

1.2.1 Gradient Descent

Gradient Descent is one of the most common algorithms used for training models in
Machine Learning. It is and optimization algorithm used to find a local minimum
of a differentiable function [10]. It works by taking repeated steps in the opposite
direction of the gradient of the function, at the current point. In most of the cases,
the function used is the cost function, also known as the prediction error function.
It is called J(w), and depends on the model parameters (or weights) w. Gradient
descent finds the values of w that correspond to the minimum of the cost function.
Choosing the cost function depends on the type of models that are being studied.

Once J(w) is defined, the update rule on the coefficients w is applied according
to the following equations:

1.2. Learning Algorithms 3

w; = w; + Aw;,
I (w) (1.1)

awi !

Aw; = —1

where 7 is a constant hyper-parameter, known as the learning rate, and deter-
mines the size of the steps taken. Then, we can summarize the way the algorithm
works with the following steps:

1. Initialize the vector w of parameters randomly.

2. Calculate the gradient of the cost function J(w) by calculating its partial deriva-
tives 0] (w) /dw;.

3. Update the parameters following the rule defined in equation (1.1).

4. Repeat until the cost function J(w) stops reducing, or until a pre-defined ter-
mination criteria is met.

There are different types and variations of gradient descent, which depend on
the amount of data used. The most known are: Batch Gradient Descent, Stochastic
Gradient Descent and Mini-Batch Gradient Descent.

In the first place, Batch Gradient Descent, also known as vanilla gradient descent,
uses all the training data to take a single step. It takes the average of all the train-
ing examples, and then uses the mean gradient resulting to update the parameters.
Therefore, this method uses just one step of gradient descent in one epoch [11]. It is
computationally efficient, as it produces a stable error gradient and a stable conver-
gence [10]. The batch gradient descent is defined as follows [12]:

Algorithm 1 Batch Gradient Descent
Require: Training set: T; Learning Rate: 7.
Ensure: Model Parameters w.
Randomly initialize the parameters w
Initialize convergence tag = False
while tag == False do
Compute gradient V,(w; T) on the training set T
Update variable w = w — 17 - Vo (w; T)
if convergence condition holds then
tag = True
end if
end while
return Model variables w

On the other hand, Stochastic Gradient Descent updates the parameters for each
training example, one by one [10]. It is a good option for huge datasets, as it is faster
than batch gradient descent, and it does not need the whole dataset to do the update.
Stochastic gradient descent is defined as follows [12]:

4 Chapter 1. Introduction

Algorithm 2 Stochastic Gradient Descent
Require: Training set: T; Learning Rate: 7.
Ensure: Model Parameters w.
Randomly initialize the parameters w
Initialize convergence tag = False
while tag == False do
Shulffle the training set T
for each data instance (x;,y;) € T do
Compute gradient V, (w; (x;,y;)) on the training instance (x;, y;)
Update variable w = w — 17 - Vo (w; (xi,yi))
end for
if convergence condition holds then
tag = True
end if
end while
return Model variables w

Finally, Mini-Batch Gradient Descent is a combination of the concepts used in both
methods explained above. Basically, mini-batch gradient descent splits the training
data into small batches, and updates the parameters for each of those batches. Usu-
ally is the chosen method, as it creates a balance between the robustness of stochastic
gradient descent and the efficiency of batch gradient descent [10]. Mini-batch gradi-
ent descent is defined as follows [12]:

Algorithm 3 Mini-batch Gradient Descent

Require: Training set: T; Learning Rate: 1; Mini-batch size: b.
Ensure: Model Parameters w.
Randomly initialize the parameters w
Initialize convergence tag = False
while tag == False do
Shuffle the training set T
for each mini-batch g € T do
Compute gradient V,(w; B) on the mini-batch B
Update variable w = w — 1 - V, (w; B)
end for
if convergence condition holds then
tag = True
end if
end while
return Model variables w

1.2.2 Learning Rate

As mentioned in the section 1.2.1, the learning rate is a hyper-parameter of the Gra-
dient Descent algorithm that determines the size of the steps taken on each epoch.
In other words, it dictates how big are the steps taken into the direction of the local
minimum. Thus, it indicates how fast or slow the movement is towards the optimal
weights [10].

1.3. State of the art 5

In most of the cases, the initial value of this parameter is set manually. In order
to reach the local minimum, it is necessary to set the learning rate to an appropriate
value, which is neither too low nor too high [10]. If the learning rate is too high, the
steps taken are too big. Thus, a high learning rate can cause the system to diverge
in terms of the objective function [13]. On the other hand, if the steps taken are too
small, it results in slow learning [13], and the algorithm could also never converge.
Therefore, determining a good learning rate becomes an important task.

1.3 State of the art

The determination of the learning rate is a topic that has been addressed previously
in the literature. Some of the studies performed on this field are found in the follow-
ing academic papers: the first one is titled ADADELTA: An Adaptive Learning Rate
Method, written by Matthew D. Zailer. This article presents a method for the esti-
mation of the learning rate for each of the dimensions of the input variables. The
method dynamically adapts over time using only first order information, and re-
quires no manual tuning of the learning rate [13].

There are also other optimizers that automatically determine the learning rate.
For example, Adagrad is an optimizer that modifies the learning rate adapting to
the direction of the descent towards the optimal value. As explained in the academic
paper entitled Adagrad - An Optimizer for Stochastic Gradient Descent, Adagrad main-
tains low learning rates for frequently occurring features and high learning rates for
less frequently occurring features [14].

Besides, Adam and RMSProp are two of the most influential adaptive stochas-
tic algorithms for training deep neural networks. On the article entitled A Sufficient
Condition for Convergences of Adam and RMSProp an alternative sufficient condition
is proposed, which merely depends on the parameters of the base learning rate and
combinations of historical second-order moments, to guarantee the global conver-
gence of generic Adam/RMSProp for solving large-scale non-convex stochastic op-
timization [15].

In addition, Pierre Baldi presents a paper entitled Gradient Descent Learning Al-
gorithm Overview: A General Dynamical Systems Perspective, where he gives a unified
treatment of gradient descent learning algorithms for neural networks using a gen-
eral framework of dynamical systems.This general approach organizes and simpli-
fies all the known algorithms and results, and can also be applied to derive new
algorithms. The author then briefly examines some of the complexity issues and
limitations intrinsic to gradient descent learning [16].

Finally, in the thesis work by Juan Camilo Ruiz, graduate student from MACC,
entitled “Una propuesta de neurona artificial: la Unidad Neuro Vascular Artificial (UUNVA)”,
on chapter 4, he explains the conditions the learning rate from an artificial neuron
needs to meet to guarantee the convergence of the gradient descent algorithm when
using a linear regression model. This is done by modeling the evolution of the co-
efficients of the architectures as a dynamical system. In other words, the equations
from the gradient descent algorithm are presented as a dynamical system, and two
upper-bounds are found for the learning rate [1].

6 Chapter 1. Introduction

1.4 Problem Statement

In machine learning, and statistics, the learning rate is a tuning parameter in an op-
timization algorithm that determines the step size at each iteration, while moving
toward a minimum of a loss function [17]. As mentioned before, it determines how
big are the steps taken into the direction of the local minimum. Thus, it represents
how fast a machine learning model learns. Most of the times a fast learning is de-
sired, therefore high learning rates are selected. However, as explained in 1.2.2, it is
necessary to determine a correct learning rate to avoid the divergence of the model.

Previously, a method to determine the upper-bound for the learning rate of mod-
els based on linear regression problems was presented in the thesis work done by
Juan Camilo Ruiz [1]. There, he analyzed the gradient descent algorithm as a discrete
dynamical system, and the upper-bound arises as criteria to determine the stability
of this system. Thus, this thesis work aims to extend these results to models based
in classification and multinomial regression. In addition, we seek to find an optimal
value for the learning rate of these models.

1.5 Objectives

The main objective of this thesis is to develop an algorithm that automatically de-
termines the optimal value for the Learning Rate of classification and multinomial
regression models.

To reach this main objective, the following specific objectives for the thesis are
proposed:

1. To generalize the results obtained by Juan Camilo Ruiz [1], where he found
and upper-bound for the learning rate of models based on linear regression, to
other activation functions.

2. To find an upper-bound and the optimal value for the learning rate, using re-
gression and classification models.

3. To extend the results from the logistic regression model to a multinomial re-
gression model.

Chapter 2

Dynamical Systems

In this chapter we present a theoretical explanation of Dynamical Systems. Once
this concept is explained, we illustrate how the gradient descent algorithm can be
modeled as a dynamical system. Some of the derivations and the theoretical funda-
mentals on this chapter are based on the Chapter 4 of the thesis work by Juan Camilo
Ruiz [1].

2.1 Dynamical Systems

A Dynamical System describes the state of some variables, or phenomena, at any
instant. These variables are called state variables, which evolve with time, and can be
described in discrete time, i.e. fixed time instants separated by an specific quantity,
or continuous time. Dynamical systems based in variables described in discrete time
are modeled by difference equations, whereas dynamical systems based in variables
described in continuous time are modeled by differential equations.

We are interested in studying discrete dynamical systems, as the variables we
want to model are the coefficients w of the gradient descent algorithm, which evolve
in discrete time, described by each epoch of the algorithm.

A discrete dynamical system with m linear related variables, with constant coef-

ficients, can be described in a general way as follows:

xi[n+1] = anxi[n] + -+ - + aymxm[n] + by
XQ[Tl + 1] = a1 X1 [7’1] +---+ ﬂzmxm[ﬂ] + by

Xmn+ 1] = ayxq[n] + ... + apmXm[n] + by

It can also be written in matrix way as:

x[n+1] = Ax[n] + b, (2.1)

where:

an o A x1[n] by

Am1 * Amm xm[”] bm

8 Chapter 2. Dynamical Systems

The equilibrium of a discrete dynamical system is a simple but fundamental con-
cept that helps us to analyze complicated behaviours of the variables. It is a solution
where the state variable does not change over time, i.e. the variable is a constant. In
other words, the vector x* is an equilibrium if, once the vector of state variables of
the system takes the value of x*, it remains constant for the future instants. Thus, if
we have an equilibrium for the system defined in equation (2.1), then, we get that:

x* = Ax* +b. (2.2)

Moreover, an equilibrium of a dynamical system can be stable or unstable. This
depends on whether the trajectories that start near the equilibrium keep near this
point, or move away. Formally, an equilibrium point x* is called asymptotically sta-
ble if, for every initial condition, the vector of state variables tends to x* over time [1].

We want now to illustrate these concepts. The following considerations are based
in the calculations presented in the thesis work by Juan Camilo Ruiz [1]. For this
purpose, consider a linear non homogeneous system as the one defined in equation
(2.1), and suppose the vector x* is an equilibrium of that system. If we subtract
equation (2.2) from equation (2.1), we have that:

x[n+1] —x* = Ax[n] + b — (Ax™ + b)
= A(x[n] — x™).

Lets call z[n] the state variables vector, which is equal to:

z[n] = x[n] — x*.

Note that x[n] tends to the equilibrium x* if and only if z[n] tends to the 0 vector
as n increases. Lets analyze, then, the new system:

z[n+1] = Az[n].

One can observe that the behaviour of the system defined above is determined
by the behaviour of the matrix A. Therefore, the stability of the matrix A determines
the stability of the system. Let A1,Ay,---, Ay be the eigenvalues of the matrix A.
According to the results shown by Juan Camilo Ruiz [1], the system is asymptotically
stable if all the eigenvalues of the matrix A are inside the unit circle in the complex
plane. Besides, if at least one eigenvalue A is outside the unit circle, the system is
unstable, i.e. it diverges. Finally, if one eigenvalue A has magnitude equal to 1, i.e.
the eigenvalue is a point over the unit circle, the system has an oscillatory behaviour
around an equilibrium point.

2.2 Gradient Descent and Dynamical Systems

In this section we explain how the gradient descent algorithm can be modeled as
a discrete dynamical system, and what are the effects the learning rate has on the
convergence of this system.

2.2. Gradient Descent and Dynamical Systems 9

2.21 Gradient Descent as a Dynamical System

According to section 1.2.1, the vector w of coefficients is updated in each iteration
of the gradient descent algorithm. Therefore, we can understand this process as a
discrete dynamical system, where the state variables are each of the coefficients w.
We follow the same analysis as before; however, the update formula is now defined
as follows:

wn+1] = wln] — 175({), (2.3)
where
o _oam
dw ohjdw’

2.2.2 Effects of the Learning Rate on the Convergence of Gradient De-
scent Algorithm

As mentioned in section 1.2.2, the learning rate influences the convergence of the
gradient descent algorithm. Having a high value for this parameter can lead to the
divergence of the model, as the minimum is never found, whereas having a low
value can cause a slow learning process, and the algorithm may never find the min-
imum, i.e. never converge.

In order to understand more deeply the influence this parameter has on the con-
vergence of the algorithm, consider the gradient descent algorithm modeled as a
discrete dynamical system, where the update formula is given by equation (2.3).
The evolution of the cost function on each epoch, for different values of the learning
rate 77 is shown in figure 2.1.

loss

low learning rate

high learning rate

\

good learning rate

Py
>

epoch

FIGURE 2.1: Evolution of the cost function depending on the learning
rate 1. Credit: cs231n

In the figure 2.1 shown above one can understand how the cost function evolve
in time (epochs) for each choice of the learning rate. The loss is the same at the be-
ginning, as the vector of weights w is initialized with the same values in all cases.

https://cs231n.github.io/neural-networks-3/

10 Chapter 2. Dynamical Systems

However, one can note that the learning rate has a significant influence in the evolu-
tion of the training error.

For the yellow curve, a very high learning rate was chosen, and we can observe
that the algorithm diverges, as the cost function diverges. On the other hand, the
green curve represents a high choice of the learning rate, smaller than the one rep-
resented with the yellow curve. In this case, even though the error was reduced, the
algorithm does not find the minimum, and thus converges abruptly to a value that
is not the minimum of the cost function. The red curve represents a good choice for
the learning rate. We can observe that the error is reduced, and the cost function
converges to the minimum of this function. Finally, for the blue curve a low learning
rate was chosen, and the figure shows that despite the cost function converges to
the minimum value, the number of epochs needed is considerably higher than the
previous case.

The dynamic of the gradient descent is modeled in the figure 2.2 for the different
learning rates mentioned before. The color code corresponds to the cases indicated
in2.1.

Low learning rate Good learning rate
60 60
50 50
40 4 40
304 30 A
204 20 A
10 10 4
0 0
6 -4 -2 0 2 4 6 8 10 6 -4 -2 0 2 4 6 8 10
High learning rate Very high learning rate
60 60 4
50 50 4
40 1 40
30 30 4
20 1 201
104 10 A
0 0
6 -4 -2 0 2 4 6 & 10 6 -4 -2 0 2 4 6 8 10

FIGURE 2.2: Dynamic of gradient descent for different learning rates.
Image by author.

From the figure 2.2 one can observe that, for the low learning rate, the algorithm
does not converges, because the number of iterations needed to find the minimum
of the function is really high. However, the good learning rate allows the algorithm
to find the minimum of the function in a short number of iterations. On the other
hand, when the learning rate is high, the algorithm takes big steps, making more
difficult to find the minimum. Finally, the very high learning rate takes even bigger
steps than before, and does not find the minimum.

Therefore, while using gradient descent, it is important to evaluate the evolu-
tion of the error, in order to determine if the value of the hyper-parameters chosen
guarantee the convergence of the algorithm [1].

11

Chapter 3

Automatic estimation of the
Learning Rate

In this chapter we explain the algorithm to find the upper-bound for the Learning
Rate when using gradient descent for linear and logistic regression. This upper-limit
is determined by analyzing gradient descent as a dynamical system. The derivation
is also generalized to other activation functions. In addition, in this chapter we pro-
pose an optimal value for the Learning Rate, and we demonstrate that this value is
always lower than the upper-limit established before. Finally, we generalize these
results to a multinomial logistic regression, which can be interpreted as a layer of a
neural network, i.e. a multilayer perceptron neural network.

3.1 Regression

This section provides a brief explanation of what Linear and Logistic Regression
problems are, their differences, and how they are addressed in Machine Learning.

Regression is a technique used in supervised machine learning, where the objec-
tive is to determine the relationship between independent variables (or features) and
dependent variables (or outcomes) [18]. It is used as a method for predictive mod-
elling, where an algorithm predicts continuous outcomes. Thus, regression prob-
lems are one of the most common applications in machine learning models. In order
to solve them, the algorithms are trained with the purpose of understanding the re-
lationship between the independent and dependent variables.

Most of the regression models are described according to how the outcome vari-
ables are modeled, e.g. in linear regression the outcome is continuous, whereas in
logistic regression the outcome is dichotomous, i.e. there are only two possible values
[18].

Regression can also be divided into two different types of methods: methods
with multiple input variables, which are known as multivariable, and methods with
multiple outputs.

3.1.1 Linear Regression

Linear Regression is probably one of the most common algorithms in statistics and
machine learning. This type of regression is a linear model, that means that is a
model that assumes a linear relationship between the model parameters, and the

12 Chapter 3. Automatic estimation of the Learning Rate

outcome, or dependent variables. In other words, the outcome can be calculated
from a linear combination of the input variables [19].

The representation of a linear regression problem is a linear equation, which
combines the input values to provide an estimated output [18]. In addition, another
coefficient, known as the intercept, or the bias coefficient is also found.

There are lots techniques to solve a linear regression problem. In machine learn-
ing, the most used is Gradient Descent. This technique optimizes the values of the
coefficients by minimizing the error of the model on the training data, iteratively. It
starts with a random value for each coefficient, and calculates the sum of the squared
errors for each pair of input and output values [19].

In this technique, the learning rate is used to determine the size of the step to take
in each iteration, seeking the parameters that minimize the root mean squared error
(RMSE).

3.1.2 Logistic Regression

Logistic Regression is also a very well known algorithm in machine learning, and
is used to predict a categorical variable, or set of variables, in case of multinomial
regression, given a set of observations. The output of this algorithm is a categorical
or discrete value, i.e. it can take only two possible values. It is very similar to linear
regression. Though, while linear regression is used for solving regression problems,
logistic regression is used for solving classification problems [20].

In this case, coefficients are also assigned to each independent variable. How-
ever, there is no regression line to be fitted, but a curve with the shape of a logistic
function, which predicts values between (0 or 1). This function is called sigmoid
function, and is used to map the predicted values to probabilities. It maps any real
value within a range of 0 and 1 [20]. Figure 3.1 shows the logistic function:

101 — scurve
Threshold Value

0.8 A

0.6 1

0.4

0.2 1

0.0~

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0

FIGURE 3.1: Logistic Function (Sigmoid Function). Image by author.

3.2. Determination of the upper-bound for the Learning Rate 13

3.2 Determination of the upper-bound for the Learning Rate

In this section we provide a detailed explanation on how the upper-bound for the
learning rate is found for a logistic regression problem, analyzing the gradient de-
scent algorithm as a discrete dynamical system. We also extend these results to other
activation functions.

3.2.1 Logistic Regression Problem

In the thesis work by Juan Camilo Ruiz [1], he proposed an upper-bound for the
learning rate when using gradient descent in a linear regression problem. Following
this procedure, we extend these results for logistic regression problems.

Logistic regression is characterized by the activation function:

1

(%) = Ty

(3.1)

where x; € R is a d + 1-dimensional vector that represents the i-th obser-
vation, i = {1,...,N} is an scalar indicating an observation, and w € R is the
vector of parameters. To solve the regression problem, we look for the values of w
that minimize the cross-entropy function for all the observations. The cross-entropy
function, for the binary case, is given by:

J(w) = —%)_yilog(ho (%) + (1 = yi) log(1 — hu(xi)), (32)

where y; is the output associated to the input x;. Equation (3.2) is known as
the cost function. To minimize this function we use gradient descent. Interpreting
gradient descent as a discrete dynamical system, as explained in the Chapter 2, the
update formula looks as follows:

_ 9]
wln+1] = wln| Uy, (3.3)
where:
o _ o o
dw dhy, dw

The derivative of the cost function given by equation (3.2) can be found by cal-
culating both derivatives expressed before. In the first place, we have that:

aa;l]:u _ _;;yi <hajxl)> + (1 —yi) <1—;¢i(xl)>
= —11;2 <hwy(ixz'>> - (1—1%;]/(;))
=

On the other hand, we have that:

14 Chapter 3. Automatic estimation of the Learning Rate

ahw x(]) _wai

— i

dwj (14ewix)

_ .
= x(]) —e ©n
1 (1 + e—wai)Z

o) [+1-1
<1 + e—wai)Z

(7) I 1 B 1
1 1+ e~ wTx; (1 + e*wai)Z

Thus, taking into account these results, we have that:

o _ 9 oh,
dw dh, dw

:[§Z<L:ﬁb>‘<mﬁ£ﬂé%“”“_m“”

i

1 , ,
N 2. (1- vi) o (%) — yix? (1 — heo(x:))

= % le.(j)hw(xi) — xfj)yihw(xi) — yixl(j) + xfj)yihw(xi)
= %in(j)hw(xi) — yixfj)

= & Tl (x) !

= %(h —)Tl

Which in vectorial form looks like:

aJ 1_r
%_NX (h—y),
where:
X=[1 x x@ @

with X € RV*(@+1) h ¢ RV, w € RE@+D*1 and y € RN*!, That means that
there are N observations and d + 1 variables. Then, equation (3.3) can be written as:

wln +1] = wln] — %XT(h —y).

But, since i depends on w(n], we have that:

3.2. Determination of the upper-bound for the Learning Rate 15

wln+1] = wln] — %XThw - %XTy, (3.4)
where:
- 1

To linearize the system presented in equation (3.4), we will use w[n + 1] = Aw(n],
where A is the Jacobian of the following function:

fuo = wln] = $XThe = X7y,

where:

wq(n]
Then, we have that the Jacobian of the function is:

Vo= |22)

dwy dwy dwy

which can be written as:
wf =1 N X ow’

On the other hand, the derivative of the function k., shown in equation (3.5), for
each observation, is given by:

(3.6)

ahl B x(j)e—wai

— i

dwj (14e)2

Ty,
et
g ((1—1—6—wa1‘)2>
= xz-(j)hi(l — hi).

Therefore, the previous derivative can be written in matrix form as follows:

x%)hl(l — h1) s xgz)hﬂl — hl)
8711 - xé)h2(1 — h2) ce Xg)]’12(1 — hz)
w : :
xﬁ)hN(l — hN) cee xl(\?)l’l]\[(l — hN)
Note that:

m—h) - 0 1ot g
oh 0 0 1 xél) xéd)
ow : . : .)

0 (-] |1 L0 (@

16 Chapter 3. Automatic estimation of the Learning Rate

Hence, the derivative can be written as:

oh
% — Dfx,
where:
D; = diag[h ® (1 —h)], (3.7)

where © represents the element-wise product. Thus, equation (3.6) becomes:
YRS
Vof =1-=X'DeX.
wf N©

Therefore, the gradient descent equation given by equation (3.4) can be written
in a linearized way as:

wln +1] ~ [I - %XTDfx} wlnl. (3.8)

Then, to ensure that the linear system is stable, the eigenvalues of the matrix A,
defined as:

_ TyT
A=1- NX DX
must be inside the unit circle.
Note that D f is a diagonal matrix with positive values. Then:

T _ vIPnl/2pn1/2y 1/2\T 1/2
X"DX = X'D}/?D}/>X = (XD}/*)T (XD}/?).

Hence, X'D Xis a semidefinite positive matrix. On the other hand, we have
that:

eig(A) = eig (I — %XTDfX>
— T io(xT
=1- Nezg(x DfX),

where eig represents the eigenvalues. Then, to ensure that the system is stable, it
must be satisfied that:

’1—%)&‘ <1.

For all the eigenvalues A of the matrix given by X"D/X. Solving the inequality,
we have that:

Ul
“1<1—+=A<1
< N <

o<
2 < NA (3.9)

1
2> LA
N
N

3.3. Determination of the optimal Learning Rate 17

As the matrix is a semidefinite positive matrix, the smallest value this upper-
bound takes is given when we have the greatest eigenvalue, Amax. Therefore, the
learning rate, given by 1, must satisfy the inequality resulting in equation (3.9). This
equation gives a condition for the system to be stable, as well as an upper limit
for the learning rate when using gradient descent. Thus, the maximum value the
learning rate can take is given by:

2N

)\max

(3.10)

NHmax =

3.2.2 Extension to other Activation Functions

The derivation explained before can be generalized to any activation function. This
is possible because, if we recall how the matrix Dy is defined in equation (3.7), we
can observe that it depends only on the activation function, h. Hence, the gradient
descent algorithm, defined by equation (3.8) depends also only on the activation
function, and the matrix of observations X. Therefore, based on this derivation, the
same upper bound presented in equation (3.9) can be used for the learning rate of
problems with different activation functions.

3.3 Determination of the optimal Learning Rate

Now, as the upper-limit for the Learning Rate is defined, we propose an optimal
value for this hyperparameter. For this purpose, let’s consider the function:

o =X (1= 34).

which can be expressed in a vectorial form as:
— (1= (1oL
J) = (1-%A) (1-5A), 311

where A = [Ami"] :
)\max
In order to minimize the distance of these eigenvalues to the origin in the unit
circle, we need to minimize the function given by equation (3.11). The derivative of
this function can be calculated as follows:

18 Chapter 3. Automatic estimation of the Learning Rate

—A; h?
_2;<N+;7N2)
—N/\i—f—ﬂ}\lz
2o ()

This derivative can be written in a vectorial form as:

o 2 1.0

We seek the optimal value of equation (3.12) by minimizing the function given
by this equation. To this effect, we set this equation equal to zero, and we solve:

2
0= ﬁAT(/\n ~N-1)
0=AT(Ay —=N-1)
0=ATAy —1TAN

ATAy =1TAN
Then, solving for 1, we get that the optimal value for the learning rate is:

n _ 17AN _ N()\min + /\max)
FTATR T (A +)
To guarantee the convergence for this optimal 7, it is necessary to prove that its
value is smaller than the upper bound found. i.e. we need to prove that:

(3.13)

_ 2N
ﬂopt /\mux

Since X'D #X is semipositive definite, let’s consider A, = cAmax, with ¢ € [0,1].
Then, replacing in equation (3.13), we get:
_ (c+1)N
Hopt = (24 DAax

As we want to prove that the value of 77opt is smaller than the upper bound, we
need to find the maximum value of the following function:

3.4. Generalization to a Multinomial Regression 19

c+1
€)= —5——=,
f(e) 241
which corresponds to the worst case for the eigenvalues of the matrix. Then,
maximizing this function, we get that the value of ¢ where the function f(c) has its
maximum is ¢ = —1 + /2. Hence, evaluating the function in this value we get that
the maximum of the function is:

f(c):\f+;<2.

Therefore, we have that, in the worst case scenario,

< 2N
opt Amax

Thus, for every value of the eigenvalues, the optimal value for 7 is smaller than
the upper bound. Ergo, we have proven the convergence of the optimal value for
the Learning Rate, established in equation (3.13).

3.4 Generalization to a Multinomial Regression

When using multinomial regression, the otuput of the model is given by:

Z =XW,

1
P=¢?0 (ezlh> ;

where W € RE+1)*" is a matrix containing the parameters for the & different
classifiers, P € RN*" is the matrix of soft-max outputs, representing the probability
of an input observation to belong to one of the I output classes; the rows of this
matrix sum to one, the ® symbol represents the element-wise product of matrices,
i.e. the Hardaman product; and the right side of the equations represent a matrix
containing in its rows the normalization terms for each observation, with 1;, € R" is
a vector of ones with dimension equal to the number of output classes.

When using gradient descent the update rule in matrix form is given by:

Wn+1] = W[n] — %XT (P-Y),

where Y € RN*" is the matrix containing the output for each observation. If we
rewritte this equation independently for each output, we get:

77.
w][n + 1] = w][n] — ﬁ]XT (p] — y]) ,

where w; is the j-th column of W, p; is the j-th column of P, y; is the j-th column of
Y, and 7; is the learning rate associated to this output. Linearizing this equation we
get A =1- X (D f)j X just as in previous sect1or;)s, with (D f)]. a diagonal matrix
containing the derivatives of the logistic function % =p© (In — pj). Thereby,

the maximum and optimal values for the learning rate are given by:

20

Chapter 3. Automatic estimation of the Learning Rate

) _

Nmax =

where (Amax); and (Amin)

. 1
,and 4, =N

(Amax); P (Ae)T (M) j

; are obtained from the eigen-values of X" (Dy). X.
]

21

Chapter 4

Simulations and Results

In this chapter we present experimental results for the simulations performed to
test the results obtained before. First, we present the data used in each simulation.
We also explain how the simulations were designed, and we discuss the obtained
results.

4.1 Data discussion

We first use some toy examples with manually created data to study the behaviour
of the algorithm for the linear regression and the logistic regression model. Then,
we use the MNIST and Fisher Iris datasets to validate our approach in real datasets.

In the first place, for the linear regression we randomly created 200 samples for a
1—dimensional vector, as the input data. Then, we inserted a column of ones at the
end, as the bias, in order to build the regressor matrix. We also generated 2 random
numbers, as the true coefficients for the model.

For the logistic regression we generated samples for a binary classification prob-
lem, i.e. we manually created two classes. For each class, we draw 1000 samples for
a normally distributed random variable. The first class with data around (1,1), i.e.
with a mean value of 1, and the second class with data around (—1,—1), i.e. with a
mean value of -1. We created a vector of ones as the labels for class 1, and a vector of
zeros as the labels for class 2. After these vectors were created, we concatenated the
data for both classes and added a vector of ones for the bias, and we also created the
output vector, concatenating both vectors of labels.

000 0000QCQa@pPp0OOOCI (7 OO0
T R N N A2 RV i U B B RV
2Ad 2222222212222 2A
3333333%5353333333
Heg st 44949 #5444\ &4
59555835 S$S5557s5855¢457%9
6 GbblGbobaceébtelb
TI7977177070 00 2%F 777
¥3 2 ® 8 3P P TT YLD
?7199999%199%4994499 9

FIGURE 4.1: Sample images from MNIST test dataset. Credit: MNIST
database.

https://en.wikipedia.org/wiki/MNIST_database
https://en.wikipedia.org/wiki/MNIST_database

22 Chapter 4. Simulations and Results

MNIST and Fisher Iris were used for a multinomial logistic regression case. The
tirst one is a database of hand written digits, commonly used for training various im-
age processing systems, [21], as well as training and testing in the field of machine
learning [22]. It contains 60.000 training images and 10.000 testing images. Figure 4.1
shows some sample images from this database. For the simulation, we transferred
the data from the database to a matrix, by reshaping it, and we added the bias vector.
Then, we converted the labels to one-hot encoding, which is a way of label encoding.

Petal length

FIGURE 4.2: First 3 variables of Iris dataset. Image by author.

On the other hand, Fisher Iris is perhaps the best known database to be found in
the pattern recognition literature [23]. The dataset contains 3 classes of 50 instances
each, where each class refers to a type of iris plant. Figure 4.2 shows the first three
columns of the dataset: Sepal length, Sepal width and Petal length, and how the 3 types
of iris plants are scattered. For the simulation, we first extracted the measurements,
and subtracted the mean from the data. Then, we added the bias vector. In this case,
we also converted the labels into one-hot encoding.

4.2 Simulations design

For the linear regression problem simulation, as mentioned above, we chose a prob-
lem with 2 parameters. This with the purpose of nicely displaying the convergence
of the algorithm. The problem was solved using batch gradient descent. We per-
formed three simulations: the first one using the upper-bound for the learning rate,
computed as mentioned in equation (3.10); the second one with the optimal value
of the learning rate, computed as shown in equation (3.13); and the third one with a
sub-optimal value of the learning rate, using the trace of the matrix.

4.3. Results 23

Likewise, for the logistic regression we also chose a problem with two parame-
ters. In this case, the algorithm was trained for 100 epochs. We repeated the exper-
iment 100 times, creating new data from the same distribution each time, in order
to observe the variability due to the input data. The algorithm was tested in each
repetition using 200 new samples from the same distribution as in training, 100 per
class.

On the other hand, with the MNIST and Iris datasets, we run simulations us-
ing a multinomial logistic regression. In the previous cases, we used batch gradient
descent; however, in this example we used mini-batches, with the purpose of vali-
dating that our approach is still valid in this context. After each epoch of the algo-
rithm the training data was randomly shuffled, and performed 10 repetitions each
time initializing in the same point, in order to generate confidence intervals for the
simulations.

4.3 Results

In this section we present the results obtained from the simulations and experiments
described above. All of these simulations where performed in MATLAB.

On the first place, figure 4.3 shows the data created for the linear regression, and
the results of the line corresponding to the linear regression obtained.

> Data
Linear regression

FIGURE 4.3: Results for the linear regression.

Figure 4.4 shows as well the results for the linear regression. One can observe
that, when using the maximum value for the learning rate, given by the upper bound
found, #max, the algorithm oscillates between two points in the cost function. This
is reflected in a constant value for the cost function which does not reach the min-
imum, and in values for the parameters w that oscillate. Meanwhile, when using
Hsub-opt, W€ can observe that parameters converge slowly to the true values, and the
cost function also converges slowly to the minimum. However, when using the op-
timal value for the learning rate, 77opt, the cost function converges to the minimum
in a faster way, as well as the parameters, which converge fast to the true values.

Besides, figure 4.5 shows the evolution of the different learning rates in epochs
for the linear regression. We can observe that each value of the learning rate remains
constant through time, as the matrix never changes, thus, the eigen-values do not

24 Chapter 4. Simulations and Results

change either.

Cost for the maximum
Cost for a sub-optimal 1
—+— Cost for the optimal ;

Cost Surface

Cost for the maximum 7

Cost for a sub-optimal 1)
—@— Cost for the optimal 7

Cost
o v & o
/
/
//
o
|
\
Cost
o 4 N © & o o 9~

0 0 2 4 6 8 10 12 14 16 18 20

= True Labels

4 « for the maximum 7
« for the sub-optimal 1)

—@—, for the optimal 1

FIGURE 4.4: Results from gradient descent in a linear regression prob-

lem, for three different learning rates. In the upper-left figure the cost

function and the trajectory followed by the parameters update. In the

upper-right figure the evolution of the cost function in epochs. In the

bottom figure the model parameters and the trajectory followed by
the algorithm with the different learning rates.

1.87 Maximum 7
Sub-optimal n
1.6} —— Optimal

-
S

Learning rate
- LS}

o
o

0.6

0.4
0.2 5 10 15 20

epoch

FIGURE 4.5: Evolution of the learning rate in epochs for the linear
regression.

Figure 4.6, on the other hand, shows the results for the logistic regression. It is
possible to observe that, in a similar way as the linear regression problem, when we
use #max, the algorithm oscillates between 2 points on the cost surface. Besides, the
algorithm reaches the minimum for the cost function after 100 epochs. We can also
observe that, for this learning rate, one of the parameters converges faster than for
the other values of the learning rate; however, for the other parameter it oscillates,
slowing down its global convergence. On the other hand, when using #sub-opt, the
algorithm converges in a slow way to the minimum, reaching this optimal value
in approximately 33 epochs for the 100 repetitions. Finally, when using the opti-
mal learning rate #opt, the algorithm reaches the minimum of the cost function in 22

4.3. Results 25

epochs. In contrast with the case for linear regression, here #7max and #opt are approx-
imations of the linear system in each iteration.

Cost for the maximum 7
Cost Surface 1.2 Cost for a sub-optimal 1)
1.5
Cost for the maximum 7 —@— Cost for the optimal 7

Cost for a sub-optimal 7 1
—@— Cost for the optimal 7

0l o g 08T 04
1 L
6 02
05\\X\7 7 4
0 7\5\// 0 0

05 2) 0 5 10 15 20 25 30
e e e _ .epoch

« for the maximum 7
w for the sub-optimal
—@— . for the optimal 7

epoch

FIGURE 4.6: Results from gradient descent in a logistic regression

problem, for three different learning rates. In the upper-left figure the

cost function and the trajectory followed by the parameters update.

In the upper-right figure the evolution of the cost function in epochs.

In the bottom figure the model parameters and the trajectory followed
by the algorithm with the different learning rates.

Moreover, figure 4.7 shows the evolution of the three values of the learning rate
in epochs for the logistic regression. It shows that each value of the learning rate
changes over time. This happens because the derivatives in the activation function
decrease as reaching the minima, therefore, the matrix changes, making the learning
rate to increase in each epoch.

70

()]
o

Maximum 7
Sub-optimal 7| 1
—*— Optimal 7

9]
o

Learning rate
w B
o o

N
o

-
o

0 5 10 15 20
epoch

FIGURE 4.7: Evolution of the learning rate in epochs for the logistic
regression.

In addition, figure 4.8 shows the results for the multinomial logistic regression
problem, simulated using the Iris dataset. One can observe that even though the
cost function did not converge for any of the values of 7, the cost was considerably

26 Chapter 4. Simulations and Results

reduced.

T
Maximum 7
Sub Optimal 7|

——Optimal n

| I
0 10 20 30 40 50 60 70 80 90 100
epoch

FIGURE 4.8: Evolution of the cost function in epochs for the multino-
mial logistic regression with Iris dataset.

Finally, figure 4.9 shows the results for the multinomial logistic regression prob-
lem, simulated with the MNIST dataset. For this simulation we could not per-
form the algorithm exactly as presented, since each mini-batch took approximately
2.6 & 0.094 seconds to process, running the simulation for 100 epochs represents
around 33 hours of processing time. The main bottleneck here is the eigen value
decomposition. Therefore, in order to accelerate the algorithm, we used the lower-
bound for the eigenvalues, Apmin = 0, and an upper bound as presented in [24], given
by:

T %
r (XD X
/\max S t (d f)

4

d

(e - R

where tr () is the trace of the matrix, and ||-||7 is the Frobenius norm. With this
approximation, the processing time for each mini-batch was 92.8 & 11 ms, complet-
ing 100 epochs in 1 hour and 12 minutes.

0.65
Maximum 7
Sub Optimal 7
0.6 —Optimal n
|
0.55
. 05 \
7]
S
0.45
0.4
0.35
0.3
0 20 40 60 80 100

epoch

FIGURE 4.9: Evolution of the cost function in epochs for the multino-
mial logistic regression with MNIST dataset.

27

Chapter 5

Discussion

In this thesis we used an analysis of the gradient descent algorithm, studied as a dy-
namical system, to determine the upper-bound for the learning rate, in a way that the
algorithm converges. Furthermore, we proposed an optimal value for the learning
rate, which minimizes the sum of the distance of the extreme poles of this dynamical
system. This analysis was performed by linearizing the gradient descent algorithm,
and applying it to linear, logistic and multinomial regression. The upper-bound
and the optimal value for the learning rate, given by #/max and 7qpt, respectively, are
approximations to the optimal value that guarantee the fastest convergence of the
algorithm.

If we check again the results for the linear regression shown in figure 4.4, we
can observe that the value for the learning rate that presents the fastest convergence
is the optimal one, given by 7opt. For this value, the minimum of the cost func-
tion is reached in only 2 epochs. In addition, the model parameters have a similar
behaviour, converging to their true values in about 3 epochs of the algorithm. In con-
trast, when we use #sub-opt, the algorithm needs about 5 epochs to reach the minima
of the cost function, and about 7 epochs to reach the true values of the model param-
eters. Thus, the algorithm converges in both cases, but it converges faster when us-
ing 7opt than when using 77sup-opt. However, when using the maximum value for the
learning rate #7max, the algorithm gets stuck between two points on the cost function
surface. Then, the algorithm converges to a sub-optimal value in the cost function
and the model parameters do not converge, and oscillate between 2 values. This
means that, in this case, at least one pole of the dynamical system representing the
gradient descent is located over the unit circle, making the solution to oscillate.

In the case of the logistic regression, we can observe from figure 4.6 that when we
use the upper-bound for the learning rate, given by #max, the algorithm converges
faster than the other two values of the learning rate. The reason why this happens
is because, in this case, #max is just an approximation from below to the real upper-
bound of this parameter, i.e. there are values of the learning rate 7 > #max for which
the algorithm still converges. Nevertheless, we can observe that, for this value of the
learning rate, one of the model parameters oscillate between 2 points. This might in-
dicate that at least one of the poles of the dynamical system is close to the unit circle.
On the other hand, we can notice that the algorithm converges faster for 7,pt than
for Hsub-opt, as in the linear regression. Although #max seems to make the algorithm
converge faster than 7opt, it is better to use this last value of the learning rate, as it
guarantees a smooth and relatively fast convergence to the minimum.

It is important to notice from figure 4.5 and figure 4.7 that for the linear regres-
sion the values of the learning rates used remained constant. This happens because

28 Chapter 5. Discussion

the matrix used to define each value of # never changes, and, as a consequence,
the eigen-values of this matrix never change either. On the contrary, the values of
the learning rate for the logistic regression do change over time, increasing on each
epoch. The reason why this happens is that, when reaching the minima, the deriva-
tives of the activation function tend to decrease, making the matrix to change, and
increasing the value of the learning rate, i.e. the learning rate has the capability of
taking bigger steps, as the derivative is smaller.

For the simulations using multinomial logistic regression, we can observe, from
figure 4.9 that the fastest convergence rate is presented for the value 7sp-opt- How-
ever, it is important to notice that we used an upper-bound for Anmax in this case.
Because of this, 77opt might be far from the optimal value as computed in (3.13). Also,
we expect the algorithm to converge for all the values of 7 under these conditions.
It is important to notice that the simulations presented here are performed using the
normal mini-batch gradient descent, and no momentum or other strategies used for
classic optimizers have been used. The purpose of this simulation is to demonstrate
that the algorithm presented has a reasonably good performance using mini-batch
gradient descent in a real dataset. In the figure 4.9 we can see confidence intervals
for 10 repetitions, and we can observe that these intervals are small, indicating that
our algorithm is robust.

In this and the previous chapter we have presented the results for different ac-
tivation functions: linear, logistic and softmax. However, for other activation func-
tions such as ReLu, Leaky ReLu, hyperbolic tangent, and elu the performance is
comparable to the ones presented here. In order to replace the activation function
only the derivatives and the output for the functions is needed.

Despite the fact that the algorithm presented showed good results, it has some
limitations. In the first place, we have that for non linear activation functions, the
proposed valued of 77pt and #7max are just approximations to the real optimal value
and the real upper-bound for the learning rate. This happens because the results
were obtained by doing a linear approximation of the algorithm. However, if we al-
ways use opt, the algorithm is guaranteed to converge, and it does it relatively fast
in the simulations presented. Secondly, in order to compute the values for 77opt and
Nmax, it is necessary to compute the largest and the smallest eigenvalues of the ma-
trix XTD X, which is a d x d eigenvalue problem. Therefore, for large dimensions,
it might represent a considerably computer load, making difficult to apply the algo-
rithm proposed.

Finally, the simulations and results presented in this thesis are just for linear,
logistic and multinomial regression, we have yet to extend this algorithm for the
training of neural networks, and combine it with other optimization strategies.

29

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we presented an algorithm that automatically determines an upper-
bound and an optimal value for the learning rate of classification and multinomial
regression models, such that it guarantees that the gradient descent algorithms con-
verges smoothly and fast to the optimal minima. These values were obtained by
analyzing the gradient descent algorithm as a discrete dynamical system. First, we
found these values for a logistic regression problem, extending the results found in
[1] for a linear regression problem. After that, the upper-bound an the optimal value
for the learning rate were generalized to other activation functions, using models of
regression and classification. The upper-bound found for this parameter is shown
in equation (3.10), and the optimal value in equation (3.13). These results were also
extended from the logistic regression model to a multinomial regression model.

The simulations and experiments done in the thesis show that the proposed algo-
rithm produces good results. It also shows that, contrary to what is done in practice,
the learning rate should be increased when reaching the minima. The algorithm
presented works well for linear, logistic and multinomial regression problems.

6.2 Future Work

As future work, we plan first to extend this algorithm for the training of neural
networks, combining it with other strategies such as ADAM, SGD with momentum,
among others. We want also to develop a new optimizer, based on the algorithm
presented. In this way, the results presented in this thesis and the extension to the
optimizer can reduce the training time for deep learning models. It is also necessary
to compare of the algorithm proposed with other optimizers, in order to check if the
results obtained are functional and correct.

31

Bibliography

[1]

2]
[3]

[4]

[5]
[6]

[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. C. Ruiz, Una propuesta de neurona artificial: la Unidad Neuro Vascular Artificial
(UNVA). 2021.

J Stuart et al., Artificial intelligence a modern approach third edition, 2010.

T Mitchell, B Buchanan, G DeJong, T Dietterich, P Rosenbloom, and A Waibel,
“Machine learning,” Annual Review of Computer Science, vol. 4, no. 1, pp. 417-
433, 1990. DOI: 10 . 1146 / annurev . cs . 04 . 060190 . 002221. eprint: https :
//doi.org/10.1146/annurev.cs.04.060190.002221. [Online]. Available:
https://doi.org/10.1146/annurev.cs.04.060190.002221.

T. M. Mitchell and T. M. Mitchell, Machine learning. McGraw-hill New York,
1997, vol. 1.

Z.-H. Zhou, Machine learning. Springer Nature, 2021.

Machine learning, 2022. [Online]. Available: https://en.wikipedia.org/wiki/
Machine_learning#cite_note-2.

G. Bonaccorso, Machine learning algorithms. Packt Publishing Ltd, 2017.

What are machine learning models? 2022. [Online]. Available: https : / / www .
databricks.com/glossary/machine-learning-models.

J. Point, Machine learning models - javatpoint, 2022. [Online]. Available: https:
//www.javatpoint.com/machine-learning-models.

N. Donges, Gradient descent in machine learning: A basic introduction, 2022. [On-
line]. Available: https://builtin.com/data-science/gradient-descent.

S. Patrikar, Batch, mini batch amp; stochastic gradient descent, 2019. [Online].
Available: https : / / towardsdatascience . com / batch - mini - batch -
stochastic-gradient-descent-7a62ecba642a.

J. Zhang, “Gradient descent based optimization algorithms for deep learning
models training,” arXiv preprint arXiv:1903.03614, 2019.

M. D. Zeiler, “Adadelta: An adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

A. Lydia and S. Francis, “Adagrad—an optimizer for stochastic gradient de-
scent,” Int. |. Inf. Comput. Sci, vol. 6, no. 5, pp. 566-568,

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu, “A sufficient condition for con-
vergences of adam and rmsprop,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

P. Baldi, “Gradient descent learning algorithm overview: A general dynami-
cal systems perspective,” IEEE Transactions on Neural Networks, vol. 6, no. 1,
pp- 182-195, 1995. DOI: 10.1109/72.363438.

K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

https://doi.org/10.1146/annurev.cs.04.060190.002221
https://doi.org/10.1146/annurev.cs.04.060190.002221
https://doi.org/10.1146/annurev.cs.04.060190.002221
https://doi.org/10.1146/annurev.cs.04.060190.002221
https://en.wikipedia.org/wiki/Machine_learning#cite_note-2
https://en.wikipedia.org/wiki/Machine_learning#cite_note-2
https://www.databricks.com/glossary/machine-learning-models
https://www.databricks.com/glossary/machine-learning-models
https://www.javatpoint.com/machine-learning-models
https://www.javatpoint.com/machine-learning-models
https://builtin.com/data-science/gradient-descent
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://doi.org/10.1109/72.363438

Bibliography

Seldon, Machine learning regression explained, 2021. [Online]. Available: https:
/ / www . seldon . io / machine - learning - regression - explained# : ~ :
text=Regression’%20is’20a%20technique%20for , used’%20to%20predict?,
20continuous%20outcomes..

J. Brownlee, Linear regression for machine learning, 2020. [Online]. Available:
https://machinelearningmastery.com/linear-regression-for-machine-
learning/.

J. Point, Logistic regression in machine learning - javatpoint, 2022. [Online]. Avail-
able: https://www. javatpoint . com/logistic-regression-in-machine-
learning.

Support vector machines speed pattern recognition - vision systems design, 2004.
[Online]. Available: https : //www . vision - systems . com/home /article /
16737424/support-vector-machines-speed-pattern-recognition.

J. Platt, “Using analytic qp and sparseness to speed training of support vector
machines,” Advances in neural information processing systems, vol. 11, 1998.

Iris data set. [Online]. Available: https : / / archive . ics . uci . edu/ml /
datasets/iris.

P. Tarazaga, “Eigenvalue estimates for symmetric matrices,” Linear algebra and
its applications, vol. 135, pp. 171-179, 1990.

https://www.seldon.io/machine-learning-regression-explained#:~:text=Regression%20is%20a%20technique%20for,used%20to%20predict%20continuous%20outcomes.
https://www.seldon.io/machine-learning-regression-explained#:~:text=Regression%20is%20a%20technique%20for,used%20to%20predict%20continuous%20outcomes.
https://www.seldon.io/machine-learning-regression-explained#:~:text=Regression%20is%20a%20technique%20for,used%20to%20predict%20continuous%20outcomes.
https://www.seldon.io/machine-learning-regression-explained#:~:text=Regression%20is%20a%20technique%20for,used%20to%20predict%20continuous%20outcomes.
https://machinelearningmastery.com/linear-regression-for-machine-learning/
https://machinelearningmastery.com/linear-regression-for-machine-learning/
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.vision-systems.com/home/article/16737424/support-vector-machines-speed-pattern-recognition
https://www.vision-systems.com/home/article/16737424/support-vector-machines-speed-pattern-recognition
https://archive.ics.uci.edu/ml/datasets/iris
https://archive.ics.uci.edu/ml/datasets/iris

	Abstract
	Acknowledgements
	Introduction
	Machine Learning
	Learning Algorithms
	Gradient Descent
	Learning Rate

	State of the art
	Problem Statement
	Objectives

	Dynamical Systems
	Dynamical Systems
	Gradient Descent and Dynamical Systems
	Gradient Descent as a Dynamical System
	Effects of the Learning Rate on the Convergence of Gradient Descent Algorithm

	Automatic estimation of the Learning Rate
	Regression
	Linear Regression
	Logistic Regression

	Determination of the upper-bound for the Learning Rate
	Logistic Regression Problem
	Extension to other Activation Functions

	Determination of the optimal Learning Rate
	Generalization to a Multinomial Regression

	Simulations and Results
	Data discussion
	Simulations design
	Results

	Discussion
	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

