
Assessing methods for comparing species diversity from disparate
data sources: the case of urban and peri-urban forests

CHRISTINA L. STAUDHAMMER,1,� FRANCISCO J. ESCOBEDO,2 AND AMY BLOOD
3

1Department of Biological Sciences, University of Alabama, PO Box 870344, Tuscaloosa, Alabama 35406 USA
2Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Kr 26 No 63B-48, Bogot�a, Colombia

3Department of Forest Resources and Environmental Conservation, Virginia Tech, 310 West Campus Drive,
Blacksburg, Virginia 24061 USA

Citation: Staudhammer, C. L., F. J. Escobedo, and A. Blood. 2018. Assessing methods for comparing species diversity
from disparate data sources: the case of urban and peri-urban forests. Ecosphere 9(10):e02450. 10.1002/ecs2.2450

Abstract. Multi-scale forest inventory and monitoring data are increasingly being used in studies assess-
ing forest diversity, structure, disturbance, and carbon dynamics. Also, local-level urban forest inventories
are providing plot data and protocols to study tree diversity and ecosystem services in urban forests
worldwide. But, differences in the sampling methods underlying these disparate protocols and data
sources is a non-trivial concern in formulating comparative analyses. We assess commonly used methods
for comparing tree diversity in peri-urban and urban forests when available data have different sample
sizes, plot sizes, and sampling intensities. We present methods for appropriately evaluating species
richness, as well as methods for comparing species distributions via community data matrices. Using
permanent plot data from the southeastern United States, we present a case study comparing urban and
peri-urban forests along a north–south gradient, and assessing species richness and the ecological homoge-
nization hypothesis. Our findings indicate that comparisons of tree species richness among communities,
or forest types, are often inconclusive since commonly used sample sizes do not provide precise estimates
of the number of species present. While the ecological homogenization hypotheses can be tested under con-
ditions of unequal sampling effort, we suggest robust methods such as PERMANOVA and the Raup-Crick
dissimilarity index. A framework for selecting appropriate methods is also discussed. As forests are
increasingly being altered by anthropogenic drivers, future studies using disparate data sources must
account for differences in measurements and sampling protocols in order to produce results that are both
statistically defensible and useful for science-based management.
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INTRODUCTION

Forest composition and tree species diversity
have been recognized as primary drivers of
ecosystem resilience and function (Jenerette et al.
2016). For example, tree composition is a key fac-
tor in determining forest ecosystem resistance
and susceptibility, and diverse forests enhance
the provision of ecosystem services and goods
(Chazdon et al. 1999, Kendal et al. 2014, Livesley

et al. 2016). Still, questions remain about how
forest dynamics in rural contexts compare to
those of urban environments (Blood et al. 2016).
Also, further information is needed on how the
increasing use of available plot-level data in both
rural and urban forests can be used to address
questions regarding ecological disturbance, func-
tionality, and homogenization (Staudhammer
et al. 2015, Speak et al. 2018). Such studies of tree
and plant diversity among and within forested
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ecosystems can help characterize differences and
similarities in communities across different dis-
turbance regimes and scales (Yang et al. 2017).

Comparative analyses of tree and forest data
collected from different ecosystems often use dif-
ferent inventory and sampling protocols. This
can be problematic due to varying sampling
intensities, plot shapes, and sizes (Laurance et al.
1998, Hou et al. 2015). Simple comparisons, such
as those concerning average tree size or number
of species, are often not straightforward, even if
adjustments are made for the amount of area
sampled (Gotelli and Colwell 2001). However,
these comparisons are of great importance, as
they allow researchers and managers to not only
identify research questions, but develop metrics
to assess management and planning activities
across different tree populations. By consolidat-
ing, formatting, and matching data sampled for
different projects with different objectives, regio-
nal and international databases and clearing
houses could be developed.

National-level vegetation inventories have
long been a valuable research data source for
ecologists, providing information on rural and
managed forests that is standardized across large
geographic areas. Similarly, over the last decade,
local-level data are being increasingly collected
in urban forests across the world using standard-
ized protocols, allowing researchers to address
regional-, national-, and continental-level applied
urban ecology questions, such as those compar-
ing species diversity and distributions (Kendal
et al. 2014, Staudhammer et al. 2015, Jenerette
et al. 2016, Yang et al. 2017, Speak et al. 2018).
These types of data, however, are invariably
based on different sampling protocols, sampling
intensities, and plot sizes and shapes, as well
as tree selection and measurement criteria.
Nonetheless, comparisons between these data-
sets will become increasingly important to better
understand how anthropogenic impacts affect
urban and peri-urban forest structure, diversity,
and even ecosystem services across multiple
scales, regions, and continents.

As natural landscapes are altered by urbaniza-
tion, such comparisons allow us to fill gaps in our
scientific understanding of the dynamics of
urban-to-rural gradients and ecosystems. We
may, for example, explore questions about the
development of novel ecosystem assemblages in

the Anthropocene (Groffman et al. 2014). We can
test hypotheses about the homogenization of spe-
cies composition (Pearse et al. 2018) or the abun-
dance and occurrence of invasive species across
urban-to-rural gradients (Staudhammer et al.
2015). Similarly, data can be used to study the
adequacy of human-dominated landscapes in
providing adequate habitat for native tree species
and fauna (Livesley et al. 2016) or to understand
the resilience of different forests to climate change
and anthropogenic stressors. This type of data is
key in estimating and modeling the supply of
ecosystem services from urban and peri-urban
forests (PF; Nowak et al. 2008, Speak et al. 2018).
Comparison of specific forest characteristics,

such as mortality or height, when plot sizes differ
has been accomplished using statistical proce-
dures, such as weighting (Flewelling and Mon-
serud 2002). Assuming that the number of
observations and distributional shapes are not
drastically different, these quantitative samples
may be compared via simple t-tests, or if data
sources are sufficiently different, non-parametric
methods such as the Kolmogorov-Smirnov or
Cramer-von Mises tests may be more appropri-
ate (Quinn and Keough 2002). Plot-based data,
where plots are considered as the independent
unit of observation, require mixed modeling
methods to account for the potential for correla-
tion among trees measured within the same plot
(Garc�ıa 2006). When plots are of different sizes,
these methods are still valid, but weighting
schemes may be appropriate in certain situations
(Schreuder et al. 1993).
Urban ecology studies regularly use area-

based statistics, such as tree density (Staudham-
mer et al. 2015, McPherson et al. 2017). When
sampling schemes use identical selection criteria,
area-based variables are unaffected by plot size
differences in theory; however, their variances
decrease with increases in plot size (Zeide 1980),
leading to different levels of uncertainty for each
plot size. On the other hand, when such studies
utilize datasets with disparate sampling schemes
or select trees within plots with different proba-
bilities, comparisons must be adjusted for
unequal plot sizes using a bootstrap process to
construct means and standard errors (McPherson
et al. 2017).
Beyond measures of ecosystem structure,

researchers might also be interested in comparing
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species diversity using data from disparate
sources (Blood et al. 2016). However, sampling
scheme is an important consideration; for exam-
ple, convenience sampling was found to result in
higher estimates of species diversity and more
rare species, when compared to random sam-
pling in an urban forest (Speak et al. 2018). Dif-
ferences in the structural characteristics of
sampling locations can also lead to differences in
sampling effectiveness (Hortal et al. 2006)—even
with standardized sampling techniques—which
can bias estimates of species diversity. Diversity
is often quantified in terms of richness and even-
ness, as well as community composition. Rich-
ness, however, can be difficult to measure
appropriately since more species are recorded as
the number and area of samples increases (May
1988). Evenness is also affected by sampling
interval and intensity, but to varying degrees
depending on the measure used (White 2007).
Appropriate measures, such as computing
expected richness at a standardized size via rar-
efaction, are thus necessary in order to compare
communities where sample sizes are unequal
(Heck et al. 1975).

Species richness and composition are often-
reported metrics across ecological disciplines, but
have particular importance in urban forests in
understanding biodiversity (Livesley et al. 2016)
and resistance to damage from disease and pest
outbreaks (Raupp et al. 2006, Jonnes 2016). To
promote urban forest tree diversity and its man-
agement, metrics of species richness have been
proposed. For example, tree richness can be mea-
sured using a management indicator such as the
10-20-30 rule (Santamour 1990), which calls for no
more than 10% of trees in any single species, 20%
in any single genus, and 30% in any single family
within a management unit such as a city. But a
study across climate and land use revealed that
these targets are rarely met at the species level
(Kendal et al. 2014). Similarly, the ecological
homogenization hypothesis, which posits that
land-use change has produced similar urban resi-
dential ecosystems, bearing little similarity to the
natural ecosystems they replaced (McKinney
2006), can be evaluated. Evidence of such urban
homogenization has been reported across major
cities in the United States and China, with hypoth-
esized continental-scale consequences, including
effects on carbon sequestration, microclimate, and

other ecosystem properties (Groffman et al. 2014,
Yang et al. 2017).
Recently, disparate data sources have been

used for regional-scale and even continental-
scale urban-to-rural analyses of woody plant
community composition, similarity, species rich-
ness, and other questions such as ecological
homogenization and ecosystem dynamics (Blood
et al. 2016, Kendal et al. 2018). However, it is not
known if methods and findings from studies
using disparate data across larger study areas
and different forested contexts, diverse data col-
lection methods, and plot characteristics are
indeed using methods that ensure that the
underlying estimates of forest diversity and spe-
cies composition are robust.
This study assesses methods for analyzing spe-

cies richness and composition in light of dis-
parate forest data sources, and how their use can
affect findings and inference in comparing eco-
logical diversity across different local, regional,
and continental areas of interest. We do so by
analyzing local-level urban and peri-urban forest
diversity and composition across a regional gra-
dient using data from two available yet disparate
databases. Specifically, we first review the differ-
ent and appropriate methodologies for using
these increasingly available data for applied eco-
logical research questions by detailing the con-
ventional methods that have been used to
characterize tree diversity, in terms of observed
and estimated species richness, as well as compo-
sition values. Second, we evaluate how these dif-
ferent methods can influence study findings and
management implications. We then present find-
ings in a case study that evaluates several com-
monly used methods for analyzing tree species
richness metrics and test the ecological homoge-
nization hypothesis across different forested con-
texts (i.e., urban–rural gradients). Finally, we
outline an approach for selecting the most appro-
priate methods for analyses and discuss practical
considerations when considering data sampled
under different methodologies.

METHODS FOR ANALYZING DIVERSITY AND
COMPOSITION

Tree sampling is most commonly accom-
plished via plot-based sampling protocols, and
thus, we focus our review on methods applicable
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to this type of sampling. Plot-based sampling
requires different methods from those of individ-
ual-based protocols (sensu Gotelli and Colwell
2001), as plots involve samples of multiple,
grouped individuals as replicates, rather than
single individuals (Speak et al. 2018). This dis-
tinction is non-trivial in that it defines the appro-
priate methodology of diversity measure for
estimating species richness, as well as describing
composition and making comparisons thereof.

Measurements of species richness
When studies involve comparisons of species

richness among different sites, there are many
methodologies available that standardize richness
data using extrapolation or rarefaction techniques
(Chao and Chiu 2016). This includes non-para-
metric estimators, parametric species abundance
models, species accumulation curves, and
species–area curves. The standardizing of species
richness data using extrapolation or rarefaction
techniques is frequently performed in inter- and
intra-site comparisons (Gotelli and Colwell 2001).

Species accumulation curves.—Species accumula-
tion curves, rather than raw numbers of species,
are necessary to make appropriate comparisons
among communities and are commonly used to
graphically display the total number of species
encountered as the number of sample units is
added to a pool of previously encountered spe-
cies (Colwell and Coddington 1994). They are
related to, but not identical with, species–area
curves, which are derived from island datasets
(i.e., where different areas are associated with
independently sampled islands). Sampled spe-
cies richness may differ between communities
due to inherent differences in underlying species
richness; however, they may also differ due to
differences in the number of individuals counted
or collected (Denslow 1995). These differences
may be a reflection of resource availability or
habitat conditions, but may also be simply due to
sampling effort (Gotelli and Colwell 2001), as
demonstrated in comparisons of logged vs.
unlogged forests (Cannon et al. 1998, Chazdon
et al. 1999, Hubbell 1999). Gotelli and Colwell
(2001) recommended that raw richness only be
compared if species accumulation curves clearly
indicate that an asymptote has been reached in
both populations of interest, highlighting the
need for estimating total population pools.

When sampling effort is equal (e.g., the same
number of plots and same plot size used) and
sample-based curves are used, comparisons of
richness can still be problematic, as datasets can
differ in the mean number of individuals per sam-
ple (Cannon et al. 1998). To make comparisons in
this case, the number of species, tree or otherwise,
accumulated should be plotted as a function of
accumulated individuals instead of samples
(Gotelli and Colwell 2001). When studies utilize
disparate data sources where sampling effort is
unequal (Kendal et al. 2014, Blood et al. 2016),
this introduces another layer of complexity, as the
numbers of species increase as sampling effort
increases. For most methods of species richness
comparison, it is assumed that individuals have a
random spatial distribution in the environment
(Kobayashi 1983), sample sizes are sufficiently
large, and populations are sampled in the same
manner (Abele and Walters 1979).
If sample plots have different shapes and sizes,

sampling bias may be introduced such that par-
ticular species are over- or under-sampled
(Boulinier et al. 1998). Because richness does not
in general increase linearly with abundance, sim-
ple adjustments, such as scaling the number of
species per individual sampled, distort patterns
in species richness (Gotelli and Colwell 2001). If
species exhibit non-random spatial patterns, such
as within-species clumping and segregation
among species, which may occur with planted
urban forests, estimates of species pools can be
overestimated in small samples, and knowledge
about spatial autocorrelation has not been found
useful in correcting bias (Collins and Simberloff
2009). While no method is completely robust to
these issues, alternative methods, such as rarefac-
tion, can mitigate problems associated with vio-
lations in assumptions.
Accordingly, rarefaction curves have allowed

researchers to compare samples of different sizes
through the calculation of expected richness at a
standardized size (Heck et al. 1975). Rarefaction
curves are statistical expectations of their corre-
sponding accumulation curves as the samples
are re-ordered (Gotelli and Colwell 2001). Blood
et al. (2016) and Nock et al. (2013), for example,
used sample-based rarefaction curves to compare
urban and peri-urban forest diversity by consid-
ering the number of accumulated samples. How-
ever, so-derived comparisons are in terms of
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species density, instead of species richness. For
these kinds of studies, which inevitably involve
larger areas, species density is a more applicable
measure than species richness (Gotelli and Col-
well 2010). But this measure too must be used in
conjunction with rarefaction in order to assess
the degree to which differences in species density
are attributable to patterns of individual abun-
dance or to the shape of species accumulation
curves (Gotelli and Colwell 2001).

Estimating species pools.—Species pool estima-
tors yield the total richness in a sampled popula-
tion, and while they have been used across the
spectrum of ecological literature, they have had
less presence in forestry applications (but see,
e.g., Blood et al. 2016, Cannon et al. 1998, Den-
slow 1995, Imai et al. 2012, Jenerette et al. 2016,
Nock et al. 2013). These studies explicitly recog-
nize that species accumulation models indicate
that not all species are seen in any sampled site,
and hence use species pool functions to better
estimate the number of unseen species (Colwell
and Coddington 1994). Numerous studies have
also sought to assess the performance of richness
estimators across differing sites and/or sampling
schemes (for a review, see Walther and Morand
1998), with the goal of finding methods to defen-
sibly compare across sites. For example, Chaz-
don et al. (1998) sought a richness estimator that
was insensitive to the size and order of the sam-
ple, and the unevenness in species distribution.
Since different sampling strategies are often used
to assess species richness across regions, Hortal
et al. (2006) reviewed the performance of 15 esti-
mators in terms of their insensitivity to sample
heterogeneity among studies. While specifically
studying the effect of grain size (sensu Whittaker
et al. 2001), Hortal et al. (2006) recommended
the use of several widely studied (Chiarucci et al.
2003) “classical” estimators: the Abundance-
based Coverage Estimator (Chao and Lee 1992),
the Abundance-based Chao Estimator (Chao
1984), Bootstrap (Smith and van Belle 1984), Jack-
knife1 (Burnham and Overton 1979), and Jack-
knife2 estimators (Smith and van Belle 1984).

Community composition comparisons
While species richness, measured or estimated,

is a univariate characteristic of the total species
pool at a site, the composition of such pools has
also been a topic of research interest, for example,

in quantifying the effect of forest composition
change after disturbances such as logging (Imai
et al. 2012) or wind (Holzmueller et al. 2012).
Accordingly, hypotheses may be formulated to
test for differences among groups of sites (e.g.,
urban vs. peri-urban). Often studies have used
graphical techniques to visualize similarities in
the structure of multiple communities (Sitzia et al.
2012, Imai et al. 2012, Avolio et al. 2015).
Community structure.—Species composition is a

multivariate characteristic of a population that
can be used to compare community structures.
However, traditional multivariate analysis meth-
ods, such as MANOVA, make stringent assump-
tions which are untenable for most ecological
datasets (McArdle and Anderson 2001). For
example, since urban forests and PF often con-
tain different species (Blood et al. 2016), the
assumption of multivariate normality cannot be
met. Thus, non-parametric methods are prefer-
able. For example, the Mantel test (Mantel 1967)
has been used to compare tree b-diversity across
a tropical forest (Chust et al. 2006), and to com-
pare species composition of forest remnants in
urban areas (Godefroid and Koedam 2003).
Analysis of similarities (ANOSIM; Clarke 1993)
has been used to compare urban forest composi-
tion in response to hurricane (Burley et al. 2008)
and recreational trail use (Ballantyne and Picker-
ing 2015). More recently, permutational analysis
of variance (PERMANOVA; Anderson 2001) has
been used to compare urban forests composition
across geographic and urbanization gradients
(Blood et al. 2016, Yang et al. 2017, respectively),
as well as to test for differences among neighbor-
hood species compositions within an urban
region (Avolio et al. 2018). All of these methods
rely on measures of the distance or dissimilarity
between pairs of observations or ranks and use
differences among groups (e.g., locations) to test
randomly selected permutations of the observa-
tions. ANOVA-like test statistics are constructed
from matrices of among-sample resemblances,
which may be distances, dissimilarities, or simi-
larities, and P-values are obtained with ran-
domly generated permutations of observations
among groups (Anderson and Walsh 2013).
For comparing datasets with different sampling

intensities, PERMANOVA has been documented
as being the most appropriate of these methods,
as it allows for the formulation of multifactorial
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hypothesis tests and formulation of several types
of distance metrics (Anderson 2001). One advan-
tage of PERMANOVA is that the method is unaf-
fected by correlation among variables (Anderson
2001, Anderson and Walsh 2013), which may
occur when species have a tendency to co-occur.
However, the method is somewhat sensitive to
differences in relative dispersion of points among
groups. In PERMANOVA, it is assumed that the
observations are exchangeable under the null
hypothesis, which implies that the observations
are independent and have “similar” distributions.
This has often been referred to as an assumption
of equal “multivariate spread” among groups,
which is a multivariate analog to the assumption
of homoscedasticity in univariate ANOVA.
Nonetheless, Anderson and Walsh’s (2013) simu-
lation study showed that PERMANOVA was
much less sensitive to heterogeneity in disper-
sions than ANOSIM and the Mantel test for bal-
anced designs.

Dissimilarity metrics.—Indices of community
(dis)similarity have been developed to estimate
the compositional variation among communities
from site to site (so-called b-diversity). Compar-
isons of such diversity across locations are useful
to make inferences about the mechanisms of
community assembly (Burkle et al. 2016) and are
particularly important given increasing interest
in biotic homogenization of urban ecosystems
(McKinney 2006, Yang et al. 2017). For example,
Pearse et al. (2018) investigated the similarity of
species compositions in residential yards and
natural areas, finding homogenization across
urban areas across seven major U.S. cities. Groff-
man et al. (2014) investigated the role of parcel-
scale activities in driving homogenization of
urban ecosystems across six metropolitan areas
in the United States, with important implications
for macroscale ecosystem services.

The choice of source data for dissimilarity met-
rics is an important initial question. While abun-
dance data can be informative for detecting
changes in species rankings and community
composition changes (Avolio et al. 2015), these
data have been found to be sensitive to differ-
ences in sample sizes (Barwell et al. 2015). In
order to minimize the effect of unequal sampling
effort, ecologists commonly employ metrics
based on presence/absence data (e.g., Jaccard’s or
Sørensen’s; Olden and Poff 2003, Pearse et al.

2018, respectively); however, it has been demon-
strated that these indices are strongly influenced
by a-diversity (Koleff et al. 2003). Therefore,
Chase et al. (2011) recommend measures that are
independent of a-diversity to answer questions
about differences in observed b-diversity given
unequal sampling effort. The Raup-Crick is such
a measure, allowing for comparisons between
communities with varied numbers of species and
sampling sizes (Chase et al. 2011). On the other
hand, other common similarity metrics such as
Jaccard’s could be skewed due to dissimilarities
in species richness (Raup and Crick 1979). The
interpretation of Raup-Crick depends on the
potential species pool, and thus, analyses need to
consider the implication of the inclusion of spe-
cies in terms of their impact on hypotheses tested
(Chase et al. 2011). The use of available yet dis-
parate national-level and local-level plot data,
using different measurement and sampling pro-
tocols, would therefore need to assume that spe-
cies are part of the same regional species pool.

CASE STUDY: THE INFLUENCE OF METHOD ON
HYPOTHESES IN URBAN ECOLOGY

Having outlined the available methods, we
now present a case study as an example of how
commonly utilized methods can be applied to dis-
parate data sources addressing urban–rural ecol-
ogy questions across different scales. Specifically,
we use available and disparate plot-level data
from across a region encompassing the southeast-
ern United States. In this case study, we use data
from both peri-urban USDA FIA and the South-
eastern Urban Tree Inventory and Canopy
(SUTIC) database. Such an approach using data
from different sampling methods—but within the
same general geographic study areas—allows for
the evaluation of quantitative methods while iso-
lating variability associated with geography and
climate. In our discussion, we then summarize a
framework for selecting the most appropriate and
available methodologies for analyses using these
and other similar datasets.

Data
Study sites.—Study locations from the SUTIC

database were part of a collaborative project
sponsored by several universities and the South-
ern Research Station of the USDA Forest Service
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and provided data collected from eight cities in
the southeastern United States between 2008
and 2014 (Fig. 1). Four cities were sampled
across the Central Appalachian Broadleaf Forest
ecological province, while two cities were sam-
pled in each of the Southeastern Mixed Forest
and Outer Coastal Plain Mixed Forest ecological
provinces (Bailey 1995). Trees were inventoried
using randomly sampled 0.0404-ha, circular,
permanent plots established within city limit
boundaries with the exception of east Orlando,
where plots were placed within a 200-km2 pre-

defined study area. (Further information about
the study sites can be found in Table 1 of Blood
et al. 2016.)
Urban forest data.—Urban tree data were

recorded using Nowak et al.’s (2008) protocol,
where each tree or palm with dbh >2.54 cm was
measured and its species name recorded within a
0.0404-ha (0.1 acre) circular plot. Other measure-
ments included height, land use, crown width,
crown light exposure, and tree location within
plot. If a tree had multiple stems below dbh, it
was counted as a single tree, and the largest

Fig. 1. Eight urban forest locations sampled in the southeastern United States. Red box designates the extent
of the bottom left map. Bottom left map shows detail of urban (UF) and peri-urban (PF) plots in Atlanta, Georgia.
Bottom right inset map shows the study region within the United States. WIN, Winchester, Virginia; CHA, Char-
lottesville, Virginia; ROA, Roanoke, Virginia; ABI, Abingdon, Virginia; FC, Falls Church, Virginia; ATL, Atlanta,
Georgia; GNV, Gainesville, Florida; EORL, East Orlando, Florida. Ecological province was defined by USDA For-
est Service ecozones (Bailey 1995).
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diameters (up to six) were recorded. For specific
measurement methods, refer to Nowak et al.
(2008). This field plot measurement and sam-
pling protocol is increasingly being used in cities
outside the United States as model input models
to estimate urban forest structure and ecosystem
services (Yang et al. 2017, Speak et al. 2018). In
the United States, this urban forest inventory and
monitoring approach is known as the i-Tree Eco
protocol within the i-Tree software suite, but is
now being incorporated as part of the Urban FIA
program (https://www.nrs.fs.fed.us/fia/urban/).
However, we refer to these data with the name i-
Tree Eco hereafter.

Peri-urban forest data.—Using our eight urban
tree study locations, we defined peri-urban areas
as those falling within a 25 km radius of urban
city centers where i-Tree Eco inventories were
conducted. USDA FIA plots located within these
areas were identified and extracted. These data
ranged from suburban and rural lands to natural
areas and plantations, but included only forest
land. Forest land in FIA is defined as having an
area of at least 0.4 ha with at least 10% canopy
cover of live tree species of any size, either at the
time of sampling or in the past, where the land is
not subject to non-forest use which would pre-
vent normal tree regeneration and succession
(e.g., regular mowing, or intensive grazing;
Woudenberg et al. 2011). Since FIA plot locations
are not reported as exact spatial coordinates to
comply with privacy issues, extracted locations
were between 0.8 and 1.6 km of the actual plot.
However, we assumed location error to have a
minimal impact on analyses. Since FIA plots are
measured on a cyclic basis, we obtained data
measured in the years 2010–2013 for Virginia
and 2009–2013 for Georgia and Florida to obtain

the maximum number of tree measurements
while excluding re-measured trees. In three
instances, data were also extracted from sur-
rounding states because the 25-km buffer
extended past state lines (Fig. 1).
The FIA plots consist of groups of four subplots

that cover an area of 0.0675 ha (0.167 ac), with a
microplot ~0.00135 ha (0.003 ac) in area located
within each subplot (total area = 0.0054 ha).
Woody plants with dbh >12.7 cm were recorded
within the entire 0.0675-ha area, but trees with
dbh between 2.54 and 12.7 cm were measured
only in microplots. Tree data collected included
condition, species, dbh, height, and location
within plot (for more information on FIA data col-
lection, see Woudenberg et al. 2011).
Differences in tree measurement protocols and

species epithets.—Several key differences exist
between i-Tree Eco and FIA measurement proto-
cols which can impact measures of diversity
(Table 1). With the i-Tree Eco protocol, multiple
stems that originate (or appear to originate) from
the same root stock and trees that split below
breast height are recorded as single individual
trees with multiple diameters. In contrast, under
the FIA protocol, these trees are not single indi-
viduals and are recorded as two (or more) trees.
That said, each FIA tree has distance and direc-
tion from plot center recorded, and stems from
trees that split between 0.3 and 1.37 m are
assigned identical distance and direction. Thus,
we are able to identify that these multiple stems
came from the same individual. However, trees
that split <0.3 m from ground level are assigned
the distance and direction corresponding to the
approximate location of tree pith, and thus, these
locations will not be identical for these multi-
stemmed individuals.

Table 1. Summary of key differences between urban (i-Tree Eco) and peri-urban (Forest Inventory and Analysis;
FIA) measurement protocols.

Attribute Peri-urban FIA Urban forest plot

Plot size 0.0675 ha (0.167 ac) 0.0404 ha (0.1 ac)
Plot shape Four circular One circular
Tree presence All plots have trees Plots can be devoid of trees
Species epithets USDA PLANTS database (https://plants.

usda.gov/java/)
i-Tree Eco species codes (https://www.itreetools.org/eco/
resources/UFORE_Species_List_Apr30_2012.xls)

Minimum dbh 12.7 cm in 0.0675 ha subplots; 2.54 cm in
4 9 0.00135 ha microplots

2.54 cm

Multiple stems <dbh Recorded as two (or more) trees Recorded as a single tree, up to 6 largest dbh measured
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Peri-urban FIA tree counts could be biased
upward in terms of double-counting multi-
stemmed individuals. However, the measures to
estimate richness outlined here utilize plot-level
presence/absence data. Moreover, errors due to
multiple stems only occur when splits occur
below 0.3 m, and thus, we assume this error to
be small. To test the veracity of this assumption,
species composition analyses via PERMANOVA
can be made using stem counts as well as basal
area as the dependent variable.

In addition to differences between i-Tree and
FIA protocols, there are differences in sampling
intensity by tree size within the FIA data itself.
Since trees in the 2.54–12.7 dbh range are only
sampled in ~0.0054 of the total 0.0675-ha plot, one
can avoid methodological complications by limit-
ing studies to trees >12.7 cm dbh. However, this
limits the scope of inference of any associated
hypotheses tested and reduces the sample size,
especially in comparisons with urban trees where
smaller trees are measured on the entirety of the
0.0404-ha plot. Following Blood et al. (2016), we
assumed that tree species were uniformly dis-
tributed across the 0.0675-ha FIA plot sample
area, but explicitly recognize the higher uncer-
tainty associated with smaller trees not accounted
for in this study. We used an expansion factor to
adjust tree counts within microplots for their
smaller sample exposure, and thus, each recorded
stem in a microplot is comparable to 0.0675/
0.0054 = 12.5 stems in the larger plot.

Tree taxa and species epithets can be a poten-
tial source of mismatch in identifying and coding
tree and shrub species when using disparate data
sources, such as the FIA and i-Tree Eco methods
(Table 1). Since i-Tree Eco species codes are com-
prised of the first two letters of the genus and
species as well as other regional user-created
codes, the same species code can appear in differ-
ent regions to represent multiple species. To our
knowledge, there is no i-Tree Eco check to assure
standardization, and there is no systematization
nor standardization in species code protocols.
Thus, a crosswalk must be created to recode spe-
cies to a consistent coding if measures of commu-
nity composition are to be compared. Moreover,
USDA FIA protocols utilize a set species list, and
unlisted species will not receive a species code.
While this was a rare (n = 3) occurrence in our
case study data, this could be a potential source

of error if new exotic species invade peri-urban
locations.

Statistical analyses
All analyses were computed in the R environ-

ment (version 3.4.1; R Core Team 2016), utilizing
the vegan community ecology package (Oksanen
et al. 2016). We first developed matrices of the
abundances of each species by plot, although
these matrices can indicate simple presence/
absence (0/1) with equivalent results for most of
the analyses described. While urban forest studies
regularly use data from plots with no trees
(Staudhammer et al. 2015), FIA plots are exclu-
sively installed on forested land as defined by the
USDA, and explicitly must include trees. Plots
without trees may or may not be appropriate to
include in comparative analyses of this type,
depending on the research question and associ-
ated data (Table 1). To assess this difference, we
first compare forested peri-urban and forested
urban, thus excluding plots in urban areas where
no trees were recorded. Second, we then compare
forested peri-urban areas to urban areas, includ-
ing plots with zero sampled trees in our species
abundance matrices. (R code and sample data are
available in Data S1.)
Species richness.—To visualize the increase in the

number of species encountered with increasing
sampling effort, we estimated species abundances
via species accumulation curves. We used the
function specaccum, which uses as its default
method the sample-based (i.e., plot-based) exact
method to estimate an expected species accumula-
tion curve via sample-based rarefaction (Chiarucci
et al. 2003). An unconditional standard deviation
is computed based on the extrapolated number of
species in the data (the sample c-diversity). Other
methods are available, such as the classic random
method, which uses random permutations of the
data (subsampling without replacement) to esti-
mate species accumulation curves and their associ-
ated uncertainties (Gotelli and Colwell 2001), and
the Coleman estimate (Coleman et al. 1982). How-
ever, these result in slightly more conservative
standard errors. The rarefaction method within
this function is not appropriate for these data, as it
finds expected richness assuming that individuals
were samples rather than sites and neither is the
so-called collector method, since it adds sites in
the order they are input (Oksanen et al. 2016).
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To account for the different plot sizes associated
with FIA and i-Tree data, we re-scaled the axis of
accumulation, multiplying by the plot size, before
plotting derived species accumulation curves. We
used the R function specpool to estimate the total
species pool as well as the total pool of genera.
This function implements several methods for a
collection of sites (plots), in contrast to the func-
tion estimateR, which is appropriate for samples

consisting of counts of individuals (i.e., for a sin-
gle site). The bootstrap estimator (Smith and van
Belle 1984) uses repeated resampling (with
replacement) from the data, estimating the num-
ber of species missed. Other estimates available
include two jackknife estimators and the inci-
dence-based Chao estimator. As recommended
by Hortal et al. (2006), we present results from
the Bootstrap and Jackknife1 estimators. The

Fig. 2. Species accumulation curves by location for urban (light green) and FIA (dark green) data: (A) exclud-
ing plots with zero tree counts (in urban areas only) and (B) including all plots, so that plots with no trees (which
occur only in urban areas) are included as zeroes in all species.
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Chao estimate is also provided for comparison
purposes. The Jackknife2 is not presented, as esti-
mates of its standard error are not available.

Species composition.—We utilized PERMA-
NOVA via the R function adonis to better under-
stand community similarities and dissimilarities.
To determine whether differences in community
structure were due to urbanization, geographic
area, or both, we included effects for ecological
province, forest type (urban vs. peri-urban), and
their interaction, utilizing 999 permutations
(following Anderson and Walsh 2013). Since

analyses were performed at a community level,
analyses are identical with and without the inclu-
sion of un-treed plots. To illuminate differences
which might be caused by different sampling
intensities by tree size, analyses were performed
with species counts as well as tree basal area.
Community differences were quantified using

the Raup-Crick metric and the R function raup-
crick (Oksanen et al. 2016). Using a matrix of com-
parisons between all pairs of associations, the
Raup-Crick index compares observed numbers of
species with the distribution of co-occurrences

(Fig. 2. Continued)
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generated from 999 Monte Carlo random repli-
cates (Chase et al. 2011). The function treats the
data as binary (presence/absence) regardless of
how the matrix is formulated. While there is a vari-
ant of the Raup-Crick index available in the R func-
tion vegdist, this is not appropriate for comparing
FIA and i-Tree Eco data, as it assumes equal sam-
pling probabilities for species. This results in the
use of exact equations, without simulations, which
would not take into account the unequal efforts in
sampling in the two types of data.

To further visualize the results, we created a
nonmetric multidimensional scaling (NMDS)
plot utilizing the Raup-Crick dissimilarity metric
to compare sites. Nonmetric multidimensional
scaling is an ordination technique that finds the
best rank-order agreement between actual simi-
larities and computed distances, representing a
coordinate system in the ordination space (Fas-
ham 1977). We utilized the R function metaMDS,
which projects the most variation along the first
axis (Oksanen et al. 2016). Points in the resulting
plots appear close together when the Raup-Crick
dissimilarity metrics indicate their community
compositions are similar (Avolio et al. 2015).

Application to evaluate species richness and the
ecological homogenization hypothesis.—Finally, using
these methods and the urban and peri-urban data,
we analyzed how different assumptions and
selected methods can influence results in answer-
ing common research questions in urban ecology.
First, we compare overall tree species richness
between urban (i-Tree Eco) and peri-urban (FIA)
forest types, and among communities. We utilize
species pool estimators and compare the accuracy
and precision of such estimators with and without
tree-less plots. We then examine the results in
terms of our ability to make definitive statements
for urban forest management in light of species
accumulation curves and pools. Last, we perform
a test of the ecological homogenization hypothesis,
using factors to indicate ecological province and
urban vs. peri-urban settings, and utilizing data
based on tree counts as well as basal area.

RESULTS

Species accumulation and richness
Within urban and PF (hereafter, forest type),

species accumulation curves showed identical
patterns when considering (1) only treed plots

(Fig. 2A) vs. (2) both treed and un-treed plots
(Fig. 2B). However, the axis of accumulation is
stretched when considering the latter, and thus,
comparisons of UF vs. PF are somewhat differ-
ent. Although the conclusion that more sampling
is necessary in order to encounter all species pre-
sent in an area is reached in most urban loca-
tions, the implied sample area is more realistic
when including these un-treed plots.
Regardless of forest type, estimated species

richness was much higher than measured when
considering the Chao and Jackknife estimators
(Table 2). While the Chao estimate of the species
pool (Fig. 3A) was on average ~50% higher than
observed, the Jackknife estimates (Fig. 3C) were
30% higher than observed for PF and 44% higher
than observed for UF. Bootstrap estimates were
more conservative, with 13% and 20% higher
estimated species than observed on average for
PF and UF, respectively (Fig. 3B). For UF, esti-
mated species richness was closest to observed
species richness in Atlanta, which was sampled
at a much higher rate than the other locations.
When considering the pool of genera, similar
patterns were observed, but with estimates
approximately 10% closer to observed estimates
(Table 2).
Estimates of species richness were slightly

higher when un-treed plots were included
(Table 2). While observed and estimated species
richness values were very close between the two
types of datasets when applying each of the
estimators, there were larger, detectable differ-
ences in the standard error of these bootstrap
estimates. Thus, a larger measure of uncertainty
is obtained when including plots without trees in
calculating the bootstrap estimator. Moreover,
differences tended to be larger when the total
number of plots and total number of species
detected were lower (e.g., Abingdon, Virginia,
USA). Nonetheless, when considered as a pro-
portion of the total estimated species, these dif-
ferences are very small (Table 2).
While the inclusion of plots with no trees

would not alter the conclusions associated with
comparisons of species richness among commu-
nities and/or forest types, the type of estimator
used is critical. When utilizing the Chao estima-
tor, for example, we found that confidence inter-
vals constructed from species richness estimates
and their standard errors indicate that there were
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significant differences between urban and PF
only in Winchester, Charlotte, and Roanoke, Vir-
ginia, USA. We also found, utilizing the Chao
estimator, that there were very few confidence
intervals that did not overlap, indicating differ-
ences among locations only for extreme cases,
such as urban forests in Abingdon with those in
Atlanta and Roanoke. Conversely, when using
the bootstrap and jackknife estimators, we found
that there were significant differences in all loca-
tions except Abingdon. Results were also similar
when examining differences among locations
within forest type. Likewise, when using the
Jackknife or Bootstrap estimator, many more
pairs of locations were found to have non-over-
lapping confidence intervals in terms of species
and genus richness.

Species composition and community similarity
Our PERMANOVA results utilizing basal area

and tree counts were very similar, with both
analyses indicating that species distributions

were different depending on ecological province
(P = 0.001) and forest type (UF vs. PF; P = 0.001;
Table 3). Neither analysis indicated that the for-
est type significantly interacted with ecological
province, indicating that the effect of forest type
was similar across province. On the other hand,
the partitioning of the variance among effects
was somewhat different when considering basal
area vs. tree counts, as indicated by a smaller for-
est type x province interaction effect (P = 0.098
vs. P = 0.059).
For PF, whether in a more natural state or

under industrial production, we would expect
that species composition across province would
differ, to optimize climatic and geographic condi-
tions. If the hypothesis of ecological homogeniza-
tion was supported, we would expect a different
outcome for urban forests; species composition
across urban communities would not be signifi-
cantly different by province. These two condi-
tions would manifest in a significant interaction
between forest type and province. However, we

Table 2. Measured and estimated species and genus pools by location and forest type.

Location and
forest type

No.
species

Chao Jackknife Bootstrap

With un-treed Only treed With un-treed Only treed With un-treed Only treed

WIN
UF 71 127.4 � 25.8 127 � 25.6 107.6 � 7.7 107.3 � 7.7 86.7 � 4.1 86.6 � 3.8
PF 34 45.8 � 12.7 40.8 � 2.9 37 � 1.7

CHA
UF 84 132.3 � 20 132.2 � 20 125.4 � 9.2 125.3 � 9.2 102.2 � 5.1 102.2 � 4.9
PF 41 47 � 6 47.9 � 2.9 44.4 � 1.8

ROA
UF 106 157.6 � 21.5 157.4 � 21.4 147.8 � 7.8 147.6 � 7.8 124.2 � 4.4 124.2 � 4.2
PF 44 58 � 10.9 55.7 � 3.9 49.3 � 2.2

ABI
UF 52 72.5 � 10.8 72.3 � 10.7 76.7 � 6.2 76.4 � 6.1 63.3 � 3.8 63.2 � 3.5
PF 57 75.4 � 12.9 71.7 � 4.1 63.6 � 2.5

FC
UF 56 85.2 � 14.4 85.1 � 14.4 84.2 � 7 84.1 � 7 68.6 � 3.8 68.6 � 3.6
PF 38 46.5 � 6.5 49.4 � 4.9 43.5 � 2.8

ATL
UF 98 124.4 � 12.7 124.4 � 12.7 127.9 � 5.6 127.9 � 5.6 111.7 � 3.3 111.7 � 3.2
PF 46 72.1 � 17.1 63.4 � 6.3 53.4 � 3.3

GNV
UF 62 81.2 � 10.1 81.1 � 10 86.6 � 7.1 86.5 � 7 73.4 � 4 73.3 � 3.9
PF 32 43.9 � 9.5 42.8 � 4.9 36.9 � 2.8

EORL
UF 69 119.7 � 25.1 119.5 � 25 100.7 � 7 100.6 � 7 82.5 � 3.7 82.5 � 3.6
PF 30 77.1 � 42.3 43.5 � 4.9 35.5 � 2.4

Notes: Since un-treed plots are not measured with FIA, PF estimates by definition only include treed plots. UF, urban forests;
PF, peri-urban forests; WIN, Winchester Virginia; CHA, Charlottesville, Virginia; ROA, Roanoke, Virginia; ABI, Abingdon,
Virginia; FC, Falls Church, Virginia; ATL, Atlanta, Georgia; GNV, Gainesville, Florida; EORL, East Orlando, Florida.
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see only very weak evidence in support of the
hypothesis (Table 3), at least in terms of tree
diversity using both tree counts and tree basal
area.
The matrix of the Raup-Crick dissimilarity

indices showed mostly high values for Winch-
ester’s urban forest, indicating that it was very
dissimilar to its, and all other regional, PF
(Table 4). Only the UF of other Virginia cities
was similar to Winchester’s UF. In contrast, the
other Virginia UFs had somewhat different pat-
terns of similarity. The Charlottesville UF was
only dissimilar to the Abingdon PF. While the
Roanoke and Abingdon UFs were similar to all
UFs and PFs in Virginia, the Falls Church UF
was only dissimilar to the Virginia PFs. Atlanta’s
UF was very similar to its PF, and also that of
Falls Church, while it had fairly high dissimilar-
ity with all other forests. Regionally, Gainesville’s
UF was only similar to Atlanta’s PF and the other
Florida locations in both UF and PF, while East
Orlando’s UF was only similar to its PF and Gai-
nesville’s forests. These results are further corrob-
orated with the corresponding NDMS plot
(Fig. 4).
Under the hypothesis of ecological homoge-

nization, we would expect that urban forest loca-
tions would be closer to each other than to those
of PF in Fig. 4. But, for most of the sites sampled,
urban forests and their peri-urban counterparts
are fairly close, indicating low values of dissimi-
larity, and therefore indicating a lack of urban
homogenization. However, Winchester and Falls
Church, Virginia, indicate different species com-
position patterns from those of their regional
peri-urban counterparts. This gives partial, weak
support to the hypothesis of ecological homoge-
nization in terms of trees based on presence/ab-
sence data in these locations.

DISCUSSION

Studies across the globe are beginning to
use available, but disparate datasets to better

Fig. 3. Observed and estimated peri-urban (PF; FIA)
and urban (UF; i-Tree Eco) forest species richness by
location including plots with zero tree counts (in urban
areas only), utilizing (A) Chao estimator, (B) Bootstrap
estimator, and (C) Jackknife estimator. WIN, Winch-
ester, Virginia; CHA, Charlottesville, Virginia; ROA,

Roanoke, Virginia; ABI, Abingdon, Virginia; FC, Falls
Church, Virginia; ATL, Atlanta, Georgia; GNV, Gaines-
ville, Florida; EORL, East Orlando, Florida.

(Fig. 3. Continued)
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understand urban ecosystem dynamics and to
make analyses and inferences regarding regional-
to continental-scale woody vegetation diversity,
composition, and ecosystem functionality (Kendal
et al. 2014, 2018, Blood et al. 2016). Yet as shown
above, the assumptions and statistical methods
used with these data can influence results and can
have implications for the certainty with which
results are communicated regarding urban-rural
ecosystem diversity and homogeneity.

Species diversity measures, for example, can be
used to better understand complex community
structure and to develop practices to make forests
resilient to disease, pests, and climate change. For

instance, such tenants as the 10-20-30 rule (Santa-
mour 1990) are subject to misinterpretation when
based on data collected using different sampling
intensities (Kendal et al. 2014). To evaluate this
commonly applied guideline, urban forests need
to be assessed to test if they contain no more than
10% of any tree species, 20% of any genus, and
30% of any family. Thus, evaluating the effective-
ness of this rule requires certainty when estimat-
ing the proportion of individuals in each species,
each genus, and each family. However, as the
number of samples in the forest sampling proto-
col increases, the number of genera will always
reach an asymptote sooner than that of the

Table 3. Permutational ANOVA (PERMANOVA) partitioning of the sums of squares using species by
community.

Response Source DF SS MS Pseudo-F P-value

Tree counts Forest Type 1 0.907 0.907 4.168 0.001
Province 2 1.594 0.797 3.661 0.001

Forest type 9 Province 2 0.693 0.347 1.593 0.059
Residuals 10 2.177 0.218
Forest Type 1 0.679 0.679 6.979 0.001

Basal area Province 2 1.386 0.693 7.125 0.001
Forest type 9 Province 2 0.319 0.160 1.642 0.098

Residuals 10 0.972 0.097

Notes: DF, degrees of freedom; SS, sums of squares; MS, mean squares. P-value is computed with pseudo (approximate)-F-
value.

Table 4. Raup-Crick dissimilarity values between all pairs of locations and forest types.

Loc Type

WIN CHA ROA ABI FC ATL GNV
EORL

UF PF UF PF UF PF UF PF UF PF UF PF UF PF UF

WIN UF
PF 0.590

CHA UF 0.089 0.009
PF 0.773 0.001 0.010

ROA UF 0.052 0.001 0.011 0.002
PF 0.984 0.001 0.032 0.001 0.001

ABI UF 0.042 0.005 0.001 0.001 0.001 0.003
PF 0.996 0.001 0.372 0.001 0.009 0.001 0.071

FC UF 0.002 0.114 0.080 0.512 0.090 0.685 0.055 0.751
PF 0.798 0.001 0.007 0.001 0.001 0.001 0.011 0.001 0.229

ATL UF 0.988 0.201 0.891 0.024 0.838 0.197 0.931 0.413 0.937 0.061
PF 0.998 0.001 0.391 0.001 0.075 0.001 0.568 0.001 0.895 0.001 0.004

GNV UF 1.000 0.651 1.000 0.804 1.000 0.968 0.993 0.923 0.851 0.668 0.410 0.066
PF 0.996 0.328 1.000 0.257 0.988 0.529 0.989 0.558 0.971 0.165 0.602 0.001 0.001

EORL UF 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.970 0.017 0.002
PF 0.999 0.461 0.999 0.500 0.995 0.882 0.987 0.769 0.859 0.606 0.864 0.040 0.001 0.001 0.003

Notes: Italicized values indicate the dissimilarity between urban and peri-urban forests in the same location. UF, urban for-
ests; PF, peri-urban forests; WIN, Winchester Virginia; CHA, Charlottesville, Virginia; ROA, Roanoke, Virginia; ABI, Abingdon,
Virginia; FC, Falls Church, Virginia; ATL, Atlanta, Georgia; GNV, Gainesville, Florida; EORL, East Orlando, Florida.
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number of species, except when samples contain
100% monobasic taxa (Gotelli and Colwell 2001).
Moreover, our results indicate that sampling
intensities in studies of urban and PF were rather
inadequate in estimating the number of species
and genera present. Unless one can assume that
unobserved species occur in very low numbers—
which may be reasonable in some locales—the
evaluation of this rule is problematic, as numbers
of species as well as individuals will have addi-
tional uncertainty. Estimates of the numbers of
species are often reported without considering
unseen species and are therefore underestimates.
For example, Pearse et al. (2018) collected data
from 21 to 30 urban household yards and 3 to 6
natural area sites in their study of ecological
homogenization across seven metropolitan areas.
While using identical sampling protocols can
help mitigate issues associated with inadequate
sampling intensity, rarefaction should be used to
estimate uncertainty associated with measured
richness.

The specific research questions being posed in
urban ecology studies should drive the selection

of methods and data collected. For example, our
results indicate that the inclusion of plots with no
trees, while having little impact on species pool
estimates, can greatly affect the shape of the spe-
cies accumulation curve, leading researchers to
make different conclusions about the adequacy of
sampling methods. The choice of pool estimator is
also important, and using the recommended boot-
strap method with these kinds of sample types
results in more conservative estimates of species
richness, except where sampling intensity was
high (e.g., Atlanta; Blood et al. 2016). We found,
as expected, that estimates of species pools were
most variable where the total number of samples
and species detected were low.
While a variety of species composition estima-

tors have been used in the urban ecology litera-
ture (e.g., ANOSIM and the Mantel test;
Oksanen et al. 2016), simulation studies recom-
mend the use of PERMANOVA to account for
heterogeneity that may be exacerbated by differ-
ences among sampling intensities (Anderson and
Walsh 2013). We demonstrate that this method
can indeed be used with species counts or basal
area depending on the research hypothesis.
Assuming a strict cutoff of significance
(P = 0.05), our results support the assumption
that this type of analysis is robust to the sam-
pling method for these two data sources, with
smaller trees sampled at different rates in PF vs.
UF. Taking a more nuanced view, this interpreta-
tion could, however, demonstrate the influence
of smaller trees or shrubs; when considering
comparisons using basal area as a proxy for tree
size, differences in the interactive effect of forest
type and province were weaker. That is, with lar-
ger trees having more weight in the analyses, the
PF vs. UF tree diversity differences were more
consistent by ecological province, as evidenced
by the larger P-value of the interaction. We note
that the i-Tree Eco protocol does not differentiate
between small-dbh trees and shrub growth
forms; thus, mature urban hedges and forest
shrub patches are counted as trees (Nowak et al.
2008). Sampling details such as these may influ-
ence results, depending on the prevalence of
such observations (Staudhammer et al. 2015).
Previous urban ecology studies that test the

hypothesis of ecological homogenization have
used Jaccard’s index (McKinney 2006), Sørensen’s
index (Pearse et al. 2018), Bray-Curtis similarity

Fig. 4. Nonmetric multidimensional scaling plot by
location and forest type, utilizing the Raup-Crick dis-
similarity distances. NMDS1 and NMDS2 refer to the
first and second axes, respectively. UF, urban forests;
PF, peri-urban forests; WIN, Winchester, Virginia;
CHA, Charlottesville, Virginia; ROA, Roanoke, Vir-
ginia; ABI, Abingdon, Virginia; FC, Falls Church, Vir-
ginia; ATL, Atlanta, Georgia; GNV, Gainesville, Florida;
EORL, East Orlando, Florida. Symbol shapes denote
ecological province: CABF, Central Appalachian Broad-
leaf Forest–Coniferous Forest–Meadow; SMF, South-
eastern Mixed Forest; OCP, Outer Coastal Plain.

 ❖ www.esajournals.org 16 October 2018 ❖ Volume 9(10) ❖ Article e02450

STAUDHAMMER ET AL.



(Yang et al. 2017, Avolio et al. 2018), and a vari-
ety of qualitative methods, as well as specifically
designed protocols which have included data on
herbaceous vegetation and soils (Groffman et al.
2014). Our study, which further incorporated
disparate data sources, demonstrates that the
Raup-Crick dissimilarity indices, based on
presence/absence data, are robust to sampling
differences. Thus, the use of such indices is key
in future studies in that they give insight into
compositional similarities among communities
that are sampled at different intensities.

Our results suggest that UFs and PFs were very
similar within a particular region in the United
States. This gives evidence against the hypothesis
of ecological homogenization in urban ecosys-
tems, at least in terms of tree diversity (Blood
et al. 2016). This disagrees, in part, with findings
from Pearse et al. (2018) and Groffman et al.
(2014). While these studies found evidence of
homogenization across urban areas in the United
States, their studies included a wider array of
plant and taxonomic groups, rather than just
being focused on trees. In terms of the numbers of
tree species present, our research agrees with that
of Kendal et al. (2018), who found that native and
urban tree population realized climatic niches that
had substantial overlap; in most cities we ana-
lyzed, we found similar species lists, though
urban areas almost always contained more spe-
cies. The few exceptions occurred in Falls Church
and Winchester, Virginia, the northernmost cities

in our database. While further research is needed,
we hypothesize that a more nuanced study
including land use and the frequency of land-use
change (following Yang et al. 2017) in local-scale
urban-to-rural gradients and areas might shed
light on this result.
Given current knowledge of the available

methods for situations when there are differing
sampling intensities and non-homogeneous spe-
cies distributions, and the results of our case
study, we recommend specific analytical meth-
ods for quantifying diversity using disparate
data sources in urban–rural forested contexts
and across different scales (Table 5). While not
exhaustive of all possible situations, the process
outlined can be more generally applied to other
cases where data with differing sampling intensi-
ties and non-homogeneous tree/shrub species
distributions are utilized, as a defensible method
for making comparisons of species diversity.

CONCLUSION

This study provides one of the first assessments
of statistical methods that are being used in an
increasing number of studies of woody plant
diversity, homogenization, and functionality. We,
however, do note some limitations. First, our anal-
yses were limited to data collected with two stan-
dardized methods. We also explicitly recognize
that some aspects of the protocol differences are
worthy of further study. For example, unequal

Table 5. Process for selecting methods for comparing species richness and community composition for cases uti-
lizing forest plot-based sampling from two disparate sources with differing sampling intensities and non-
homogeneous species distributions.

Measurement and method Recommendations

Species richness
Species accumulation curves If curves clearly show an asymptote has been reached, then raw richness can be compared

If curves show an asymptote has not been reached, then rarefaction curves (Heck et al. 1975)
utilizing species density should be used to make comparisons

Species pool estimators If samples are homogenous among sites, many estimators are unbiased (see Hortal et al.
2006)
If samples are heterogenous among sites, three estimators are recommended: incidence-
based Chao (Chao and Lee 1992), Bootstrap (Smith and van Belle 1984), and Jackknife1
(Burnham and Overton 1979)

Community composition
Community structure If species have equal multivariate spread among groups, use Analysis of Similarities (Clarke

1993) or Mantel test (Mantel 1967). If species have heterogenous dispersion, use
PERMANOVA (Anderson 2001)

Dissimilarity metrics If a-diversity is similar, use Jaccard’s or Sørensen’s index (Koleff et al. 2003). If a-diversity is
dissimilar, use the Raup-Crick measure (1979)
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sampling intensity of smaller trees in the FIA pro-
tocol requires development of a differential mea-
sure of uncertainty in richness and composition
estimates. Second, an area of interest to research-
ers that we did not review is the vast number of
indices used to characterize species evenness and
beta diversity. Also we do not attempt to address
the controversies that exist regarding the appro-
priate and inappropriate use of diversity indices.
(See Smith and Wilson 1996 and Anderson et al.
2011 for thorough reviews of these topics.)

However, our analyses do examine methods
that are appropriate to make valid comparisons
of peri-urban forest data available from national-
level databases (e.g., FIA), and local-level urban
forest data (e.g., i-Tree Eco) collected in the
southeastern United States. In our case study, we
demonstrated differences in community struc-
ture and species richness between PFs and UFs,
noting that sampling intensities in urban areas
were usually inadequate. As local-level, plot-
based data become increasingly available in
North America, Europe, Australia, China, and
Latin America, there will be increased opportu-
nity for studies that compare urban and peri-
urban ecosystems across biomes as well as across
the globe. Thus, appropriate and robust methods
for making comparisons are necessary and
important in making meaningful conclusions
about the differences and similarities of these
two different forest types. This becomes increas-
ingly important as urban areas are used as a
proxy for future conditions under climate
change, and often are the epicenters of invasive
species establishment and other socio-ecological
disturbances.

These methods will help in establishing a
framework to enable researchers and managers
to evaluate the possible impacts of these anthro-
pogenic changes on forests. In the United States,
future public access to urban FIA data will begin
to address some of these issues. However, the
development of, and participation in, interna-
tional research networks that make available
such data can also begin to address some of these
issues of limited access. Given the ecological
challenges presented in the Anthropocene,
robust methods and available datasets are key in
understanding the functionality, nativity, and
diversity of urban and peri-urban woody vegeta-
tion across all biomes of the world.
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