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in 50-80% of cases, strongly suggesting a genetic origin for the disease. Different types of autosomal and
X-linked genetic anomalies can originate the phenotype in syndromic and non-syndromic POF cases. Par-
ticular interest has been focused on research into non-syndromic POF causative coding variants during
the past two decades. This has been based on the assumption that amino acid substitutions might modify
P ) . the intrinsic physicochemical properties of functional proteins, thereby inducing pathological pheno-
remature ovarian failure . . . . .. . .

Genetic aetiology types. In this case, a restricted number of mutations might originate the disease. However, like other complex
Next generation sequencing pathologies, POF might result from synergistic/compensatory effects caused by several low-to-mildly drastic
Female infertility mutations which have frequently been classified as non-functional SNPs. Indeed, reproductive pheno-
types can be considered as quantitative traits resulting from the subtle interaction of many genes. Although
numerous sequencing projects have involved candidate genes, only a few coding mutations explaining
a low percentage of cases have been described. Such apparent failure to identify aetiological coding se-
quence variations might have been due to the inherent molecular complexity of mammalian reproduction
and to the difficulty of simultaneously analysing large genomic regions by Sanger sequencing.

The purpose of this review is to present the molecular and cellular effects caused by non-synonymous
mutations which have been formally associated, by functional tests, with the aetiology of hypergonadotropic
non-syndromic POF. Considerations have also been included regarding the polygenic nature of repro-
duction and POF, as well as future approaches for identifying novel aetiological genes based on next
generation sequencing (NGS).

© 2015 The Author. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords:

Contents
1. Introduction 244
Genes encoding gonadotropin receptors: follicle stimulating hormone receptor (FSHR) and luteinising hormone/choriogonadotropin receptor (LHCGR) . 244
21. FSHR 245
2.2. LHCGR 245
3. TF-encoding genes 247
3.1.  NR5AI 247
3.2.  NOBOX 248
3.3. FIGLA 248
34. FOXL2 249
4.  Other POF causative genes 250
41. BMPI15 (GDF9B) 250
4.2.  NANOS3 and STAG3 250

* Unidad de Genética, Grupo GENIUROS, Escuela de Medicina y Ciencias de la Salud. Universidad del Rosario. Bogotd, Colombia., Address: Carrera 24 N° 63C-69, Bogota,
Colombia. Tel.: +57 1 3474570; fax: +57 1 3474570.
E-mail address: paul.laissue@urosario.edu.co.

http://dx.doi.org/10.1016/j.mce.2015.05.005
0303-7207/© 2015 The Author. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).


mailto:paul.laissue@urosario.edu.co
http://dx.doi.org/10.1016/j.mce.2015.05.005
http://www.sciencedirect.com/science/journal/03037207
http://www.elsevier.com/locate/MCE
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mce.2015.05.005&domain=pdf

244 P. Laissue/Molecular and Cellular Endocrinology 411 (2015) 243-257

Acknowledgements

5.  The polygenic nature of reproduction and POF 251
6. NGS approaches and future directions 252
253
253

References

1. Introduction

Human infertility can be considered a public health concern since
it affects ~15% of couples worldwide. Up to 30% of cases are caused
by exclusive female factors, such as endometriosis, tubal disease and
ovulation dysfunction (Smith et al., 2003). At least 14% of women
show signs of hypofertility related to a decrease in ovarian reserve
which, in some cases, evolves to early menopause (Santoro, 2011).
Premature ovarian failure (POF) affects 1-1.5% of women under 40
years old and ~0.1% under the age of 30 (Conway, 2000; Coulam et al.,
1986; Luborsky et al., 2003). In most cases, POF can be considered
as the final stage of primary ovarian insufficiency (POI), a hetero-
geneous disease involving ovarian function impairment and irregular
ovulation (Cox and Liu, 2014; Nelson, 2009). Although POI has been
proposed recently as conditions describing ovarian dysfunction
leading to infertility, the more classic term POF will be used in the
present review. From a clinical point of view, POF has been defined
as 4-6 months of amenorrhoea before the age of 40 related to high
follicle stimulating hormone (FSH) plasma levels (>40UI/l) (Coulam,
1982). Hypergonadotropic hypogonadism in such patients results
from an ovarian inability to close (via hormone signalling) a neg-
ative feedback loop on the synthesis of pituitary-secreted
gonadotropins. POF women suffer primary (PA) or secondary amen-
orrhoea (SA), depending on the occurrence (SA) or not (PA) of
menarche (Timmreck and Reindollar, 2003). In both cases, ovarian
dysfunction can be found as an isolated phenotype (non-syndromic)
or accompanying concomitant medical conditions (e.g. Turner’s, BPES
X syndromes). Distinct mechanisms (which might be deregulated
at multistep levels) have been proposed for explaining the POF phe-
notype. This pathology might result from the development of a few
follicles during embryogenesis, as well as from their abnormal re-
cruitment. Enhanced follicular atresia could also lead to an early
depletion of follicular stock (Goswami and Conway, 2005; Persani
et al., 2011).

Aetiologically, POF has been linked to iatrogenic events (espe-
cially pelvic surgery and anti-cancer treatment), autoimmune
conditions, infectious agents (viral oophoritis), metabolic disorders
(galactosaemia) and environmental factors (Dragojevic-Dikic et al.,
2010; Goswami and Conway, 2005; Laissue et al., 2008; Persani et al.,
2010). Unfortunately, despite advances in diagnosing and treating
human infertility, POF is still classified as being idiopathic in 50-80%
of cases, strongly suggesting a genetic origin for the disease. Differ-
ing types of autosomal and X-linked genetic anomalies, such as large
chromosomal rearrangements and sequence point mutations, can orig-
inate the phenotype in syndromic and non-syndromic POF cases.
Ovarian failure in Turner’s syndrome (XO monosomy) might be caused
by the haploinsufficiency of genes located on critical X chromosome
regions which escape inactivation (Elsheikh et al., 2002; Zinn and Ross,
1998). X chromosome deletions and translocations have led to POF
loci (POF-1, POF-2 and POF-3) being identified which might contain
critical candidate genes (Davison et al., 2000; Lacombe et al., 2006;
Marozzi et al., 2000; Powell et al., 1994; Tharapel et al., 1993). FMR1
premutations displaying an intermediate number (between 55 and
200) of CGG repeats located on the 5’'UTR region of the gene as well
as FMR2 microdeletions have been linked to an increased predispo-
sition to POF (Allingham-Hawkins et al., 1999; Murray et al., 1998,
1999; Sherman, 2000). Sequence point mutations of a transcription
factor (FOXL2) originate the ovarian phenotype in the BPES syn-
drome (Beysen et al., 2009; Crisponi et al., 2001).

Particular interest has been focused on research into non-
syndromic POF causative coding variants during the past two
decades. This has been based on the assumption that amino acid
substitutions might modify the intrinsic physicochemical proper-
ties of functional proteins, thereby inducing pathological phenotypes.
In this case, a restricted number of mutations might originate the
disease. However, like other complex pathologies, POF might result
from synergistic/compensatory effects caused by several low-to-
mildly drastic mutations which have frequently been classified as
non-functional SNPs (Gibson, 2012; Kryukov et al., 2007). Indeed,
reproductive phenotypes can be considered quantitative traits re-
sulting from the subtle interaction of many genes (L'Hote et al.,
2010).

Although numerous sequencing projects have involved candi-
date genes, only a few coding mutations explaining a low percentage
of cases have been described. Mutations in FSHR, LHCGR, NR5A1,
NOBOX, FOXL2, FIGLA, BMP15, NANOS3 and STAG3 have been for-
mally validated as being causative of non-syndromic POF (Aittomaki
etal,, 1995; Beau et al., 1998; Caburet et al., 2014; Di Pasquale et al.,
2004; Doherty et al., 2002; Laissue et al., 2008; Latronico et al., 1996;
Lourenco et al.,, 2009; Qin et al., 2007; Rannikko et al., 2002; Rossetti
et al.,, 2009; Santos et al., 2014; Touraine et al., 1999; Wu et al., 2013;
Zhao et al., 2008). Such apparent failure to identify aetiological coding
sequence variations might have been due to the inherent molecu-
lar complexity of mammalian reproduction and to the difficulty of
simultaneously analysing large genomic regions by Sanger
sequencing.

The purpose of this review is to present the molecular and cel-
lular effects caused by non-synonymous mutations which have been
formally associated by functional tests with the aetiology of
hypergonadotropic non-syndromic POF. To present this data, the rel-
evant POF genes have been classified into three distinct groups: genes
encoding gonadotropins receptors, transcription factor (TF) genes
and other types of gene. Considerations have also been included re-
garding the polygenic nature of reproduction and POF, as well as
future approaches for identifying novel aetiological genes based on
next generation sequencing (NGS).

2. Genes encoding gonadotropin receptors: follicle
stimulating hormone receptor (FSHR) and luteinising
hormone/choriogonadotropin receptor (LHCGR)

Subtle regulation of the hypothalamic-pituitary-gonadal (HHG)
axis is crucial in humans for proper sexual development and gonad
function. Gonadotropin-releasing hormone (GnRH) neurons migrate
across the cribiform plate into the hypothalamus during embryo de-
velopment to contact the hypophyseal-portal vascular system (Tobet
and Schwarting, 2006). These cells secrete the GnRH peptide (in a
pulsatile fashion) which in turn stimulates the pituitary synthesis
and secretion of the follicle stimulating (FSH) and luteinising (LH)
hormones. FSH and LH bind to specific gonadal transmembrane re-
ceptors named FSHR and LHCGR, respectively to regulate particular
reproductive functions. The negative feedback loop in the pitu-
itary synthesis of gonadotropins is closed by the secretion of steroid
and non-steroid substances (e.g. oestradiol, progesterone, inhibins
A and B, gonadotrophin surge-attenuating factor-GnSAF) (Messinis,
2006; Messinis et al., 2014; Plant, 2008). FSHR participates in regu-
lating ovarian physiology in females by stimulating oestrogen
synthesis and follicle development while LHCGR-related effects
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include ovulation and ovarian steroidogenesis (Ascoli et al., 2002;
Dias et al., 2002).

Human LHCGR and FSHR genes are located on the short arm of
chromosome 2. Several transcript sizes and alternatively spliced vari-
ants have been reported in distinct species for both LHCGR and FSHR
mRNAs (Menon and Menon, 2012 and references therein). It has been
shown that during antral follicle development, there is increasing
FSHR expression in the ovaries. Concurrently, theca-interstitial cells
have low LHCGR expression levels which progressively increase, sec-
ondary to distinct paracrine factors stimuli (e.g. estradiol and FSH).
LHCGR expression is transitorily downregulated by the LH preovu-
latory surge but becomes completely recovered during the luteal
phase (LaPolt et al., 1990; Peegel et al., 1994). Both LHCGR and FSHR
genes encode G-protein-coupled transmembrane factors, specifi-
cally those belonging to G protein-coupled receptor rhodopsin/32
adrenergic receptor-like family A. Structurally, they have an extra-
cellular domain, a short intracellular domain and seven signal
transduction-related transmembrane o-helix domains (Figs. 1 and
2) (Ascoli and Segaloff, 1989; Ascoli et al., 2002; Dias et al., 2002;
Fredriksson et al., 2003; Puett et al., 2007; Vassart et al., 2004).
Crystallisation assays have shown that FSH binds to the FSHR concave
region and that the FSH-FSHR ectodomain complex can become
dimerised in solution (Fan and Hendrickson, 2005, 2008). LHCGR
structural features (studied by in silico modelling of its ectodomain)
have shown that it is similar to that described for FSHR (Menon and
Menon, 2012; Puett et al., 2007).

2.1. FSHR

FSHR was the first gene for which open reading frame (ORF) mu-
tations were seen to be related to POF aetiology (Aittomaki et al.,
1995). As for other candidate POF genes, the initial mapping of the
chromosomal region encompassing FSHR was assessed by genetic
linkage analysis in affected families. Linkage analysis locates disease-
causing loci by identifying genetic markers which are co-inherited
and linking them to a phenotype of interest. This technique (which
has enabled mapping genetic diseases since 1982) has been based
on the observation that genomic regions (and consequently genes)
residing physically close in a chromosome remain linked during
meiosis (Bird et al., 1982). The logarithm of the odds (LOD) score
statistical method has been widely used for assessing whether
genetic marker data in families are linked to a particular pheno-
type (Dawn Teare and Barrett, 2005; Morton, 1955). LOD scores over
3 (meaning a statistically significant 0.001 p value) have classical-
ly been considered to be positive evidence of linkage (Chotai, 1984).

The genetic linkage analysis described by Aittomadki et al. (1995)
involved 6 POF families from a geographically-isolated Finnish sub-
population which had previously led to the description of a
hypergonadotropic ovarian dysgenesis locus (named ODG1)
(Aittomadki, 1994; Aittomadki et al., 1995). More precisely, using
microsatellite markers across the genome led to locating the ODG1
locus on chromosome 2p21, a region encompassing the FSHR and
LHCGR candidate genes (Aittomadki et al., 1995). Sequencing anal-
ysis identified homozygous c.566C>T (p.Ala189Val) transition in the
FSHR gene in ~30% of these patients. Functional assays showed that
this mutation (located in the protein’s extracellular ligand-binding
domain) reduced receptor binding ability and impaired cAMP syn-
thesis, secondary to recombinant FSH stimulation (Aittomaki et al.,
1995). It should be stressed that the high incidence of the
p.Ala189Val mutation in the Finnish population might be attrib-
utable to a founder effect as FSHR mutations are rare in other ethnic
populations (Da Fonte Kohek et al., 1998; De la Chesnaye et al., 2001;
Jiang et al., 1998; Layman et al., 1998; Liu et al., 1998; Sundblad
et al., 2004; Whitney et al., 1995). Eight additional FSHR muta-
tions leading to POF (present at homozygous or compound
heterozygous state), for which in vitro functional tests have been
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Fig. 1. FSHR mutations causative of non-syndromic POF.

performed, have been described to date (Fig. 1 and Table 1) (Allen
et al., 2003; Beau et al., 1998; Doherty et al., 2002; Kuechler et al.,
2010; Meduri et al., 2003; Touraine et al., 1999). Further muta-
tions lacking functional tests potentially related to POF have been
described as well as sequence variants associated with male infer-
tility (Desai et al., 2013; Siegel et al., 2013). It is worth noting that
most women carrying pathogenic FSHR mutations display a severe
ovarian phenotype characterised by primary amenorrhoea, high go-
nadotropin plasma levels and low (or undetectable) estradiol levels.
This phenotype is similar to that observed in female Fshr7- knock-
out (KO) mice which were affected by lack of puberty, high
gonadotropin levels, low oestrogen and progesterone plasma levels,
incomplete follicular development and sterility (Abel et al., 2000;
Dierich et al., 1998).

2.2. LHCGR

Concerning LHCGR and POF aetiology, the first causative muta-
tion was described by Latronico et al. (1996). The LHCGR-¢c.1660T>C
(p.Arg554Ter) homozygous mutation was detected in a single Bra-
zilian family which was affected by reproductive phenotypes (three
pseudohermaphrodite 46,XY siblings having Leydig-cell hypopla-
sia and a 46,XX sister having amenorrhoea). This mutation was
located in the third cytosolic loop of the protein and was pre-
dicted to truncate a significant functional region of the protein (Fig. 2
and Table 1). Although this mutation has not been tested by a func-
tional assay, its presence in males and females belonging to a family
affected by specific reproductive signs, as well as inherent genetic
and biochemical characteristics (a homozygous nonsense muta-
tion), strongly suggested a deleterious effect (Latronico et al., 1996).
Complete ovarian resistance was reported thereafter in a 46XX
woman carrying the homozygous LHCGR c.1777G>C (p. Ala593Pro)
variant. A functional test for this mutation revealed mutant recep-
tor impairment for stimulating adenylyl cyclase in response to hCG
(Toledo et al., 1996).

Other female patients have been described from families in which
46XY individuals have displayed sex development dysfunction. A
46XX woman carrying the LHCGR c.1822_1827del mutation
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Table 1
Mutations causative of non-syndromic POF.

Mutations causative of non-syndromic POF

DNA Protein Protein domain Reference
FSHR c.479C>T p.lle160Thr Extracellular Beau et al., 1998
¢c.566C>T p.Ala189Vval Extracellular Aittomadki et al., 1995
c.671A>T p.Asp224Val Extracellular Touraine et al., 1999
c.1043C>G p.Pro348Arg Extracellular Allen et al., 2003
c.1255G>A p-Ala419Thr Transmembrane helix 2 Doherty et al., 2002
c.1555C>A p.Pro519Thr Extracellular loop 2 Meduri et al., 2003
c1717CT p.Arg573Cys Intracellular loop 3 Beau et al., 1998
c.1760C>A p.Pro587His Transmembrane helix 6 Kuechler et al., 2010
c.1801C>G p-.Leu601Val Extracellular loop 3 Touraine et al., 1999
LHCGR ¢.1660T>C p.Arg554Ter Intracellular loop 3 Latronico et al., 1996
c1777G>C p.Ala593Pro Transmembrane helix 6 Toledo et al., 1996
c.1822_1827del p.Leu608_Val609del Transmembrane helix 7 Latronico et al., 1998
c.1060A>G p.Glu354Lys Extracellular Stavrou et al., 1998
NR5A1 ¢.390delG p.Pro131fs Ligand-binding domain Lourenco et al., 2009
c.666delC p.Asn222fs Ligand-binding domain Lourengo et al., 2009
c.386C>T p.Pro129Leu Hinge region Lourencgo et al., 2009
¢.691_699del p.Leu231_Leu233del Hinge region Lourencgo et al., 2009
c.877G>A p.Asp293Asn Ligand-binding domain Lourenco et al., 2009
c13T>G p.-Tyr5Asp N-terminal region Jiaoetal, 2013
c.704C>T p.Pro235Leu Ligand-binding domain Camats et al., 2012
c.763C>T p-Arg255Cys Ligand-binding domain Philibert et al., 2013
c.768delC p.Asp257fs Ligand-binding domain Suwanai et al., 2013
NOBOX c.1064G>A p-Arg355His Homeodomain Qin et al., 2007
c.271G>T p.Gly91Trp ND Bouilly et al., 2011
C.349C>T p.-Arg117Trp ND Bouilly et al., 2011
c.907C>T p.Arg303Ter Homeodomain Bouilly et al., 2011
¢.1025G>C p.Ser342Tyr Homeodomain Bouilly et al., 2011
c.1048G>T p.Val350Leu Homeodomain Bouilly et al., 2011
c.331G>A p.Gly111Arg ND Bouilly et al., 2015
c1112A>C p.Lys371Thr ND Bouilly et al., 2015
c.1856C>T p.Pro619Leu C-terminus Bouilly et al., 2015
FIGLA c.15_36del p.Gly6fs N-terminus Zhao et al., 2008
c.419_421del p-Asn140del ND Zhao et al., 2008
FOXL2 c.560G>A p.Gly187Asp ND Laissue et al., 2009a
BMP15 c.704A>G p.Tyr235Cys Prodomain Di Pasquale et al., 2004
c.202C>T p.Arg68Trp Prodomain Rossetti et al., 2009
c413G>A p-Arg138His Prodomain Rossetti et al., 2009
C.443T>C p.Leu148Pro Prodomain Rossetti et al., 2009
c.631CT p.Glu211Ter Prodomain Dixit et al., 2006
NANOS3 c457CT p.Arg153Trp ND Wau et al., 2013
c.358C>A p.Glu120Lys Zinc finger domain Santos et al., 2014
STAG3 c.968delC p.Phe187fs STAG domain Caburet et al., 2014

(p.Leu608_Val609del), located within the seventh transmem-
brane helix, was affected by oligoamenorrhoea and infertility
(Latronico et al., 1998). Such mutation was functionally related to
the protein’s intracellular retention which led to a decrease in the
amount of cell surface receptors (Latronico et al., 1998). A further
female displaying primary amenorrhoea was a carrier of the ho-
mozygous LHCGR c. 1060A>G (p.Glu354Lys) sequence variant
(Stavrou et al., 1998). At protein level, this mutation is located in
the extracellular domain adjacent to the first transmembrane helix.
In vitro experiments have shown a complete loss of mutant protein
function as HEK293 transfected cells lack cAMP synthesis after hCG
stimulation (Stavrou et al., 1998). Interestingly, two sisters affect-
ed by the homozygous IVS10-G>A splice mutation (which led to the
deletion of amino acids Tyr317 to Ser324) were affected by a mild
phenotype, as they had regular menses for years and normal LH
plasma levels (Bruysters et al., 2008). Although the receptor was ex-
pressed and functionally competent to respond to LH stimulus, in
this case, it had reduced potency. Furthermore, an 8-year-old girl
has been reported carrying LHCGR compound heterozygous muta-
tions (p.Ile152Thr and c.537-3C>A splice acceptor mutation leading
to exon 7 skipping). These mutations were also present in her brother
who was affected by Leydig cell hypoplasia (Qiao et al., 2009). An
in vitro functional test for p.lle152Thr mutation revealed signifi-
cant impairment of hCG binding and signal transduction. Concerning
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Fig. 2. LHCGR mutations causative of non-syndromic POF.
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animal models, two Lhcgr-KO models have been produced (Lei et al.,
2001; Zhang et al., 2001). These animals had small ovaries, thin uteri,
a lack of preovulatory follicles or corpora lutea and a delay regard-
ing the age of vaginal opening. These mice could be considered close
phenocopies of the corresponding human mutations.

3. TF-encoding genes

TF are key molecular actors which are responsible for direct
gene regulation. These proteins, which seem to be encoded by ~1900
genes in the human genome, recognise 6-12 bp long degenerate
DNA sequences for regulating target genes (Lander et al., 2001;
Vaquerizas et al., 2009; Venter et al., 2001). A specific gene’s reg-
ulatory region can be transcriptionally modulated by multiple TF
which, in turn, can simultaneously regulate many targets. Distinct
mechanisms (motifs) have been described for regulating such
complex networks, such as the autoregulatory loop, the feed-
forward regulatory circuit and the multi-input motif (MacQuarrie
et al., 2011). Embryonic female gametogenesis and adult reproduc-
tive physiology are multistep processes which have been subtly
modulated in terms of gene expression which partially depends
on TF function. Studies, mostly performed on genetically-modified
mice, have shown that several TF (e.g. Blimp1, Pou5f1, Prdm14, Gata4,
Nr5al, Zglp1, Emx2, Lhx8, Lhx9, Nanog, Sohl1, Sohl2, Foxo3a, Nobox,
Figla, Thp2, Taf4b and FoxI2) regulate molecular cascades associ-
ated with primordial germ cell specification and migration, meiosis,
follicle development and ovulation (Jagarlamudi and Rajkovic, 2012;
Jagarlamudi et al., 2010). Mutations in these genes could thus lead
to analogues to human POF phenotypes. Concerning these, only
FIGLA, NOBOX and FOXL2 mutations have been functionally asso-
ciated with some cases of non-syndromic POF aetiology. This might
have been due to Sanger sequencing limitations since this tech-
nique does not permit simultaneous parallel sequencing of numerous
genes. Indeed, since several POF genes are transcription factors regu-
lating numerous targets in an interactive lattice, Sanger sequencing
might be challenging due to the significant length of the genomic
candidate regions. NGS approaches should overcome this draw-
back in the near future for identifying novel molecular actors
responsible for POF (see below).

3.1. NR5A1

The nuclear receptor subfamily 5 group A member 1 (NR5A1),
also known as steroidogenic factor 1 (SF1), is one of the main pro-
teins implicated in mammalian gonadal differentiation and
modulation of steroidogenesis via hypothalamic-hypophysis axis reg-
ulation (Lalli et al., 2013; Lin and Achermann, 2008; Mtynarczuk
and Rekawiecki, 2010; Schimmer and White, 2010). The NR5A1 gene
is located on 9g33.3 and encodes a 461 residue protein from the
orphan nuclear receptor family (Oba et al., 1996; Taketo et al., 1995).
Structurally, SF1 includes an N-terminal zinc finger DNA-binding
domain (DBD), an A box, a ligand binding domain, a proline-rich
hinge region and an AF-2 activation domain located at the pr-
otein’s C-terminal region. SF1 displays a large spectrum of
spatiotemporal expression which is related to distinct tissue’s spe-
cific functions. SF1 expression has been detected in particular tissue

- =
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from adult organs, such as pituitary gland (gonadotroph cells), hy-
pothalamus, hypocampus, ovary (granulosa and theca cells, corpus
luteum), testis (Leydig and Sertoli cells), adrenal cortex, and spleen
(Schimmer and White, 2010). It has also been detected early in the
genital ridge and thereafter during hypophysis, hypothalamus,
adrenal gland and gonad development steps. In mice, SfI is ex-
pressed during testis determination and differentiation in the
formation of the bipotential gonads as well as in Leydig and Sertoli
cells to regulate steroid hormones and the anti-Miillerian hormone
(AMH) (Hanley et al., 1999; Ikeda et al., 1994). SF1 regulates the
transcription of several genes in the ovaries, such as StAR, CYP17A1,
CYP11A1 (P450scc), AMH, CYP19A1 (aromatase), INHA, NROB1, 3[3-
HSD, SCP-2, HDL-R and NP-C1 (Hoivik et al., 2010; Mendelson and
Kamat, 2007). The mouse constitutive KO model of Sf1 was mainly
affected by male-to-female sex reversal of the external genitalia and
the animals died secondary to adrenal failure (Luo et al., 1994;
Sadovsky et al., 1995). A conditional mouse KO model in which Sf1
was specifically disrupted in granulosa cells led to infertility due
to having hypoplastic ovaries, a reduced amount of oocytes and the
absence of corpora lutea (Jeyasuria et al., 2004; Pelusi et al., 2008).
More recently, a hypomorphic model of Sf1, produced by the ab-
lation of Cited2 in mice, was related to gonadal ectopic cell migration
(Combes et al., 2010). Cited2- females also displayed a transient
downregulation of pro-ovarian genes (FoxI2, Rspo1, and Wnt4). This
feature led to screening CITED2 mutations in POF women and pro-
posing new variants which were potentially related to the disease’s
pathogenesis (Fonseca et al., 2012). SF1 mutations have been de-
scribed in humans as being causative of primary adrenal failure, 46,
XY and XX gonadal dysgenesis and POF (de Mello et al., 2011;
Ferraz-de-Souza et al., 2011). Sequence variants may be associ-
ated with hypospadias, bilateral anorchia, male factor infertility,
adrenal tumourogenesis, polycystic ovary syndrome and
endometriosis.

Lourenco et al., identified the first NR5A1 mutations causative
of non-syndromic POF (Lourenco et al., 2009). Direct sequencing was
used for screening individuals from four families lacking adrenal
dysfunction but affected by 46XY sex development anomalies and
46XX POF for NRA5A1 coding mutations. Such mutations were iden-
tified in women having primary or secondary amenorrhoea:
c.877G>A (p.Asp293Asn, homozygous), c.3G>A (p.Met1lle hetero-
zygous), ¢.390delG (heterozygous) and c.666delC (heterozygous)
(Fig. 3 and Table 1). The ¢.390delG (p.Pro131fs) and c.666delC
(p.Asn222fs) sequence variants were predicted to create a trun-
cated 295 amino acid long protein lacking the major part of the
ligand binding and AF2 domains. NR5A1 was analysed using an iden-
tical approach in 25 women displaying sporadic POF. In the same
study, two of these individuals had non-conservative sequence vari-
ants. The first patient displayed an in-frame 9-bp (c.691_699del)
heterozygous deletion which led to the loss of three residues (p.
Leu231_Leu233del) located in the ligand binding domain. The second
individual carried the ¢c.368G>C (p.Gly123Ala) and ¢c.386C>T
(p.Pro129Leu) mutations in a heterozygous state. All these vari-
ants were absent in a significant number of control alleles. In vitro
functional tests on embryonic kidney (tsa201) and Chinese hamster
ovary (CHO) cells showed severe transactivation disturbances of the
p.Pro129Leu, p.Leu231_Leu233del and p.Met295Ter mutations on
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Fig. 3. NRA5A1 mutations causative of non-syndromic POF.
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both CYP11A1 and CYP19A1 promoters. The p.Asp293Asn mutation
had a less drastic functional effect on both CYP promoters.

Since the report by Lourenco et al. (2009), several studies have
described screening for NR5A1 mutations in POF women (Camats
et al,, 2012; Janse et al., 2012; Jiao et al., 2013; Lakhal et al., 2012;
Philibert et al., 2013; Suwanai et al., 2013; Voican et al., 2013).

Although various sequence variants which were potentially
related to the disease pathogenesis have been described, solely the
c13T>G (p.Tyr5Asp), ¢.704C>T (p.Pro235Leu), ¢.763C>T (p.Arg255Cys),
and c.768delC (p.Asp257fs) mutations (found in heterozygous state)
have been formerly validated as causative of POF by functional tests
(Camats et al., 2012; Jiao et al., 2013; Philibert et al., 2013; Suwanai
et al., 2013). These mutations (located in the protein’s N-terminal
region (p.Tyr5Asp) and ligand binding domain (p.Pro235Leu,
p.Arg255Cys, p.Asp257fs) were linked to distinct degrees of
transactivation disturbance in target gene promoters.

In summary, NR5A1 ORF mutations are responsible for various
phenotypes, including 46XX gonadal dysgenesis and POF. To date,
8 NR5A1 mutations have been proved to be causative of POF by func-
tional assays. Further mutations deserve functional assays to establish
their potential pathogenicity.

3.2. NOBOX

The newborn ovary homeobox (NOBOX) gene, which encodes a
homeodomain transcriptional regulator, is located on chromo-
somes 6 and 7q35 in mouse and human species, respectively
(Suzumori et al., 2002). NOBOX is expressed in the gonads in both
species, preferentially by metaphase Il oocytes from primordial fol-
licles (Huntriss et al., 2006; Rajkovic et al., 2004; Suzumori et al.,
2002). It has also been reported that NOBOX is present in oocytes
beyond the primary developmental stage and that the latest stages
involve downregulation of its expression (Belli et al., 2013). Human
NOBOX has a characteristic 60 residue region (the homeodomain)
which is highly conserved with that from rodents (>90% identity)
(Suzumori et al., 2002). NOBOX regulates transcription via specific
binding elements (e.g. the TAA/GTTG/A sequence) located on target
genes’ promoter regions (Choi and Rajkovic, 2006). It has been pos-
tulated that many relevant genes for female reproduction (e.g. Gdf9,
Bmp15, Pou5f1, Zar1, c-Mos, Oog1, Pad6, Oosp1, Oct4) are directly or
indirectly regulated by NOBOX because KO mice have shown dif-
ferential expression patterns compared to wild type (WT) animals
(Rajkovic et al., 2004). Direct binding to promoter regions has been
demonstrated for Gdf9, Pou5f1 and Pad6 (Choi et al., 2010; Choi and
Rajkovic, 2006). Very recently, it has been shown that NOBOX and
FOXL2 can form a complex to regulate specific target genes in granu-
losa cells (Bouilly et al., 2014). Female Nobox”7~ KO mice have
displayed a dramatic postnatal reduction of oocyte number sec-
ondary to meiosis dysfunction in oogonia and impaired primordial
to primary follicle transition (Rajkovic et al., 2004). Electron mi-
croscopy has revealed an increase in adherens junctions between
unseparated oocytes within syncytial follicles when assessing KO
animals’ ovaries, which might have been related to cell adhesion
dysfunction (Lechowska et al., 2011). Moreover, these experi-
ments led to proposing that the infertile phenotype of female Nobox
null mice might be associated with abnormal signalling between

S

germ and somatic cells. All the above findings supported a poten-
tial role for NOBOX mutations during POF pathogenesis.

In a first attempt to establish whether encoding mutations in this
gene might be a common cause of non-syndromic POF, 30 Japa-
nese patients were screened by direct sequencing for NOBOX
sequence variants but no positive results were found (Zhao et al.,
2005).

Thereafter, Qin et al. described the first NOBOX mutation related
to POF aetiology (Qin et al., 2007). The complete NOBOX encoding
sequence was sequenced in a panel of 96 POF women. The c.1064G>A
(p.Arg355His) mutation was novel among the sequence variations
identified in that study and absent in the control population. This
mutation was located in the protein’s homeodomain and involved
an amino acid (Arg355) which is highly conserved during verte-
brate species’ evolution (Fig. 4 and Table 1). Functional binding
experiments, based on electrophoretic mobility shift assays (EMSA),
have revealed a drastic decrease in protein binding to specific DNA-
binding elements (Qin et al., 2007). Further assays, using equimolar
amounts of WT and mutant protein, revealed that the p.Arg355His
mutation might have a dominant negative effect and suggested that
the NOBOX homeodomain may function as a dimer.

More recently, direct sequencing of the NOBOX open reading
frame in 178 Caucasian, Senegalese, and Bantu women revealed 6
non-synonymous sequence variants in heterozygous state: ¢.271G>T
(p.Gly91Trp), c.349C>T (p.Argl117Trp), c.907C>T (p.Arg303Ter),
c.1025G>C (p.Ser342Tyr), c.1048G>T (p.Val350Leu), c.1444G>A
(p.Gly472Ser) (Bouilly et al., 2011). All of the above (excepting
p.Gly472Ser) were not found in a control panel of women from the
same ethnic origin having a high evolutionary conservation score,
thereby suggesting a pathogenic effect. Moreover, p.Arg303Ter,
p.Ser342Tyr and Val350Leu were located in the homeodomain, sug-
gesting potential functional disruption of mutant proteins to regulate
relevant genes implicated in ovarian development and physiolo-
gy. Two functional assays demonstrated initially that the p.Gly91Trp,
p.Arg117Trp, p.Arg303Ter, p.Ser342Tyr and p.Val350Leu muta-
tions were causative of POF (Bouilly et al., 2011). An EMSA approach
displayed a disruption of mutant proteins directly binding to the
NOBOX-specific consensus binding sequence. Luciferase experi-
ments, using human GDF9 promoter region which included a NOBOX
binding element, then revealed a 50% reduction of GDF9 transcrip-
tional activity. Interestingly, this study reported the highest
prevalence (>5%) of causative mutations identified in a POF cohort
during a single gene analysis. A more recent study, carried-out on
200 Chinese POF patients, did not lead to finding NOBOX coding vari-
ants related to the disease’s pathogenesis (Qin et al., 2009). Bouilly
et al. reported that two previously described (p.Gly91Trp,
p.Arg117Trp) and three novel mutations (p.Gly111Arg, p.Lys371Thr
and p.Pro619Leu) have impaired transactivation properties on target
promoters (Fig. 4) (Bouilly et al., 2015).

3.3. FIGLA

The FIGLA gene which is located on chromosomes 2 and 6 in
human and mouse species, respectively, encodes a basic helix-loop-
helix (bHLH) transcription factor (Huntriss et al., 2002; Liang et al.,
1997). Structurally, the bHLHL domain has ~60 residues which form
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Fig. 4. NOBOX mutations causative of non-syndromic POF.
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two helices (separated by a variable loop region) and a DNA-
binding domain (Jones, 2004; Massari and Murre, 2000). It has been
shown that Figla is oocyte specific and regulates critical functions
during early folliculogenesis (Liang et al., 1997; Soyal et al., 2000).
Figla protein is present in mice from E13.5 onwards and binds to a
conserved E-box motif (CANNTG) located on Zp (zona pellucida)
genes’ promoter region to modulate their transcription (Liang et al.,
1997). Furthermore, the human FIGLA protein binds to the ZP2 pro-
moter region, which suggests similar functions for human and mouse
species (Bayne et al., 2004). Female Figla KO mice have become in-
fertile due to accelerated postnatal loss of oocytes from primordial
follicles (Soyal et al., 2000). More recent experiments involving Figla
null mouse lines and expression microarrays have displayed target
genes, such as kit, Dppa3, Pou5f1, and some Nlrp family members
further downstream (Joshi et al., 2007). It has also been shown that
Figla inhibits male specific genes which have suggested dichotomic
molecular functions during germ cell development (Hu et al., 2010).
FIGLA is also expressed early in humans, showing a significant in-
crease at the time of primordial follicle development (Bayne et al.,
2004).

FIGLA non-synonymous mutations were seen to be related to POF
pathogenesis in a 2008 study (Zhao et al., 2008) where the gene’s
complete encoding sequence was directly sequenced in 100 Chinese
POF women. Three previously undescribed sequence coding vari-
ants were identified: c.11C>A (p.Ala4Glu), c.15_36del (p.Gly6fs) and
c.419_421del (p.Asn140del). The p.Ala4Glu variant was present in
one individual from the control population (1/304). The p.Gly6fs mu-
tation was not present in the control population and led to the
synthesis of a truncated 66 amino acid long product. The mutant
protein’s inherently pathogenic effect was related to
haploinsufficiency. Yeast two-hybrid functional assays for protein/
protein interaction testing were performed for FIGLA-p.Ala4Glu and
FIGLA-p.Asn140del mutants. The TCF3 (also known as E2A) protein
HLH domain, which was previously shown to form heterodimers
with FIGLA, was used as prey (Bayne et al., 2004; Liang et al., 1997).
It was shown that the p.Asn140del mutation impaired FIGLA/TCF3-
HLH interaction (Table 1). By contrast, p.Ala4Glu did not have a
functionally pathogenic effect. Since the report by Zhao et al., no
further studies have been reported involving sequencing analysis
of the FIGLA coding region.

3.4. FOXL2

The forkhead box (FOX) family of proteins was originally de-
scribed during a study of Drosophila mutants in the Fkh gene (Weigel
and Jdckle, 1990; Weigel et al., 1989). FOX factors are widely dis-
tributed in animals and fungi, as at least 2000 members have been
identified in more than 100 species (Benayoun et al., 2011). Fifty
FOX genes have been located in the human genome to date (Jackson
et al., 2010). Many biological and molecular processes have been
related to FOX proteins, such as immunoregulation, cell cycle control
and survival, body axis establishment, glucose homeostasis, cancer
onset and development, stem cell biology, chromatin remodelling
and organ development (including testes and ovaries) (for review,
see Benayoun et al., 2010; Eijkelenboom and Burgering, 2013; Lam
et al, 2013; Ro et al., 2013; Sanchez et al., 2014; Uhlenhaut and
Treier, 2011).

The human FOXL2 was mapped in 2001 to 323 and described
as a 2.7 kb monoexonic gene encoding a 376 amino acid protein dis-
playing a forkhead domain and a 14 residue long polyalanine (poly-
Ala) stretch (Crisponi et al., 2001). FOXL2 is expressed in mammalian
ovaries from gonadal determination to adult life, thereby under-
lining its functional role during development and fertility
maintenance (Cocquet et al., 2002; Crisponi et al., 2001; Pannetier
et al., 2003). It has been shown that FoxI2 is expressed during mouse
hypophysis where it may have a function during organogenesis

(Ellsworth et al., 2006). Interestingly, several studies have shown
a key role for FOXL2 during central regulation of FSHB synthesis by
pituitary gonadotropic cells (Fortin et al., 2014; Ghochani et al., 2012;
Justice et al., 2011; Lamba et al., 2010; Roybal et al., 2014; Tran et al.,
2011, 2013). It might thus be considered that FOXL2 plays an im-
portant dual pituitary/ovary role in regulating mammalian
reproduction. Constitutive mouse KO models of FoxI2 have been
created which mainly displayed premature massive depletion of fol-
licular stock and craniofacial malformations, similar to those observed
in BPES patients (Schmidt et al., 2004; Uda et al., 2004).
Concerning human disease, fine physical mapping and Sanger
sequencing techniques have led to defining FOXL2 mutations as caus-
ative of the blepharophimosis—ptosis—epicanthus inversus (BPES)
syndrome (Crisponi et al., 2001). This pathology is transmitted in
an autosomal dominant fashion and is clinically characterised by
complex eyelid malformations and POF (Crisponi et al., 2001; Verdin
and De Baere, 2012; Zlotogora et al., 1983). Two types of BPES have
been defined which depend on POF presence (BPES type I) or absence
(BPES II) (Zlotogora et al., 1983). More than 140 intragenic FOXL2
mutations have been reported to date and included in a public da-
tabase (http://medgen.ugent.be) (Beysen et al., 2009; Verdin and
De Baere, 2012). Mutations not affecting FOXL2 ORF and complete
gene deletions have also been described (Beysen et al., 2009). The
first studies led to proposing a genotype-phenotype correlation: mu-
tations leading to truncated protein synthesis before the poly-Ala
tract were related to BPES type I while those leading to poly-Ala
stretch expansion were linked to BPES type II. No correlations were
established concerning elongated and truncated FOXL2 proteins with
a complete forkhead domain as well as those translated from mis-
sense mutations (De Baere et al., 2001, 2003; Verdin and De Baere,
2012). Many functional tests have been performed to determine
FOXL2 mutations’ potentially pathogenic effects. For instance, the
in vitro expression of the 24-alanine version displayed subcellular
mislocalisation and aggregation of the mutant protein as well as
transactivation disturbances of target gene promoters (Caburet et al.,
2004; Moumné et al., 2008). Missense mutations located in the
forkhead domain were also linked to aggregation and subcellular
mislocalisation but, coherently, were linked to more drastic
transactivation disturbance of target genes (Beysen et al., 2008). Fur-
thermore, distinct theoretical and experimental models have been
used for exploring FOXL2 missense mutations’ molecular and func-
tional effects (Dipietromaria et al., 2009; Todeschini et al., 2011).
Several studies have been undertaken concerning non-syndromic
POF to establish whether FOXL2 mutations might be causative of
the phenotype but only three sequence variants in heterozygous state
have been identified: c. 772T>A (p. Tyr258Asp), c. 661_690del
(p.Ala221_Ala230del) and ¢.560G>A (p.Gly187Asp) (Gersak et al.,
2004; Harris et al., 2002; Laissue et al., 2009a; Verdin and De Baere,
2012 and references therein). Functional tests were only per-
formed for the p.Gly187Asp mutation located C-terminal to the
forkhead DNA binding domain (Table 1). More precisely, KGN
granulosa-like cells were transfected with plasmids encoding WT
or mutant (FOXL2-G187D) versions of FOXL2 in phase with the green
fluorescent protein (GFP) sequence. Luciferase reporter assays were
carried out using the promoter region of FOXL2 itself, an artificial
specific FOXL2 promoter (named 2XFLRE) or the promoter of OSR2,
a gene related to periocular mesenchyma development. Although
subcellular mislocalisation was not observed, the protein’s mutant
version displayed a reduction in its transactivation properties re-
garding FOXL2 and 2xFLRE promoters, thereby underlining the p.
Gly187Asp mutation’s pathogenic effect (Laissue et al., 2009a). No
functional effect was identified on the OSR2 promoter which cor-
related with the absence of palpebral phenotype in the affected
patient. Since then, no further FOXL2 mutations have been de-
scribed in non-syndromic POF women. It is worth noting that the
recurrent FOXL2 c.402C>G (p.Cys134Trp) somatic mutation has been
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related to the pathogenesis of ovarian granulosa cell tumours
(Benayoun et al., 2010; Rosario et al., 2014; Shah et al., 2009). Indeed,
it has been postulated that FOXL2 might act as a tumour suppres-
Sor gene or an oncogene.

4. Other POF causative genes
4.1. BMP15 (GDF9B)

BMP15 (also known as GDF9B), which is located on the human
Xp11.2 chromosome, encodes a protein from the TGF-B superfam-
ily of growth factors. TGF-f3 molecules, which include BMP, GDF,
inhibins, activins and other proteins, are widely expressed in ver-
tebrate species during many development processes, including
female reproduction (Chang et al., 2002; Juengel and McNatty, 2005;
Laissue et al., 2008; Massagué, 1998; Otsuka, 2010; Persani et al.,
2011; Shimasaki et al., 2004). Particularly, BMP15 is almost solely
expressed by oocytes from early stages of follicular maturation and
during all stages (Dube et al., 1998; Erickson and Shimasaki, 2003;
Shimasaki et al., 2004).

BMP15, just like other TGF-f proteins, is synthesised as an in-
active preproprotein having three domains: a signal peptide located
in the N-terminal region, a prodomain (propeptide) and a mature
region in the C-terminal region (Chang et al., 2002). The protein’s
mature region is released to the extracellular compartment after
a series of post-translational processing steps (dimerisation and pro-
teolytic cleavage) to bind to target cells’ serine/threonine kinase types
[ and II receptors. Phosphorylation of the type Il receptor activates
the R-SMAD/SMAD intracellular pathway, resulting (after nuclear
signalling translocation) in target gene activation or inhibition
(Massagué, 2012; Massagué et al., 2005; Weiss and Attisano, 2013).
BMP15 can form homodimers (BMP15:BMP15) or heterodimers
(BMP15:GDF9) when it binds to its close paralogue growth differ-
entiation factor 9 (GDF9). The secreted soluble dimer mature domain
binds to receptors located on granulosa cell surface to participate
in key steps regarding ovarian function, such as granulosa cell pro-
liferation and follicle maturation, ovulation rate modulation, oocyte
competence determination and regulating granulosa cell sensitiv-
ity to FSH (Fabre et al., 2006; Hashimoto et al., 2005; Moore and
Shimasaki, 2005; Persani et al., 2011, 2014). It has been shown that
BMP15:GDF9 heterodimers act specifically in mice and humans via
a molecular complex which includes BMPR2 (serine/threonine kinase
type II) and ALK4/5/7 (serine/threonine kinase type I) receptors as
well as the ALK6 co-receptor (Peng et al., 2013). Functional assays
have shown that BMP15:GDF9 heterodimers are more bioactive than
homodimeric (BMP15:BMP15 or GDF9:GDF9) molecules in both
species (Peng et al., 2013). These findings have partly explained these
molecules’ complex biological behaviour in mammalian species.
Indeed, natural and artificial mutant models of BMP15 and GDF9 have
shown intriguing phenotypes. Female homozygous Bmp15 KO mice
have shown subfertility secondary to reduced ovulation rate while
Gdf97- animals have become completely infertile (Dong et al., 1996;
Yan et al., 2001). Double KO mice (Bmp157- and Gdf9*-) have re-
vealed a less severe ovarian phenotype than that observed in single
(Bmp157 or Gdf9+-) animals (Yan et al., 2001). BMP15 and GDF9
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heterozygous missense mutations in sheep have been related to
hyperfertility and infertility phenotypes, respectively (Demars et al.,
2013; Galloway et al., 2000; Hanrahan et al., 2004; Laissue et al.,
2008).

Di Pasquale et al. (2004) described the first BMP15 encoding mu-
tation related to POF aetiology. The heterozygous BMP15 c.704A>G
(p. Tyr235Cys) mutation was identified by Sanger sequencing in two
related Italian patients affected by ovarian dysgenesis and primary
amenorrhoea. Tyr to Cys amino acid substitution (located in the pr-
otein’s pro-region) was related to a deleterious dominant negative
effect. The protein’s mutant recombinant version had impaired pro-
liferation activity regarding granulosa cells (Di Pasquale et al., 2004).
Our group and others have undertaken massive Sanger sequenc-
ing projects of the BMP15 encoding region in panels of POF patients
during the last 10 years which have led to identifying more than
15 missense variants (Persani et al., 2014 and references therein).
All of them were located in the protein’s pro-region, except for
¢.13A>C, (p.Ser5Arg) and c. 985C>T (p.Arg329Cys) which affected the
signal peptide and the mature domain, respectively (Lakhal et al.,
2009, 2010; Rossetti et al., 2009; Wang et al., 2010).

Rossetti et al. tested the activity of some missense mutations
found in POF individuals in an elegant functional reporter assay
(Rossetti et al., 2009). Only the c.202C>T (p.Arg68Trp), c.413G>A
(p.Arg138His) and ¢.443T>C (p.Leu148Pro) heterozygous muta-
tions were clearly validated as causative of the phenotype (Fig. 5
and Table 1). Interestingly, the additional c.631C>T homozygous mu-
tation found in an Indian POF patient could be assumed to be
aetiological because it generated a truncated (p.Glu211Ter) protein
potentially lacking the mature domain (Dixit et al., 2006).

Intriguingly, although BMP15 has been shown to play a crucial
role during mammalian ovary development and function, only five
mutations modifying the protein sequence can be considered
aetiological. This scenario led to our group engaging in a recent func-
tional exploration of whether BMP15 promoter polymorphism (c.-
9G>C) might be related to the POF phenotype. Indeed, it has been
established that this variant modifies the paired-like homeodomain
transcription factor 1 (PITX1) binding site and that the c.-9G allele
leads to BMP15 promoter transactivation disturbances (Fonseca et al.,
2014). This might suggest that fine-tuning of BMP15 expression is
critical for normal human ovarian physiology. It is worth noting that
GDF9 missense variants have been described in POF patients and
dizygotic twinning but none has been functionally characterised to
date (Laissue et al., 2008; Persani et al., 2014).

4.2. NANOS3 and STAG3

NANOS3 and STAG3 are the most recently reported genes for
which mutations have been validated (by functional assays) as being
causative of non-syndromic POF (Table 1) (Caburet et al., 2014; Santos
et al., 2014; Wu et al., 2013).

Three NANOS genes (NANOS 1 through 3) which encode CCHC
zinc finger RNA interacting proteins have been described in mice
and humans. The NANOS protein binds to the Pumilio co-factor to
repress translation (Sonoda and Wharton, 2001; Wang et al., 2002;
White et al., 2001). It has been shown that the NANOS genes are

C-ter

Mature peptide

Fig. 5. BMP15 mutations causative of non-syndromic POF.
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important for germ cell development in several species (Lai and King,
2013 and references therein). The single Nanos gene in Drosophila,
first reported as a maternal effect gene, has been mainly linked to
maintaining germ cell migration, survival and fate as well as germ
stem cell self-renewal (Asaoka-Taguchi et al., 1999; Forbes and
Lehmann, 1998; Kobayashi et al., 1996; Wang and Lehmann, 1991;
Wang and Lin, 2004). The mouse KO model of Nanos2 revealed spe-
cific male infertility while both female and male Nanos37- animals
had reduced gonad size and were infertile because primordial germ
cells were not maintained during migration (Suzuki and Saga, 2008;
Suzuki et al., 2008; Tsuda et al., 2003). Attenuated Nanos3 mRNA
levels have been related to a significant decrease in germ cell number
(Wu et al.,, 2013). NANOS1, NANOS2 and NANOS3 screening for mu-
tations by Wu et al. in Chinese POF patients has revealed three
missense variants: NANOS1-c.413C>T (p. Pro138Leu), NANOS2-
€.39C>G (p.Leu13Phe) and NANOS3-c.457C>T (p.Argl153Trp) (Wu
et al, 2013). Only the NANOS3 p.Arg153Trp mutation was novel since
it was not present in public SNP databases and/or in control indi-
viduals from the same ethnic origin. The arginine residue in position
153 was strictly conserved among mammalian species, which sug-
gested a key functional role. In vitro assays have shown that the
p.Arg153Trp mutation is related to the synthesis of an unstable
protein product (Wu et al., 2013). A subsequent NANOS3 muta-
tional analysis in 85 Brazilian POF women led to identifying the novel
¢.358C>A (p.Glu120Lys) homozygous mutation in two sisters having
primary amenorrhoea (Santos et al., 2014). This mutation, located
in the zinc finger domain, was related to cell death and under-
lined a NANOS3-mediated protective effect against apoptosis in
primordial germ cells (Santos et al., 2014).

Concerning STAG, a combination of genome-wide genetic linkage
homozygosity mapping was used in a previous study to establish
the potential genetic defect underlying POF aetiology in a highly con-
sanguineous Palestinian family (Caburet et al., 2012). Genotyping
(using ~450 microsatellite markers and an SNP gene chip) and genetic
analysis led to locating genomic candidate regions on chromo-
some 7 encompassing around 12.5Mb (Caburet et al., 2012).
Thereafter, exome and Sanger sequencing led to identifying a 1 bp
deletion (c.968delC) in the stromal antigen 3 (STAG3) gene in af-
fected women from the same family (Caburet et al., 2014). The STAG3
gene (also known as Scc3/Irr1 in S. cerevisiae) encodes one of the
four cohesin multi-protein complex subunits (Mehta et al., 2013 and
references therein). It has been shown that cohesin has crucial func-
tions during DNA replication and mitosis, gene expression, DNA
repair and meiosis by allowing correct chromosomal pairing and
segregation (Ball et al., 2014; Bardhan, 2010; Mehta et al., 2013).
It has been predicted that the frameshift STAG3 c.968delC muta-
tion described by Caburet et al. can produce a truncated protein
(p.Phe187fs) affecting the STAG domain which potentially lacks the
armadillo (ARM)-type interaction domain (Caburet et al., 2014). Al-
though the protein’s precise effect has not been assessed at mRNA
or protein level, functional evidence has been presented by study-
ing homozygous mice lacking Stag3. Post-natal ovaries from Stag37-
animals have shown severe and early ovarian dysgenesis while foetal
oocytes have displayed arrested axial element assembling beyond
the leptotene stage of prophase I. It has also been seen that syn-
apsis between homologues became disrupted and that centromeric
sister chromatid cohesion became lost (Caburet et al., 2014). Inter-
estingly, more recent findings have proposed STAG3 as a strong
candidate gene for causing human male infertility (Llano et al., 2014).

A similar approach to that presented above for STAG3 mapping
was adopted very recently concerning two sisters affected by non-
syndromic POF from a consanguineous Muslim Arab family (De Vries
et al., 2014). The homozygous ¢.613C>T (p.GIn205X) novel muta-
tion was identified in the synaptonemal complex central element
protein 1 (SYCE1) gene by using homozygosity mapping, whole-
exome and Sanger sequencing. The SYCE1 factor is a component of

the synaptonemal complex which is necessary for maintaining
closely-related paired chromosome homologues during meiosis
(Costa and Cooke, 2007; Costa et al., 2005).

Female KO mice which were homozygous for Sycel have been
seen to be infertile due to arrested meiosis at prophase I, lacking
synaptonemal complexes and having a severe reduction of fol-
licles (Bolcun-Filas et al., 2009). No functional tests were performed
to assess the potential pathogenic impact of the SYCE1 c.613C>T se-
quence variant. However, its intrinsic nature (a novel homozygous
nonsense mutation), the experimental approach used to identify it
and the evident ovarian phenotype displayed by female Syce17~ mice
strongly suggested it as an aetiological factor.

5. The polygenic nature of reproduction and POF

Mammalian species’ fertility and successful reproduction depend
on many molecular factors’ precise function in males and females
during distinct phases, such as sex determination, meiosis and ga-
metogenesis, hormone synthesis and action, fecundation, early
development, implantation and post-implantation. Correctly ac-
complishing the above has meant that both coding and regulatory
genomic regions have been selected during evolution to guaran-
tee the ability to produce life offspring (fitness). It has been shown
that hundreds of genes are implicated in reproduction (having been
particularly well-studied in mouse models) (Jagarlamudi et al., 2010;
Matzuk and Burns, 2012; Matzuk and Lamb, 2002, 2008; Roy and
Matzuk, 2006). Furthermore, this molecular network is finely regu-
lated in terms of gene expression, thereby underlining the complex
processes related to physiological and pathological conditions.

For instance, it has been shown that gene dosage is a critical
feature for mammalian gender determination. Interestingly, al-
though NROB1 (also known as DAX1) mutations have been associated
with X-linked primary adrenal insufficiency and hypogonadotropic
hypogonadism, gene duplications have been related to dosage sen-
sitive male to female sex reversal (Bardoni et al., 1994; McCabe,
2007). More recently, a hypomorphic mouse model of Sf1 was created
by the genetic ablation of CBP/p300-interacting transactivator with
ED-rich tail 2 (Cited2) (Combes et al., 2010). Gonad development
was delayed in Cited27- males and their testis structure was dis-
rupted. Furthermore, ectopic cell migration and a transient delay
in FoxI2 and Wnt4 expression were recorded in XX Cited27~ gonads.
These findings led our group to hypothesise that CITED2 encoding
mutations in humans might be related to non-syndromic POF ae-
tiology. Indeed, we identified the CITED2 c.604C>A (p.Pro202Thr)
mutation as a strong candidate mutation for POF aetiology (Fonseca
et al., 2012). Precise gene expression also seems to be a critical con-
dition during folliculogenesis. For example, growth factor proteins
(especially TGFS) have been described as important molecules during
cross-talk between intraovarian signalling compartments. Indeed,
fine modulation of BMP2, BMP4, BMP5, BMP6, BMP7, BMP15, GDF9
and INHA is necessary for physiological bidirectional communica-
tion between oocytes, granulosa cells and theca cells (Chang et al.,
2002; Knight and Glister, 2001). As mentioned above, regulatory vari-
ants in the BMP15 promoter region may thus contribute towards
POF aetiology (Fonseca et al., 2014).

It is worth noting that reproduction physiology implies complex
phenotypes which can be considered quantitative traits. Indeed,
fertile individuals vary regarding their reproductive characteris-
tics (e.g. age of menarche, number of follicles at birth, ovarian reserve,
testicular weight, sperm count and motility, plasma hormone levels),
thereby underlining the fact that phenotypes in mammalian re-
production may be regulated by quantitative trait loci (QTL) (Laissue
et al., 2008; L’'Hote et al., 2010). It is worth noting that QTL can be
defined as chromosomal regions carrying genes (encoding and reg-
ulatory regions) which are responsible for complex, measurable
phenotypes. The latter assumption was explored by studying
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particular mouse models allowing QTL mapping (Laissue et al.,
2009b). The interspecific recombinant congenic strains (IRCS) model
has been especially useful for mapping short QTL responsible for
male (testis and prostate weight, sperm nucleus shape, sperm sur-
vival) and female phenotypes (embryonic lethality and resorption)
(Laissue et al., 2009c; L'Hote et al., 2007; Vatin et al., 2012). Inter-
estingly, some of these findings have led recently to identifying
human ALPP encoding sequence variants as being related to recur-
rent spontaneous abortion and in vitro fertilisation success (Vatin
et al.,, 2014).

All in all, the scenario presented above underlines physiologi-
cal and pathological reproductive phenotypes’ polygenic nature and
that the dysregulation of any of these molecular cascades (due to
genetic variants) might contribute towards or cause distinct forms
of infertility, including POF. However, it remains to be determined
how many genes may be responsible for most non-syndromic POF
cases.

Similarly to other complex diseases, it is likely that the common
disease-common variant hypothesis may not be related to POF
pathogenesis (Botstein and Risch, 2003; Gibson, 2012; Pritchard and
Cox, 2002). The foregoing was assumed before the introduction of
genome wide association studies (GWAS) which showed that most
genetic variance did not arise (“missing heritability” concept) from
individual SNPs mapped via this technique (Eichler et al., 2010;
Gibson, 2012; Maher, 2008; Manolio et al., 2009). Several other
models (e.g. the rare allele model, the infinitesimal model, the broad
sense heritability model) have been proposed for explaining heri-
tability and the amount of participating sequence variants in complex
diseases affecting humans (Gibson, 2012 and references therein).
However, accurately predicting how many genes may be related to
non-syndromic POF pathogenesis is difficult because high through-
put genomic sequencing has not been performed on large panels
of patients.

6. NGS approaches and future directions

After the first description of the Human Genome, genomics has
significantly evolved to contribute for a better understanding of the
molecular basis of medicine (Guttmacher and Collins, 2002; Lander
et al., 2001). Genotyping (e.g. via Genome Wide Association Studies,
GWAS) and genome-wide sequencing (e.g. via NGS) studies have
accelerated the identification of a relevant number of genes that
are causal and risk factors for both rare and common human dis-
eases (Boycott et al., 2013; Green and Guyer, 2011; Kiezun et al.,
2012; Visscher et al., 2012; Zimmern and Khoury, 2012). Studying
human pathology’s genetic architecture (defined as the number, fre-
quency and effect of aetiological alleles) has evolved exponentially
since the introduction of NGS technologies involving hybrid capture
(Albert et al., 2007; Gnirke et al., 2009; Hodges et al., 2007; Shendure
and Ji, 2008). Significant advances have been made in bioinformat-
ics, making the analysis of a large amount of omics data affordable
and more accurate (Berger et al., 2013).

NGS, which was presented for the first time in 2007, marked the
beginning of a new era concerning the analysis of human genome
sequences (Albert et al., 2007; Gnirke et al., 2009; Hodges et al., 2007;
Shendure and Ji, 2008). Before the arrival of this technique, Sanger
sequencing was widely used for screening variants potentially
causing monogenic and complex diseases. However, studies involv-
ing numerous genes and/or large genomic regions were particularly
challenging due to inherent technical limitations. In fact, Sanger se-
quencing permits a read length encompassing up to 700 base-
pairs (bp) per reaction. On the contrary, the NGS approach allows
simultaneously analysing millions of bp in only hours, thereby fa-
cilitating large-scale exploration of the human genome. The first NGS
studies and many projects nowadays have been focused on re-
searching novel recessive disease-related sequence variants,

particularly those caused by homozygous mutations. The molecu-
lar origin of >3500 rare diseases has been determined to date, with
NGS having significantly contributed towards this (Boycott et al.,
2013). Such aetiological variants are relatively easy to identify
because most are novel (absent in databases of sequence variants)
and/or are exclusively present in several members of the same family.
This allows easy screening of candidate variants in public SNP da-
tabases and filtering them between affected and non-affected
individuals from the same family. It is important to note that fa-
milial cases of hypofertility/infertility, including POF, are rare because
genetic causative variants are under strong negative selection. Suc-
cessful screening attempts, via NGS, have been reported for
monogenic dominant Mendelian disorders. However, this ap-
proach implies more drawbacks because heterozygous mutations
(logically) occur more frequently, thereby involving complex filter-
ing to select potentially deleterious mutations.

At present, three NGS main approaches (“formats”) are normal-
ly used. They mainly depend on the length of the genome region
being analysed: whole-genome sequencing (WGS), whole-exome
sequencing (WES) and custom target sequencing microarrays (TSM).
WGS is principally used for research purposes while WES and TSM
are used for both research and diagnosis. We and others have pro-
posed that NGS is a coherent and efficient tool for establishing a
molecular diagnosis for monogenic diseases for which clinical and
genetic definition is challenging because of overlapping pheno-
types (Ortega-Recalde et al., 2013; Patiflo et al.,, 2014; Tan et al., 2014;
Woods et al., 2014). Many NGS panels of candidate genes are used
today as part of diagnostic pipelines for distinct pathologies
(Biesecker and Green, 2014; Rehm, 2013). Several diagnostic tests
and prognostic tools for monogenic and complex diseases are used
in clinical environments. In addition, human genomics based on
microarray assays and potent bioinformatics analysis have permit-
ted to study large amounts of data which have enhanced the
discussion on potential genetic models (e.g. the rare allele model,
the broad sense heritability model, the infinitesimal model) un-
derlying frequent diseases (Gibson, 2012). To date, NGS has not been
widely used for some complex pathologies in which several vari-
ants might contribute towards the phenotype, because data analysis
highlights remarkable complexity, especially for simultaneous in-
teractive network exploration. However, some reports concerning
complex traits (e.g. cancer, triglyceride plasma levels, HDL and LDL
proteins, obesity, type 1 diabetes, blood pressure) as well as in non-
invasive prenatal screening tests (NIPT) have been proposed (Kiezun
et al,, 2012; Koboldt et al., 2013; Lange et al., 2014; Ross and Cronin,
2011; Shyr and Liu, 2013).

Concerning POF, as mentioned above, two studies using NGS tech-
nologies (exome sequencing) have been performed in family-
related cases of POF (Caburet et al., 2014; De Vries et al., 2014). A
very recent TSM study of 70 candidate genes has identified poten-
tial novel genes (ADAMTS19 and BMPR2) and mutations related to
the disease pathogenesis (Fonseca et al., 2015).

It is worth noting that main NGS technology drawbacks imply
variable rates of positive and negative results, and difficulties for
studying highly repetitive genomic regions. Thus, NGS positive results
must be validated by Sanger sequencing in all cases.

However, due to the exponential cost decrease of high-throughput
sequencing, it has been proposed that NGS results could be con-
firmed by a second round of assays using the same technical
approach (replicates) (Robasky et al., 2014; Zhang et al., 2014).

Future directions would involve testing a significant number of
isolated (non-family-related) non-syndromic POF cases. This ap-
proach could be facilitated by designing custom microarrays
including coding and regulatory regions for a large number of POF
candidate genes. It would also be possible to perform exome se-
quencing assays in which a subset of genes (the POF candidates)
might be specifically analysed. Furthermore, whole-genome
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sequencing might reveal further disease pathogenesis-related regions.
NGS technology will certainly involve a key tool for mapping genome
variations participating in ovarian-related physiological and patho-
logical conditions. It could be used in the near future regarding a
variety of ovarian dysfunctions for diagnostic and predictive
purposes.
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