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a b s t r a c t

We study a one-dimensional Markov modulated random walk with jumps. It is assumed
that the amplitudes of the jumps as well as the chosen velocity regime are random, and
depend on the time spent by the process at the previous state of the underlying Markov
process.

Equations for the distribution and equations for its moments are derived. We charac-
terise the martingale distributions in terms of observable proportions between the jump
and velocity regimes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Telegraph processes with different switchings and velocity regimes have been studied recently in connection with the
possibility of different applications such as, for instance, queuing theory (see Zacks, 2004; Stadje and Zacks, 2004) and
mathematical biology (see Hadeler, 1999). Special attention has been devoted to financial applications (see Ratanov, 2007;
López and Ratanov, 2012). In the latter case, an arbitrage reasoning demands the presence of jumps.

Motions with deterministic jumps have been studied in detail; see the formal expressions of the transition densities in
Ratanov (2007) and Di Crescenzo and Martinucci (2013). Such a model has been developed for the option pricing problem,
which is based on the risk-neutral approach; see Ratanov (2007). If the jump amplitudes are random, the case is less known.
Telegraph processes of this type have been studied earlier only under the assumption of mutual independence of jump
values and jump amplitudes; see Stadje and Zacks (2004) and Di Crescenzo and Martinucci (2013). Similar settings were
used for the purposes of financial applications; see López and Ratanov (2012).

We present here a jump-telegraph process in which the amplitude of the next jump depends on the (random) time spent
by the process at the previous state. This approach is of special interest for economical and financial applications, but also
in general when the behaviour of the process is related to friction and memory.

Assume that a particle moves with random (and variable) velocities performing jumps of random amplitude whenever
the velocity is changed. More precisely, the actual velocity regime and the amplitude of the next jump are defined as
(alternated) functions of the time spent by the particle at the previous state.We assume also that the time intervals between
the subsequent state changes have sufficiently arbitrary alternated distributions. This creates the effect of a damping process
in which friction is generated by means of memory.

This setting generalises processes which were used before for market modelling by Ratanov (2007) and López and
Ratanov (2012).
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The underlying processes are described in Sections 2 and 3. Section 4 presents the result, which can be interpreted as a
Doob–Meyer decomposition. Several examples with different regimes of velocities and of jumps are presented.

2. Generalised jump-telegraph processes: distribution

Let (Ω, F , P) be a probability space. Consider two continuous-time Markov processes ε0(t), ε1(t) ∈ {0, 1}, t ∈ (−∞,
∞). The subscript i ∈ {0, 1} indicates the initial state, εi(0) = i (with probability 1). Assume that εi = εi(t) and t ∈ (−∞,
∞) are left-continuous a.s.

Let {τn}n∈Z be a Markov flow of switching times. The increments Tn := τn − τn−1, n ∈ Z are independent, and they
possess alternated distributions (with distribution functions F0 and F1, survival functions F̄0 and F̄1, and densities f0 and f1).
We assume that τ0 = 0, i.e., the state process εi is started at the switching instant. The distributions of τn and Tn depend on
the initial state i, i ∈ {0, 1}. For brevity, we will not always indicate this dependence.

Consider a particle moving on R with two alternated velocity regimes c0 and c1. These velocities are described by two
continuous functions ci = ci(T , t); T , t > 0, i = 0, 1. At each instant τn the particle takes the velocity regime cεi(τn)(Tn, ·),
where Tn is the (random) time spent by the particle in the previous state. We define a pair of (generalised) telegraph
processes Ti, i = 0, 1 driven by variable velocities c0 and c1 as follows:

T0(t) = T0(t; c0, c1) =

∞
n=0

cε0(τn)(Tn, t − τn)1{τn<t≤τn+1},

T1(t) = T1(t; c0, c1) =

∞
n=0

cε1(τn)(Tn, t − τn)1{τn<t≤τn+1},

t ≥ 0. (2.1)

The integral
 t
0 Ti(s)ds, i = 0, 1 is called the integrated telegraph process.

LetNi = Ni(t) := max{n ≥ 0 : τn ≤ t}, t ≥ 0, be a counting process. Notice thatNi(0) = 0 and ε0(t) = (1−(−1)N0(t))/2
and ε1(t) = (1 + (−1)N1(t))/2.

The integrated telegraph process can be interpreted as the sum of random number of random variables. If Ni(t) > 0,
then the integrated telegraph process is expressed as t

0
Ti(s)ds =

Ni(t)−1
n=0

lεi(τn)(Tn; τn, τn+1) + lεi(τNi(t))(TNi(t); τNi(t), t). (2.2)

Here

li(T ; u, t) :=

 t

u
ci(T , s)ds, i = 0, 1.

Notice that li(T ; u, s) + li(T ; s, t) ≡ li(T ; u, t), i = 0, 1. Simplifying notation, we write li(T ; t) instead of li(T ; 0, t). If
Ni(t) = 0, then t

0
Ti(s)ds = li(T0; t). (2.3)

In the same manner, we define the jump component. Let h0 = h0(T ) and h1 = h1(T ), T ≥ 0, be a pair of deterministic
continuous (or, at least, boundary measurable) functions. Consider telegraph processes (2.1) based on hi(T ) instead of
ci = ci(T , ·), i = 0, 1:

Ti(t; h0, h1) =

∞
n=1

hεi(τn)(Tn)1{τn<t≤τn+1}, i = 0, 1.

An integrated jump process is defined in the form of a compound Poisson process by the integral t

0
Ti(s; h0, h1)dNi(s) =

Ni(t)
n=1

hεi(τn)(Tn), i = 0, 1. (2.4)

The amplitude of the jump depends on the time spent by the particle at the current state.
Finally, the generalised integrated jump-telegraph process is the sum of the integrated telegraph process defined by

(2.3)–(2.2) and the jump component defined by (2.4):

Xi(t) =

 t

0
Ti(s; c0, c1)ds +

 t

0
Ti(s; h0, h1)dNi(s), t ≥ 0, i = 0, 1. (2.5)

This describes a particle which moves, alternating the velocity regimes at random times τn, starting from the origin at the
velocity regime ci. Each velocity reversal is accompanied by jumps of random amplitude; Xi(t) is the current position of the
particle.
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Conditioning on the first velocity reversal, notice that

X0(t)
D
= l0(T0; t)1{τ1>t} + [l0(T0; τ1) + h0(τ1) + X1(t − τ1)] 1{τ1<t},

X1(t)
D
= l1(T0; t)1{τ1>t} + [l1(T0; τ1) + h1(τ1) + X0(t − τ1)] 1{τ1<t}.

(2.6)

Here, D
= denotes equality in distribution. At each of the two equalities, the first term represents movement without velocity

reversal; the second is the sum of three terms: the path till the first reversal, the jump value, and the movement which is
initiated after the first reversal.

The distribution of X(t), t > 0, is separated into singular and absolutely continuous parts.
The singular part of the distribution corresponds to movement without any velocity reversals; let P(0)

i , i = 0, 1, be the
respective conditional distribution, if the initial state i = εi(0) is fixed: for any Borel set A, we set

P(0)
i (A) := P(Xi(t) ∈ A, Ni(t) = 0), i = 0, 1.

We denote the corresponding expectation by E(0)
i {·}. On the space of (continuous) test functions ϕ, consider the linear

functional (generalised function), ϕ → E(0)
i {ϕ(X(t))}. It is easy to see that

E(0)
i {ϕ(X(t))} =


∞

−∞

ϕ(y)P(0)
i (dy) = F̄i(t)


∞

0
ϕ(li(s; t))f1−i(s)ds =: ⟨pi(·, t; 0), ϕ⟩.

The generalised function

pi(x, t; 0) = F̄i(t)


∞

0
δli(s;t)(x)f1−i(s)ds = F̄i(t)


∞

0
δ0(x − li(s; t))f1−i(s)ds (2.7)

can be viewed as the ‘‘density’’ function. Here, δa(x) is the Dirac measure (of unit mass) at point a.
The absolutely continuous part of the distribution of Xi(t) is characterised by the densities

pi(x, t; n) = P{Xi(t) ∈ dx, Ni(t) = n}/dx, i = 0, 1, n ≥ 1.

The sum

pi(x, t) =

∞
n=1

pi(x, t; n)

corresponds to the absolutely continuous part of the distribution of Xi(t), i = 0, 1.
Conditioning on the first velocity reversal, similarly to (2.6) we obtain the following equations, for n ≥ 1:

p0(x, t; n) =


∞

0
f1(τ )dτ

 t

0
p1(x − l0(τ ; s) − h0(s), t − s; n − 1)f0(s)ds,

p1(x, t; n) =


∞

0
f0(τ )dτ

 t

0
p0(x − l1(τ , s) − h1(s), t − s; n − 1)f1(s)ds

(2.8)

(if n = 1 the inner integrals are understood in the sense of the theory of generalised functions). Summing up in (2.8), we
get a system of integral equations for (complete) density functions:

p0(x, t) = p0(x, t; 0) +


∞

0
f1(τ )dτ

 t

0
p1(x − l0(τ ; s) − h0(s), t − s)f0(s)ds,

p1(x, t) = p1(x, t; 0) +


∞

0
f0(τ )dτ

 t

0
p0(x − l1(τ , s) − h1(s), t − s)f1(s)ds.

(2.9)

Here, p0(x, t; 0) and p1(x, t; 0) are defined by (2.7).

Remark 2.1. The case of constant and deterministic velocities and jumps, c0, c1 ≡ const and h0, h1 ≡ const , has been
discussed earlier. Moreover, if the underlying Markov flow is driven by alternating exponential distributions, fi(t) = λie−λit

1{t>0}, λi > 0, i = 0, 1, Eqs. (2.8) and (2.9) can be solved explicitly. We use the following notation:

ξ = ξ(x, t) :=
x − c1t
c0 − c1

and t − ξ =
c0t − x
c0 − c1

.

Notice that 0 < ξ(x, t) < t , if x ∈ (c1t, c0t) (say, c0 > c1). Define the functions qi(x, t; n), i = 0, 1: for c1t < x < c0t ,

q0(x, t; 2n) =
λn
0λ

n
1

(n − 1)!n!
ξ n(t − ξ)n−1

q1(x, t; 2n) =
λn
0λ

n
1

(n − 1)!n!
ξ n−1(t − ξ)n

, n ≥ 1, (2.10)
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and

q0(x, t; 2n + 1) =
λn+1
0 λn

1

(n!)2
ξ n(t − ξ)n

q1(x, t; 2n + 1) =
λn
0λ

n+1
1

(n!)2
ξ n(t − ξ)n

, n ≥ 0. (2.11)

Denote θ(x, t) =
1

c0−c1
e−λ0ξ−λ1(t−ξ)1{0<ξ<t}.

Eqs. (2.8) have the following solution:

pi(x, t; 0) = e−λitδ(x − cit),
pi(x, t; n) = qi(x − jin, t; n)θ(x − jin, t), n ≥ 1, i = 0, 1,

(2.12)

where the displacements jin are defined as the sum of alternating jumps, jin =
n

k=1 hik , where ik = i if k is odd and ik = 1− i
if k is even.

Summing up, we obtain the solution of (2.9):

pi(x, t) = e−λitδ(x − cit) +

∞
n=1

qi(x − jin, t; n)θ(x − jin, t).

In the particular case h0 + h1 = 0, we have

pi(x, t) = e−λit · δ0(x − cit) +
1

c0 − c1


λiθ(x − hi, t)I0


2
√

λ0λ1(c0t − x + hi)(x − hi − c1t)
c0 − c1



+


λ0λ1θ(x, t)


x − c1t
c0t − x

 1
2 −i

I1


2
√

λ0λ1(c0t − x)(x − c1t)
c0 − c1


, (2.13)

where I0(z) =


∞

n=0
(z/2)2n

(n!)2
and I1(z) = I ′0(z) are modified Bessel functions.

See the proof of (2.10)–(2.13) in Ratanov (2007), (22)–(25), p. 579.
Notice that in this case the integral equations in (2.8) and (2.9) are equivalent to the PDE-system (if c0 = −c1 = c and

λ0 = λ1 = λ > 0, this system is equivalent to a second-order hyperbolic equation, the so-called telegraph equation).
In general, Eqs. (2.8) and (2.9) have no equivalent systems of PDEs.

3. Generalised jump-telegraph processes: moments

Using (2.9), the equations for the expectations can also be derived. Letµi(t) := E{Xi(t)} and l̄i(t) := E{li(·; t)} =


∞

0 f1−i
(τ )li(τ ; t)dτ , t ≥ 0. Eqs. (2.9) lead to

µi(t) = F̄i(t)l̄i(t) +

 t

0


l̄i(s) + hi(s) + E{X1−i(t − s)}


fi(s)ds, i = 0, 1. (3.1)

Therefore the expectations µi, i = 0, 1, are equations of Volterra type:

µ0(t) = a0(t) +

 t

0
µ1(t − s)f0(s)ds,

µ1(t) = a1(t) +

 t

0
µ0(t − s)f1(s)ds,

(3.2)

where

ai(t) := F̄i(t)l̄i(t) +

 t

0
(l̄i(s) + hi(s))fi(s)ds, i = 0, 1.

Integrating by parts at the latter integral, we have t

0
l̄i(s)fi(s)ds = −F̄i(t)l̄i(t) +

 t

0
c̄i(s)F̄i(s)ds,
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which gives the following simplification for functions ai:

ai(t) =

 t

0


F̄i(s)c̄i(s) + fi(s)hi(s)


ds. (3.3)

Here, we denote c̄i(s) = E{ci(·; s)} =


∞

0 f1−i(τ )ci(τ ; s)dτ , i = 0, 1.
Equations for the variances σi(t) := var{Xi(t)} = E{(Xi(t) − µi(t))2} can be derived similarly:

σ0(t) = b0(t) +

 t

0
σ1(t − s)f0(s)ds,

σ1(t) = b1(t) +

 t

0
σ0(t − s)f1(s)ds,

(3.4)

where

bi(t) := F̄i(t)


∞

0
(li(τ ; t) − µi(t))2 f1−i(τ )dτ

+


∞

0
f1−i(τ )dτ

 t

0
(li(τ ; s) + hi(s) + µ1−i(t − s) − µi(t))2 fi(s)ds, i = 0, 1.

Generalising (3.2)–(3.4), the equations for the moments µ
(N)
i (t) := E


Xi(t)N


, t ≥ 0, N ≥ 0, can be derived.

Theorem 3.1. Let N = 1, 2, . . . .
Functions µ

(k)
0 (t), µ(k)

1 (t), t ≥ 0, k = 0, 1, . . . ,N, satisfy the equations

µ
(N)
0 (t) = F̄0(t)


∞

0
f1(τ )l0(τ ; t)Ndτ +

N
k=0


N
k

  t

0
g0,N−k(s)µ

(k)
1 (t − s)f0(s)ds,

µ
(N)
1 (t) = F̄1(t)


∞

0
f0(τ )l1(τ ; t)Ndτ +

N
k=0


N
k

  t

0
g1,N−k(s)µ

(k)
0 (t − s)f1(s)ds.

(3.5)

Here, g0,0 = g1,0 ≡ 1 and

g0,m(t) =


∞

0
f1(τ ) (l0(τ ; t) + h0(t))m dτ ,

g1,m(t) =


∞

0
f0(τ ) (l1(τ ; t) + h1(t))m dτ ,

m ≥ 1.

Proof. By conditioning on the first velocity reversal at time τ1 (as in (3.1)), we easily obtain the following equations:

E{X0(t)N} = E{X0(t)N |τ1 > t}P{τ1 > t} +

 t

0
f1(s)E{(l0(τ ; s) + h0(s) + X1(t − s))N}ds,

E{X1(t)N} = E{X1(t)N |τ1 > t}P{τ1 > t} +

 t

0
f0(s)E{(l1(τ ; s) + h1(s) + X0(t − s))N}ds,

which are equivalent to (3.5). �

In general, systems (3.2), (3.4) and (3.5) have the form of recursive Volterra equations of the second kind:

µ
(N)
0 (t) = a(N)

0 (t) +

 t

0
µ

(N)
1 (t − s)f0(s)ds,

µ
(N)
1 (t) = a(N)

1 (t) +

 t

0
µ

(N)
0 (t − s)f1(s)ds.

(3.6)

In the case of Eq. (3.5), a(N)
i (t), i = 0, 1, are generated by the preceding moments, µ(k)

1−i, k = 0, . . . ,N − 1:

a(N)
0 (t) := F̄0(t)


∞

0
l0(τ ; t)N f1(τ )dτ +

N−1
k=0


N
k

  t

0
g0,N−k(s)µ

(k)
1 (t − s)f0(s)ds,

a(N)
1 (t) := F̄1(t)


∞

0
l1(τ ; t)N f0(τ )dτ +

N−1
k=0


N
k

  t

0
g1,N−k(s)µ

(k)
0 (t − s)f1(s)ds.

(3.7)

Here, N ≥ 1.
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System (3.6) possesses a unique solution; see, e.g., Linz (1985). Under appropriate assumptions, the solution can be found
explicitly. Consider the following example. Let the distributions of interarrival times be exponential:

fi(t) = λi exp(−λit), t ≥ 0, i = 0, 1.

In this particular case, system (3.6) is solved by

µ(t) = a(t) +

 t

0
(I + ϕ(t − s)Λ) La(s)ds, (3.8)

where ϕ(t) = (1 − e−2λt)/(2λ) and 2λ := λ0 + λ1. Here, we use the matrix notation µ = (µ
(N)
0 , µ

(N)
1 )′, a = (a(N)

0 , a(N)
1 )′,

L =


0 λ0
λ1 0


and Λ =


−λ0 λ0
λ1 −λ1


.

To check this, notice that system (3.6) is equivalent to an ordinary differential equation (ODE) with zero initial condition:
dµ
dt

= Λµ(t) + φ(t), µ(0) = 0,

where φ =
da
dt + (L−Λ)a. We get this equation by differentiating in (3.6) with subsequent integration by parts. Clearly, the

unique solution is

µ(t) =

 t

0
e(t−s)Λφ(s)ds. (3.9)

Integrating by parts in (3.9), we obtain

µ(t) = a(t) +

 t

0
e(t−s)ΛLa(s)ds.

Now, the desired representation (3.8) follows from

exp{tΛ} = I + ϕ(t)Λ =
1
2λ


λ1 + λ0e−2λt λ0(1 − e−2λt)

λ1(1 − e−2λt) λ0 + λ1e−2λt


. (3.10)

4. Martingales

Let X0 = X0(t) and X1 = X1(t) be (integrated) telegraph processes defined by (2.5) on the probability space (Ω, F , P).
Let µi(t) = E{Xi(t)}, i = 0, 1, denote the expectations, and let the coefficients ai(t), i = 0, 1, be defined by (3.3).

Notice that, by (3.2), µ0 = µ1 ≡ 0 if and only if a0 = a1 ≡ 0, which is equivalent to the set of identities, see (3.3),

F̄0(t)c̄0(t) + h0(t)f0(t) ≡ 0
F̄1(t)c̄1(t) + h1(t)f1(t) ≡ 0

, t ≥ 0. (4.1)

Let Ft , t ≥ 0, be the filtration, generated by {(X0(s), X1(s)) | s ≤ t}.

Theorem 4.1. The integrated jump-telegraph processes X0 and X1 defined by (2.5) are Ft-martingales if and only if (4.1) holds.

Proof. The proof can be done by computing the conditional expectation E{Xi(t2) − Xi(t1) | Ft1} for 0 ≤ t1 ≤ t2. Indeed,

E{Xi(t2) − Xi(t1) | Ft1} = E

 t2

t1
Ti(s; c0, c1)ds +

Ni(t2)
n=Ni(t1)+1

hεi(τn)(Tn) | Ft1



= E

 t2−t1

0
Tεi(t1+s)(t1 + s)ds +

Ni(t2)−Ni(t1)
n=1

hεi(τn+Ni(t1))(Tn+Ni(t1)) | Ft1


.

According to the Markov property applied to processes with independent increments εi = εi(t), Ni = Ni(t), we have

εi(t1 + s) D
= ε̃εi(t1)(s), Ni(t1 + s) D

=Ni(t1) + Ñεi(t1)(s), s ≥ 0,

εi(τn+Ni(t1))
D
= ε̃εi(t1)(τ̃n), Tn+N(t1)

D
= T̃n, n ≥ 1,

where ε̃(s), Ñ(s), τ̃n, and T̃n are copies of ε(s), N(s), τn, and Tn, respectively, independent of Ft1 . Therefore,

E{Xi(t2) − Xi(t1) | Ft1} = E{X̃εi(t1)(t2 − t1)}.

Here, X̃εi(t1) denotes the integrated jump-telegraph process, which is initiated from the state εi(t1), and is based on ε̃(s),
Ñ(s), τ̃n, and T̃n. The latter expectation is equal to zero, E{X̃εi(t1)(t2 − t1)} ≡ 0, if and only if (4.1) holds. �
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Remark 4.1. Notice that, if (4.1) holds, then the direction of the jump should be opposite to the direction of the (mean)
velocity value.

Consider the hazard rate functions ri = ri(t), i = 0, 1, t ≥ 0, of alternatively distributed interarrival times T = Tn,

ri(t) := lim
h↓0

P{T < t + h | T ≥ t} = −
F̄ ′

i (t)
F̄i(t)

.

Corollary 4.1. If the jump-telegraph processes X0 and X1 defined by (2.5) are martingales, then

c̄i(t)
hi(t)

< 0, ∀t ≥ 0, (4.2)
∞

0

c̄i(s)
hi(s)

ds = ∞, i = 0, 1. (4.3)

Moreover, X0 and X1 are martingales if and only if the hazard rate functions are given by

ri(t) = −
c̄i(t)
hi(t)

, i = 0, 1, t ≥ 0. (4.4)

If condition (4.4) holds, then the density functions of interarrival times satisfy the following system of integral equations:

fi(t) = −
c̄i(t)
hi(t)

exp
 t

0

c̄i(s)
hi(s)

ds


, i = 0, 1, t ≥ 0. (4.5)

Proof. Inequality (4.2) follows directly from (4.1). Identities (4.1) are equivalent to

−
c̄i(t)
hi(t)

≡
fi(t)
F̄i(t)

= −
F̄ ′

i (t)
F̄i(t)

= ri(t), i = 0, 1, t ≥ 0. (4.6)

Hence,

F̄i(t) = exp
 t

0

c̄i(s)
hi(s)

ds


, i = 0, 1, t ≥ 0.

The latter equality is equivalent to (4.5).
Notice that, by definition, limt→+∞ F̄i(t) = 0; thus condition (4.3) is fulfilled. �

In this framework, various particular cases of the martingale distributions and the corresponding distributions of inter-
arrival times can be presented by applying Corollary 4.1. Consider the following examples.
Exponential distribution. Assume that functions c̄i(t) and hi(t) are proportional:

c̄i(t)
hi(t)

≡ −λi, λi > 0, i = 0, 1, t ≥ 0. (4.7)

Relations (4.5) mean that the integrated jump-telegraph process is a martingale if the distributions of interarrival times are
exponential: fi(t) = λi exp(−λit), t > 0, i = 0, 1.

Identities (4.7) can bewritten in detail as follows. The (observable) parameters of themodel, i.e., the regimes of velocities
c0 and c1 and the regimes of jumps h0 and h1, satisfy the equations

λ1


∞

0
e−λ1τ c0(τ , t)dτ = −λ0h0(t), λ0


∞

0
e−λ0τ c1(τ , t)dτ = −λ1h1(t) (4.8)

with some positive constants λ0 and λ1. Notice that, if the velocity regimes are deterministic, ci(τ , t) ≡ vi(t), τ , t ≥ 0, and
proportional, with jump values

vi(t)/hi(t) = −λi, λi > 0, i = 0, 1, t ≥ 0,

then Eqs. (4.7) and (4.8) hold.
These equations help to compute the martingale switching intensities λ0 and λ1 by using the (observable) proportion

between the velocity and jumpvalues. On the other hand, if themeanvelocity regimes are given, c̄0 and c̄1, and themartingale
measure exists, then from these equations we can conclude that (under the martingale measure) small jumps occur with
high frequency, and big jumps are rare. The direction of the jump should be opposite to the direction of velocity; see also
Remark 4.1.
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Proposition 4.1. In the framework of (2.5), we assume that the Markov flow of switching times T = {τk}
∞

k=0 has interarrival
intervals τk − τk−1, k ≥ 1, which are independent and exponentially distributed with alternated constant intensities ν0, ν1 > 0.
Let the velocity regimes ci = ci(τ , t) and jump amplitudes hi = hi(t) for the jump-telegraph processes X0 and X1 be given, and
let them be proportional as in (4.7), c̄i(t)/hi(t) = −λi, i = 0, 1, λ0, λ1 > 0, such that (λ0, λ1) fits system (4.8).

Then there exists a martingale measure for (X0, X1) driven by the Markov flow T with intensities λ0 and λ1. If the solution of
system (4.8) is unique, then the martingale measure for (X0, X1) exists, and it is unique.

Proof. According to the Girsanov theorem, see Ratanov (2007), we apply the Radon–Nikodym derivative of the form

dQ
dP

= Et{X∗
} = exp

 t

0
Ti(s; c∗

0 , c
∗

1 )ds


κ∗

i (t), i = 0, 1, (4.9)

where κ∗

i (t) =
Ni(t)

k=1 (1 + h∗

εi(τk−1)
) is produced by the jump process with constant jump amplitudes h∗

i = −c∗

i /νi, and t
0 Ti(s; c∗

0 , c
∗

1 )ds is the integrated telegraph process with constant velocities c∗

i = νi − λi. Under the new measure Q, the
underlying Markov flow has intensities λi, i = 0, 1 (see Theorems 2 and 3 in Ratanov (2007)). Therefore, process Xi(t)
becomes the martingale. �

Erlang distribution. Telegraph processes with Erlang-distributed interarrival times have been studied by Perry et al. (1999)
and Di Crescenzo (2001). In our setting, it is easy to see that the martingale distribution can be obtained by means of an

alternated Erlang distribution for interarrival times, fi(t) =
λ
ni
i tni−1

(ni−1)! e
−λit1{t>0}, F̄i(t) = e−λit

ni−1
k=0

(λit)k

k! 1{t>0}, λi > 0, ni ≥

1, i = 0, 1, if the velocities and jumps follow the proportion, see (4.4),

c̄i(t)/hi(t) = −
λ
ni
i t

ni−1/(ni − 1)!
ni−1
k=0

(λit)k/k!

, t ≥ 0.

Assuming that the system


∞

0

λ
n1
1 τ n1−1

(n1 − 1)!
e−λ1τ c0(τ , t)dτ = −

λ
n0
0 tn0−1/(n0 − 1)!
n0−1
k=0

(λ0t)k/k!

h0(t),


∞

0

λ
n0
0 τ n0−1

(n0 − 1)!
e−λ0τ c1(τ , t)dτ = −

λ
n1
1 tn1−1/(n1 − 1)!
n1−1
k=0

(λ1t)k/k!

h1(t),
(4.10)

has a solution (λ0, λ1), one can get the martingale measure by changing the intensities of the underlying Poisson process
(see Proposition 4.1).

More precisely, let (Ω, F , P) be a given probability space. Consider the Poisson flowT = {τk}
∞

k=0 with constant switching
intensities ν0, ν1 > 0. Let Gt , t ≥ 0, be a filtration based on this Poisson flow.

We interpret the governing Erlang flow T(n0,n1)(t) as a thinned Poisson flow: the system alternatively accepts each nith
arrived signal. Let Ft be the filtration generated by {T(n0,n1)(s) : s ≤ t}. Clearly, Ft ⊂ Gt , ∀t ≥ 0.

All filtrations here are assumed to satisfy the usual hypotheses; see Protter (2005).
Changing the measure by means of the Radon–Nikodym derivative defined by (4.9), we pass from intensities ν0 and ν1

to intensities λ0 and λ1 (defined by (4.10)) for the underlying Poisson flow. Therefore, the telegraph process with jumps,
X = X(t), t ≥ 0, is a Gt-martingale (under the new measure). Then X = X(t), t ≥ 0, is again a martingale, for the filtration
Ft ; see Theorem 2.2 in Föllmer and Protter (2011).

Other particular possibilities are the following.

1. Weibull distribution. Assuming that

c̄i(t)/hi(t) = −λitαi , αi > −1, λi > 0, i = 0, 1, t ≥ 0,

we have fi(t) = λitαi exp

−

λi
αi+1 t

αi+1

1{t>0}.

2. Pareto distribution. Let λ0, λ1 ∈ (0, 2). For b0, b1 > 0, assume that

c̄i(t)/hi(t) = −
λi

t
· 1{t>bi}, i = 0, 1.

Hence, the martingale distribution is determined by a Pareto distribution for interarrival times, i.e., fi(t) = λib
λi
i t−1−λi

1{t>bi}, i = 0, 1.
This distribution is in the domain of normal attraction of some λi-stable distribution; see Feller (1971).
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3. Logistic distribution. Let the interarrival times Tn, n ∈ Z, have (alternated) logistic distributions with density fi(t) =

2λie−λi t

(1+e−λi t )2
1{t≥0}; see Di Crescenzo and Martinucci (2010). This produces a martingale distribution if

c̄i(t)/hi(t) = −
λi

1 + e−λit
, t ≥ 0.

4. Cauchy distribution. The distribution fi takes the Cauchy form, such that fi(t) =
2ai/π
a2i +t2

1{t≥0}, if

c̄i(t)/hi(t) = −
ai

(a2i + t2)


π
2 − arctan(t/ai)

 , t ≥ 0.
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