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Abstract. This paper studies the distribution network design problem consid-
ering the uncertain information in the demand, capacities, costs and prices in a
multi-product environment and multiple periods. We consider a fractional
objective function that consist in maximize the ratio between total profit and
total cost. We use a model that integrates a facility location problem with a
distribution network problem with fuzzy constraints, technological coefficients,
and costs. To solve the problem, we use a method that transform the fuzzy linear
fractional programming model in an equivalent multi-objective linear fractional
programming problem to calculate the upper, middle and lower bounds of the
original problem.
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1 Introduction

The distribution network design (DND) problem seeks to meet the demand for a set of
customers using a set of available resources from a set of warehouses and supply these
warehouses from a set of available factories. The problem consists in selecting the best
raw according the distance, time, costs of freight, among other aspects, [1].

In general, the literature about this problem assumes that the information of costs,
capacities and demands are known and deterministic, however, the uncertainty of the
information is a real-world feature in many situations and consider it could be help to
deal with better decisions [2].

In this paper, we study the DNP problem considering the uncertainty in the costs,
prices, capacities and demand. In addition, we consider the maximization of the ratio
between profits and costs as the objective function. Thus, we have a fuzzy linear
fractional programming (FLFP) problem and to solve we use an equivalent multi-
objective linear fractional programming problem to calculate the upper, middle and
lower bounds of the FLFP problem.

The reminder of this paper is organized as follows: Sect. 2 presents a background
and the problem statement. Section 3 describe a brief description of FLFP model.
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Section 4 state the FLFP model to DND and an example is presented in Sect. 5.
Finally, Sect. 6 shows the conclusions and states some research lines for future works.

2 Background and Problem Statement

In the DND problem is given a set of possible locations of production factories and
warehouses (or distribution centers) with production and storage capacities, respec-
tively. Then, the problem consists in to determine the best location of a given number
of factories and warehouses to meet the demand of a set of customers maximizing the
ration between the profits and costs associated with the opening factories and ware-
houses and the distribution of products from factories to end customer’s sites. On the
other hand, it determines how many products should be and store in factories and
warehouses, respectively. In most the problems studied are assumed to be the infor-
mation of costs, profits, capacities, and demands are known and deterministic. We
consider that this information is imprecise and could be modeled as triangular fuzzy
numbers.

The DNP problem has been widely studied in the literature [3–7]. This seeks how
to set up a distribution network that consists of an integrated system of localization and
distribution considering different facilities (stages) like factories, warehouses, centers
of consumption and multiple products and periods Within a planning horizon. in a
distribution network, warehouses act as intermediary nodes between suppliers and their
points of sale, therefore in these you can store products in inventory to supply future
demands.

Similar problems have been analyzed in works such as [8–12]. The simplest
methods address the problem of logistical networks where the parameters used in the
model are deterministic and it is possible to formulate problems of whole linear pro-
gramming, given the conditions of opening of plants and warehouses. A solution
method for the discrete DC-based problem was published in 2007 [3], in the problem
the configuration of the network is made for emerging markets or new markets. To use
the DC technique Programming, is reformulated a linear problem and then, it solves
multiple linear problems until you get the right solution.

López-Santana et al. [1] developed a model that involves multiple products and
demand under uncertainty for the DND problem. They propose a fuzzy linear pro-
gramming model to solve the problem. There are several models have been proposed
for optimization under uncertainty and a variety of algorithms have been developed and
used successfully in many applications [13–16].

Similar problems with demand under uncertainty have been worked by [17] in
which the demand has a stochastic behavior described by a probability density function
and solved with stochastic programming. Bread and Nagi [18] use an approximation by
stochastic programming and a solution heuristic for this problem.

Finally there are models that involve uncertainty by using fuzzy logic given the
difficulty of programming stochastic, by applying fuzzy sets and numbers to handle
uncertainty in some parameters of a linear programming model [19].
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3 Fuzzy Linear Fractional Programming (FLFP)

We consider a linear fractional programming model with fuzzy constraints and fuzzy
objective function based in [19]. The FLFP problem may be written as:

max eZ ¼
P ecjxj þ eajPedjxj þ ebj

ð1Þ

Subject to Xeaijxj � ebi; i ¼ 1; 2; . . .;m; ð2Þ

xj � 0; j ¼ 1; 2; . . .; n: ð3Þ

We assume that, ~c; ~a; ~d; ~b; ~a; and eb are triangular fuzzy numbers. Let r 2 0; 1ð � be
the grade of satisfaction associated with the fuzzy constraints of the problem.
According with [19], the fuzzy constraints (2) are to be understood with respect to the
ranking relation. Thus, for r 2 0; 1ð �, the feasible set of the FLFP problem can be

described as Sr ¼ xjx 2 Rn; x[ 0;
P

aLijrxjr � bLir;
P

aMijrxjr � bMir ;
P

aUijrxjr � bUir ; 8i; j
n o

:

Then, a vector x 2 Sr is called r–feasible solution of FLFP problem and is an
optimal solution of the FLFP problem, if there does not exist any x 2 Sr, such thateZ x�ð Þ� reZ xð Þ.

Let x be the acceptable optimal solution of the FLFP problem. Then the corre-
sponding objective value eZ xð Þ ¼ ZL xð Þ; ZM xð Þ; ZU xð Þ½ � is called acceptable optimal
value of the FLFP problem. The method proposed by [19] are stated as follows:

1. Formulate the real-life problem as a FLFP problem as (1) to (3). We assume that all
fuzzy numbers are triangular. Any triangular fuzzy numbers can be represented by
~aij ¼ sij; lij; rij

� �
, ~b ¼ ti; ui; við Þ, ~cj ¼ kj;mj; nj

� �
, ~dj ¼ fj; gj; pj

� �
, ~aj ¼ qj1; qj2; qj3

� �
,ebj ¼ rj1; rj2; rj3

� �
for all i; j. Then the problem obtained in Step 1 may be written as:

max ~Z ¼
P

kj;mjnj
� �

xj þ qj1; qj2; qj3
� �P

fj; gj; pj
� �

xj þ rj1; rj2; rj3
� � ð4Þ

Subject to X
sij; lij; rij
� �

xj � ti; ui; við Þ; i ¼ 1; 2. . .;m; ð5Þ

xj � 0; j ¼ 1; 2; . . .; n: ð6Þ

2. To transform both the objective function and constraints into its equivalent crisp
problem (a crisp problem could be stated as a mathematical programming model
without the fuzzy information). Then the problem may be written as follows:
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max

P
kjxj þ q1;

P
mj � kj
� �

xj þ q2 � q1ð Þ; P nj þ kj
� �

xj þ q1 þ q3ð ÞP
fjxj þ r1;

P
gj � fj
� �

xj þ r2 � r1ð Þ; P pj þ fj
� �

xj þ r1 þ r3ð Þ ð7Þ

Subject to X
sijxj � ti; i ¼ 1; 2. . .;m; ð8ÞX

lij � sij
� �

xj � ui � tið Þ; i ¼ 1; 2; . . .;m; ð9ÞX
rij þ sij
� �

xj � vi þ tið Þ; i ¼ 1; 2; . . .;m; ð10Þ

xj � 0; j ¼ 1; 2; . . .. . .; n: ð11Þ

3. The FLFP problem is reduced into an equivalent tri-objective programming
(TOP) problem as:

max
P

kjxj þ q1P
fjxj þ r1

;

P
mj � kj
� �

xj þ q2 � q1ð ÞP
gj � fj
� �

xj þ r2 � r1ð Þ ;

P
nj þ kj
� �

xj þ q1 þ q3ð ÞP
pj þ fj
� �

xj þ r1 þ r3ð Þ

( )
ð12Þ

Subject to constrains (8) to (11).
4. Formulate the following model for obtaining lower bounds ZL xð Þ;ZM xð Þ and ZU xð Þ

of the objective value as follows:

LFPð Þmax ZL ¼
P

kjxj þ q1P
fjxj þ r1

ð13Þ

MFPð Þmax ZM ¼
P

mj � kj
� �

xj þ q2 � q1ð ÞP
gj � fj
� �

xj þ r2 � r1ð Þ ð14Þ

UFPð Þmax ZU ¼
P

nj þ kj
� �

xj þ q1 þ q3ð ÞP
pj þ fj
� �

xj þ r1 þ r3ð Þ ð15Þ

5. The above problems (LFP), (MFP), (UFP) are crisp linear fractional programming
problem subject to constrains (8) to (11), which can be solved by transformation of
Charnes and Cooper [20] that consists in given a linear fraction as:

max z ¼
P

cjxj þ aP
djxj þ b

ð16Þ

Subject to X
aijxj � bi; i ¼ 1; 2; . . .;m; ð17Þ

xj � 0; j ¼ 1; 2; . . .; n: ð18Þ
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The transformation x
0
j ¼ txj and

P
djxj þ b ¼ t, with a variable t� 0 transform the

problem in a linear programming model as:

max z ¼
X

cjx
0
j þ at ð19Þ

Subject to X
aijx

0
j � bit� 0; i ¼ 1; 2; . . .;m; ð20ÞX

djx
0
j þ bt ¼ 1 ð21Þ

xj � 0; j ¼ 1; 2; . . .; n:
t� 0

ð22Þ

This equivalent linear programming model is solved with traditional methods.
6. The solutions could be stated and obtain the optimal solutions of eZ ¼ ZL; ZM ; ZUð Þ.

4 A FFLP Model to Design Distribution Networks

Our model for the DND problem is based on [1] where a dedicated system to manu-
facturing of different products for which is considered some possible locations of your
production factories and a series of distribution centers where your products will be
stored before being transported to the final customers. On the other hand, you should
evaluate the type of technology for factory, which has different consumptions and
costs. Also, in the warehouse it is necessary to select the most appropriate technology
that ensures adequate storage, since the products must be subject to certain conditions
of storage. As main assumption of this problem consists in defining as initial condition
the selected factories and stores since the model proposed by [1] use binary variables,
but our approach does not consider this feature.

The sets are defined as follows:

• L is the product set, indexed in l ¼ 1. . .L
• I is the set of factories, indexed in i ¼ 1. . .I
• J is the set of warehouses, indexed in j ¼ 1. . .J
• K Is the set of sale points, Indexed in k ¼ 1. . .K
• P is the type of technology of each factory, Indexed in p ¼ 1. . .P
• Q is the type of technology of each store, indexed in q ¼ 1. . .Q
• T is the set of periods, indexed in t ¼ 1. . .T

The parameters are stated as follows:

• Mipt: Maximum capacity matrix (available hours) for the factory i with technology
p in the period t.

• Vjqt: Maximum Capacity matrix (Available hours) for the distribution center j with
technology q in the period t.

106 E. López-Santana et al.



• rlp: portion of technology consuming the product lp roduced in a factory with one of
the technology p (in hours per unit of product).

• slq: portion of technology consuming the product l stored in a distribution center
with one of the technology q (in hours per unit of product).

• gip: fixed cost associated with factory opening i with the type of technology p.
• fjq: fixed cost associated with the opening of the distribution center j with the type of

technology q.
• cijlp: Unit cost associated with product type l produced and shipped from a factory i

with a technology Q to a distribution center j.
• bjklq: Unit cost associated with product type l stored and shipped from the distri-

bution center j with a technology q to a point of demand k.
• hjl: unit cost of inventory for the product l in the Warehouse j.
• ql: Unit profit associated with a product type l.
• Dklt: demand for a point of sale k of the type of product l in the period t.

The decision variables are:

• Xijlpt: Quantity in units shipped from the factory i with technology p to the ware-
house j of the product l in period t.

• Yjklqt: Quantity in units shipped from warehouse j with technology q to the point of
sale k of the product l in the period t.

• Wjlt: Inventory at the end of the period t of the product l in the Warehouse j:

The linear fractional programming model is stated as follows:

max Z ¼ J
C ð23Þ

J ¼
X
t2T

X
j2J

X
k2K

X
l2L

X
q2Q

qlYjklqt ð24Þ

C ¼
X
t2T

X
i2I

X
j2J

X
l2L

X
p2P

cijlpXijlpt þ
X
t2T

X
j2J

X
k2K

X
l2L

X
q2Q

bjklqYjklqt

þ
X
t2T

X
j2J

X
l2L

hjlWjlt þ
X
i2I

X
p2P

gip þ
X
j2Q

X
q2Q

fjq
ð25Þ

subject to: P
j2J

P
l2L

rlp � Xijlpt �Mip 8i 2 I; 8p 2 P; 8t 2 T ð26Þ
P
k2K

P
l2L

slq � Yjklqt �Vjqt 8j 2 J; 8q 2 Q; 8t 2 T ð27Þ

Wjlt ¼ Wj;l;t�1 þ
P
i2I

P
p2P

Xijlpt �
P
k2K

P
q2Q

Yjklqt 8j 2 J; 8l 2 L; 8t 2 T ð28Þ
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Wjlt ¼ Wj;l0 þ
P
i2I

P
p2P

Xijlpt �
P
k2K

P
q2Q

Yjklqt 8j 2 J; 8l 2 L; t ¼ 1 ð29ÞP
j2J

P
q2Q

Yjklqt �Dklt 8k 2 K; 8l 2 L; 8t 2 T ð30Þ

Xijlpt � 0 8i 2 I; 8j 2 J; 8l 2 L; 8p 2 P; 8t 2 T
Yjklqt � 0 8j 2 J; 8k 2 K; 8l 2 L; 8q 2 Q; 8t 2 T
Wjlt � 0 8j 2 J; 8l 2 L; 8t 2 T

ð31Þ

The objective function (23) seeks to maximize the ration between the profit (24)
and the total costs (25) of the distribution network. The constraints (26) and (27) refer
to the fulfillment of the capacity of factories and distribution centers in each of the
periods, respectively. Constraints (28) are product balance and inventories in each
distribution center, for each product and each period. Constraints (29) are special case
of (28) when t ¼ 1, then this consider the initial inventory denoted byWj;l0. Constraints
(30) ensure that the demand for each customer, product and each period must meet.
Constraints (31) refers to the nature of the decision variables.

For the model described in (23) to (31), all parameters are modeled as triangular
fuzzy numbers in similar way of the parameters defined in Sect. 3. To solve the
problem, we apply the steps defined in Sect. 3 to obtain the optimal lower bounds
ZL xð Þ;ZM xð Þ and ZU xð Þ.

5 Example of Application

The following example is presented to show the application of the proposed model and
the solution approach. We consider 5 factories, 4 warehouses, 4 customers, 4 and 3
types of technology for factories and warehouses, respectively, 5 planning horizon
periods. A single Type of product (although it can be extended to multiple products).
The information of the parameters is described in the Tables 1, 2, 3, 4, 5, 6 and 7. The
facility is taken the capacity as constant throughout the planning horizon. In addition,
the profit is q1t ¼ 100; 200; 250ð Þ for periods in the planning horizon.

Table 1. Consumption portion of technology (Hours/unit)

Factory Store
l; p rMlp rLlp rUlp l; q sMlq sLlq sUlq
1, 1 0.969085 0.7462 1.15321 1, 1 0.918330 0.78058 1.02853
1, 2 0.389046 0.34625 0.50576 1, 2 0.913122 0.74876 1.08662
1, 3 0.858348 0.65234 1.04718 1, 3 0.994356 0.74577 1.13357
1, 4 0.928971 0.74318 1.11477

108 E. López-Santana et al.



Table 2. Capacities and fixed costs of stores

j; q VM
jq VL

jq VU
jq f Mjq f Ljq f Ujq

1, 1 4500 3735 5625 3650000 3029500 4015000
2, 1 3825 2677.5 4245.75 5600000 4480000 6160000
3, 1 4005 2963.7 4405.5 5600000 4424000 6552000
4, 1 4140 3270.6 5216.4 3400000 2958000 3978000
1, 2 3735 2950.65 4108.5 4300000 3569000 4988000
2, 2 4140 2898 4968 4200000 3276000 5166000
3, 2 3915 3484.35 4580.55 5150000 4532000 5716500
4, 2 3825 3327.75 4590 3650000 2591500 4343500
1, 3 4725 3543.75 5292 4450000 3827000 5740500
2, 3 4185 2971.35 4938.3 4900000 3724000 6125000
3, 3 4545 3636 5726.7 4800000 3792000 5568000

Table 3. Capacity and fixed cost of factories

i; p MM
ip ML

ip MU
ip gMip gLip gUip

1, 1 2000 1460 2500 3090000 2193900 3615300
2, 1 2800 2184 3388 3060000 2601000 3916800
3, 1 2250 2025 2812.5 3480000 2610000 4036800
4, 1 2475 2153.25 2846.25 3480000 2888400 4489200
5, 1 3000 2100 3810 3000000 2490000 3750000
1, 2 2000 1700 2400 2850000 2451000 3192000
2, 2 2175 1653 2414.25 3180000 2226000 3847800
3, 2 2125 1827.5 2741.25 2850000 2536500 3192000
4, 2 2400 1896 3048 3360000 2956800 4368000
5, 2 2275 1774.5 2752.75 3030000 2393700 3393600
1, 3 2225 1780 2692.25 3000000 2340000 3570000
2, 3 2000 1540 2360 3330000 2331000 3796200
3, 3 2675 1872.5 3263.5 3540000 2761200 4566600
4, 3 2250 1980 2902.5 3450000 2794500 4450500
5, 3 2900 2523 3451 3360000 2788800 4368000
1, 4 2200 1760 2596 3120000 2776800 3525600
2, 4 2975 2380 3599.75 2880000 2476800 3571200
3, 4 2475 2004.75 2747.25 3510000 2843100 4457700
4, 4 2900 2552 3654 2880000 2448000 3283200
5, 4 2225 1691 2536.5 3570000 2570400 4533900
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Table 4. Cost of shipping from factory to warehouse

i; j; l cMijlp cLijlp cUijlp
1 2 3 4 1 2 3 4 1 2 3 4

1, 1, 1 47 59 48 57 40.42 44.25 38.88 49.59 55.93 74.93 55.68 74.1
2, 1, 1 47 50 55 34 39.01 40 47.3 28.9 59.69 55.5 61.05 39.44
3, 1, 1 50 57 38 41 41.5 49.59 33.44 32.39 57 69.54 42.56 47.15
4, 1, 1 29 41 27 59 25.23 32.8 21.87 43.66 37.7 52.48 30.24 65.49
5, 1, 1 43 49 39 56 35.26 43.12 30.03 39.2 53.75 55.86 47.97 68.32
1, 2, 1 31 40 55 55 26.35 31.2 44 47.85 37.2 52 60.5 62.15
2, 2, 1 35 27 30 35 30.8 19.44 24.9 26.6 44.45 34.56 38.7 45.15
3, 2, 1 55 53 43 57 42.35 47.17 31.82 42.18 64.35 60.42 49.02 73.53
4, 2, 1 39 44 37 37 28.86 38.72 31.08 32.56 45.63 49.28 46.62 46.62
5, 2, 1 38 41 43 32 30.78 33.62 34.83 25.6 49.4 52.07 48.16 38.4
1, 3, 1 25 46 58 53 21.5 34.96 49.3 39.22 29.75 57.5 66.7 58.3
2, 1, 3 46 43 43 39 40.94 38.27 36.98 30.42 55.66 54.18 49.88 46.02
3, 3, 1 60 33 52 35 42 27.39 38.48 27.3 69 37.95 58.24 40.95
4, 1, 3 57 44 55 45 41.61 31.24 40.15 40.05 70.11 48.4 69.85 56.25
5, 1, 3 50 26 39 40 44 23.14 31.2 33.6 56 31.98 43.68 47.2
1, 4, 1 52 43 58 31 36.92 36.98 46.98 26.66 62.92 48.16 73.08 35.65
2, 4, 1 33 35 56 52 24.09 30.45 50.4 39 36.96 39.55 69.44 58.24
3, 4, 1 59 55 27 44 43.07 48.95 22.68 31.24 70.21 65.45 32.67 56.76
4, 4, 1 30 40 48 25 21.6 33.2 34.56 18.5 35.1 47.2 60.96 30.75
5, 4, 1 47 30 54 27 33.37 23.1 48.6 20.25 61.1 38.1 59.4 29.97

Table 5. Cost of shipping from warehouse to client

j; k; l tMjkl tLjkl tUjkl
1 2 3 1 2 3 1 2 3

1, 1, 1 27 23 27 21.87 20.24 20.25 30.78 25.53 34.02
2, 1, 1 38 25 40 30.4 21.75 28 41.8 31 46.8
3, 1, 1 44 46 33 36.08 40.48 27.72 50.6 59.34 39.93
4, 1, 1 20 36 32 15 27.36 28.48 24.2 43.92 36.8
1, 2, 1 21 26 38 18.27 18.98 26.98 27.3 33.28 45.98
2, 2, 1 42 46 39 33.18 33.12 30.03 54.6 58.88 47.97
3, 2, 1 28 23 24 23.8 18.86 20.88 35.56 29.67 30.24
4, 2, 1 37 46 32 28.86 32.66 23.68 44.4 58.42 36.48
1, 3, 1 40 37 23 35.6 27.75 20.47 45.6 45.88 28.52
2, 1, 3 36 27 45 27.36 22.68 31.5 39.6 33.75 52.65
3, 3, 1 22 41 27 17.6 29.52 19.17 24.42 51.25 34.29
4, 1, 3 48 25 25 39.84 20 18 54.72 31.25 27.75
1, 4, 1 36 38 40 25.92 27.36 35.2 42.84 44.46 47.6
2, 4, 1 42 36 46 37.38 25.2 37.26 52.92 42.12 57.5
3, 4, 1 30 22 46 25.5 17.38 41.4 33.6 27.06 51.06
4, 4, 1 36 47 36 29.16 40.42 27 42.48 52.17 44.64
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This problem was executed in Xpress-MP .8.4 on Windows 10 64-bit, with a
processor Intel i5 3337 (2 � 1.8 GHz) y 6 GB of RAM. Figure 1 shows the result of
the membership function of eZ xð Þ. The fuzzy optimal solution is eZ ¼ ZL; ZM ; Zuð Þ ¼
0:37382; 0:75764; 0:93456ð Þ. This result gives a lower bound of the fuzzy optimal
solutions for the DND problem and helps the decision makers to involve the uncertain
information.

Table 6. Demand in the planning horizon

k; l; t DM
klt DL

klt DU
klt k; l; t DM

klt DL
klt DU

klt

1, 1, 1 931 765 1210 3, 1, 3 1149 989 1498
2, 1, 1 987 832 1273 4, 1, 3 1468 1367 1772
3, 1, 1 806 666 1175 1, 1, 4 1933 1831 2158
4, 1, 1 830 699 1200 2, 1, 4 1115 941 1401
1, 1, 2 1155 1001 1379 3, 1, 4 1089 947 1457
2, 1, 2 1270 1121 1525 4, 1, 4 1110 967 1436
3, 1, 2 760 572 1055 1, 1, 5 2287 2148 2582
4, 1, 2 1052 909 1363 2, 1, 5 2425 2240 2686
1, 1, 3 1323 1191 1582 3, 1, 5 951 771 1270
2, 1, 3 1670 1484 2040 4, 1, 5 1572 1390 1873

Table 7. Cost of inventory

j; l hMjl hLjl hUjl
1, 1 11 9.02 12.65
2, 1 10 8.4 11.9
3, 1 10 8 11.7
4, 1 11 9.79 12.32

Fig. 1. Membership function of eZ xð Þ
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6 Conclusions

This paper reviews the DND problem under uncertain information of costs, profits,
capacities and demands. We consider a fractional objective function and solve the
fuzzy linear fractional objective function with a method to transform the problem in an
equivalent multi-objective linear fractional programming to obtain a lower bound of the
fuzzy optimal solution. In addition, our proposed approach is easy to implement than
other iterative methods that solve the similar problems in the literature.

This work generates possible futures as extended the approach to multi-objective
linear fractional programming. Moreover, it is possible to apply the approach in real-
world instances and compare with another approach likes stochastic programming.
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