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Abstract. This paper studies the distribution network design problem consid-
ering the uncertain information in the demand, capacities, costs and prices in a
multi-product environment and multiple periods. We consider a fractional
objective function that consist in maximize the ratio between total profit and
total cost. We use a model that integrates a facility location problem with a
distribution network problem with fuzzy constraints, technological coefficients,
and costs. To solve the problem, we use a method that transform the fuzzy linear
fractional programming model in an equivalent multi-objective linear fractional
programming problem to calculate the upper, middle and lower bounds of the
original problem.
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1 Introduction

The distribution network design (DND) problem seeks to meet the demand for a set of
customers using a set of available resources from a set of warehouses and supply these
warehouses from a set of available factories. The problem consists in selecting the best
raw according the distance, time, costs of freight, among other aspects, [1].

In general, the literature about this problem assumes that the information of costs,
capacities and demands are known and deterministic, however, the uncertainty of the
information is a real-world feature in many situations and consider it could be help to
deal with better decisions [2].

In this paper, we study the DNP problem considering the uncertainty in the costs,
prices, capacities and demand. In addition, we consider the maximization of the ratio
between profits and costs as the objective function. Thus, we have a fuzzy linear
fractional programming (FLFP) problem and to solve we use an equivalent multi-
objective linear fractional programming problem to calculate the upper, middle and
lower bounds of the FLFP problem.

The reminder of this paper is organized as follows: Sect. 2 presents a background
and the problem statement. Section 3 describe a brief description of FLFP model.
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Section 4 state the FLFP model to DND and an example is presented in Sect. 5.
Finally, Sect. 6 shows the conclusions and states some research lines for future works.

2 Background and Problem Statement

In the DND problem is given a set of possible locations of production factories and
warehouses (or distribution centers) with production and storage capacities, respec-
tively. Then, the problem consists in to determine the best location of a given number
of factories and warehouses to meet the demand of a set of customers maximizing the
ration between the profits and costs associated with the opening factories and ware-
houses and the distribution of products from factories to end customer’s sites. On the
other hand, it determines how many products should be and store in factories and
warehouses, respectively. In most the problems studied are assumed to be the infor-
mation of costs, profits, capacities, and demands are known and deterministic. We
consider that this information is imprecise and could be modeled as triangular fuzzy
numbers.

The DNP problem has been widely studied in the literature [3—7]. This seeks how
to set up a distribution network that consists of an integrated system of localization and
distribution considering different facilities (stages) like factories, warehouses, centers
of consumption and multiple products and periods Within a planning horizon. in a
distribution network, warehouses act as intermediary nodes between suppliers and their
points of sale, therefore in these you can store products in inventory to supply future
demands.

Similar problems have been analyzed in works such as [8—12]. The simplest
methods address the problem of logistical networks where the parameters used in the
model are deterministic and it is possible to formulate problems of whole linear pro-
gramming, given the conditions of opening of plants and warehouses. A solution
method for the discrete DC-based problem was published in 2007 [3], in the problem
the configuration of the network is made for emerging markets or new markets. To use
the DC technique Programming, is reformulated a linear problem and then, it solves
multiple linear problems until you get the right solution.

Lopez-Santana et al. [1] developed a model that involves multiple products and
demand under uncertainty for the DND problem. They propose a fuzzy linear pro-
gramming model to solve the problem. There are several models have been proposed
for optimization under uncertainty and a variety of algorithms have been developed and
used successfully in many applications [13-16].

Similar problems with demand under uncertainty have been worked by [17] in
which the demand has a stochastic behavior described by a probability density function
and solved with stochastic programming. Bread and Nagi [18] use an approximation by
stochastic programming and a solution heuristic for this problem.

Finally there are models that involve uncertainty by using fuzzy logic given the
difficulty of programming stochastic, by applying fuzzy sets and numbers to handle
uncertainty in some parameters of a linear programming model [19].
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3 Fuzzy Linear Fractional Programming (FLFP)

We consider a linear fractional programming model with fuzzy constraints and fuzzy
objective function based in [19]. The FLFP problem may be written as:

maxZ = =995 ()
Zd.ij—'—ﬁj
Subject to
Y ap<bini=12,...m, (2)
x>0,j=12,...,n (3)

We assume that, ¢, &,d, §,a, and b are triangular fuzzy numbers. Let r € (0, 1] be
the grade of satisfaction associated with the fuzzy constraints of the problem.
According with [19], the fuzzy constraints (2) are to be understood with respect to the

ranking relation. Thus, for r € (0, 1], the feasible set of the FLFP problem can be
described as S, = {x|x ER x>0,> aiLjrxj, < biLr7 Za%xjr < bf»‘;’, Zag_xj, < bg,Vi,j}.

Then, a vector x € S, is called r—feasible solution of FLFP problem and is an
optimal solution of the FLFP problem, if there does not exist any x € S, such that
Z(x*) <,Z(x).

Let x be the acceptable optimal solution of the FLFP problem. Then the corre-
sponding objective value Z(x) = [Z%(x),ZM (x),ZY(x)] is called acceptable optimal
value of the FLFP problem. The method proposed by [19] are stated as follows:

1. Formulate the real-life problem as a FLFP problem as (1) to (3). We assume that all
fuzzy numbers are triangular. Any triangular fuzzy numbers can be represented by
sz‘j = (s by, i) b = (ti,ui,vi), & = (kj,my,mp), dy = (£, 85, p})» % = (41, 92+ 43
B; = (rj1, 12, 173) for all i, j. Then the problem obtained in Step 1 may be written as:

> (kj, mn)x; + (g1, 972, 953)

mang = 3 (fi- 8 pi)xi+ (rins ris 1) @

Subject to
Z (sij,ll:,-, r,;,»))g <(ti,ui,vi), i=1,2...,m, (5)
x%>0,j=12,...,n (6)

2. To transform both the objective function and constraints into its equivalent crisp
problem (a crisp problem could be stated as a mathematical programming model
without the fuzzy information). Then the problem may be written as follows:
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o 2 ki + > (my — ki) xi+ (a2 — 1), 3 (i + ki) x + (a1 +43)

S+ 30(8 —f)x+ (r2 = 1), o (pi +£)x+ (r +713) 7

Subject to
Zsijxjgli,izl,Z...,m, (8)
>l —si)<(wi—t),i=1,2,...,m, (9)
Z(rij+sij)xj§(vi+ti),i:1,2,...,m, (10)
x>0,j=1,2,...... J . (11)

3. The FLFP problem is reduced into an equivalent tri-objective programming
(TOP) problem as:

maxd =K@ S (my = k) + (g2 —aq1) X (m+k)x+ (g1 + ) (12)
Y (g =)+ —n) T X (pr+f)+ ()
Subject to constrains (8) to (11).

4. Formulate the following model for obtaining lower bounds Z(x),Z" (x) and ZY (x)
of the objective value as follows:

(LFP)max 7 — 2=k + a1 (13)
DXt
(MFP)max Z" = 2 (m — k) + (14)
( J)xj (r2 —r1)
(UFP)max 20 — 2= HKi)+ (a1 +as) (15)
(pj+ﬁ)xj+ (ri+13)

5. The above problems (LFP), (MFP), (UFP) are crisp linear fractional programming
problem subject to constrains (8) to (11), which can be solved by transformation of
Charnes and Cooper [20] that consists in given a linear fraction as:

ZCJ')C]'—F o
maxz = =" — 16
> dixi+ (16)
Subject to
Zaijxjgb,-,iz 1,2,...,m, (17)

x>0,j=12,...,n (18)
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The transformation x; =tx; and ) djx;+ f§ = t, with a variable ¢ > 0 transform the
problem in a linear programming model as:

max z = chx}-&-dl (19)
Subject to
Zaljle-—bith,iz1,27-~-;m, (20)
Zdjxj'.Jrﬁt:l (21)
x>0,j=12,...,n
=0 (22)

This equivalent linear programming model is solved with traditional methods.

6. The solutions could be stated and obtain the optimal solutions of Z = (Z£,Z" 7).

4 A FFLP Model to Design Distribution Networks

Our model for the DND problem is based on [1] where a dedicated system to manu-
facturing of different products for which is considered some possible locations of your
production factories and a series of distribution centers where your products will be
stored before being transported to the final customers. On the other hand, you should
evaluate the type of technology for factory, which has different consumptions and
costs. Also, in the warehouse it is necessary to select the most appropriate technology
that ensures adequate storage, since the products must be subject to certain conditions
of storage. As main assumption of this problem consists in defining as initial condition
the selected factories and stores since the model proposed by [1] use binary variables,
but our approach does not consider this feature.

The sets are defined as follows:

L is the product set, indexed in / = 1...L

I is the set of factories, indexed ini =1.../

J is the set of warehouses, indexed inj=1...J

K Is the set of sale points, Indexed in k = 1...K

P is the type of technology of each factory, Indexed inp =1...P
Q is the type of technology of each store, indexed in ¢ = 1...0
T is the set of periods, indexed in t = 1...T

The parameters are stated as follows:

M;p,;: Maximum capacity matrix (available hours) for the factory i with technology
p in the period z.

Vjgr: Maximum Capacity matrix (Available hours) for the distribution center j with
technology ¢ in the period z.
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e 75, portion of technology consuming the product Ip roduced in a factory with one of
the technology p (in hours per unit of product).

e s;4: portion of technology consuming the product [ stored in a distribution center
with one of the technology ¢ (in hours per unit of product).

e g fixed cost associated with factory opening i with the type of technology p.

e fi,: fixed cost associated with the opening of the distribution center j with the type of
technology gq.

® cjip: Unit cost associated with product type [ produced and shipped from a factory i
with a technology Q to a distribution center j.

® Dju,: Unit cost associated with product type [ stored and shipped from the distri-
bution center j with a technology ¢ o a point of demand k.

e Jj: unit cost of inventory for the product / in the Warehouse ;.

e p;: Unit profit associated with a product type [.

e Dy;: demand for a point of sale k of the type of product [ in the period .

The decision variables are:

® Xiip: Quantity in units shipped from the factory i with technology p to the ware-
house j of the product [ in period .

®  Yjug: Quantity in units shipped from warehouse j with technology ¢ to the point of
sale k of the product / in the period t.

e Wy Inventory at the end of the period ¢ of the product / in the Warehouse j.

The linear fractional programming model is stated as follows:

max Z :% (23)

J= Z Z Z Z Z PiYjigr (24)

teT jeJ keK leL qgeQ

C= Z Z Z Z Z CijipXijipe + Z Z Z Z Z bjkiq Yikigr

€T iel jeJ IeL peP 1€T jeJ keK IeL qeQ

(25)
DD Wt D> gt DD M
1€T jeJ leL i€l peP Jj€Q €0
subject to:
Yo rp x X <My, Viel,NpePNteT (26)
JjeJ lel
Yo Sig* Yiug <Vig Vje;NgeQ;VteT (27)
keK leL

Vlet = ‘/Vj.,l,tfl + E Z Xijlpt - Z Z ijlqt V] S ], Vil e L, ViteT (28)

i€l peP keK qeQ
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“/jlt:‘)[/j,10+zzxﬁlpt_zz)/jqut VjGJ;VlEL;l:l (29)
iel peP k€K qeQ
SN Vg <Duy VkEKVIELNtET (30)
Jj€J g0

Xijip: >0 VieLVjeJ;Vie LiNp e P;Vt €T
Yiug >0 Vjel;Vke K;Vle LiNqe Q;Vt €T (31)
Wiy>0 Vjel,VieL;VteT

The objective function (23) seeks to maximize the ration between the profit (24)
and the total costs (25) of the distribution network. The constraints (26) and (27) refer
to the fulfillment of the capacity of factories and distribution centers in each of the
periods, respectively. Constraints (28) are product balance and inventories in each
distribution center, for each product and each period. Constraints (29) are special case
of (28) when ¢ = 1, then this consider the initial inventory denoted by W;;y. Constraints
(30) ensure that the demand for each customer, product and each period must meet.
Constraints (31) refers to the nature of the decision variables.

For the model described in (23) to (31), all parameters are modeled as triangular
fuzzy numbers in similar way of the parameters defined in Sect. 3. To solve the
problem, we apply the steps defined in Sect. 3 to obtain the optimal lower bounds
ZL(x),ZM(x) and ZY (x).

5 Example of Application

The following example is presented to show the application of the proposed model and
the solution approach. We consider 5 factories, 4 warehouses, 4 customers, 4 and 3
types of technology for factories and warehouses, respectively, 5 planning horizon
periods. A single Type of product (although it can be extended to multiple products).
The information of the parameters is described in the Tables 1, 2, 3, 4, 5, 6 and 7. The
facility is taken the capacity as constant throughout the planning horizon. In addition,
the profit is p;, = (100,200, 250) for periods in the planning horizon.

Table 1. Consumption portion of technology (Hours/unit)

Factory Store

Lp rf‘lf r{;} rlg lq s% sﬁl sll‘/I
1, 1/0.969085  0.7462 | 1.15321 1, 1]0.918330|0.78058 | 1.02853
1, 210.389046 | 0.34625 | 0.50576 | 1, 2| 0.913122 | 0.74876 | 1.08662
0.858348 | 0.65234 | 1.04718 | 1, 3|0.994356 | 0.74577 | 1.13357

3
, 410928971 0.74318 | 1.11477
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Table 2. Capacities and fixed costs of stores

b |Vid Vi Via o ia i
1, 145003735 5625 3650000 | 3029500 | 4015000
2, 1]3825|2677.5 |4245.75| 5600000 | 4480000 | 6160000
3, 14005 |2963.7 |4405.5 |5600000 4424000 | 6552000
4,1|41403270.6 |5216.4 | 3400000 | 2958000 | 3978000
1, 2 3735|2950.65 | 4108.5 | 4300000 | 3569000 | 4988000
2,2|4140|2898 4968 4200000 | 3276000 | 5166000
3, 23915 | 3484.35 | 4580.55 | 5150000 | 4532000 | 5716500
4, 2|3825|3327.75 | 4590 3650000 | 2591500 | 4343500
1, 3|4725|3543.75| 5292 4450000 | 3827000 | 5740500
2,314185(2971.35|4938.3 | 4900000 | 3724000 | 6125000
3,3 (4545|3636 5726.7 | 4800000 | 3792000 | 5568000
Table 3. Capacity and fixed cost of factories
Lp |My My, My sy |8 |8
1, 1 {2000 | 1460 2500 3090000 | 2193900 | 3615300
2,1/2800|2184 3388 3060000 | 2601000 | 3916800
3, 12250 | 2025 2812.5 | 3480000 | 2610000 | 4036800
4, 1|2475|2153.25 | 2846.25 | 3480000 | 2888400 | 4489200
5, 13000 | 2100 3810 3000000 | 2490000 | 3750000
1, 22000 | 1700 2400 2850000 | 2451000 | 3192000
2,2(2175|1653 2414.25 | 3180000 | 2226000 | 3847800
3,2(2125]1827.5 |2741.25 | 2850000 | 2536500 | 3192000
4,212400 | 1896 3048 3360000 | 2956800 | 4368000
5,212275|1774.5 |2752.75 | 3030000 | 2393700 | 3393600
1,3]2225|1780 2692.25 | 3000000 | 2340000 | 3570000
2, 312000 | 1540 2360 3330000 | 2331000 | 3796200
3,3(2675|1872.5 |3263.5 |3540000 2761200 | 4566600
4,312250| 1980 2902.5 | 3450000 | 2794500 | 4450500
5, 312900 | 2523 3451 3360000 | 2788800 | 4368000
1, 4|2200| 1760 2596 3120000 | 2776800 | 3525600
2, 4129752380 3599.75 | 2880000 | 2476800 | 3571200
3, 42475 |2004.75 | 2747.25 | 3510000 | 2843100 | 4457700
4, 412900 | 2552 3654 2880000 | 2448000 | 3283200
5,412225|1691 2536.5 | 3570000 | 2570400 | 4533900

109
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Table 4. Cost of shipping from factory to warehouse

P L U
Ll ey, Ciip ijp

S

Ju—s

2 /3 /41 2 |3 |4 |1 2 |3 |4

47159148 |57|40.42 1 44.25|38.88 149.59 | 55.93 | 74.93 | 55.68 | 74.1
475055 34|39.01 40 473 289 [59.69 555 |61.0539.44
50|57 /38|41 |41.5 |49.59|33.44|32.39 |57 69.54 | 42.56 | 47.15
29|41/27(59(25.23|32.8 |21.87|43.66|37.7 |52.48|30.24 | 65.49
43149139 |56|35.26 /43.12|30.03 | 39.2 |53.75|55.86|47.97 | 68.32
31|40|55|55(26.35|31.2 |44 47.85/372 |52 60.5 |62.15
35(127130(35(30.8 |19.44 (249 |26.6 |44.45)34.56|38.7 |45.15
55|53 /43|57 (42.35|47.17 | 31.82|42.18 | 64.35 | 60.42 | 49.02 | 73.53
39|44 |37|37|28.86|38.72|31.08 | 32.56 | 45.63 | 49.28 | 46.62 | 46.62
384143 |32{30.78 | 33.62 |34.83 |25.6 49.4 |52.07|48.16|38.4
465853 |21.5 |34.96 493 |39.22/29.75|57.5 |66.7 |58.3
4643143 /39]40.94 | 38.27 | 36.98 | 30.42 | 55.66 | 54.18 | 49.88 | 46.02
60|33 /52|35 |42 27.39|38.48 273 |69 37.95|58.24 | 40.95
57|44 |55/45|41.61 |31.24|40.15|40.05|70.11 | 48.4 |69.85|56.25

50|26|39{40 |44 23.14|31.2 |33.6 |56 31.98|43.68 [47.2
52|43 |58(31(36.92|36.98 |46.98 | 26.66 | 62.92 | 48.16 | 73.08 | 35.65

e e e L S LT S T e S B T R R S R S SN
[\e]
W

2,4,133|35 56 |52|24.09 3045504 |39 36.96 | 39.55 | 69.44 | 58.24
3,4,1/59|55 27 44 43.07 | 48.95|22.68 |31.24 | 70.21 | 65.45 | 32.67 | 56.76
4,4,1[30/40(48 25|21.6 332 |34.56 185 |35.1 |47.2 |60.96|30.75
5,4,1,47|3054|27|33.37|23.1 |48.6 |20.25|61.1 |38.1 |59.4 |29.97

Table 5. Cost of shipping from warehouse to client

Jik,1 ’%I ’ijz tf/fz
1 /2 |3 |1 2 3 1 2 3

1,1, 1272327 (21.8720.24 |20.25|30.78 | 25.53 | 34.02
2,1,1(38(25/40(304 |21.75|28 41.8 |31 46.8
3,1,1/44 /46|33 |36.08|40.48 |27.7250.6 |59.34|39.93
4,1,1/20(36(32 15 27.3628.48(24.2 |43.92|36.8
1,2,1(21|2638|18.27|18.98|26.98 |27.3 |33.28 |45.98
2,2,1(42146(39|33.18 33.12|30.03|54.6 |58.88|47.97
3,2,1(28/23/2423.8 |18.86|20.88|35.56(29.67 |30.24
4,2,1|37]46|32|28.8632.66|23.68|44.4 |58.42|36.48
1,3,1/40|37|23(35.6 |27.75|20.47 |45.6 |45.88|28.52
2,1,3(36|27|45/27.36|22.68 |31.5 [39.6 |33.75|52.65
3,3,1(22/412717.6 |29.52]19.17 |24.42|51.25|34.29
4,1,3]48(25/25/39.84 |20 18 54.72|31.25(27.75
1,4,1/36|3840(259227.36|35.2 |42.84 44.46|47.6
2,4,1(42136|46|37.38/25.2 |37.26(52.92[42.12|57.5
3,4,1(30(22/46(255 [17.3841.4 |33.6 |27.06|51.06
4,4,1|3647|36|29.1640.42 |27 4248 |1 52.17 | 44.64
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Table 6. Demand in the planning horizon

k’ l7t D%t Délr DIZz k’ l7t D%l Délt Dlgt

1,1,1| 931 76512103, 1,3|1149| 989 | 1498
2,1,1) 987 | 8321273 |4, 1,3|1468 | 1367 | 1772
3,1,1| 806| 666|1175|1, 1,4(1933|1831 |2158
4,1,1| 830| 69912002, 1,4 |1115| 9411401
1, 1,2 11551001 | 1379 |3, 1, 4| 1089 | 947 | 1457
2,1,2[1270 1121|1525 |4, 1,4 |1110| 967 | 1436
3,1,2| 760 | 572|1055|1, 1,5 (2287|2148 | 2582
4,1,21052| 9091363 |2, 1, 5|2425 2240|2686
1,1,3 (1323 119115823, 1,5| 951| 771|1270
2,1,3/1670| 1484|2040 |4, 1, 5|1572 1390 | 1873

Table 7. Cost of inventory

TR
1,111 9.02|12.65
2,110 84 |11.9
3,1/10 8 11.7
4,111 (9.79|12.32

This problem was executed in Xpress-MP .8.4 on Windows 10 64-bit, with a
processor Intel i5 3337 (2 x 1.8 GHz) y 6 GB of RAM. Figure 1 shows the result of
the membership function of Z(x). The fuzzy optimal solution is Z = (Z&,ZM, %) =
(0.37382,0.75764,0.93456). This result gives a lower bound of the fuzzy optimal
solutions for the DND problem and helps the decision makers to involve the uncertain
information.

p_z(x)
AN
-~

0 4 N
0.4 0.6 0.8 1
Z(x)

Fig. 1. Membership function of Z(x)
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6 Conclusions

This paper reviews the DND problem under uncertain information of costs, profits,
capacities and demands. We consider a fractional objective function and solve the
fuzzy linear fractional objective function with a method to transform the problem in an
equivalent multi-objective linear fractional programming to obtain a lower bound of the
fuzzy optimal solution. In addition, our proposed approach is easy to implement than
other iterative methods that solve the similar problems in the literature.

This work generates possible futures as extended the approach to multi-objective
linear fractional programming. Moreover, it is possible to apply the approach in real-
world instances and compare with another approach likes stochastic programming.

Acknowledgments. We thank Fair Isaac Corporation (FICO) for providing us with Xpress-MP
licenses under the Academic Partner Program subscribed with Universidad Distrital Francisco
Jose de Caldas (Colombia).
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