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Parkinson’s disease (PD) is a neurological disorder affecting

dopaminergic neurons in the nigrostriatal pathways of the

brain. PD is a multifactorial disease and its causes should be

sought in detrimental interactions between genes and

environment. Since early mechanistic studies, excessive

oxidation – or oxidative stress – emerged as a recurring and

fundamental pathogenic mechanism, and consequently

received significant attention. More recent evidence obtained

at single-cell resolution, however, indicates that dopaminergic

neurons in the substantia nigra display increased oxidation

levels also in normal, physiological conditions; differently than

pathological oxidation, the importance of this phenomenon is

underappreciated. The nigrostriatal dopaminergic system is

involved in behavioral strategies that have been under strong

evolutionary pressure. It is therefore improbable that

physiological oxidation in dopamine neurons is accidental.

Here, we review recent literature to argue that moderate

oxidation improves redox signaling – which in dopamine

neurons is intertwined with electrophysiological activity and is

important to regulate dopamine release – and also has a

protective role. We also reason that physiological oxidation

provides an example of antagonistic pleiotropy therefore

offering an advantage during reproductive stages of life while

becoming detrimental during aging. Collectively, we believe

that these observations provide a new perspective in the

biology of dopaminergic neurons and in PD.
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Parkinson’s disease (PD) is a neurodegenerative disorder

primarily affecting dopaminergic neurons in the nigrostriatal
www.sciencedirect.com 
pathways of the brain. Dopaminergic loss displays anatomi-

cal specificity and is more pronounced the lateral ventral tier

of the substantia nigra pars compacta (SNpc); dopamine

neurons in the ventral tegmental area (VTA) are relatively

spared [1]. PD etiopathogenesis is complex and stems from

detrimental synergies between genetic and environmental

factors, ultimately perturbing crucial processes in the cell.

PD is largely sporadic and monogenic forms represent only

5% of total cases [2]. Studies on monogenic PD, however,

have been instrumental to unravel pathogenic mechanisms.

Atpresent,PDhasbeenassociatedwith19loci,which inturn

havebeenunambiguouslyassignedto11genes(PDgenetics

has been reviewed in several excellent articles, e.g. Ref. [3]).

Thelatterare involved indifferentbiologicalprocesses, from

protein quality control to endocytic trafficking, to redox

homeostasis, therefore reinforcing the complexity of PD

etiopathogenesis.

Oxidation and PD
Despite the recognized intricacy of PD pathobiology,

however, oxidative stress received continued attention

since the seminal work of Langston et al. [4] describing

parkinsonism in young subjects intoxicated with MPTP.

Follow-up studies, in fact, demonstrated a direct inhibi-

tory effect of MPTP on mitochondrial respiratory com-

plex I with consequent increase in reactive oxygen spe-

cies (ROS) production [5]. After its detection in patients’

specimens, oxidative stress rapidly became regarded as a

highly plausible PD mechanism [6,7]. Importantly, altera-

tions in redox homeostasis have been detected in animal

models harboring mutations in PD-associated genes [8].

Additionally, PD modeling largely relies on induction of

oxidative stress and virtually all the accepted toxicological

models are based on chemicals that ultimately function as

pro-oxidants [9]. Oxidative stress, therefore, remains a

recurrent factor of both genetic and idiopathic PD, and a

point of convergence in the pathogenic cascade. More

recently, the concept of oxidative stress in PD evolved in

light of the crucial role of oxidation in normal biological

function, where physiological alterations of the intracel-

lular oxido-reductive (redox) state modify sensitive resi-

dues in proteins to modulate their activity [10]. The

process largely operates via reversible oxidation of thiols

in cysteine residues and is referred to as thiol redox

signaling.

The topic of oxidative stress and redox signaling in

neurodegeneration and in PD has been comprehensively

reviewed in several and even very recent articles, and it is

not our intention to revisit the information provided in
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these excellent publications [11–13]. We would rather

like to emphasize few underappreciated aspects concern-

ing the redox metabolism of dopaminergic neurons in

normal conditions and the potential physiological

consequences.

Oxidation and dopaminergic neurons
Dopaminergic neurons have distinctive redox properties.

Here, a first supportive evidence comes from studies in

toxicological models of PD, which clearly show that

selective dopaminergic degeneration can be elicited

not only by molecules specifically targeting dopaminergic

neurons (e.g. MPTP), but also by chemicals acting sys-

temically, for example rotenone and paraquat [14,15].

Another important evidence comes from studies that

measure the intracellular redox state of dopaminergic

neurons. Guzman et al. [16��] used a redox-sensitive green

fluorescent protein (roGFP) [17] to demonstrate that in

brain slices, in normal conditions (i.e. in the absence of

pathology), dopamine neurons in the SNpc are more

oxidized than those in the VTA. roGFP equilibrates –

very slowly [18] – with the GSH/GSSG redox couple.

Here, it should be emphasized that redox homeostasis

relies also on additional couples, for instance thiols in

thioredoxins [19,20], and that these systems are not at

equilibrium, that is oxidation in one couple does not

necessarily implies oxidation in the other [21]. Informa-

tion inferred with roGFP is therefore necessarily limited

to a specific aspect of the intracellular redox state. In a

parallel approach, we took advantage of thiol-specific

probes conjugated to fluorescent dyes to achieve differ-

ential labeling of oxidized and reduced cysteines to infer

the global thiol/disulfide redox state in dopaminergic

neurons at single cell level [22,23��]. Our experiments

confirmed higher oxidation in dopaminergic neurons of

the SNpc when compared to those of the VTA or to other

neurochemical subtypes of neurons in the cortex [23��].
While the method we developed and used in these

measures cannot discriminate between specific redox

couples, it provides an overview of the general

redox state of the cell. In combination with the results

of Guzman et al., our study provides converging evidence

that the thiol/disulfide redox state is oxidized in dopa-

minergic neurons, in normal conditions, without ongoing

pathology.

Which are the causes underlying increased
oxidation?
Increased oxidation in the thiol/disulfide redox couple in

dopaminergic neurons is consistent with other elements.

Some evidence indicates that expression of ROS scav-

enging enzymes catalase, Cu/Zn SOD dismutase, and

glutathione peroxidase is lower in the SNpc than in

the VTA [24,25]. To refine those observations, we took

advantage of publicly available datasets from transcrip-

tomic studies performed at single-cell level [26] to

explore the expression levels of key genes in redox
Current Opinion in Physiology 2019, 9:73–78 
metabolism in embryos and seven days old mice. We

found that expression of redox genes significantly

decreases after birth; however, we could not detect major

visible differences between dopaminergic neurons in the

SNpc and those in the VTA (Figure1). These data do not

exclude differences, which could be detectable at protein

level, but certainly suggest that there are no ostensible

transcriptional differences in SNpc dopaminergic

neurons.

The SNpc also contains high iron levels [27], which can

induce oxidation, especially in combination with H2O2

via Fenton chemistry [6]. Because H2O2 is abundantly

produced by the enzyme monoamine oxidase during

dopamine degradation, dopaminergic neurons in the

SNpc appear to be particular inclined to oxidation.

Finally, high production of ROS has been also attrib-

uted to the distinctive electrophysiological properties

of SNpc dopaminergic neurons. Some studies indicate

that pacemaking activity (described below in the text)

depends on calcium influx through voltage-dependent

Cav1.3 channels, and that calcium is buffered by mito-

chondria, which in turn produce superoxide during the

process [18,28�]. For sake of completeness, it should

also mentioned that other experiments attribute a less

prominent role to calcium in dopamine neurons pace-

making activity especially in aging, which remains PD

major risk factor [29,30]. Nonetheless, data generated

independently, using different approaches, are consis-

tent with the observation that the thiol/disulfide redox

state in SNpc dopamine neurons is more oxidized than

in other neuronal subtypes in normal conditions.

Oxidation and evolution
Unlike oxidative stress in PD, the concept that SNpc

dopamine neurons display increased oxidation also in

normal conditions has not received commensurate

attention. Yet, this is an important issue because it

is highly conceivable that a basal oxidized redox state

underlies the particular vulnerability of SNpc dopa-

mine neurons to pro-oxidants,  therefore predisposing

to PD pathogenesis. Here, it should also be empha-

sized that available evidence indicates that SNpc

dopamine neurons do not put in place mechanisms

to mitigate oxidation in normal conditions, as inferred

from level previous literature and from transcriptomic

analysis at single-cell level [26] of major redox genes

(Figure 1). It is very unlikely that this distinctive

biochemical characteristic is accidental. The dopa-

mine system is in fact essential to adapt behavioral

strategies to environmental stimuli: given an external

input, it has a role in selecting the most appropriate

motor program and in learning new advantageous

schemes. Simply put, the dopamine system is crucial

to learn how to discriminate between positive and

negative stimuli, and what actions should be put in

place to take advantage of beneficial situations while
www.sciencedirect.com
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Figure?1
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Two-way cluster analysis of single cell next generation RNA sequencing data (GSE108020) [26] from embryonic (E15) and post-natal (p7) mice

illustrating expression levels of major genes involved in redox metabolism. While expression of redox genes is clearly higher in embryonic neurons,

in post-natal specimens no obvious differences can be appreciated between different areas, including between the SN (MB.4) and the VTA (MB.1).

Abbreviations for E15: FB.1: forebrain neuroblast; FB.2: post-mitotic forebrain tyrosine hydroxylase-positive (Th+) neurons; MB.1: midbrain

neuroblast; MB.2: post-mitotic midbrain DA neuron. Abbreviations for P7: FB.1: arcuate nucleus neuroendocrine Th+ neurons; FB.2 mixture of

arcuate nucleus Th+ subtypes; MB.1: ventral tegmental area; MB.2: postnatal neuroblast; MB.3: periaqueductal gray area; MB.4: substantia nigra;

OB.1: least mature Th+ neurons; OB.2: progressively maturing Th+ neurons; OB.3: most mature Th+ neurons. Genes abbreviations: Prdx1-6:

peroxiredoxin 1–6; Nxn: nucleoredoxin; Gclc: g-glutamylcysteine synthetase, glutamate cysteine ligase; Txnrd1-2: thioredoxin reductase 1–2;

Glrx1-5: glutaredoxin 1–5; Txn1-2: thioredoxin1-2.
avoiding dangerous ones [31,32�]. It is therefore obvi-

ous that the dopamine system has been under strong

evolutionary pressure. The question is therefore why

dopamine neurons evolved with a physiologically oxi-

dized intracellular environment despite this feature

poses risks for neurodegenerative diseases. Obviously,

it is highly plausible that this question has multiple

answers. One possibility, however, is that increased

oxidation is functional for intense redox signaling,

which is required in dopamine neurons in the SNpc

to fulfil their physiological properties.
www.sciencedirect.com 
Physiology of DA neurons and redox signaling
Activity of dopaminergic neurons and subsequent regu-

lation of dopamine release is a complex topic that has

been reviewed in several excellent articles [31,32�,33].
For the purposes of this review, it is sufficient to provide a

succinct overview of the process. Dopamine neurons

display two dominant activity patterns (i.e. firing pat-

terns), the tonic and the phasic modes. The tonic mode

is characterized by spontaneous, regular activity that is

associated with a steady level of dopamine, which is

necessary to maintain normal function in the related
Current Opinion in Physiology 2019, 9:73–78
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circuits [34,35]. In contrast, the phasic mode is character-

ized by sharp activity changes, that is bursts, that cause

large changes in dopamine levels and may be initiated by

different types of reward related stimuli [34–36]. The

phasic mode is therefore highly relevant from the stand-

point of the behavioral response. Among the various

factors contributing to bursting control, at least by two

types of ionic channels have a relevant role in the process:

the ATP-sensitive potassium (K-ATP) channels and

NMDA receptors, which can also act in concert to poten-

tiate tonic firing [37,38��].

K-ATP channels are octameric complexes composed of

four potassium inwardly rectifying channels (Kir6.X, typ-

ically Kir6.2 in neurons [39]) forming the pore, and four

sulfonylurea receptor units (SUR1 or SUR2) that consti-

tute the regulatory units [40]. Opening of K-ATP chan-

nels can be elicited by multiple factors associated with the

metabolic status of the cell (reviewed in Ref. [41]) and

causes membrane hyperpolarization, which in turn cul-

minates in reduced electrical activity. This mechanism

can serve as a neuroprotective strategy in conditions of

metabolic distress such as hyperactivity during seizure

[42,43] or excitotoxicity [44]. In SNc dopaminergic neu-

rons, redox activation – for instance following H2O2

mediated opening of K-ATP – emerged as an important

mechanism to regulate dopamine release [45��,46�]. The

mechanism operates via modification of redox sensitive

cysteine residues [47], is mediated by the regulatory

subunit SUR1 [45��], and one study identified at least

two-specific residues in the regulatory subunit SUR1 via

site-directed mutagenesis [48]. Because expression of

SUR1 has been associated with metabolic sensitivity

and predisposition to dopaminergic degeneration, and

in light of the distinctive redox properties of SNpc

dopamine neurons, these findings are highly relevant

for both dopamine neurons physiology and PD [49,50].

Also, NMDA receptors, which mediate calcium influx in

the cell, can contribute to SNpc dopamine neurons’

bursts in phasic mode. NMDA receptor activation alone,

however, is not sufficient to switch neurons to the phasic

mode and require other hyperpolarizing currents, for

instance upon extrusion of sodium ions [51], or by K-

ATP channel activation, which potentiate phasic burst

firing [38��]. Also NMDA receptors are redox regulated

and oxidation of sensitive cysteine residues inactivates

the channel [52,53]. Thus, while both NMDA receptors

and K-ATP channels sense the surrounding redox state,

oxidation elicits opposite consequences. The physiologi-

cal consequences of the different redox behavior of these

channels will have to be addressed in future studies;

however, the combination of redox mediated closure of

NMDA receptor and K-ATP channel opening may pre-

vent excitotoxicity while contrasting overexcitability, and

may reflect a concerted strategy to protect against oxida-

tive stress.
Current Opinion in Physiology 2019, 9:73–78 
Thiol/disulfide redox state and H2O2 signaling
Collectively, the discussed findings highlight the rele-

vance of H2O2 signaling for the physiology of SNpc

dopaminergic neurons and its importance in governing

behavioral aspects that have been highly exposed to

evolutionary pressure (also discussed in Ref. [28�]).
The question is whether increased intracellular oxidation

in the thiol/disulfide network could be beneficial for this

process.

The mechanics governing H2O2 redox signaling are com-

plex and some of their aspects of are only rudimentarily

understood (reviewed in Ref. [54�]). It is for instance

unclear how specificity is ensured in H2O2 signaling

and in particular which chemical, biological, and struc-

tural criteria drive targeted modification of a certain

cysteine residue. Another major issue stems from the

very modest reactivity of protein thiols toward H2O2

(k � 101–102M�1 s�1) [55]. How can cysteine modifica-

tion occur in a time frame compatible with neuronal

physiological needs? It could be argued that the reaction

efficiency would be highly improved in proximity of

H2O2 sources, where local concentrations are particularly

high. At least in the case of K-ATP channels, however,

some evidence indicates that H2O2 signaling originates

from mitochondria rather than plasma membrane proteins

such as NADPH oxidase [46�], and proximity between

H2O2 and its target is therefore questionable. Further

complication arises from the far higher rate constants

(k � 105–108M�1 s�1) of H2O2 scavenging enzymes –

for instance peroxiredoxins (Prxs) – which are generally

abundantly expressed. Very recent evidence suggests that

Prxs might mediate H2O2 signaling to overcome low rates

of reaction and lack of specificity [56��]; nonetheless, it

cannot be excluded a priori that Prxs may quench, or even

neutralize, H2O2 function as second messenger.

We hypothesize that constitutively higher oxidation in

the thiol/disulfide couple could favor H2O2 at least in

three ways. (1) Oxidation in a subpopulation of intracel-

lular thiols would increase the relative concentration of

H2O2, therefore favoring its action as a second messenger.

This hypothesis implies that factors such as the in vivo
redox potential of protein thiols will determine which

residues will be oxidized in basal conditions, and also

implies that proteins such as K-ATP channels will remain

in a reduced state. Redox proteomic studies will be

necessary to address this possibility. Additionally, experi-

ments in which measures of redox signaling effectiveness

will be paralleled by rigorous measures of intracellular

redox state a single cell level will be necessary to conclu-

sively assess the effect of dopaminergic neurons basal

oxidation on H2O2 as second messenger. (2) Increased

cysteine oxidation could also block the active site of Prxs,

which are particularly sensitive to H2O2 mediated thiol

oxidation, as also indicated by redox proteomics studies

[57,58]. (3) Multiple lines of evidence indicate that
www.sciencedirect.com
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bioavailability of ROS is higher in SNpc dopaminergic

neurons because of higher production and/or lower scav-

enging. In this chemical context, an increase in reversible

cysteine oxidation may represent a protective strategy

against irreversible and more dangerous forms of oxida-

tion caused by high ROS levels. Accordingly, we have

recently shown that moderate, reversible oxidation pro-

tects the dopaminergic system in multiple animal models

of PD [59].

Are these observations important for PD?
Thiol/disulfide oxidation in normal conditions in SNpc

dopamine neurons could be an example of antagonistic

pleiotropy, that is a trait that is favorable during repro-

ductive stages of life – for instance to improve novelty-

induced exploration – and is therefore under evolutionary

pressure, but becomes detrimental during aging [60,61].

Increased oxidation may provide the substrate for

genetic and environmental factors to trigger dopaminer-

gic degeneration. Moreover, some evidence indicates that

moderate oxidation might be protective in PD and thus

preservation of tolerable level of reversible cysteine oxi-

dation may constitute an experimental therapy worth

exploring.
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