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Abstract

We previously established an 80 kb haplotype upstream of TNFSF4 as a susceptibility locus in the autoimmune disease SLE.
SLE-associated alleles at this locus are associated with inflammatory disorders, including atherosclerosis and ischaemic
stroke. In Europeans, the TNFSF4 causal variants have remained elusive due to strong linkage disequilibrium exhibited by
alleles spanning the region. Using a trans-ancestral approach to fine-map the locus, utilising 17,900 SLE and control subjects
including Amerindian/Hispanics (1348 cases, 717 controls), African-Americans (AA) (1529, 2048) and better powered cohorts
of Europeans and East Asians, we find strong association of risk alleles in all ethnicities; the AA association replicates in
African-American Gullah (152,122). The best evidence of association comes from two adjacent markers: rs2205960-T
(P = 1.71610234, OR = 1.43[1.26–1.60]) and rs1234317-T (P = 1.16610228, OR = 1.38[1.24–1.54]). Inference of fine-scale
recombination rates for all populations tested finds the 80 kb risk and non-risk haplotypes in all except African-Americans.
In this population the decay of recombination equates to an 11 kb risk haplotype, anchored in the 59 region proximal to
TNFSF4 and tagged by rs2205960-T after 1000 Genomes phase 1 (v3) imputation. Conditional regression analyses delineate
the 59 risk signal to rs2205960-T and the independent non-risk signal to rs1234314-C. Our case-only and SLE-control cohorts
demonstrate robust association of rs2205960-T with autoantibody production. The rs2205960-T is predicted to form part of a
decameric motif which binds NF-kBp65 with increased affinity compared to rs2205960-G. ChIP-seq data also indicate NF-kB
interaction with the DNA sequence at this position in LCL cells. Our research suggests association of rs2205960-T with SLE
across multiple groups and an independent non-risk signal at rs1234314-C. rs2205960-T is associated with autoantibody
production and lymphopenia. Our data confirm a global signal at TNFSF4 and a role for the expressed product at multiple
stages of lymphocyte dysregulation during SLE pathogenesis. We confirm the validity of trans-ancestral mapping in a
complex trait.
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Introduction

Tumour Necrosis Factor Superfamily (TNFS) members control

wide-ranging facets of immunity when they interact with their

complimentary TNF Receptors [1]. One of these, TNFSF4

(OX40L), uniquely binds its receptor, monomeric TNFRSF4

(OX40), on T lymphocytes to strongly activate NF-kB [2]. Several

lines of evidence published over the last 15 years suggest the

TNFSF4–TNFRSF4 interaction is required for the induction of

anti-tumour immunity, allergy and autoimmunity [3–6] but also

inhibits generation of adaptive T regulatory (TR1) cells [7]. The

outcome is not limited to human disease; blockade of the

TNFSF4-TNFRS4 interaction has ameliorative effects in animal

models of T cell pathologies [8] including allergic and autoim-

mune manifestations [9]. Genetic variation at TNFSF4 has been

associated with the autoimmune disease systemic lupus erythema-

tosus (SLE), and other inflammatory conditions including athero-

sclerosis and ischaemic stroke.

SLE is the prototypic multi-system autoimmune disorder.

High-affinity, pathogenic IgG autoantibodies to an array of

nuclear antigens are a hallmark of pathogenesis and characterise

the global perturbation of the immune system in SLE. Variation

in at least 25 genetic loci with modest effect sizes are thought to

explain the genetic component of SLE [10]. The strong genetic

basis to disease is well-established and has been strengthened by

the advent of GWAS, which has corroborated the association of

immunologically relevant loci with SLE [11–13]. We have

previously shown single nucleotide polymorphisms (SNPs) in the

59 TNFSF4 region to be associated with lupus in European

families and a case-control cohort [4]. The increased association

of 59 risk alleles with disease has been replicated in East Asian

populations [14,15], highlighting the genetic similarities at this

locus in these ancestrally distinct populations. Multiple SLE risk-

associated TNFSF4 variants are also associated with systemic

sclerosis [16], primary Sjögren’s syndrome [17] and myocardial

infarction [18,19].

A major obstacle in the identification of disease-specific causal

variants at TNFSF4 in the European and East Asian SLE cohorts

has been the strong linkage disequilibrium (R2.0.8) exhibited by

genotyped TNFSF4 alleles, which has resulted in a high frequency

extended haplotype associated with risk of disease instead of

delineating causal variations at the locus [4]. It is probable that

migration out of Africa involved many founder effects and

bottlenecks to increase haplotype length in East Asian and

European populations [20]. Hispanic and African-American

populations are disproportionately affected by SLE [21] and

health disparities in these groups show onset at a younger age [22].

Hispanic and African-American populations have genomes

which reflect recent admixture on ancient substructures [16].

Hispanic cohorts have rich diversity of source ancestry with

Southern European, Amerindian and West African contribution

to the inherited genome and the forced diaspora of Africans to the

Americas also resulted in gene flow and two-way admixture

between previously reproductively isolated West African and

European ancestral populations [23]. African populations today

tend to have shorter haplotypes because they usually have ancestors

who have experienced more recombination events without popu-

lation bottlenecks or founder effects in emigrant populations [24].

Common shorter haplotypes are often subdivisions of the larger

haplotypes found in non-Africans and so can be correlated to these

[25]. In admixed populations, the genetic component attributable to

the West African ancestral population would equate to a faster

decay of LD. The breakdown of LD is therefore greater in African-

Americans, because the major component (80% or more) of their

genome is West-African, compared to Hispanics who have

component estimates between 4–11% [23,26].

We infer a fine-scale map of the recombination rate and

location of hotspots within each entire population and in

subgroups of interest. We have used principal components (PC)-

based strategies to adjust for major ancestry before performing a

high-resolution association study which utilises typed and proba-

bilistic genotypes to map the TNFSF4 locus. By surveying common

variants up to 1000 Genomes Phase 1(v3), we aim to identify

common causal variation at TNFSF4 associated with SLE. Cross-

comparison of associated risk haplotypes across four populations

focuses these analyses. The AA association replicates in a smaller

cohort of AA-Gullah [27]. Our haplotype analyses find informa-

tive recombinants in African-Americans and Europeans to resolve

genetic variants associated with SLE at this locus.

These data are used to perform six case-control association

studies and a trans-ancestral mapping experiment using in excess

of 17900 subjects. We attempt to define causal variation at

TNFSF4 in SLE susceptibility. In a complementary strategy we

perform association analysis using TNFSF4 alleles and lupus

phenotypes. We explore the mechanism by which TNFSF4

influences perturbation of the immune process in inflammatory

disease. Finally, we interrogate risk alleles in terms of their

influence on transcription factor binding using a bioinformatics

approach. The research presented uses trans-ancestral mapping to

inform this complex trait.

Trans Ancestral Fine Mapping of SLE Locus TNFSF4

PLOS Genetics | www.plosgenetics.org 2 July 2013 | Volume 9 | Issue 7 | e1003554



Results

To delineate the causal variation at TNFSF4, we genotyped

SNPs in a 200 Kb section of chromosome 1q25.1 encompassing

TNFSF4 (23.6 kb) and the 59 region (150 kb). Population

stratification bias and effects due to admixture were addressed

using the approach of Namjou and colleagues [28]. We also

genotyped 347 SNPs used by Halder [29] to correct for major

ancestry in each population as identified by a PCA-based

approach (Supplementary Figure S1). As outlined in methods,

SNPs and individuals that failed quality control were filtered; pre-

and post- imputation SNP counts and a description of the

component sample sets is presented in Table 1.

To directly compare genotyped SNPs we used the phased

chromosomes of 1000 Genomes phase I integrated variant set v3

(March 2012, NCBI build37) (The 1000 Genomes Project

Consortium) [30] and IMPUTE v2.2, together with second

reference sets defined in Table 1. We imputed missing data

and common variants (SNPs and INDELs) across the locus using

MAF.1% in the imputation scaffold. As described in methods, we

used a post imputation filter of HWE.0.01 and info .0.7 to

include only genotyped and high quality imputed SNPs. The

estimated concordance between imputed and true genotypes for

the SNPs presented in this study is 0.95 for all cohorts. The final

characteristics of all datasets are presented in Table 1.

Bayesian inference of fine-scale map of recombination
rates and hotspot densities at TNFSF4

The European sex-averaged and female-only recombination

maps generated by deCODE (http://www.decode.com/

addendum/), are based on 15,257 and 8,850 directly observed

recombinations, respectively. These maps have a resolution effective

down to 10 kb and comparing them to the HapMap 3 and 1000

Genomes population-averaged maps [30,31], we found differences

at the TNFSF4 locus. Thus, we estimated background recombina-

tion rates in AA, East Asians, Europeans and Hispanics using a

Bayesian composite-likelihood method. The inclusion of a hotspot

model allowed sampling of hotspots from the Markov chain and

inference of mean posterior hotspot densities from a threshold

upwards of 0.25, giving a detection power of 50% and a false-

discovery rate of 4% [32]. In Asians, Europeans and Hispanics the

bulk of the recombination occurs in less than 5% of sequence

(Figure 1 and Figure 2). An exception to this pattern is found in

the African-American cohort, with increased recombination rate

and higher density and proportion of hotspots across the locus

(Figure 1, Figure 2). In all populations, peak recombination is at

the 59 boundary of the TNFSF4 gene and approximately 120 kb

into the 59 region. A difference in African-Americans is that

recombination extends 30 kb from the TNFSF4 gene boundary into

the 59 region, whilst there is negligible recombination in this section

in the other populations (Figure 1) and this is compatible with

increased complexity of the genomic region in African-Americans.

Single marker association of 59 TNFSF4 SNPs with SLE
The association data presented are for markers after imputation

using the 1000 Genomes phase I integrated variant set v3 (March

2012, NCBI build37) [30]. The TNFSF4 locus is well established in

SLE therefore we have presented uncorrected nominal p-values

for variants. In East Asians, Europeans and Hispanics many strong

associations (Pu 1028,10216) at TNFSF4 are detected. Multiple

susceptibility alleles in the TNFSF4 59 region are overrepresented

Table 1. Population demographics and imputation reference data for SLE-control cohorts post QC filtering.

European East Asian Hispanic AA-Gullah

Cases Controls TOTAL Cases Controls TOTAL Cases Controls TOTAL Cases Controls TOTAL

Males 344 1151 1495 167 225 392 119 73 192 136 593 729

Females 3088 2489 5577 1333 1171 2507 1229 644 1872 1541 1341 2882

Unknown 3 236 239

TOTAL 3432 3640 7072 1500 1396 2896 1348 717 2065 1680 2170 3850

SNPS(TYPED) 89 89 89 65 65 65 51 51 51 88 88 88

SNPS(ALL) 244 244 244 450 450 450 460 460 460 393 393 393

Imputation reference 1 1000G 1000G 1000G 1000G 1000G 1000G 1000G 1000G 1000G 1000G 1000G 1000G

Imputation reference 2 OMNI-QUAD

UK-Canadian GWAS

Numbers after filtering for duplicates, FDRs, HWE, missingness and major ancestry. post SNPs with INFO scores ,0.7 excluded, SNPS with HWE,0.01 excluded.
doi:10.1371/journal.pgen.1003554.t001

Author Summary

Systemic lupus erythematosus (SLE/lupus) is a complex
disease in which the body’s immune cells cause inflam-
mation in one or more systems to cause the associated
morbidity. Hormones, the environment and genes are all
causal contributors to SLE and over the past several years
the genetic component of SLE has been firmly established.
Several genes which are regulators of the immune system
are associated with disease risk. We have established one
of these, the tumour-necrosis family superfamily member
4 (TNFSF4) gene, as a lupus susceptibility gene in Northern
Europeans. A major obstacle in pinpointing the marker(s)
at TNFSF4 which best explain the risk of SLE has been the
strong correlation (linkage disequilibrium, LD) between
adjacent markers across the TNFSF4 region in this
population. To address this, we have typed polymorphisms
in several populations in addition to the European groups.
The mixed ancestry of these populations gives a different
LD pattern than that found in Europeans, presenting a
method of pinpointing the section of the TNFSF4 region
which results in SLE susceptibility. The Non-European
populations have allowed identification of a polymor-
phism likely to regulate expression of TNFSF4 to increase
susceptibility to SLE.

Trans Ancestral Fine Mapping of SLE Locus TNFSF4
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in SLE cases (Table 2, Figure 2). In terms of single markers, best

evidence of association with disease in Europeans is observed with

rs2205960-T, 10 kb 59 from the TNFSF4 gene (P = 5.61610215,

OR = 1.34 (95%CI 1.25–1.44)). The T allele of rs2205960 also has

strongest association with Hispanic SLE (P = 1.7610210,

OR = 1.65 (95% 1.42–1.91)). In Europeans, an additional 15

SNPs reach genome-wide significance (P,561028) most of these

risk alleles also reach this level of significance in the East Asian and

Hispanic cohorts (Table 2). Several 59 risk alleles associated with

disease in East Asians, Europeans and Hispanics are also

associated in African-Americans and the 59 association replicates

in a small cohort of AA-Gullah (Supplementary Table S1),

underpinning this gene as a global SLE susceptibility gene.

In African-Americans, the best evidence for the 59 SNP

association with disease are from rs1234317-T (P = 2.2861025,

OR = 1.4 (95%CI 1.25–1.56)) and rs2205960-T (P = 7.261025,

OR = 1.48 (95%CI 1.22–1.67)) and rs1234314 –G

(P = 3.1161025, OR = 1.22 (95%CI 1.13–1.32)). There is a trend

for under-representation of the minor alleles of rs1234314-C,

rs1234315-C, rs844642-G, rs844644-A, rs2795288-T and rs844654-

Figure 1. Fine scale maps of recombination rate inferred from East Asian, European, Hispanic and African-American control phased
chromosomes. 1568 randomly assigned chromosomes from each group were tested using Rhomap, from the LDHAT2.0 package. The fine-scale
map of recombination rate (4Ner/kb) was inferred across 200 kb of chromosome 1q25 encompassing TNFSF4 gene and extended 59 and 39 regions.
doi:10.1371/journal.pgen.1003554.g001

Trans Ancestral Fine Mapping of SLE Locus TNFSF4
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A in SLE cases resulting in a flipped OR for these variants

(Table 2).

Association of intragenic TNFSF4 single markers with SLE
Examining the genetic association between SNPs within the

TNFSF4 gene and SLE we identify association of rs1234313-G,

within intron1, with SLE in Asians (P = 4.3761028, OR = 1.38

(95%CI 1.32–1.44)), and Europeans (P = 1.1161025,

OR = 1.15(95% CI 1.11–1.27). In both cohorts rs1234313-G is

partitioned from other associated SNPs by a recombination

hotspot at the TNFSF4- 59 boundary. However, correlation

coefficient R2 values between this marker and risk-associated 59

variants suggest strong correlation. We identify under represen-

tation of rs10798265-A in African-American SLE (P = 9.2461025,

0.84(95%CI 0.78–0.9)). There is suggestion of additional modest

association signals (P,1024) from a series of SNPs located at the

TNFSF4- 39UTR boundary in the same cohort.

Imputation of typed bi-allelic indels
Imputation gave 257 common (.1% MAF) bi-allelic indels at

the TNFSF4 locus, mostly neutral. The indels were included in the

same imputation analysis and subject to the same QC as the SNPs

and probabilistic genotypes incorporated into our association

analyses. We identify a deletion at rs200818062 [-/G] to be

associated with SLE in all groups tested. This indel is located

22.4 kb from the start site of the common transcript (Transcript 1)

of TNFSF4 and is in strong LD with (R2.0.8) rs1234317 and

rs2205960.

Best evidence meta-analysis
We used a logistic regression model fitted with an interaction

term (effect) in the R statistical package to investigate cross-study

heterogeneity. P-values for individual associated SNPs were

generated using a likelihood-ratio test. We found no evidence of

heterogeneity for the key risk- haplotype-tagging common variants

which span the locus. Our null hypothesis - that all studies were

evaluating the same effect size- held true for key variants

associated with risk of SLE.

We combined the association data for variants across the 59

TNFSF4 region in East Asians, Europeans, Hispanics and African-

Americans, to more powerfully estimate the true effect size

(Table 3). The average effect size across all datasets was

Figure 2. Single marker association at TNFSF4 locus in A. East Asian, B. European, C. Hispanic, D. African-American SLE-control
populations. The strength of the association (-log10uncorrectedP) of markers across 240 kb of chromosome 1q25. This regional plot depicts TNFSF4
association with SLE versus chromosomal position (kb) in East Asians, Europeans, Hispanics and African-American populations. The most associated
variants in each group are labelled, as is the best-associated meta-analysis SNP rs2205960. Markers are colour-coded for their correlation coefficient
(r2) values according to the legend.
doi:10.1371/journal.pgen.1003554.g002
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computed using inverse variance weighting of each study. We find

the 59 association of TNFSF4 with SLE greatly reinforced.

rs2205960-T, the most associated allele in Europeans and

Hispanics, (P = 1.71610234, OR = 1.43[1.26–1.60]), and

rs1234317-T (P = 1.16610228, OR = 1.38[1.24–1.54]) have the

strongest combined association with disease (Table 3). These

adjacent markers are separated by 3 kb of chromosome 1. Allele

frequencies for rs2205960 for 1000 Genomes populations are

presented in supplementary data.

Conditional regression analysis of 59 single-markers
As expected, our 59 association data suggest pairwise LD

between markers is weakest in African Americans and strongest in

Asians. In order to establish whether the signals identified by our

trans-ancestral fine-mapping experiment represent causal variants,

independent risk factors, or if we have simply found surrogate

markers strongly correlated with causal variants, we conditioned

the association data from each population with the marker which

represented the best evidence of association.

Figure 3. LD plots at TNFSF4 locus in four populations. This section of chromosome 1q25.1 encompasses the TNFSF4 gene and upstream
region as defined by custom algorithm in Haploview 4.2. The measure of LD was used to depict 57 SNPs common to all cohorts, post QC and 1000
genomes imputation. The pair-wise correlations between TNFSF4 markers is illustrated in these plots by the correlation coefficient R2(where
r2 = 0 = no correlation, white; 0,R2,1, gradations of grey; R2 = 1 = complete correlation, black). The TNFSF4 gene is positioned above the plots
relative to haplotype blocks (black triangles) and grey ticks indicate SNP locations to scale.
doi:10.1371/journal.pgen.1003554.g003
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In all populations, rs2205960-T, a risk-haplotype tag SNP with

high p-value and effect size (Table 3, Figure 3) is associated with

SLE; a similar trend is illustrated by the adjacent marker

rs1234317-T. Conditioning on rs1234317 or rs2205960 we find

the signal at rs1234317 is lost after conditioning for rs2205960, and

this is consistent for across populations (Table 4). If the reverse

analysis is performed and we condition on the presence of

rs1234317, there is residual association at rs2205960 in Asians,

Europeans and Hispanics (P = 961024
AS, P,1024

EU, P = 0.015Hi).

In all apart from the AA group, conditioning on rs1234317 or

rs2205960 leaves a residual signal at rs1234314. We included

rs2205960, rs1234317 and rs1234314 in these analyses.

Conditional analysis of meta-analysis data
We find conditioning on the presence of rs1234317 or

rs2205960, association of intron 1 markers tested for all groups

is lost, confirming these as secondary to 59 risk associations

(Table 2). We also conditioned the meta-analysis association data

on rs2205960 and found residual association at rs1234314

(P = 3.8161027), located at the TNFSF4-59 boundary. The reverse

analysis found increased residual association at rs2205960

(P = 4.12610214). These data suggest two independent signals

with increased association and effect at rs2205960 compared to

rs1234314 in SLE. Conditioning the meta-data on both rs1234314

and rs2205960 removed association at TNFSF4 (Table 3).

Modelling the pattern of inheritance in independent
cohorts

In genotype-based analyses, the models that best fits the 59

association of TNFSF4 with SLE are the additive/dominant

models.

Haplotype bifurcation of TNFSF4 risk and non-risk
haplotypes

Haplotypes significantly associated with risk of disease were

identified for each population. To better visualise the breakdown

of LD of associated haplotypes, we constructed bifurcation

diagrams from phased genotypes for each cohort tested

(Figure 4, risk). The plots illustrate the breakdown of linkage

disequilibrium (LD) at increasing distances in both directions from

rs1234314, the most proximal genotyped SNP located at the

TNFSF4 gene-59 boundary and which is used as the core variant in

the figure (labelled, circular core from which haplotype branches).

The location of rs1234317 and rs2205960, best-associated in the

meta-analysis, are also marked onto the diagram. The thickness of

the line in each plot corresponds to the number of samples with

the haplotype, branches indicate breakdown of LD. For the risk

haplotype, the lines are most robust in East Asians (Figure 4,
risk), followed by Hispanics and Europeans, and least robust in

African-Americans. We find branch junctions depicting break-

down of LD on the risk haplotype to be coincident with the section

of the TNFSF4 locus encompassing rs1234317 and rs2205960.

The non-risk haplotype retains its thickness with distance from

the core in the AA group, indicating long-range homozygosity

(Figure 4, non-risk). Contrasting the recombination rate in risk

and non-risk haplotype homozygotes finds increased recombina-

tion in the risk individuals (Supplementary Figure S3),

supporting these bifurcation data.

Conservation of TNFSF4 haplotype structure at the
TNFSF4 locus in ancestrally diverse populations

Significantly associated haplotypes are found in each population

(Table 5). Low recombination and similar location of hotspots at
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the TNFSF4-59 boundary in East Asians, Europeans, and

Hispanics allow for the construction of near-identical haplotype

blocks including risk and non-risk haplotypes (designated

TNFSF4OR.1 and TNFSF4OR,1, respectively)(Figure 3) which

extend approx. 80 kb into the TNFSF4 59 region. Multiple

associated risk alleles uniquely tag TNFSF4OR.1, the risk

haplotype, which is overrepresented in SLE individuals in each

population, whilst TNFSF4OR,1 is the most frequent haplotype for

all cohorts tested but underrepresented in SLE individuals.

The risk haplotype found in East Asians, Europeans and

Hispanics is fragmented in the African-American cohort; the most

associated risk haplotype is 11 kb (P = 2.1261025, OR = 1.52).

This haplotype block extends from rs1234317 to the bi-allelic indel

rs200818062. Only one allele uniquely tags this haplotype,

Figure 4. Haplotype Bifurcation Diagrams of TNFSF4risk and TNFSF4non-risk for Four Populations. Plots are constructed using phased
haplotypes for a. East Asians, b. Europeans, c. Hispanics and d. African-Americans and illustrate breakdown of LD with increasing distances from a core
proximal TNFSF4 SNP and are approximately to scale. The core is located at the TNFSF4 gene-59 boundary (black circle) and is selected as the most
proximal 59 marker, rs1234314, in each population. Gene location is depicted to scale; we have additionally labelled each plot to show the location of
rs1234317 and rs2205960, the best-associated markers from the meta-analysis.
doi:10.1371/journal.pgen.1003554.g004
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rs2205960-T, the associated alleles of rs1234317-T and

rs200818062- are also found on a completely neutral haplotype.

This haplotype block is separated from the adjacent distal block by

R2 = 0.33. Haplotype association data for TNFSF4OR.1 and

TNFSF4OR,1 are presented in Table 5.

In Asians, Europeans and Hispanics, the non-risk haplotype

is tagged by rs1234314-C, rs1234315-C, rs844642-G, rs844644-

A, rs2795288-T and rs844654-A. These variants have a flipped

OR (Table 2) and there is residual signal at these variants

after conditioning on risk-associated variants. In African-

Americans, there is a signal at rs1234314-C. Conditioning

our meta-analysis data on rs2205960-T there is residual

association at each of these variants and the OR for the minor

allele is flipped. The best-associated variant after conditioning

on the risk signal is rs1234314-C. This variant is associated in

all groups tested and resides at the TNFSF4-59 boundary.

Conditioning on rs1234314 and rs2205960 removes association

at TNFSF4.

Conditional regression analysis of haplotypes
In all groups, we conditioned upon the presence of

TNFSF4OR.1 and found residual association of TNFSF4OR,1.

Reversing the analysis by conditioning on presence of

TNFSF4OR,1 also finds residual association of TNFSF4OR.1.

These analyses demonstrate that the observed signals in the

TNFSF4 promoter region independently confer risk and protection

against SLE.

Informative neutral haplotypes provide support for
causal SNPs identified by conditional analysis

We found haplotypes in the European and AA cohorts which

are tagged by the risk allele rs1234317-T but the non-risk allele

rs2205960-G and not associated with disease. In African-Ameri-

cans, the alleles of rs1234317-T and rs200818062- are found on a

neutral haplotype, not associated with SLE. This haplotype block

is separated from the adjacent distal block by a correlation

coefficient value R2 = 0.33. These data support our conditional

regression data which indicate rs2205960-T as the driver of the

risk association.

Subphenotype analyses
Given TNFSF4 surface expression on a range of cell types which

control immune functionality, one might expect TNFSF4 alleles to

be associated with disease manifestations of SLE. Median (IQR)

age at diagnosis, autoantibody production and renal disease were

examined within SLE cases and against controls in each ancestral

group. American College of Rheumatology (ACR) classification

criteria [33] were additionally examined in East Asians, Europeans

and Hispanics. Phenotypic subsets of SLE cases are less

heterogenous than SLE per se and so may enrich for risk variants

with increased effect size or prove informative for causal

mechanism. Clinical characteristics of SLE individuals sorted by

population are presented with case-only and phenotype-control

association results (Supplementary Table S2).

Association of TNFSF4 markers with autoantibody
production

Case-only analysis reveals association of TNFSF4 risk variants

with autoantibody production in African-American, European

and Hispanic SLE cohorts: Evidence of association of rs2205960-T

with Anti-Sm autoantibodies in African-American cases

(P = 5.161023, OR = 1.57(95% CI 1.14–2.16) is reinforced by

testing this variant against controls (P = 6.6761027,

OR = 1.91(1.47–2.47)). We find this marker also segregates with

Anti-Sm autoantibodies in European case-only and phenotype-

control analyses. In Europeans the adjacent variant rs1234317-T is

associated with Anti-Ro autoantibodies (P = 9.561024,

OR = 1.31(95% CI 1.12–1.54) and this is reinforced against

controls (P = 9.561028, OR = 1.52 (1.3–1.76)). In African-Amer-

icans analyses of 59 variants against controls improves the

significance of risk-haplotype-tagging variants with Anti-dsDNA

autoantibodies (rs1234317-T, Pu = 5.3661026, OR = 1.68(95%CI

1.34–2.1.)) We find a transancestral trend of underrepresentation

of TNFSF4 intron 1 alleles with autoantibody production

(Hispanic P = 1.761024, OR = 0.52(95% CI 0.36–0.73), Europe-

an P = 2.561023, OR = 0.81(0.7–0.93) and East Asian

P = 3.661022, OR = 0.7 (95% CI 0.5–0.98)). Conditional regres-

sion analysis of the best-associated marker in each population

removes all evidence of association.

Association of TNFSF4 markers with age of onset
Examination within cases also reveals association of distal 59

TNFSF4 alleles with age of onset (IQR) across all cohorts

examined apart from East Asians (Supplementary Table S2). We

classified the first and last quartile of age of onset into early and

late onset in the analysis. Underrepresentation of distal 59 TNFSF4

alleles in lupus individuals with early age of onset is found in AA

(P = 961024, OR = 0.69 (95% CI 0.56–0.86)), European

(P = 1.4361023, OR = 0.78(0.68–0.91)) and Hispanic

(P = 1.4361023, OR = 0.57(95% CI 0.41–0.81)) populations.

Inverse square meta-analysis finds the marker with best evidence

of association with this phenotype (rs844654-A, P = 8.761026, Z

score 4.45), 60 Kb from the TNFSF4 gene-59 boundary.

Identification of 59 end of putative TNFSF4 transcripts
To gain further insight into the transcriptional regulation of the

TNFSF4 gene we analysed the 59 ends of four putative TNFSF4

transcripts from the activated B lymphocytes of a European

individual. We evaluated the mRNA predictions for TNFSF4

because the Gencode mRNA predictor annotates three TNFSF4

splice variants, whilst Aceview, which has increased sensitivity for

the cDNA-supported transcriptome, annotates four mRNA splice

variants [34]. To position our association data accurately against

Table 5. TNFSF4 haplotype association in four SLE-control
populations.

Start, bp End, bp Size/kb Freq p-value OR

RISK, TNFSF4OR.1

AA 173187775 173198892 11.1 0.05 8.1161025 1.56

AS 173177392 173256550 79.2 0.26 3.1461027 1.34

EUR 173175832 173256550 80.7 0.21 4610213 1.35

HIS 173177392 173256550 79.2 0.3 4.261029 1.57

NON-RISK, TNFSF4OR,1

AA 173175832 173187775 11.9 0.48 2.261025 0.82

AS 173177392 173256550 79.2 0.52 9.3561029 0.74

EUR 173175832 173256550 80.7 0.39 1.861027 0.8

HIS 173177392 173256550 79.2 0.31 7.161026 0.76

NEUTRAL,TNFSF4OR,1

AA 173187775 173198892 11.1 0.03 0.1 1.05

EUR 173175832 173256550 80.7 0.04 0.44 1.03

doi:10.1371/journal.pgen.1003554.t005
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the TNFSF4 gene, we generated the 59 ends of transcripts by 59

RACE-PCR and found multiple transcripts which differ in their

first exon usage (Figure 5) including a transcript for what is likely

to be a soluble form of TNFSF4 (Figure 5), this transcript maps

identically to a transcript found in the Ensembl and UCSC

genome browsers, but is yet to be found translated. We have

anchored our association data to the most abundant transcript

(Transcript A, Figure 5) sequenced.

Association of TNFSF4 variants with expression in LCLs
Expression profiling of common TNFSF4 variants was carried

out in a cis eQTL study in LCL samples from 777 female

TwinsUK participants [35]. Association of RNA expression with

.26106 SNPs was tested by two-step mixed model–based score

test [35]. To characterize likely independent regulatory effects, the

identified cis eQTLs were mapped to recombination hotspot

intervals. For each gene, the most significant SNP per hotspot

interval was selected, and LD filtering performed. The top-cis-

eQTL in the LD bin, for the probe located at TNFSF4

(ILMN_2089875), was rs2205960 (P = 3.7561024).

Bioinformatic analysis
We examined the interaction of individual transcription factors

(TFs) and other proteins with the DNA sequence at rs2205960. A

decameric DNA sequence including the rs2205960 variant at the

8th position was predicted to bind to the NF-kB p65 protein

(RELA) with high confidence. We investigated changing

rs2205960 allele, from the minor (T) to major (G) allele and its

impact on binding affinity of the motif for the target protein, p65.

Using SELEX binding data and position weight matrix (PWM)

profiles stored in the Jaspar core database [36], we found the DNA

sequence with rs2205960-T at the 8th nucleotide position had a

binding affinity of approximately 90% for NF-kB p65 (Figure 6).

Altering the allele to rs2205960-G decreased the binding affinity

for NF-kB p65 by over 10%, but highlighted degeneracy of the

motif (Figure 6b). Binding of NF-kB at rs2205960 has been

confirmed by genomewide ChIP-seq experiments in EBV - B cell

lines as part of the ENCODE project (Figure 6c) [37]. These

ChIP-seq data indicate that signal intensity for NF-kB at

rs2205960 in a heterozygous (G/T) cell-line (GM12878) is double

that for a non-risk homozygote (G/G) cell line (GM06990).

We further examined the sequence encompassing rs1234314 for

transcription factor binding. According to our conditional analysis,

rs1234314 is the best-associated variant after conditioning on the

risk-association. Furthermore this variant tags the non-risk

haplotype. Scanning the data held in the Ensembl genome

browser revealed rs1234314 to be part of a 400 bp segment which

has repressed/low activity in LCL cells but with no such activity in

a T cell line. The UCSC genome browser predicts rs1234314 to be

located within a region associated with the H3K27Ac chromatin

signature which is associated with active enhancers. Interrogating

the sequence at rs1234314 with PWM binding data in the Jaspar

core database gave no clear pattern of binding of either allele to

the motif of a regulatory element.

Examining the sequence with rs1234317-T against PWM

binding data stored in the Jaspar Core database finds it completes

a TATATT-binding motif and this motif is disrupted in the

presence of rs1234317-C. The ENCODE project does not

highlight binding of a TBP protein at this variant. Genome-wide

ChIP-seq data from the ENCODE project has data for LCLs

which carry the T allele of rs1234317. For LCLs carrying the risk

(T) allele, there are currently no regulatory features annotated at

this position.

Discussion

We present a trans-ancestral fine-mapping association study of

TNFSF4 in SLE. We have genotyped haplotype-tagging and proxy

variants and major ancestry informative markers in 6 populations,

including admixed groups, across 200 kb of 1q25 encompassing

the TNFSF4 gene, and 59 and 39 regions. We also present a fine

mapping association analysis of TNFSF4 SNPs in African-

American SLE. Association testing of TNFSF4 variants revealed

strong association of 59 variants with disease in all cohorts

(Tables 2–5) establishing it as a global lupus susceptibility gene.

Resolution of the association signal was aided by increased

recombination in the AA group (Figure 1), and by increased power

from the large numbers in our European cohort. Maximal power

was achieved testing with a genetic model concordant with the

major underlying mode of inheritance of the 59 TNFSF4 region in

SLE, which is additive. Our study would suggest trans-ancestral

mapping as a useful tool where linkage disequilibrium is an

obstacle.

Testing most of the common polymorphisms at the locus

allowed identification of additional candidate variants that might

underlie association at TNFSF4. As expected, most high-frequency

SNP probabilistic genotypes included in this study are present in

dbSNP; especially in the TNFSF4 gene itself. Prior to QC filtering,

the African-American population contributed the largest number

of probabilistic genotypes at SNP loci. Although our ability to

impute bi-allelic indels accurately from the 1000 Genomes Project

resource is limited by FDR, it still increased power to detect

association signals at a majority of common small indel sites

Figure 5. Confirmation of TNFSF4 start site and splice variants. 59 RACE analysis was used to map the TNFSF4 transcription start site. Three out
of four putative splice variants modelled by the Aceview tool in the UCSC genome browser were validated in a European individual. Splice variants a.
and b. are protein coding, whilst variant c. is transcribed but not translated.
doi:10.1371/journal.pgen.1003554.g005
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accurately. In excess of 50% of the indels in the imputation

scaffold were novel in all groups. We mention the bi-allelic

deletion, rs200818062, which is in LD with our best-associated

variant, rs2205960, and which is associated with SLE in all cohorts

tested. Our AA and European data suggest this risk-associated

deletion is found on a neutral haplotype which is not associated

with disease. After QC filtering of imputed variants in these

populations, our data suggests no new imputed variant better

explained the risk signal than the typed SNP rs2205960-T.

A key limitation of this study is TNFSF4 imputation may have

missed common variations located in the distal 59 TNFSF4 region

which could be causal. Accurate characterisation of variants

remains challenging in low-complexity regions including the LINE

element found in the distal 59 section of this locus. As a result,

variants in this region are systematically underrepresented in

genetic association studies. Furthermore, an association signal may

reside in the fraction of SNPs which have a lower imputation

performance and were omitted using our info threshold of 0.7.

Figure 6. SLE-associated rs2205960 predicted to be part of a decameric motif for NF-kB p65 (RELA). A. Degeneracy within the core 10-
base motif is illustrated at all positions apart from position 7 which is non-degenerate by the stacked letters at each position. The relative height of
each letter is proportional to its over-enrichment in the motif. A dashed line is boxed around rs2205960-T, this SLE-associated allele is predicted to
form the 8th nucleotide in the motif. Predictions were made using the non-degenerate set of matrix profiles in the Jaspar Core database. B. Altering
the rs2205960 allele from -T to -G decreases the binding affinity for NF-kB p65 by over 10%. C. Binding of NF-kB at rs2205960, suggested by genome-
wide ChIP-seq ENCODE data. Profiles were generated for lymphoblatoid cell lines and stored in the UCSC genome database.
doi:10.1371/journal.pgen.1003554.g006
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This fraction is likely to include rare variants which are too

infrequent to be imputed with confidence but which might have a

large effect on risk. However, our data suggest the true causal

variants are likely to be common (.5% frequency) and located in

the proximal section of the 59 region. The standard error of the

beta coefficients for most imputed variants included in later

analyses reflect high imputation certainty.

Mapping the alleles uniquely tagging the risk haplotype in each

cohort has established the boundaries of risk and non-risk

haplotypes in East Asians, Hispanics, and African-Americans

and validated the haplotype boundaries previously defined in

Europeans [4]. We avoided spurious associations through poor

matching of cases with controls by the removal of outlying

individuals (Supplementary Figures S1 and S2) and tested the

association of risk alleles across all groups in this study.

Comparing recombination patterns in African-American indi-

viduals homozygous for the risk and non-risk haplotypes finds

increased recombination in the risk-haplotype. Our results provide

evidence for global association of rs2205960-T with SLE and

assessment of the contribution of rs2205960-T to disease risk by

conditional regression suggests that this allele drives the 59 TNFSF4

association in African-Americans, Europeans and Hispanics.

Increased decay of 59 LD at TNFSF4 in AAs anchor the associated

haplotype to the proximal 59 region of TNFSF4. Examining the LD

structure at TNFSF4 in African-Americans and Europeans validates

our association data: Neutral haplotypes in these populations,

recombinant between rs1234317, rs2205960 and rs200818062-,

support our conditional regression results. Association testing within

the Anti-Smith autoantibody-positive AA lupus subgroup strength-

ens the association P value and effect size of rs2205960-T and this

trend replicates in Europeans (Supplementary table S2).

Curated and non-redundant profiles of SELEX binding

experiments, stored in the JASPAR core database [36], suggest

rs2205960-T would form the 8th nucleotide of a decameric motif

with high binding affinity for NF-kB p65 (Figure 6). Altering the

8th nucleotide of the decamer to rs2205960-G reduces the binding

affinity of this sequence for this NF-kB protein by approximately

10%, according to these data. ChIP-seq data generated for two

Hapmap lymphoblastoid cell lines confirm binding of NF-kB at

this location. ENCODE ChIP-seq data also suggest binding of the

transcription factors BCL11a, MEF2a and BATF at rs2205960,

albeit with lower signal intensity compared to NF-kB. These data

suggest the genomic region encompassing rs2205960-T to have

strong regulatory potential.

These data were generated for the ENCODE project [37],

and establish that a positive signal for NF-kB binding is found

at rs2205960 but not rs1234317. A signal is found in both cell

lines and there is increased signal intensity in the risk/non-risk

heterozygote compared to the non-risk homozygote cell line.

These data suggest a mechanism by which rs2205960-T could

increase gene expression, which may underlie the SLE risk.

Our data suggest a putative role for TNFSF4 in autoantibody

generation, further clarifying the role of this gene in lupus

pathogenesis. Correlation of rs1234317-T with the presence of

anti-Ro autoantibodies in European cases is strengthened against

controls. The Genomatix SNP analysis web tool predicts

rs1234317-T to destroy the DNA binding site for the transcrip-

tional repressor E4BP4, a transcription factor with a role in the

survival of early B cell progenitors [38]. The DNA sequence

encompassing either the C or T allele of rs1234317 was

investigated for binding to this transcription factor using the

curated set of binding profiles stored in the Jaspar core database.

We could not confirm binding of the sequence with either allele to

the E4BP4 repressor with these data. However, the T-allele of

rs1234317 completes a TATATT consensus sequence for the

TATA-Binding Protein (TBP). External sources of regulatory data

stored in Ensembl and UCSC do not validate the binding of TBP

or other members of the transcription initiation complex. The

genomewide ChIP-seq data from the ENCODE project has data

for LCLs which carry the T allele of rs1234317 associated with

SLE risk. We would expect enrichment for TFs such as TBP, or

marks of open chromatin, but there are currently no data for LCLs

carrying the risk (T) allele. However binding of this factor is

associated with transcription initiation and so this variant merits

further investigation in Rho- autoantibody-positive subsets of SLE

individuals.

Association of rs2205950-T with African-American lupus

concurs with data published previously by our group establishing

a 59 TNFSF4 association with SLE in Northern Europeans [4].

The risk-associated variants rs2205960-T and rs1234317-T are

strongly associated in the Minnesota cohort consistent with our

results in four racial groups. In this previous study LD was a major

obstacle in delineation of causal variation. Crucially we find

association testing using a very large number of Europeans and the

admixed AA group allow delineation of the signal through

conditional analyses and the presence of neutral recombinant

haplotypes. The African-American data presented does not

validate data presented by Delgado-Vega and colleagues [39],

suggesting rs12039904-T and rs1234317-T to explain the entire

haplotypic effect at TNFSF4 with SLE. A possible explanation for

the modest association of rs12039904-T in our African-American

cohort is that it is monomorphic in West African populations such

as the Yoruba from Ibadan, Nigeria. Our data find rs12039904-T

a borderline rare allele in African-Americans and we find nominal

allelic association of rs12039904-T with disease, conditional

regression analyses of rs2205960 results in absence of an

association signal at rs12039904 in all groups.

Sanchez and colleagues use TNFSF4 rs2205960 and single

markers at 15 other lupus susceptibility loci to illustrate correlation

of Amerindian ancestry with increased frequency of lupus risk

alleles [40]. Delineation of rs2205960-T in the context of LD with

adjacent markers isn’t the aim of the Sanchez study, as a single

SNP is typed at each locus. They find aggregation of deleterious

alleles in Amerindian SLE individuals which are complemented by

the increased effect sizes we find for associated TNFSF4 variants in

Amerindians and Hispanics in this study.

In Asians, Europeans and Hispanics, the non-risk haplotype is

tagged by rs1234314-C, rs1234315-C, rs844642-G, rs844644-A,

rs2795288-T and rs844654-A. In African-Americans, there is a

signal at rs1234314-C and a weaker signal at rs844654-A.

Conditioning our meta-analysis data on rs2205960-T, the variant

which is best-associated with risk in this study, there is residual

association at each of these variants and the OR for the minor

allele is flipped. The best-associated variant after conditioning on

the risk signal is rs1234314-C. This variant is associated in all

groups tested and resides at the TNFSF4-59 boundary. Condition-

ing on rs1234314 and rs2205960 removes association at TNFSF4.

In summary, the data presented establish TNFSF4 as a global

susceptibility gene in SLE. We have replicated and refined the 59

association with disease and anchored risk and non-risk signals to

the proximal TNFSF4 promoter region through our efforts in

African-Americans, and in Europeans by virtue of increased power

in this large cohort. Recombination at the locus in African-

Americans, and the conditional regression strategies employed,

focus the 59 TNFSF4 association with disease to rs2205960-T. This

variant uniquely tags the risk- haplotype in African-Americans and

is strongly associated with disease in all groups tested. We find this

marker segregates with autoantibody subsets in African-Ameri-
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cans, European and Amerindian/Hispanic groups. Furthermore,

ChIP-Seq and bioinformatic data suggest that rs2205960-T sits

within DNA that binds NF-kBp65 (RelA). This suggests that the

risk allele would convey greater responsiveness of TNFSF4

expression to an NK-kB stimulus. Collectively, these data confirm

cross-ancestral TNFSF4 association with SLE and suggest trans-

ancestral mapping a useful strategy in complex traits.

Materials and Methods

Subjects
European samples held as part of the UK SLE and control

collection held at Kings College London (KCL) were approved by

06/MRE02/009; additional AA samples from the CASSLE group

were held at the University of Alabama at Birmingham (UAB) and

approved by the UAB IRB. This study included over 17,900 SLE

and control individuals of self-reported European, African-

American (AA), AA-Gullah, East Asian and Hispanic/Amerindian

ancestry. All cases fulfilled four or more of the 1997 ACR revised

criteria for the classification of SLE and provided written informed

consent. Samples were collected from multiple sites with Institu-

tional Review Board (IRB) permission and processed at the

Oklahoma Medical Research Foundation (OMRF) under guid-

ance from the OMRF IRB.

Phenotypes
Clinical data on SLE manifestations in all subjects were

obtained from medical record review performed at individual

institutions, collected and processed at the OMRF, with additional

phenotypic information from KCL, MUSC and UAB.

Genotyping and quality control
Genotyping was performed in two independent experiments on

the Illumina iSelect platform at OMRF for combinations of

haplotype tag SNPs and proxy variants capturing all common

haplotypes, this meant we did not type all markers in all groups,

marker selection was dictated by TNFSF4 locus architecture and

included SNPs found to be associated in our previous European

association study [4] and Hapmap phase 3 populations [31]. In all,

125 different SNPs in a 200 Kb region (chromosome 1,

171,400,000–171,600,000 NCBI build 36.3) encompassing the

TNFSF4 gene and 59 region were genotyped.

Population stratification bias and effects due to admixture were

addressed by genotyping 347 genome-wide SNPs as used by

Halder and colleagues [29] to correct for major ancestry. 20

Additional 1q25-specific ancestry markers were genotyped to

correct for two-way admixture between Europeans and AAs.

Within each population, Eigenstrat was used for principal

components (PC) analysis and global ancestry estimates were

additionally inferred by a combined Bayesian and sampling-theory

approach (Admixmap). We spiked the African-American popula-

tion with Yoruba, Tuscan and Northern/Western European

Hapmap III individuals to cross-compare two-way admixed AAs

with their founder populations (Supplementary Figure S1).

Markers with less than 90% genotyping efficiency were

excluded from the analysis. Hardy-Weinberg Equilibrium

(HWE) was assessed in control samples of each cohort. We

included markers which deviated up to a P.0.01 threshold for

HWE. We also included markers which had an acceptable HWE

p-value in three of the four cohorts, if associated with SLE in

multiple populations. Following filtering for duplicates, first-degree

relatives, HWE, missingness and major ancestry, the non-imputed

dataset comprised 111 TNFSF4 SNPs and 294 AIMs and 17900

samples prior to imputation (Table 1).

Imputation methods
Imputation of the genomic region from 173,112,930 to

173,349,886 (NCBI build 37) on chromosome 1q25.1 was

performed using IMPUTE2.2 and the phased haplotypes from

the 1000Genomes phase-1 integrated_v3 dataset [31]. Genotypes

from our UK-Canadian GWAS (unpublished) were used as a

second reference for the imputation of the European cohort

(Table 1). Our aim was to fill missing gaps in the genotyping data

and impute common markers (.1% MAF) missing between

datasets to examine association at TNFSF4 and to better inform

the structure of common haplotypes across the populations. We

estimated concordance between imputed and true genotypes and

Imputed SNPs were included in downstream analysis if SNP info

scores exceeded 0.7 and a HWE.0.01. These criteria successfully

filtered out all but the best-imputed SNPs.

Inference of population-specific recombination maps
We used FASTPHASE to phase 6272 unrelated control

chromosomes (1568 from each population), randomly chosen

after QC filtering. Rhomap from the LDhat2.0 package [32] was

used to estimate population scale recombination rates in the

presence of hotspots using pre-computed maximum likelihood

tables in the analysis. Using the approach of Auton and colleagues,

Rhomap was run for a total of 1,100,000 iterations including a

burn-in of 100,000 iterations, the chain was sampled every 100

iterations after the burn-in. Each simulation incorporated 196

chromosomes meaning a total of 8 simulations were completed per

group and the mean average recombination calculated between

each pair of markers at the TNFSF4 locus. Simulations were

executed in their entirety on 3 separate occasions to ensure there

were no irregularities. The data did not change if we increased the

parameters used. These analyses were then extended to infer

recombination in phased chromosomes from African-American

risk and non-risk homozygote individuals (Supplementary Figure

S3).

Single marker association analyses
After QC filtering, single marker association and conditional

data were generated using a case-control format and the

continuous covariate function in SNPtestv2 under the additive

model. We used a frequentist statistical paradigm and a

probabilistic method for treating genotype uncertainty. Odds

ratios (OR) with 95% confidence intervals (95% CI) were

calculated using the beta statistic and 95% confidence intervals

the SE. Data are represented as nominal uncorrected p-values.

Meta-analysis
We used a logistic regression model fitted with an interaction

term (effect) in the R statistical package to investigate cross-study

heterogeneity. P-values for individual associated SNPs were

generated using the likelihood-ratio test. We found no evidence

of cross-study heterogeneity for the key haplotype-tagging

common variants which span the locus. These were rs1234314,

rs1234317, rs2205960, rs12039904, and rs10912580. We have

presented the results of a fixed-effects meta-.results for East Asians,

Europeans and Hispanics and African-Americans to more

powerfully estimate the true effect size (Table 3). The effect size

across all datasets was computed using inverse variance weighting

of each study.

Bifurcation
By using the Long Range Haplotype (LRH) test to look for

common alleles with long-range linkage disequilibrium (LD), we
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were able to represent the breakdown of the risk haplotype,

TNFSF4risk. TNFSF4risk was anchored by rs1234314 in all

groups, a marker conveniently positioned at the boundary of

the TNFSF4 gene and 59 region. Haplotype bifurcation

diagrams were generated in the program Sweep. Two SNPs

which show best evidence of association after meta-analysis,

rs1234317 and rs2205960, are marked on the scale of each

bifurcation plot.

Haplotype association and conditional regression
Haplotypes in the TNFSF4 gene and 59 region were generated

using Haploview 4.2 using the custom algorithm, based on the R2

measure of linkage disequilibrium (LD). Markers and haplotypes

with frequencies greater than 4% were included in the analyses.

Haplotypes were anchored using tag SNP genotype data and

boundaries were inferred using recombination data. SLE case-

control association and step-wise conditional regression data for

each haplotype was generated in PLINK, as were OR (95% CI)

and the association is represented by nominal uncorrected p

values.

Phenotypic association
Individuals with early age of SLE onset were classified using

interquartile range and analysed using case–only format and case-

control formats in SNPTest. Presence/absence of leukopenia and

lymphopenia, anti-La, anti-Ro and anti-Sm autoantibody subsets,

which are associated with SLE, together with renal disease, were

analysed using both case-only and phenotype-control formats.

Linear regression data of the most associated marker for each

phenotype in each population was generated.

B cell isolation and cell stimulation
Peripheral blood mononuclear cells (PBMC) were isolated from

40 ml whole blood from a European individual using the

ACCUSPIN System-Histopaque (Sigma-Aldrich). B lymphocytes,

expressers of TNFSF4, were negatively selected using the

Dynabeads Untouched Human B Cell kit (Invitrogen). Cell purity

was assessed by FACS analysis of CD19-FITC-conjugated B cells

and these were 97% pure. The cells were stimulated with 25 mg/

ml anti-IgM-(Fab9)2, 0.1 mg CD40L and 0.1 mg enhancer of

CD40L to upregulate TNFSF4. Upregulation of cell-surface

TNFSF4 was assessed by FACS.

RNA isolation and 59 rapid amplification of cDNA ends
(RACE)

Total RNA was isolated using the TRIzol (Sigma) method from

56106 B lymphocytes. 59 ends of TNFSF4 transcripts were

generated by the SMARTer RACE cDNA Amplification Kit

(Clontech). Primer3 was used to design gene specific primers

suitable for four alternative splicing variants predicted by the

Aceview alternative splicing modelling tool [34]. During PCR a

universal primer was added to the 59 end of the cDNA. In

combination with each transcript specific primer, cDNA was

amplified up to the 59 end as dictated by transcript sequence and in

a positive control. In order to identify clones relevant for the

TNFSF4 manuscript, we undertook colony hybridisation with a 32P-

labelled probe specific for the 59 region of TNFSF4 cDNA.

Following colony selection, we cloned individual PCR products

using the TOPO TA Cloning Kit (Invitrogen) in order to identify

individual transcript isoforms. Bacterial cultures were mini-prepped

as per manufactures instructions (QIAprep Spin Miniprep Kit,

Qiagen). Samples were digested with EcoRI and different sized

fragments sequenced and Blasted against transcript sequences.

Cis eQTL analysis
Genome-wide expression profiles stored in the Multiple Tissue

Human Expression Resource (MuTHER) were available for

download at http://www.muther.ac.uk/Data.html.

Bioinformatic analysis
Transcription factors (TFs) which are predicted to interact with

DNA at the risk-associated TNFSF4 variants identified as part of

this study were investigated in a sequence-specific manner. We

analysed DNA-binding patterns at these locations using curated,

non-redundant matrix profiles stored in the Jaspar core database

[35]. In a complementary approach, putative risk loci were

investigated using profiles derived from whole-genome ChIP-seq

experiments on lymphoblastoid cell lines generated for the

ENCODE project and stored in the Ensembl (http://www.

ensembl.org/Homo_sapiens/encode.html), UCSC databases

(http://genome.ucsc.edu/ENCODE/) and 1000genomes variant

call format files downloaded from http://www.1000genomes.org/

.
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Supporting Information

Data S1 Genomes allele frequencies for rs1234314 and

rs2205960.

(DOCX)

Figure S1 Left, Principal component (PC) 1 versus PC2 analyses

of four Hapmap III African (yellow) and two Hapmap III

European (red) populations and our African-American SLE-

control cohort (black). Right. Population stratification between

African-American cases (red) and controls (black) was minimised

by principal components analysis using 367 major ancestry

informative markers. This figure depicts the most profound

ancestry differences along continuous axis of variation between

cases and controls after QC filtering of the AA cohort.

(EPS)

Figure S2 PC-based analysis of the Mestizo Native American

cohort (grey) and Hispanic Mestizo cohort (black) use 347 AIM

SNPs.

(EPS)

Figure S3 Comparison of recombination at TNFSF4 in African-

American TNFSF4risk and TNFSF4non-risk individuals. Phased

chromosomes from African-American SLE individuals homozy-

gous for TNFSF4risk (n = 10) and TNFSF4non-risk(n = 10) were tested

for recombination using Rhomap from the LDHAT2.0 package. A

fine-scale map of recombination rate (4Ner/kb) across 250 kb of

chromosome 1q25 which encompassed TNFSF4 and extended 59

and 39 regions was inferred. Individuals were identified as

homozygous for TNFSF4risk or TNFSF4non-risk. We ran Rhomap

for a total of 1,100,000 rjMCMC iterations including a burn-in of
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100000 iterations, sampling the chain after every 100. Grey

diamonds indicate the location to scale of SNPs significantly

associated with risk of SLE in this cohort, the TNFSF4 gene is also

located to scale under the graph.

(EPS)

Table S1 TNFSF4 markers in African- Americans, Gullah and

combined AA-Gullah (non-imputed).

(DOCX)

Table S2 (Case-only) and (Case-control) phenotype analysis.

(DOCX)
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