
App developers and exclusive dealing:
an overview of the operating system

market.

Author:
J.C. Rueda
Anr: 679403

Supervisor:
C. Fiedler

School of Economics and Management

BSc Economics

Bachelor Thesis

June, 2017

Word count: 7683

Contents

1 Introduction 2

2 Literature Review 5

3 Modeling framework 8
3.1 Model 1: No app Developers. 11
3.2 Model 2: Monopoly. 12
3.3 Model 3: Perfect Competition. 13
3.4 Model 4: Exclusive Dealing. 14

4 Python Simulation and results 15
4.1 Python Simulation . 15
4.2 Results . 16

5 Conclusions 20

References 21

A Demand Functions 22
A.1 Model 1 . 22
A.2 Model 2 . 22
A.3 Model 3 . 24
A.4 Model 4 . 26

B Python codes 27
B.1 Model 1 . 27
B.2 Model 2 . 31
B.3 Model 3 . 35
B.4 Model 4 . 40

C Mathematical proof of profits 44
C.1 Model 1 . 44
C.2 Model 2 . 44
C.3 Model 3 . 45
C.4 Model 4 . 46

1

Abstract

Nowadays, a large number of markets involve platforms. These mar-
kets are known as multi-sided markets and are characterized by the pres-
ence of Network Externalities. The Operating System market for smart-
phones is one of the well-known examples of this type of market. The
paper simulates four different competition structures for App Developers
in the two-sided market of Operating Systems for Smartphones: no App
Developers, a Monopoly Developer, Perfect Competition between Devel-
opers and Exclusive Dealing of one Developer with an Operating System.
It shows that the market structure that gives the highest welfare ben-
efits is the one where App Developers compete in prices at the perfect
competition level, while Operating Systems compete in a differentiated
product Bertrand Competition game. Also, it proves that a market with
App Developers gives higher Consumer Welfare.

1 Introduction

Ever since the release of the first iPhone in 2007, the smartphone market has
grown rapidly, reaching a revenue of 52.9 billion (US Dollars) for the quarter
ending on April 1, 2017, compared to a revenue of 50.6 billion (US Dollars)
in the same quarter a year ago (Apple, 2017). Conversely, in 2009, the first
Samsung smartphone was released1. It also shows a revenue of 44.72 billion
US Dollars2 for the quarter ending on March 31, 2017 (Samsung, 2017). With
the smartphone industry’s increase, important regulators started to pay close
attention to the possible violation of competition laws.

On April 20th, 2016 the European Commission started an antitrust investi-
gation into Google and its Android operating system. The investigation found
evidence that “Google obliges manufacturers, who wish to pre-install Google’s
app store for Android, Play Store, on their devices, to also pre-install Google
Search, and set it as the default search provider on those devices” (Comission,
2016). It is important to note that this is not the first and only investigation
regarding operating system competition. This fact altogether with the growth
rate of the industry in the last few years, makes competition analysis in this
market more interesting.

An important concept in this field is network externalities. These externali-
ties are the ones related to the effect on the valuation of a good, given by the
usage of another user or agent (Martin, 2010). There are two types of network
externalities: direct and indirect. The first one is associated with the cases
where the value of the product increases with the number of consumers using
the product. A good example of this type of externality is LinkedIn. As more
companies become involve in its network, the value for job searchers increases.
Indirect network externalities are more linked with goods or services that are
not valuable without complements. For example, a Blu-ray disc player is only
useful if there are products in the market recorded in Blu-ray format. In general,

1Although the first smartphone, the Dream, incorporated the Linux-based android operat-
ing system, in this analysis I consider the present day Android OS smartphones, such as the
popular Samsung S series, as they are the direct competitors of Apple nowadays.

250.55 KRW trillions.

2

Operating Systems are a clear example of network externalities: the wiliness to
pay of consumers increases as the number of available apps supported by the
platform increases.

Multi-sided markets or multi-sided platforms, are markets where network exter-
nalities play a fundamental role. These type of markets are usually characterized
by the presence of two or more sides, whose benefits are driven by the inter-
action through a platform (Rochet & Tirole, 2003). Hagiu and Wright (2015)
defined that “The most common approach to date has focused on the presence
of important cross-group or indirect networks effects between the two or more
customers groups participating on the platform”.

As Hagiu (2004) stated “A market is said to be two-sided if firms serve two
distinct types of customers, who depend on each other in some important way,
and whose joint participation makes platforms more valuable to each”3. A clas-
sic example of two-sided markets are videogame platforms such as Sony Play
Station, Nintendo Wii and Microsoft Xbox. In this case, the platform is in
charge of making the interaction between videogame developers and gamers
easier. Interestingly enough, this type of platform has an additional character-
istic: videogame developers are effectively dependent on the platform owners in
order to retail their product to consumers4.

In this paper I consider a two-sided model to analyze differences in competition
models of the smartphone industry, specifically on operating systems such as iOS
and Android. The operating system industry, in particular for smartphones, is
one of the best examples in this file: OS connects mobile phone manufacturers,
end-users, app developers, advertisement companies and more.

It is important to recall that most of the studies about two-sided markets are
based on comparisons between competition models between the platforms, in-
stead of one of the branches for the multi-sided market. In other words, lit-
erature tries to explain different competition models in the core of the market
instead of one of the sides. Therefore, even with big contributions to the litera-
ture related to multi-sided platforms, as the one made by Jean-Charles Rochet
and Jean Tirole through their papers 5 called “Platform Competition in Two-
Sided Markets” and “Two-Sided Markets: A Progress Report”, the gap in the
literature regarding the analysis of the competition on one of the sides of the
market remains.

This paper aims to analyse different market structures, in a context of operating
systems, for app developers and answer which is welfare enhancing. Therefore,
the main objective of this paper is to analyze the two-sided market of Oper-
ating Systems for mobile phones. I will study a model of interaction between

3This definition is alligned with the definitions used by other authors. For example, Rochet
and Tirole (2003) defined two-sided markets as “markets in which one or several platforms
enable interactions between end-users, and try to get the two(or multiple) sides “on board”
by appropriately charging each side”.

4As it was explained in Rochet and Tirole (2006) there are a lot more examples of two-
sided markets such as portals, TV networks, newspapers, payment card systems and operating
systems (Microsoft, Apple, Novell, IBM, Sun, etc. . .).

5Both papers were written by the two authors named.

3

three economic agents: App Developers 6, Operating Systems, and Consumers
or customers. I will compare four different competition situations:

• A market without app developers. Only Operating Systems and con-
sumers.

• A monopolistic app developer that develops apps for both platforms.

• Two app developers, each serving both markets (Perfect Competition).

• One monopolistic app developer that serves exclusively OS1 (Exclusive
Dealing).

For this purpose, a python simulation and a theoretical model will be used.

This paper is organized as follows: Section 2 gives a literature review about
multi-sided (two-sided) market analysis. Section 3 presents the modelling frame-
work with the general assumptions. It has 4 subsections, each corresponding to
one of the competition models explained above. Section 4 explains how all three
models were solved and programmed in Python together with the final results.
Finally, Section 5 summarizes my main conclusions with respect to the results
found under Section 3 and Section 4.

6In this paper they will be called Developers.

4

2 Literature Review

This paper belongs to a quickly growing economics literature on two-sided plat-
forms model, initiated by Parker and Van Alstyne, Rochet and Tirole, Hagiu
and Armstrong. In this section, I am going to go deep into the main studies
about multi-sided markets and how this paper differs from the already available
literature.

Parker and Van Alstyne were pioneers in the analysis of network effects to
explain the behaviour of Software Platforms. They showed that contrary to the
expected behaviours of firms avoiding Bertrand competition, it is possible to
find a set of optimizing prices with one of them below marginal cost, because
it will increase demand across markets7 (Parker & Van Alstyne, 2000). One of
their main conclusions is that the level of externality benefit is crucial to the
determination of the price structure. Under high levels, “[. . .] the market that
contributes more to demand for its complement is the market to provide with
a free good.” (Parker & Van Alstyne, 2000)[p. 1503], for lower levels, firms will
keep one price low but both positive8.

The model proposed by Rochet and Tirole focuses on the credit card market.
The authors stated the importance of a non-traditional analysis for multi-sided
markets. They claimed that one of the main differences and focus of their paper
is the fact that multi-sided platforms do not choose price levels, instead, they
choose price structures. With respect to that price structure, they emphasized
on the fact that most of the multi-sided platforms based their business models
on getting profits from one side of the market and leaving some losses on the
other. Indeed, in Hagiu (2004) the author based on an empirical survey by
Evans, Hagiu, and Schmalensee, stated that software platforms choose a price
structure that allows them to “subsidize or earn little if any profits on the devel-
oper side of the market”, and charge unreasonably high prices to users in order
to get all of their profits. Rochet and Tirole (2003) also stated the importance
of multihoming9 on one side of the market in order to define competitive prices:
“multihoming on one side intensifies price competition on the other side. . . ”
(Rochet & Tirole, 2003).

In the two-sided market literature, we can find two types of externalities: usage
and membership externalities. The first of these arises from usage decisions. In
the smartphone market context, users derive utility from using the operating
system10 on their smartphone rather than a PC, and developers also get utility
from the fact that users are linked to the operating system. On the other hand,
membership externalities refer to the situation when users on one side of the
market derive strictly positive surplus from the interaction of an extra member

7The term “demand across markets” refers to the situation of the interactive demands in
a multi-sided platform. However, they didn’t use the term multi-sided markets during their
paper. In contrast, they refer as inter and intra-market externalities.

8Rochet and Tirole also concluded that if attracting one side, through lower prices, gener-
ates externalities on the other side, then it is a good strategy(Rochet & Tirole, 2006).

9In smartphones market, multihoming implies that users can get access to more than one
operating system. In general, a clear example of multihoming users is the credit card market:
users are multihoming when they hold more than one type of credit card (Visa and Maestro).

10In this case, operating system is considered the platform.

5

on the other side of the market. In this paper, I am only focusing on usage
externalities.

It is interesting to recall that while Rochet and Tirole (2003) limit their anal-
ysis to a mathematical model with pure usage externalities, Rochet and Tirole
(2006) augmented their initial model considering both usage and membership
externalities. The structure used in both papers to develop the mathematical
model is similar. In both papers, authors focused exclusively on the effect of
variation in competition model or market structure for the platforms. Never-
theless, the way in which the authors approach the variations are different: the
first paper considers the case of a monopoly platform, competing platforms, and
linear demands, while the second paper adopts a more complicated approach
considering a basic model with or without payments between end-users.

Hagiu (2004) took a different approach. He chose to study how the optimal
price structure appears for a two-sided market with a continuous and large
number of app developers. He did this by looking at how the interaction be-
tween buyers and sellers was affected under a strong preference for variety, by
buyers, and competition between sellers. His model concluded that when users
have strong preferences for diversity, the optimal price structure is the one that
allows the firm to make more profits on third-part producers instead of users11.

The results of this paper rely on three main assumptions: Firstly, there is not
vertical differentiation. Secondly, all applications are solely differentiated by
fixed costs of production and lastly, there are not variables fees charged by the
platform. He defined the timing for the pricing game as follows: First, the plat-
form sets a price for users and developers simultaneously. Subsequently, both
sides of the market make their adoption decision and following, developers set a
price for consumers and they decide which app to buy. He also analysed differ-
ent platform pricing structures for different types of two-sided markets, placing
emphasis on the fact that depending on the market the optimal price structure
can be radically different12. Finally, Hagiu investigated the effect of proprietary
platforms against open platforms in the context of a social efficiency analy-
sis. He concluded that the inefficiency of an open platform on developers’ side,
depends entirely on business stealing and product diversity effects(Hagiu, 2004).

A more recent paper in this field is Armstrong (2006). He considered three mod-
els: a monopoly platform, platform competition with single-homing users, and a
competitive bottlenecks model13. According to Armstrong there are three main
determinants of equilibrium prices: the magnitude of the cross-group externali-
ties, the condition on the fees14 and the condition of single or multi-homing for
users.

11Hagiu makes an interesting remark, concluding that this optimal pricing structure is more
applicable in video games market than in software markets.

12He considered 3 markets: software platforms, video games, and digital media. The first
one, according to the data presented by the authors chooses to charge 0 on developers’ side
and get all their profits from users. The Second one is the other way around and the last one
is something in between the other 2 strategies.

13This is the case of users with the possibility of multi-home and also users deriving more
utility from network benefits than considering the cost they have to pay.

14Levied or lump-sum.

6

Cross-group externalities are defined as the situations where the “benefit en-
joyed by a member of the group, depends upon how well the platform does in
attracting custom from the other group” (Armstrong, 2006). Therefore, the first
price determinant can be analysed as follows: if the platform is in a situation
where a member of one group gets a large utility from each member on the other
side of the market, the platform should get more profits from that group. The
second condition can be summarized as the fact that cross-group externalities
become weaker if the platform is charging per-transaction charge15. The last
condition focuses on the fact that for example, platforms under single-homing
users’ environment have more incentives to compete and therefore profits are
lower.

Each of these papers contribute to the theoretical framework used in this paper.
The innovation with respect to the papers by Rochet and Tirole, Armstrong
and Parker and Van Alstyne is the introduction of an analyzed focus on the
competition of one side of the market instead of the platforms itself. Further, I
consider a simple Bertrand model between 2 platforms and variations in the App
Developers competition. The innovation of my model in relation to the paper
by Hagiu is more complicated. Hagiu also focuses his analysis on competition
on one side, however, he considers consumers with the same valuation for the
good, while I consider different valuations randomly selected for each consumer.
Another innovation of this model is in the price timing: this model considers a
timing where consumers first decide which operating system to buy, and then
they decide if they buy or not the app offered on the other side of the market.
The last innovation of the model developed in this paper is the variable quality
of operating systems. They are not only competing to set a price in the market
but also need to set up an optimal quality level that will attract more users.

15This is because a proportion of the benefit that users are getting from the interaction is
being reduced by the extra payment.

7

3 Modeling framework

The general theoretical model considers 2 Operating Systems16. This assump-
tion is based on the fact that market share of Operating Systems for mobile
phones is reported to be in the first quarter of 2017, 86.1% for Android, 13.7%
for iOS and 0.2% for others (Statista, 2017). This gives us an insight that the
Operating Systems market is mainly shared between two big firms. In fact, as
explained before, we look specifically at Apple OS iOS and Google OS Android.
We study a large finite number of consumers on one side of the market and 1
or 2 Developers, depending on the model, on the other side of the market. For
simplicity, I assume single-homing consumers17.

We are interested in modeling a two-sided market for Operating Systems. For
the purpose of analyzing different competition models, as stated in the research
question, we will model 4 different scenarios for competition in this market. The
theoretical model combined with the Python Simulation, allow us to find results
related to optimal decisions, giving enough tools to compare different scenarios
and make conclusions about welfare optimality. Each model will be explained in
its respective subsection in this paper. However, we will start with the general
assumptions common to all models.

The theoretical model is based in Hagiu (2004). It is important to consider that
given the specific market studied in this paper, variety effect does not play an
interesting role, as Hagiu stated “. . . there are good reasons to believe that user
demand for application variety is higher for video games than for productivity-
oriented or professional software (for computers, PDAs, smartphones or other
electronic devices)”.

Consumers are represented in the equations by the subindex i ∈ [1, n] with a
total number of consumers equal to n. Considering only two Operating Systems,
they are represented by j ∈ (1, 2). Finally, the subindex k shows Developers
equations18.

With the purpose of keeping the analysis tractable and simple, the functional
form of the utility for consumer i purchasing operating system j and app pro-
duced by Developer k is given by:

Ui(q
os
j , p

os
j , p

a
k) = θi + θiq

os
j –posj +max(0, αi–p

a
k) (1)

Where
θ ∼ U(0, 1)

α ∼ U(0, 1)

16In this paper we are going to refer to Operating Systems as OS.
17It means that consumers can exclusively use one platform, in other words, each consumer

can buy one OS solely.
18The number of Developers will vary between models, therefore the limits for subindex k

will be specified in each subsection.

8

and consumer i has a θi
19 and αi that parametrizes its wiliness to pay for the

OS and the app respectively20. Furthermore, qosj shows the quality level of the
OS j. The price charged by OS j is represented according to posj . Finally, the
last term on the utility function of consumers represents the utility derived from
the consumption of the app, when the consumer buys it from Developer k.

Utility function specified in this model satisfies feasible features for the Op-
erating System’s market. If consumer 1 has a willingness to pay of θ1 higher
than the willingness to pay of consumer 2 θ2, for a given level of quality con-
sumer 1 is willing to pay a higher price. It is not misleading to assume that
Consumers’ utility increases with higher quality levels set by OS21. A consumer
with a low willingness to pay does not valuate the quality as a consumer with a
high willingness to pay22. Therefore, the return of an increase in OS quality is
mathematically multiplied by the willingness to pay of each consumer: higher
θ implies higher returns of higher levels of quality. Finally, since prices are a
cost for consumers, their utility decreases with both prices. It is important to
specify that in the market, consumers cannot buy the app without buying one
OS. I assume that consumers incur no fixed usage cost.

Developers face fixed cost F related to the cost incurred in the app development
process. Without loss of generality, for simplicity I normalize the variable costs
for Developers to 0. Developers, even in the model of monopoly, do not have the
market power needed to charge a fee to the OS it is linked with23. Developers
do not take into account the change in composition of the demand given by the
Operating Systems. It means that they cannot change the price set after seen
the price and demand for Operating Systems24.

Operating Systems are assumed to have symmetric costs structure defined ac-
cording to

c(qosj) =
1

2
(qosj)2 (2)

where qosj is the quality level set by OS j. c(qj) is increasing and convex. It
means that even when a firm has the incentive to set a higher quality level,
to attract more customers, each increase in the quality level increases 1

2 (qosj)2

the costs of the firm j. I assume that Operating Systems do not face any cost
from the interaction between Developers and Consumers. Apple, for example,
indirectly forces consumers to get new phones in order to update their OS and
therefore to have access to new platforms. In this sense, Apple does not need

19In fact, if the optimal decision for consumer 1 with θ1 is to purchase the OS, independently
on which of the two, all consumers with θi ≥ θ1 with i 6= 1 will purchase from one of the two
OS.

20θ and α are independently distributed.
21A higher level of quality in the Operating System market, implies better features in

consumers’ phones. Therefore consumers get more utility from phones with better features.
22We can consider consumers with low levels of θ as people that do not care about technology,

they want an OS but they are not willing to spend a lot of money in such a good despite the
quality level.

23It does not mean that the Developer cannot charge a price above the costs.
24If developers do not behave in this way, they should consider that consumers with higher

αi are more likely to purchase the app and then charge a higher price. In general, they should
set a different price as the composition of the α ex post is different given the condition of
pre-purchase of an OS in order to buy the app.

9

to incur in any maintenance costs from updating a platform.

OS and Developers have a standard profit function that will vary between mod-
els, and therefore will be explained in each subsection.

Competition model between Operating Systems holds for all models, with vari-
ations in the number of Developers associated with each OS. In general, the
decision of consumers of purchasing OS1 or OS2 is related to the utility each
OS generates to the consumer. First of all, consumers only purchase an OS if
it gives them a positive utility, therefore:

Ui(q
os
j , p

os
j , p

a
k) ≥ 0 (3)

j = 1, 2

k = 1, 2

where pak is the price of the app that will variate in each model, and qosj , posj are
the quality and price associated to OSj with j = 1, 2. If equation (3) is satisfied
for both Operating Systems , consumers’ purchasing decision is made by a
comparison between utilities. I assume a tie-breaking rule of consumers buying
from OS1 in a case of a tie. Then the purchasing decision can be expressed as:
Purchasing OS1 if

Ui(q
os
1 , p

os
1 , p

a
k) ≥ Ui(q

os
2 , p

os
2 , p

a
k) (4)

Purchasing OS2 if
Ui(q

os
2 , p

os
2 , p

a
k) > Ui(q

os
1 , p

os
1 , p

a
k) (5)

It is important to consider that this purchasing decision is the base of the de-
mand function. In each subsection I will define demand function of consumers
for the correspondent case. Demand changes as a result of different competition
games in the model. It is important to consider that demand functions define
in this section, are the total demand that each firm should consider to set an
optimal price.

Finally, we define welfare of the economy as the sum of:

W =

2∑
j=1

πos
j +

2∑
k=1

πa
k +

N∑
i=1

(Ui = θi + θiq
os
j –posj +max(0, αi–p

a
k)) (6)

where N is the total number of consumers in the market, πos
j is the profit for

Operating System j and πa
k is the profit for Developer k. As explained before,

the number of Developer changes in some models, with a maximum number of
2 Developers.

All models consist of 5 stages:

1. Operating Systems set quality.

2. Operating Systems set prices for consumers.

3. Consumers decide to buy OS.

10

4. Developer set price for consumers.

5. Consumers decide to buy App, given the previous purchase of the OS.

Operating systems compete in a Bertrand game during stage 1 and 2. Given
the condition that Consumers can only buy the app if they acquired an OS in
advanced, Developer’s price decision is established after Consumers purchasing
decision to buy the OS. In some models, Developers compete in prices during
stage 4. Under section 4, we can find the solution of this game given by a back-
ward induction procedure programmed in Python.

3.1 Model 1: No app Developers.

For the first model, we consider the case of 2 Operating Systems and Consumers.
In this case, there are not Developers in the market. Figure 1 shows the will-
ingness to pay for OS θi. The line in figure 1, represents all consumers in the

Figure 1: Demand for Model 1

market. Consumers demand when the utility attained from any of the OS is
positive as stated in equation (3). The decision of buying from OS1 or OS2 is
determined by equation (4) or (5). Based on the market analysis, we know that
demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = 1− pos1 − pos2

qos1 − qos2

Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) =

pos1 − pos2
qos1 − qos2

− pos2
1 + qos2

The proof is found under Appendix A-1.

As explained under general modelling framework, Operating Systems face stan-
dardized profit function. Operating Systems’ profits are defined as follows

πos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = Dos

1 (qos1 , q
os
2 , p

os
1 , p

os
2)(pos1)− 1

2
(qos1)2 − F (7)

πos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) = Dos

2 (qos1 , q
os
2 , p

os
1 , p

os
2)(pos2)− 1

2
(qos2)2 − F (8)

On the other hand, Operating Systems have a cost structure that only depends
on the quality level. As explained in general modelling framework, Operating
Systems do not face any cost derived from the interaction between Developers

11

and Consumers.

Since in this model we do not consider any Developer, the timing of the model
is reduced to only the first 3 stages.

3.2 Model 2: Monopoly.

In this model, we consider the entrance of a third agent in the market: one
Developer, holding the assumptions established before for OS and Consumers.
Figure 2 shows the interaction between both wiliness to pay of each consumer:
αi and θi.

Figure 2: Demand for Model 2

Total demand of the market for App and Operating Systems is represented by
the areas A+B+C+D. Areas are defined as follows

Area(A) = (1− x)(y)

Area(B) = (1− x)(1− y)

Area(C) = (x− w)(1− v) +
1

2
(x− w)(v − y)

Area(D) =
1

2
(z − T)(w) + (1− z)(w)

Demand for Developer is given by

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) =

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
2pa + pos1 −

(pos1 − pos2)(1 + qos1)

qos1 − qos2

))
+
pos1 − pos2
qos1 –qos2

(
1− 1

2

(
2pa + 2pos2 −

(pos1 − pos2)(1 + qos2)

qos1 − qos2

))
+

(
1− pos1 (1− pa)

1 + qos1

)
Demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = 1− pos1
1 + qos1

+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
2pa + pos1 −

(pos1 − pos2)(1 + qos1)

qos1 − qos2

))
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) =
pos1 − pos2
qos1 –qos2

(
1− 1

2

(
2pa + 2pos2 −

(pos1 − pos2)(1 + qos2)

qos1 − qos2

))

12

The proof is found under Appendix A-2.

It is important to consider that Developer is not constraint by consumers’ deci-
sion of purchasing OS25. As explained under general modelling framework, De-
veloper and Operating Systems face standardized profit function. Developer’s
and Operating Systems’ profits are respectively defined as follows

πa(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a)(pa)–F (9)

πos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
1 , p

a)(pos1)–
1

2
(qos1)2 (10)

πos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a)(pos2)–
1

2
(qos2)2 (11)

In this case, Developer in the market only faces fixed cost of developing the app,
and since there is only one Developer in the market, it does not have to pay
any price to the OS in order to get access to its platform. For both Operating
Systems is convenient to give free access to the Developer in the market, because
some consumers have really strong preferences for the App that even with high
prices of the OS, they are willing to buy the OS only for the App.

On the other hand, Operating Systems have a cost structure that only depends
on the quality level. As explained in general modelling framework, Operating
Systems do not face any cost derived from the interaction between Developers
and Consumers.

3.3 Model 3: Perfect Competition.

For the third model, we consider the case of two Developers holding the as-
sumptions established before for OS and Consumers. Developers compete in a
Bertrand game and both apps are assumed to be homogeneous goods. Both
Developers can be linked to both Operating Systems. However, it is important
to remember that consumers are single-homing in all goods in the market, there-
fore it is not possible for them to buy both apps at the same time. In figure 3 we
can see the interaction between both wiliness to pay of each consumer: αi and θi.

Total demand of the market for App and Operating Systems is represented
by the areas A+B+C. Since price for App developers is equal to zero, given
the Bertrand Competition with homogeneous goods, for simplicity, we do not
consider pa in demand functions. Areas are defined as follows

Area(A) = (1− x)(1)

Area(B) = (x− w)(1− v) +
v

2
(x− w)

Area(C) = (1− z)(w) +
w

2
(z − v)

25It can also be seen in the backward induction of the game.

13

Figure 3: Demand for Model 3

Demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = 1− pos1

1 + qos1
+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
pos2 (1 + qos1)− pos1 (1 + qos2)

qos1 − qos2

))
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) =

pos1 − pos2
qos1 − qos2

(
1− 1

2

(
pos2 (1 + 2qos1 − qos2)− pos1 (1 + qos2)

qos1 − qos2

))
Demand for App Developers is given by

Da(qos1 , q
os
2 , p

os
1 , p

os
2) = 1− pos1

1 + qos1
+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
pos2 (1 + qos1)− pos1 (1 + qos2)

qos1 − qos2

))
+
pos1 − pos2
qos1 − qos2

(
1− 1

2

(
pos2 (1 + 2qos1 − qos2)− pos1 (1 + qos2)

qos1 − qos2

))
The proof is found under Appendix A-3.

As explained under general modelling framework, Developer and Operating
Systems face standardized profit function. Developer’s and Operating Systems’
profits are respectively defined as follows

πa(qos1 , q
os
2 , p

os
1 , p

os
2) = Da(qos1 , q

os
2 , p

os
1 , p

os
2)(pa)–F (12)

πos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = Dos

1 (qos1 , q
os
2 , p

os
1 , p

os
1)(pos1)–

1

2
(qos1)2 (13)

πos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) = Dos

2 (qos1 , q
os
2 , p

os
1 , p

os
2)(pos2)–

1

2
(qos2)2 (14)

3.4 Model 4: Exclusive Dealing.

Finally, in the last model, we consider the case of only one Developer, holding
the assumptions established before for OS and Consumers. The only Developer
in the market has an exclusive contract with OS1. Figure 4 shows the interaction
between both wiliness to pay of each consumer: αi and θi. Total demand of the

14

Figure 4: Demand for Model 4

market for App and Operating Systems is represented by the areas A + B +C
+ D + E + F. We can define Areas as

Area(A) = (1− w)(y)

Area(B) = (1− w)(1− y)

Area(C) = (w − x)(y)

Area(D) =
1

2
(w − x)(v − y)

Area(E) = (w − x)(1− v) +
1

2
(w − x)(v − y)

Area(F) = x(1− z) +
1

2
(z − v)x

Demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = 1− pos1 − pos2
qos1 –qos2

(
pa +

pos1
2

)
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) =
1

2

(
pos1 − pos2
qos1 –qos2

− pos2
1 + qos2

) (
2pa + pos1 −

pos2 (1 + qos1)

1 + qos2

)
Demand for App is given by

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = 1− pa +
1

2

(
pos2

1 + qos2

) (
pos2 (1 + qos1)

1 + qos2
− 2pos1

)
The proof can be found under Appendix A-4.

As explained under general modelling framework, Developer and Operating
Systems face standardized profit function. Developers’ and Operating Systems’
profits are defined according to equations (9), (10) and (11).

4 Python Simulation and results

4.1 Python Simulation

Each model explained in section 3, was simulated in Python. Every code is
different from the other since the competition conditions change through the

15

models. Coding for every model can be found under Appendix A.

In general terms, each simulation was run with 1000 consumers. For models
2, 3 and 4, each consumer was generated by a randomization process according
to a uniform distribution between 0 and 1, which gave a vector of 2 entries: the
first one refers to θ and the second one to α. For model 1, this vector only has
one entry since there is not any Developer in the market. α and θ are indepen-
dent.

Buy function was defined as a vector of 2 entries in most of the cases. Each
entry could only take the value of 0 or 1 since the product is discrete26. Demand
function was normalized to a number between 0 and 1, given the values of the
parameters θ and α. Therefore demand function shows the proportion of total
customers that buy from each firm.

4.2 Results

Since the code generates different numbers for θ and α each time the code is
run, readers who run the code might get different numbers to the ones presented
in this subsection. However, differences are not significant and lead to the same
conclusions.

Table 1 presents the results obtained in the Python Simulation27 for each model.
Cells with “-” imply that for the corresponding model, that cell does not take
any value28. CW = Consumer Welfare and Welfare = Total welfare in the
economy defined by equation (6). Profits for Developers presented in the table
do not include the Fixed Cost that firms must incur when developing the app.
Therefore, to be more exact each πa

k is equal to the value reported in the table
minus F.

In the first model, we can see that quality and price for both firms are rela-
tively close. However, given the tie-breaking rule in favor of OS1, we expect
that firm 1 had a bigger demand as indeed happened. This is also consistent
with the fact that OS1 charges a higher price and quality than OS2. Conse-
quently, given this results πos

1 is larger than πos
2 . Since both firms have the same

cost of investment in quality, given a higher demand for OS1, it has higher in-
centives to invest in quality than OS2. This is mainly due to the fact that for a
given price, increases in quality attracts more consumers, and also the fact that
OS1 can use its demand advantage to charge a larger price. However, despite
the difference in quality, we can see that profits for both firms are almost the
same.

From Model 2 onwards, we have one new agent in the market: App Devel-

26Each consumer can only buy 1 OS or 1 App, never half OS or half App, etc. . .
27Due to problems with the code, πos

2 were calculated with the equations presented un-
der section 3 instead of Python. The validity of this method is tested and corroborated in
Appendix C.

28In fact, Model 1 does not have any app in the market. Model 2 and 4 only have one app,
and it is results are called according to pa1 and πa

1 .

16

Table 1: Results Python Simulation
Variable Model 1 Model 2 Model 3 Model 4
Da

1 - 0.4490 0.4655 0.3944
Da

2 - - 0.4655 -
Dos

1 0.3699 0.6423 0.9116 0.6752
Dos

2 0.3222 0.1087 0.0195 0.0296
pa1 - 0.4743 0.000 0.4986
pa2 - - 0.000 -
qos1 0.4243 0.1995 0.2352 0.2531
qos2 0.3159 0.1615 0.0128 0.0171
pos1 0.4734 0.4356 0.4129 0.4885
pos2 0.4051 0.4222 0.4058 0.3853
πa
1 - 0.2523 0.000 0.2648
πa
2 - - 0.000 -

πos
1 0.0875 0.2598 0.3453 0.2996
πos
2 0.0806 0.0329 0.0078 0.0112

CW 0.2623 0.3334 0.7153 0.3173
Welfare 0.4304 0.6267 1.0684 0.6281

opers. Developers, as explained before, set a price in a myopic way. In model 2
we only consider one Developer and therefore, we expected a pa = 0.5 which is
consistent with the result obtained29 pa = 0.4743.

Model 2 represents the first model with 3 agents in the market: Developers,
Operating Systems, and Consumers. We can see that adding an extra agent in
the market, makes quality levels dropped drastically. The quality level in this
model is around one-half of the quality set in Model 1. This is due to the fact
that Consumers purchasing decision is now based on the consumption of two
goods: OS and App. Therefore Operating Systems have less incentive to invest
in quality levels: increases in quality levels are not directly related to increases
in demand in this model given the complementary good App. In this model,
we can also see an increase in consumer welfare mainly due to the new agent in
the market.

Given the cost structure for Developers in model 3 and the Bertrand Com-
petition model with homogenous goods, prices for both developers, as expected,
are equal to marginal cost, in this case, 0. This leaves Developers with 0 prof-

29Since the market condition for the app exclusively its limited to

α ≥ pa

Developer assume that his profits are given by

Da(pa) = (1− pa)pa − F

Optimizing Developers’ price leads to pa = 0.5. It is important to consider that this demand
is different to the one defined under section 3 for Model 2 because here we only consider
the demand the Developer sees. This is the case because in Model 2 we define demand
considering the price and quality for the Operating Systems, or in other words, we define
demand considering the demand for Operating Systems.

17

its30.

In model 3 we can see that the increase of a second Developer, creates an
incentive for OS1 to invest more in quality levels than in the model before,
however it creates the opposite incentive for OS2 which continue dropping its
quality level. As explained before, Developers charge a price of 0 which means
that given the tie-breaking rule, despite consumers preferences, most of them
are demanding from OS1. This means that all consumers with positive αi are
going to demand the app and therefore, as in Model 1, increases in quality levels
are directly related to increases in demand. The asymmetric demand makes this
effect only significant for OS1.

Operating system 1 obtains it highest profits under this model because the
competition situation allows OS1 to get the maximum market power possible
with respect to the 4 models presented in the table. At the same time, Operat-
ing System 2 gets the lowest profits possible because of big advantage that the
tie-breaking rule is giving to OS1 and the low market power that Developers
have.

In the last model, we can see that most of the results found in the other 3
models hold. First, the price of the only Developer in the market is again close
to 0.5, as it was predicted and explained by model 2. The developer is get-
ting approximately the same level of profits as under model 2, even though in
this case it has an exclusive dealing with OS1. This is because of the myopic
assumption for Developers; they always optimize its demand in the same way
despite the competition model they are facing. Therefore we can expect that
models with only one Developer will lead to similar prices and profits. As a
result, Developer’s profit in this model is 0.01 points higher than in model 2
with a price 0.0243 points higher than model 2.

With respect to consumer welfare, we can see that in models with more eco-
nomic agents, consumers are always better. In fact, under model 3 the one with
the highest number of economic agents, we consider 2 App Developers and 2 Op-
erating Systems, Consumers get the highest Welfare possible. When comparing
model 1 and 2, the majority of consumers who have low willingness to pay for
the app, let’s say αi < pa, are worse off in the scenario where App is available.
This can be seen by comparing the utility these consumers will get under both
model 1 and model 2. According to the utility function and assuming qos1,m1 and
pos1,m1 as the quality and price for OS1 in model 1, comparing with model 2 we
know that all consumers with

θ >
pos1,m1 − pos1,m2

qos1,m1 − qos1,m2

are worse off in model 2.

Market conditions for Operating Systems are asymmetric even when both firms
are ex-ante symmetric. The asymmetry of the market and the slight advantage
of OS1 makes OS1 to be the one with the highest quality level in the market in

30Even negative considering the fixed cost F .

18

all models.

It is interesting to notice, that in Model 1 we have the highest quality level
but only the second highest price. This is due to the fact that under Model 4,
the one with the highest price, OS1 has more market power in the way that
it has an exclusive contract with the App Developer. OS1 takes advantage of
the extra demand and charges a higher price in the market, even with one of
the lowest quality levels set by OS1. In Model 4, OS1 does not need to invest
in a high-quality level to attract more consumers, because he already has the
tie-breaking rule and also the exclusive dealing to put him in an advantageous
position with respect to his competitor OS2.

19

5 Conclusions

It is important to recall that the simple framework implemented in this paper,
without loss of generality, can help us better understand a more complex multi-
sided market. Therefore, all analysis and conclusions made in this paper can be
implemented into multi-sided platforms.

The highest prices charged in the market are set under exclusive contract (Model
4) by OS1. Since in this case Operating System 1 has an exclusive dealing with
the only Developer in the market, it allows him to take advantage of the de-
mand for the app and therefore set a higher price. OS1, in this case, has an
extra demand given by the consumers with high willingness to pay for the app
that is willing to buy the OS only for the utility attained from the app.

Consumers, in general, get the same surplus under monopoly (Model 2) and
exclusive contracts (Model 4). App Developers also get the same level of profits
under model 2 and 4. This can be explained because both models consider sim-
ilar competition structures: in both, there is only one Developer and it’s setting
its price pa under the same competition model.

Economic theory suggests that perfect competition leads to the highest con-
sumer surplus and the lowest profits for firms. Results for perfect competition
model (Model 3) support this theory. Since App developers are setting prices
equal to marginal cost, as in perfect competition model, they get the lowest
profit possible πa

k = 0 and Consumers at the same time get the highest sur-
plus possible. Under the same theory, model 1 shows the lowest surplus for
Consumers. This result can be due to the fact that in model 1 there is less
competition in the market. Since there are not Developers, Operating Systems
have more market power.

For the same conditions explained before, under models 2 and 4 Developers
get more profits than under Model 3. This is because, under models 2 and 4,
Developers have some market power that allows them to charge a price larger
than their marginal cost. These prices allow them to get strictly positive profits.
However, it is interesting to notice that the myopic condition for App Develop-
ers, always makes them overestimate their demand and therefore they expect
higher profits that the ones thy actually get.

The analysis of the best competition model for Operating Systems is the inter-
est in this paper. Operating System 1 gets always an advantage over Operating
System 2 given the tie-breaking rule defined for the simulation. In fact, prof-
its for Operating System 1 are always larger than profits for Operating System 2.

In model 3, where Developers are in perfect competition scheme, Operating
System 1 gets the highest profits possible. However, these profits do not show a
big difference with respect to the ones obtained under model 4. The tie-breaking
rule combined with pa = 0 creates the scenario where OS1 have more market
power. A pa = 0 itself makes attracting consumers for OS1 easier. The exclu-
sive dealing contract in model 4, also allows OS1 to get market power.

20

Operating System 2, gets its highest profits under the model without app de-
velopers (Model 1), where both firms hold market power, and there are fewer
competitors in the market, no app developers. Once more the tie-breaking rule
in favor of 1, does not allow Operating System 2 enjoy the market power at the
same level that OS1 does. Therefore, in the model that there is not untie rule,
OS2 gets the maximum profits available.

Prices for Operating Systems are relatively stable, but always in favor of OS1,
through the models. However, quality drops drastically with the introduction of
a new agent in the market because it reduces Operating Systems’ incentives to
invest in higher quality levels. As can be seen in Table 1, after App Developers
are incorporated in the market quality levels set by both OS drops drastically.
This is due to the fact that the purchasing decision is not only based on the
utility derived from OS but also in the utility from the App. Then, increasing
quality does not necessarily mean more customers.

After all the analysis made before, we find that the existence of separate app
developers with no market power leads to the best Social Welfare. This result
can be explained by the economic theory that states that there is higher so-
cial welfare as there is less market power. In fact, model 3 is the only model
presented where we consider one of the sides of the market, setting prices as if
firms on that side of the market where in perfect competition. In this model,
the Developers’ side. We also find that the introduction of App Developers to
the market increases consumers’ welfare and total welfare.

References

Apple. (2017). Apple reports second quarter results. Retrieved 2017-05-18, from
https://www.apple.com/newsroom/2017/05/apple-reports-second-quarter-results/

Armstrong, M. (2006). Competition in two-sided markets. The RAND Journal
of Economics, 37 (3), 668–691.

Comission, E. (2016). Antitrust: Commission sends statement of objections to
google on android operating system and applications – factsheet. Retrieved
2017-03-17, from http://europa.eu/rapid/search.htm/

Evans, D. S., Hagiu, A., & Schmalensee, R. (2005). A survey of the economic
role of software platforms in computer-based industries. CESifo Economic
Studies, 51 (2-3), 189–224.

Hagiu, A. (2004). Two-sided platforms: Pricing and social efficiency.
Hagiu, A., & Wright, J. (2015). Multi-sided platforms. International Journal

of Industrial Organization, 43 , 162–174.
Martin, S. (2010). Industrial organization in context. Oxford University Press.
Parker, G. G., & Van Alstyne, M. W. (2000). Internetwork externalities and free

information goods. In Proceedings of the 2nd acm conference on electronic
commerce (pp. 107–116).

Rochet, J.-C., & Tirole, J. (2003). Platform competition in two-sided markets.
Journal of the european economic association, 1 (4), 990–1029.

21

Rochet, J.-C., & Tirole, J. (2006). Two-sided markets: a progress report. The
RAND journal of economics, 37 (3), 645–667.

Samsung. (2017). Samsung electronics announces first quarter results. Retrieved
2017-05-20, from https://news.samsung.com/

Statista. (2017). Global market share held by the leading smartphone operating
systems in sales to end users from 1st quarter 2009 to 1st quarter 2017.
Retrieved 2017-06-02, from https://www.statista.com/

A Demand Functions

A.1 Model 1

First, to calculate the demand function of consumers we need to recall equations
(3), (4), (5) and Figure 1. In this model, we first need to define the minimum
value of θi that a consumer needs to have in order to buy any OS. This point
is given by equation (3). The results from the Python simulation suggest that
point x is given by equation (3) evaluated for OS2

x =
pos2

1 + qos2

Point w is the minimum θi for which consumers are purchasing from OS1 exclu-
sively. Then, implementing equation (4) and the condition of no app developers
in the market (α = 0) we get

w =
pos1 − pos2
qos1 − qos2

Given the points defined above, the yellow area is the demand for OS1 and the
red area is the demand for OS2.

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = 1− pos1 − pos2

qos1 − qos2
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) =

pos1 − pos2
qos1 − qos2

− pos2
1 + qos2

A.2 Model 2

First, to calculate the demand function of consumers we need to recall equations
(3), (4), (5) and Figure 2. In the case of the purchasing decision with respect
to the App, point y, is defined as the case when θ = 0 and therefore utility
function (1) is reduced to

Ui = max(0, αi–p
a)

which means that the purchasing condition of the app for consumers is defined
as

αi–p
a ≥ 0

Therefore, point y is defined as
y = pa (15)

22

Points w and x are the cases where α = 0. Therefore utility function (1) is
reduced to

Ui = θi + θiq
os
j –posj (16)

Point x defines the minimum wiliness to pay of consumers for which consumers
purchase any of the Operating Systems. From equation (16) we know that the
condition for a consumer to demand OSj is

θ≥
posj

1 + qosj

According to python results explained under section 4, we know that

pos2
1 + qos2

>
pos1

1 + qos1

it implies that the minimum θi that a consumer needs to have in order to buy
any of the Operating Systems without considering the app is given by

θ≥ pos1
1 + qos1

which means that the minimum θi for which consumers are purchasing any OS
is given by the point x and it is defined as

x =
pos1

1 + qos1
(17)

Point w is the minimum θi for which consumers are purchasing from OS1 ex-
clusively. Given the reduced utility function specified by equation (16), with (4)
and (16) we get

w =
pos1 − pos2
qos1 − qos2

(18)

Based on Python results, we know that in this case w < x.

Point z is the point where consumers have a high enough α that they are willing
to buy the OS even when they get negative utility from buying only OS because
they get positive utility in total counting with the utility attained from the App.
Then, the point z is the minimum value of αi that given θi = 0 makes equation
(1) positive. Since all consumers to the left of point w get more utility from OS2

than OS1 , point z is only considering quality and price of OS2. From equation
(1) and the explanation above, we get that z is defined as

z = pa + pos2 (19)

Finally, point v and T are given by the minimum value of αi that given a

θi =
pos1 − pos2
qos1 − qos2

23

makes equation (1) positive for OS1 and OS2 respectively. Therefore,

v = pa + pos1 −
pos1 − pos2
qos1 − qos2

(1 + qos1) (20)

T = pa + pos2 −
pos1 − pos2
qos1 − qos2

(1 + qos2) (21)

Recalling figure 2 and equations (15), (17), (18), (19), (20) and (21) we can
calculate the demand for each firm in the market. Areas are defined as follows

Area(A) = (1− x)(y)

Area(B) = (1− x)(1− y)

Area(C) = (x− w)(1− v) +
1

2
(x− w)(v − y)

Area(D) =
1

2
(z − T)(w) + (1− z)(w)

Demand for Developer is given by

Da(qos2 , p
os
2 , p

a) = Area(B) +Area(C) +Area(D)

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) =

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
2pa + pos1 −

(pos1 − pos2)(1 + qos1)

qos1 − qos2

))
+
pos1 − pos2
qos1 –qos2

(
1− 1

2

(
2pa + 2pos2 −

(pos1 − pos2)(1 + qos2)

qos1 − qos2

))
+

(
1− pos1 (1− pa)

1 + qos1

)
Demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Area(A) +Area(B) +Area(C)

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = 1− pos1
1 + qos1

+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
2pa + pos1 −

(pos1 − pos2)(1 + qos1)

qos1 − qos2

))
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Area(D)

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) =
pos1 − pos2
qos1 –qos2

(
1− 1

2

(
2pa + 2pos2 −

(pos1 − pos2)(1 + qos2)

qos1 − qos2

))

A.3 Model 3

To calculate the demand function of consumers we need to recall equations
(3), (4), (5) and figure 3. The purchasing decision with respect to the App, is
reflected in point y = 0. This point shows that given the Bertrand Competition
in Developers and the cost structure for Developers, we have that

y = pa = 0 (22)

Therefore, all consumers are willing to buy any app despite the θ level.

24

In this case, given the results obtained in Python, w is defined according to
equation (18)

w =
pos1 − pos2
qos1 − qos2

(18)

In this case, the market condition needed to have demand is given by price and
quantities of firm 1, which implies that equation (17) holds also in this model.
In other words,

x =
pos1

1 + qos1
(17)

Point z is calculated in the same way as it was calculated for model 1, now
adding one more agent in the economy. Given equation (22) we get

z = pos2 (23)

Point v is calculated in the same was as it was explained for model 2. Therefore
combining equation (20) and (22) we get

v = pos1 −
pos1 − pos2
qos1 − qos2

(1 + qos1) (24)

Recalling figure 3 we can calculate the demand for each firm in the market.
Areas are defined as follows

Area(A) = (1− x)(1)

Area(B) = (x− w)(1− v) +
v

2
(x− w)

Area(C) = (1− z)(w) +
w

2
(z − v)

Demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = Area(A) +Area(B)

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = 1− pos1

1 + qos1
+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
pos2 (1 + qos1)− pos1 (1 + qos2)

qos1 − qos2

))
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Area(C)

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) =
pos1 − pos2
qos1 − qos2

(
1− 1

2

(
pos2 (1 + 2qos1 − qos2)− pos1 (1 + qos2)

qos1 − qos2

))
Demand for Developers is given by

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = Area(A) +Area(B) +Area(C)

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = 1− pos1
1 + qos1

+

(
pos1

1 + qos1
− pos1 − pos2
qos1 − qos2

) (
1− 1

2

(
pos2 (1 + qos1)− pos1 (1 + qos2)

qos1 − qos2

))
+
pos1 − pos2
qos1 − qos2

(
1− 1

2

(
pos2 (1 + 2qos1 − qos2)− pos1 (1 + qos2)

qos1 − qos2

))

25

A.4 Model 4

First, to calculate the demand function of consumers we need to recall equations
(3), (4), (5) and Figure 4. In the case of the purchasing decision with respect
to the App, point y, is calculated as it was explained in Appendix B. Recalling
equation (15) we have

y = pa (15)

Points x is defined according to equation (17) but in this case, for OS2 therefore,
we have

x =
pos2

1 + qos2
(25)

Point w is defined according to equation (18). Then we have

w =
pos1 − pos2
qos1 − qos2

(18)

Given the exclusive contract between Developer and OS1, point z is given by

z = pa + pos1 (26)

Point v is the value of αi under which consumer with a θi = x still gets a positive
utility from buying OS1 and app. We can define this point as

v = pos1 + pa − pos2
1 + qos2

(1 + qos1) (27)

We can define Areas as
Area(A) = (1− w)(y)

Area(B) = (1− w)(1− y)

Area(C) = (w − x)(y)

Area(D) =
1

2
(w − x)(v − y)

Area(E) = (w − x)(1− v) +
1

2
(w − x)(v − y)

Area(F) = x(1− z) +
1

2
(z − v)x

Therefore, demand for OS1 is given by

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Area(A) +Area(B) +Area(E) +Area(F)

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = 1− pos1 − pos2
qos1 –qos2

(
pa +

pos1
2

)
Demand for OS2 is given by

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) = Area(C) +Area(D)

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2 , p

a) =
1

2

(
pos1 − pos2
qos1 –qos2

− pos2
1 + qos2

) (
2pa + pos1 −

pos2 (1 + qos1)

1 + qos2

)
Finally, demand for App is given by

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = Area(B) +Area(E) +Area(F)

Da(qos1 , q
os
2 , p

os
1 , p

os
2 , p

a) = 1− pa +
1

2

(
pos2

1 + qos2

) (
pos2 (1 + qos1)

1 + qos2
− 2pos1

)

26

B Python codes

B.1 Model 1

27

28

29

30

B.2 Model 2

31

32

33

34

B.3 Model 3

35

36

37

38

39

B.4 Model 4

40

41

42

43

C Mathematical proof of profits

This appendix proofs that profits for Operating System 1 found under Python
simulation and the ones found calculating demands by hand, as it was done
under Appendix A, leads to the same values. Due to some problems with the
code, profits for Operating System 2 were calculated only by hand as its shown
under this Appendix.

C.1 Model 1

Given the equations defined under Appendix A-1 and the values presented in
Table 1 in section 4, we can calculate

Dos
1 (qos1 , q

os
2 , p

os
1 , p

os
2) = 1− pos1 − pos2

qos1 − qos2

Dos
1 = 0.36993

Dos
2 (qos1 , q

os
2 , p

os
1 , p

os
2) =

pos1 − pos2
qos1 − qos2

− pos2
1 + qos2

Dos
2 = 0.322213

Then, recalling equation (7) and (8), we can calculate profits as

πos
1 = 0.36993 ∗ 0.4734–0.5(0.42227)2 = 0.85122

πos
2 = 0.322213 ∗ 0.40510–0.5(0.31587)2 = 0.0806415

C.2 Model 2

First we need to calculate point v and T . Plugging in the values from Table 1,
in equations (20) and (21), we get

v = 0.4869563

T = 0.4869551

Point x, w , y and z are given by equations (15), (17), (18) and (19). Plugging
in the results from table 1 we get:

x = 0.363151

w = 0.3526

y = 0.4743

z = 0.8965

Now, with the equation for each area given under Appendix A-2, we can calcu-
late

Area(A) +Area(B) = 1− 0.363151 = 0.636849

Area(C) = (1−0.4869563)(0.010551)+
1

2
(0.010551)(0.4869563−0.4743) = 0.005479892

44

Area(D) = (1− 0.8965)(0.3526) +
1

2
(0.3526)(0.8965− 0.4869551) = 0.1086969

Therefore we have:
Dos

1 = 0.642328892

Dos
2 = 0.1086968659

And finally we can calculate profits according to equations (10) and (11)

πos
1 = (0.642328892)(0.4356)− 1

2
(0.1995)2 = 0.2598

πos
2 = (0.1086968659)(0.4222)− 1

2
(0.1615)2 = 0.0329

C.3 Model 3

First we calculate point v according to the values in Table 1 and equation (24)

v = 0.373466907

Point x, w , y and z are given by equations (17), (18), (22) and (23). Plugging
in the results from table 1 we get:

x = 0.3342778497

w = 0.03192446

y = 0

z = 0.4058

Now, with the equation for each area given under Appendix A-3, we can calcu-
late

Area(A) = (1− 0.3342778497) = 0.66572215

Area(B) = (0.33428−0.0319)(1−0.37347)+
1

2
(0.33428−0.0319)(0.3735) = 0.24589

Area(C) = (0.3735)(1− 0.4058) +
1

2
(0.3735)(0.4058− 0.3735) = 0.0194853

Therefore we have
Dos

1 = 0.911616

Dos
2 = 0.0194853

And finally we can calculate profits according to equations (13) and (14)

πos
1 = (0.911616)(0.4129)− 1

2
(0.2352)2 = 0.348747

πos
2 = (0.0194853)(0.4058)− 1

2
(0.0128)2 = 0.007825

45

C.4 Model 4

First we calculate point v according to the values in Table 1 and equation (26)

v = 0.512398

Point x, w , y and z are given by equations (15), (18), (25) and (26). Plugging
in the results from table 1 we get:

x = 0.378822

w = 0.437288

y = 0.4986

z = 0.9871

Now, with the equation for each area given under Appendix A-3, we can calcu-
late

Area(A) +Area(B) = (1− 0.437288) = 0.562712

Area(C) = (0.437288− 0.378822)(0.4986) = 0.0291511

Area(D) =
1

2
(0.437288− 0.378822)(0.512398− 0.4986) = 0.000403356

Area(E)+Area(F) = (0.437288)(1−0.9871)+
1

2
(0.437288)(0.4885) = 0.1124486

Therefore we have
Dos

1 = 0.6751606

Dos
2 = 0.029554

And finally we can calculate profits according to equations (10) and (11)

πos
1 = (0.6751606)(0.4885)− 1

2
(0.2531)2 = 0.297786

πos
2 = (0.029554)(0.3853)− 1

2
(0.0171)2 = 0.0112411

46

