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Chapter 1

Introduction

Modelling the term structure of interest rates has become a field of research on its own

for different professionals, for example investors need to have an accurate analysis in

pricing, investment and portfolio management decisions. In addition, central banks are

very interested in the information that the yield curve conveys in terms of expectation

of future rates. Different models has been developed over the last 30 years with the

purpose of anticipate the dynamics of yield curve. In the literature, two types of models

have surfaced affine models and Nelson and Siegel(1987)[9] type models.

When the objective is exclusively forecasting performance of the different models, the

literature finds mixed results with respect to Nelson and Siegel type models and rather

poor results for affine models. Nevertheless, the idea conceptual in-consistency of out-

of-equilibrium models, creates some discomfort with Nelson and Siegel type models.

However, empirical evidence show otherwise, Coroneo, Nyholm and Vidoka(2008)[1]

showed that Nelson and Siegel is compatible with no-arbitrage constrains for US mar-

ket; Dufee and Hopkins(2011)[7] inferred that omitting arbitrage free restrictions do not

affect forecasting efficiency.

For affine models Duan and Simonato(1995)[5] used models of one factor as Vasicek(1977)[11]

and CIR(1985)[2] for estimation analysis. On the other hand Dufee(2002)[6] finds poor

forecasting performance out-of-sample. For Nelson and Siegel type model, Ullah, Mat-

suda and Tsukuda(2013) estimated the yield curve observing a good power of fit. Zivot

and Choun-Yu(2011) conjectured good forecasting performance out-of-sample.

1
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The purpose of this paper is to confirm some of these results with respect to US yield and

evaluate the forecasting performance of these model for Colombian data. We analyze

the stylized facts of the set of observed yields for both countries and use the models to

determine forecasting performance in-sample, and more importantly out-of-sample. Our

efforts are divided in two areas: first, the affine models represented by Vasicek(1977)

and CIR(1985), and second, the polynomial form of Nelson and Siegel type models. The

main tool for sequential estimation is the Kalman Filter and what we call two steps

procedure that is a combination between OLS and VAR(1) of unobserved factors for one

particular case of the exercise.

The results in the side of affine models confirm the hypothesis exposed in the literature.

In sample we find a extreme weaknesses cause by the inability of replicating the stylized

facts of term structure. In terms of out-of-sample more or less confirms the weakness

of these models independent form the country of time frame. On the other side, Nelson

and Siegel has an overall success in fitting the data in-sample. However, out-of-sample

has poor performance with respect to simple benchmarks.
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Term Structure Models

Modelling term structure of interest rates is usually associated with deriving theoretically

and/or empirically a functional relationship between yields and time to maturity, for

example the yield curve of zero coupon bond. In order to achieve this goal we build two

types of parametric models that will represent and capture the curve.

2.1 Affine Term Structure Models

Affine models are based on a particular form of the pricing equation that imposes an

equilibrium where arbitrage opportunities are not possible. Two of the most well known

models are the Vasicek(1987)[11] and CIR(1985)[2], used by practitioners and academics.

In both cases, the price of the sero coupon bond follows a generalized geometric Brownian

motion where t < τ and τ the maturity.

dP (t, τ) = P (t, τ) [µτ (t, rt) dt + στ (t, rt) dWt] (2.1)

The definition of a new Itô process WQ
t with Q as a risk-neutral measure is required for

solving the price equation.

dWQ
t = ϕt dt + dWt (2.2)

When ϕt = λ(t, rt) and µ(t, rt)− σ(t, rt)ϕ = µ− λσ, λ is the risk price market. Hence,

the value of this zero coupon bond is represented as an expected value discounted value

from a Q-martingale process.

3



Contents 4

P (t, τ) = E[e−
∫ τ
t rsds|rt = r] , t ∈ [0, τ ] (2.3)

This model for the short rate provides an affine term structure model as long as the

price has the following form,

P (t, τ) = exp(A[t, τ ] +B[t, τ ]rt) (2.4)

The bond price is an affine function of the short rate. The dynamic of short rate follows

a diffusion process,

drt = µ(t, rt)
Qdt+ σ(t, rt)dW

Q
t (2.5)

In most application estimation is performed on the implied yield rather than the observed

prices, therefore we must relate the observed time-t compounded yield on a zero-coupon

bond of maturity τ , R(t, τ), and the price equation.

R(t, τ) = −1

τ
ln(P (t, τ)) (2.6)

2.1.1 Vasicek

The diffusion process for this model allows the instantaneous spot rate to live in the

support of (−∞,∞). The Vasicek data generating process is also known as a continuous

time Ornstein-Uhlenbeck process and is characterized by a mean reversion on the drift

component of the diffusion equation. θ̄ = θ − λσ
k

drt = k(θ̄ − rt)dt+ σdWQ
t (2.7)

Duffie and Kan(1996)[8] used one factor models for pricing under constrains of the neu-

tral risk measures. They provide an analytical solution for the term structure equation

(2.4) using expressions (2.8) and (2.9).

B[t, τ ] =
1

k
[1− exp(−kτ)] (2.8)
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A[t, τ ] = [θ +
λσ

k
− σ2

2k2
][B[t, τ ]− τ ]− (σB[t, τ ])2

4k
(2.9)

2.1.2 Cox-Ingersoll-Ross (CIR)

The CIR model can be seen as a restricted version of the Vasicek(1977), because the

instantaneous spot rate if forced to live in the positive support, (0,∞). The data gen-

erating process has a mean-reverting component in the drift equation, but in addition

include a square root process in the diffusion. With k > 0, 2kθ > σ2 guaranteeing the

positiveness of short rate

drt = k(θ̄ − rt)dt+ σ
√
rtdW

Q
t (2.10)

Duan and Simonato(1995) used an analytical solution for the term structure equation

(2.4)using expressions (2.11) and (2.12) , where the market price of risk is chosen as

λ
√
r, and [k + σλ] 6= 0.

B[t, τ ] =
eδτ − 1

γ(eδτ − 1) + δ
(2.11)

A[t, τ ] = Γ ln

[
δeδτ

γ(eδτ − 1) + δ

]
(2.12)

δ =
√

(k + λσ)2 + 2σ2

γ = k+λσ+δ
2

Γ = 2kθ
σ2

2.2 Nelson and Siegel

Nelson and Siegel(1987)[9] has been the preferred model by practitioner and macroe-

conomist, because is based on the objective of setting up all possible specifications that

the curve might have in a parsimonious estimation. As in affine models, P (t, τ) is the

price in time-t of a zero coupon bond of maturity τ . Here, the main difference is that
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the dynamic for pricing does not guarantees an equilibrium without arbitrage opportu-

nities1.

P (t, τ) = exp(−τR(t, τ)) (2.13)

As the relation between yields to maturity and price is direct, we can obtain from the

discount curve the instantaneous (nominal) forward rate curve represented as:

f(t, τ) = −P ′(t, τ)/P (t, τ) (2.14)

The model propose a polynomial for the dynamic of forward rates with an exponential

decay term.

f(t, τ) = B1t +B2te
−λtτ +B3tλte

−λtτ (2.15)

The time-t compounded yield on a zero-coupon bond of maturity τ may be written as

an equally-weighed average of forward rates.

R(t, τ) = 1/τ

∫ τ

0
f(t, u)du (2.16)

Using this representation it is straight forward to derive a functional representation

for the yield curve. Equation (17) represents the term structure equation with the

following features: as the curve begins in one at zero maturity and approaches zero at

infinity maturity, being λt the exponential decay term that permits the factor loading

(1−e
−λtτ

λtτ
− e−λtτ ) achieves its maximum.

R(t, τ) = B1t +B2t(
1− e−λtτ

λtτ
) +B3t(

1− e−λtτ

λtτ
− e−λtτ ) (2.17)

The parameters B1t, B2t and B3t are the level, slope and curvature of the yield curve

respectively, together three components gives enough flexibility to the model for having

an average upward and concave curve.

1Although there is a possibility to re-write the Nelson-Siegel type model so as to find a no-arbitrage
affine representation, see Dufee and Hopkins[7]
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2.3 Affine Models Estimation

Affine models are generally considered as over-parameterized. Duan and Simonato(1995)[5]

uses the Kalman filter as an optimal iterative process, based on the projection theorem,

for estimation. In order to use the Kalman filter we ust first write the model in state-

space form given by the measurement and transition equations. The former is given

by the yields for different maturities depending on unobserved errors and a functional

relationship with the latter which is the short rate process.

R(t, τ) = −1

τ
A[t, τ ] +

1

τ
B[t, τ ]rt + εt (2.18)

rt = α+ Υ r(t−1) +
√
Φηt (2.19)

R(t, τ),− 1
τA[t, τ ], 1

τB[t, τ ] and εt are (N x 1) vectors according to the number of maturi-

ties. For this application we assume ηt and εt as iid N(0,1) variables and not correlated

between them. Below, for estimation the values of parameters are presented according

to the type of affine model.

Vasicek Model

α = θ(1− e−kh)

Υ = (e−kh)

Φ = σ2

2k (1− e−2kh)

CIR Model

α = θ(1− e−kh)

Υ = (e−kh)

Φ = r(t−h)
σ2

k (e−kh − e−2kh) + θ σ
2

2k (1− e−kh)2

2.4 Nelson and Siegel Estimation

Nelson and Siegel fits the term structure using a smooth parametric function in a poly-

nomial form that has three coefficients. Estimation of this parametric form is performed
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using two methodologies.

Two Steps Diebold and Li(2006) use this methodology because it is easy to imple-

ment and also does not required sophisticated mathematical tools. First, they perform

cross-sectional estimation by Non-Linear-Squared (NLS) at each time-t in the sample.

min
B1B2B3λ

N∑
i=1

( ˆR(t, τ)−R(t, τ))2 for t in 1 : τ (2.20)

Second, they built a first order vector-autoregression (VAR(1)) for the series of esti-

mated β = {B1, B2, B3} represented in equation (2.22) with the aim of having param-

eters that relate the forecasting process between the factors. The result of the first step

is (2.21) when the process find times series for each one of the parameters. Diebold

and Li(2006)[3] find that the parameter λ might be fix through time without problems.

Therefore, we fit as sample average of the series, λ = λ̄t.

ˆR(t, τ) = B̂1t + B̂2t(
1− e−λ̂τ

λ̂τ
) + B̂3t(

1− e−λ̂τ

λ̂τ
− e−λ̂τ ) (2.21)

β̂t = Ĉ + γ̂βt (2.22)

ˆR(t, τ) is a (T x N) matrix, {B1t, B2t, B3t} a (T x 1) vectors, Ĉ a (3 x 1) vector and γ̂

a (3 x 3) matrix of coefficients.

One Step As in affine models the use of a state space representation for the poly-

nomial is correct because the jointly estimation reduces the possible bias of using two

steps procedure. Diebold, Rudebusch and Aruoba(2006)[4] implement the filter where

the unobserved state variables β are estimated with the use of the Kalman Filter in a

dynamic system that simultaneously fits the yield curve.

First is the transition equation Where, ηt is iid N (0,ω) being ω a (3 x 3) covariance

matrix, C a (3 x 1) vector and γ a (3 x 3) matrix of coefficients. Secondly is the

measurement equation that keeps εt as iid N(0,ψ), being ψ a diagonal matrix of (N x

N) variances, ζ a (N x 3) matrix of factor loadings, βt a (3 x 1) vector and R(t, τ) a (N
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x 1) vector. Besides, white noise and measurement disturbances have to be orthogonal

between them and to the initial state.

βt = C + γβt−h + ηt (2.23)

R(t, τ) = ζβt + εt (2.24)



Chapter 3

Empirical application

The data consist of the zero coupon rates of Colombia and the United States available

in their respectively central banks web page 1, the frequency is monthly for both of

them but the sample length and the number of maturities is different for each set of

series. For the colombian data we have three maturities (one, five and ten years) and

the sample is from January, 2003 until August, 2015. For the US we have ten maturities

(one, three and six months also for one, two, three, five, seven, ten and twenty years)

and the sample is from July, 2001 until August, 2015.

3.1 Stylized Facts

The short end of the yield curve is more volatile that the long end. For the

exercise we capture data volatility as the conditional standard deviation represented in a

GARCH(1,1) model, figures (3.1) and (3.2) exhibit that for Colombia the relationship is

not clear in contrast with USA where the short yield maturity remarks more movements

over the majority of sample against the long yield.

Three main factors explain more than 95% of the changes in yield curve.

Despite available data for Colombia does not have enough maturities as USA only 3

against 10, in general terms the cumulative proportion of variance achieves the majority

of explicative power in the second component.

1http://www.banrep.gov.co/es/tes , https://research.stlouisfed.org/fred2/categories/22

10
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Figure 3.1: Colombian Volatility

Figure 3.2: USA Volatility

Colombia

Principal Components PC1 PC2 PC3

Standard deviation 1.46 0.846 0.39

Proportion of Variance 0.7109 0.2383 0.0508

Cumulative Proportion 0.7109 0.9492 1
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USA

Principal Components PC1 PC2 PC3 PC4 PC10

Standard deviation 2.6398 1.5141 0.6539 0.4398 0.0558

Proportion of Variance 0.6969 0.2293 0.0428 0.0193 0.0003

Cumulative Proportion 0.6969 0.9261 0.9689 0.9882 1

3.2 In Sample Results

The data from the term structure of interest rates, is very important for investors and

policymaker. From the point of view of professional forecasters the objective is that a

good model should be able to replicate the historical regularities.

The average yield curve is increasing an concave. Figures (3.3) and (3.4)

represents Nelson and Siegel for one and two steps. The parameters λ̂ for Colombia

and USA are 0.999934 and 0.5247941 respectively, the numbers are obtained after Non-

Linear-Squared estimation and bringing out the mean of λt series. Figures (3.5) and

(3.6) reproduce affine models conduct more specifically CIR and Vasicek. The evidence

of graphics is clear because exposes limitations of affine models against Nelson and Siegel

either in Colombia and USA scenario.

Yield curve assumes a variety of shapes in the sample. Figures (3.7) to (3.12)

personify for Nelson-Siegel the movements in each one of the curves through time , either

using OLS kalman filter or OLS two steps estimation.Figures (3.13) to (3.18) typify the

comportment for affine models. Results are definitive against Vasicek and CIR consid-

ering the great numbers of disparities throughout the sample.
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Figure 3.3: Average Yield curve of Colombia-Nelson and Siegel

Figure 3.4: Average Yield curve of USA-Nelson and Siegel
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Figure 3.5: Average Yield curve of Colombia-Affine Models

Figure 3.6: Average Yield curve of USA-Affine Models
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Figure 3.7: Colombian Yield Curve-Nelson and Siegel-Kalman Filter

Figure 3.8: Colombian Yield Curve-Nelson and Siegel-OLS
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Figure 3.9: USA Yield Curve-Nelson and Siegel-kalman filter(a)

Figure 3.10: USA Yield Curve-Nelson and Siegel-kalman filter(b)
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Figure 3.11: USA Yield Curve-Nelson and Siegel- OLS(a)

Figure 3.12: USA Yield Curve-Nelson and Siegel- OLS(b)
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Figure 3.13: Colombian Yield Curve-shapes-CIR

Figure 3.14: Colombian Yield Curve-shapes-VSK
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Figure 3.15: USA Yield Curve-shapes-CIR(a)

Figure 3.16: USA Yield Curve-shapes-CIR(b)
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Figure 3.17: USA Yield Curve-shapes-VSK(a)

Figure 3.18: USA Yield Curve-shapes-VSK(b)



Chapter 4

Forecasting-Out of Sample

In this section we evaluate the performance of affine and Nelson Siegel type models

and compare them against different benchmarks; such as a random walk and vector-

autoregression of the level yields. The loss function to evaluate the performance in all

models is the root mean squared error represented as:

RMSE =

√
ˆ[R(t+ h, τ)−R(t+ h, τ)]2 (4.1)

Where, h is the length of steps ahead that we take for forecast evaluation, one, six and

twelve respectively in all available maturities. We use an expanding data window begin-

ning in January of 2010 (2010:01) until July and August of 2015(2015:07;08) for USA

and Colombia, respectively.

4.0.1 Affine Models

Forecasting affine models is made easier thanks to the iterative process of the kalman

filter, where the sate space representation updates and evaluates the likelihood function

through the use of sate variables distributions conditional on previous estimates values.

ˆrt+h = α̂+ Υ̂ rt +
√
Φ̂ ηt+h (4.2)

ˆR(t+ h, τ) = −1

τ
ˆA[t, τ ] +

1

τ
ˆB[t, τ ] ˆrt+h + εt+h (4.3)

21
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4.0.1.1 Nelson and Siegel

Forecasting the yield curve requires that the unobserved level, slope and curvature vari-

ables have been predicted previously. As the polynomial system may be estimated by

two different methodologies we can either forecast a VAR of unobserved vectors or in

the case of kalman filter the transition vector.

Two Steps

ˆβt+h = Ĉ + γ̂βt (4.4)

ˆR(t+ h, τ) = ˆB1t+h + ˆB2t+h (
1− e−λ̂τ

λ̂τ
) + ˆB3t+h (

1− e−λ̂τ

λ̂τ
− e−λ̂τ ) (4.5)

One Step

ˆβt+h = Ĉ + γ̂ βt + ηt+h (4.6)

ˆR(t+ h, τ) = ζ̂ ˆβt+h + εt+h (4.7)

4.0.1.2 Benchmark models

Other models are taken as reference for their easiness in the estimation and also because

not required strong fundamental theory. The chosen models are the VAR(1) on yields

levels and the famous random walk.

VAR(1) On Yields Levels

ˆR(t+ h, τ) = Λ̂+ $̂ R(t, τ) (4.8)

Random Walk

ˆR(t+ h, τ) = R(t, τ) (4.9)

4.1 Results

Table (4.1) stacks the results for Colombia and allows to see that in average a random

walk is hard to be defeated for any kind of specification model. Nevertheless, Nelson and
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Siegel-One Step model is able to do it for long horizons of forecasting, other conclusion

is that affine models have a poor performance out of sample.

Table 4.1: Colombia RMSE

Maturities One Month Six Months Twelve Months

ahead ahead ahead

VAR(1) 1Y 0.1810 0.5093 0.8323

Yields 5Y 0.2952 0.8744 0.9132
On Levels 10Y 0.3120 0.9212 0.9457

Average 0.2627 0.7683 0.8971

Random Walk 1Y 0.1750 0.4832 0.7372

RW 5Y 0.2772 0.7557 0.8086
10Y 0.2741 0.8037 0.9654

Average 0.2421 0.6808 0.8371

Nelson-Siegel 1Y 0.1810 0.5093 0.8323

Two Steps 5Y 0.2952 0.8744 0.9132
10Y 0.3120 0.9212 0.9457

Average 0.2627 0.7683 0.8971

Nelson-Siegel 1Y 0.2562 0.5118 0.7378

One Step 5Y 0.4731 0.8072 0.8177
10Y 0.5034 0.8706 0.8929

Average 0.4109 0.7299 0.8161

Vasicek 1Y 1.5302 1.9164 2.3739

VSK 5Y 0.7677 0.9471 1.1301
10Y 1.3795 1.3124 1.1722

Average 1.2258 1.3920 1.5588

CIR 1Y 1.222 1.490 1.800

5Y 1.267 1.619 1.935
10Y 1.318 1.543 1.797

Average 1.2716 1.5505 1.8440

Table (4.2) on the other side stacks the results for USA, the conclusions are almost the

same. first, the confirmation about the weaknesses of affine models for forecasting. Sec-

ond, the impossibility of any model against the random walk even though for Colombia

Nelson and Siegel-One Step do it, within USA is unable.
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Table 4.2: US RMSE

Maturities One Month Six Months Twelve Months

ahead ahead ahead

VAR(1) 1M 0.0415 0.35003 0.5585

Yields 3M 0.0579 0.3730 0.5763
On Levels 6M 0.0659 0.3796 0.5850

1Y 0.0651 0.3380 0.5464
2Y 0.0987 0.3282 0.5327
3Y 0.1326 0.3827 0.5930
5Y 0.1670 0.4877 0.6677
7Y 0.1802 0.5278 0.6739
10Y 0.1734 0.5026 0.5956
20Y 0.1695 0.5156 0.6539

Average 0.1152 0.4185 0.5983

Random Walk 1M 0.0212 0.0361 0.0498

RW 3M 0.0131 0.0356 0.0525
6M 0.0154 0.0421 0.0579
1Y 0.0187 0.0576 0.0768
2Y 0.0603 0.1303 0.1718
3Y 0.0972 0.2397 0.2977
5Y 0.1399 0.3945 0.4770
7Y 0.1536 0.4666 0.5843
10Y 0.1506 0.5031 0.6300
20Y 0.1497 0.5361 0.6852

Average 0.0820 0.2452 0.3083

Nelson-Siegel 1M 0.0944 0.3413 0.4280

Two Steps 3M 0.0824 0.3109 0.3899
6M 0.0740 0.2607 0.3435
1Y 0.0942 0.2033 0.2819
2Y 0.0932 0.2222 0.2003
3Y 0.1088 0.3238 0.4171
5Y 0.1720 0.4468 0.5662
7Y 0.1742 0.4798 0.6432
10Y 0.1533 0.5160 0.7210
20Y 0.1854 0.6026 0.8352

Average 0.1232 0.3707 0.4916

Nelson-Siegel 1M 0.1196 0.1657 0.1939

One Step 3M 0.0956 0.1363 0.1625
6M 0.0846 0.1066 0.1334
1Y 0.1018 0.1037 0.1193
2Y 0.1214 0.1613 0.2087
3Y 0.1511 0.2734 0.3759
5Y 0.2324 0.4140 0.5608
7Y 0.2433 0.4577 0.6432
10Y 0.2407 0.5113 0.7120
20Y 0.2975 0.5966 0.8054

Average 0.1688 0.2927 0.3915

Vasicek 1M 0.8490 0.8910 0.9424

VSK 3M 0.6912 0.7284 0.7734
6M 0.5712 0.6071 0.6435
1Y 0.3419 0.3717 0.3926
2Y 0.1344 0.2161 0.1876
3Y 0.3132 0.4030 0.3885
5Y 0.5487 0.6466 0.6615
7Y 0.6700 0.7675 0.8017
10Y 0.8280 0.9248 0.9694
20Y 1.3143 1.4120 1.4831

Average 0.7297 0.7752 0.8026

CIR 1M 0.7767 0.7079 0.6449

3M 0.7716 0.7234 0.6493
6M 0.7370 0.6861 0.6092
1Y 0.6738 0.6144 0.5639
2Y 0.4502 0.4598 0.4247
3Y 0.2767 0.3409 0.3826
5Y 0.5561 0.6154 0.7151
7Y 1.0140 1.0081 1.1058
10Y 1.4554 1.4471 1.5088
20Y 2.002 2.0096 2.0193

Average 0.8722 0.8613 0.8624



Chapter 5

Conclusions

In this article we worked with term structure of interest rates for different countries,

the analysis was focused in the use of different models well-known by practitioners and

academics. We estimated and made forecast of the curves through methodologies as

Kalman Filter or two steps representation in the case of Nelson and Siegel model.

We found that Nelson-Siegel is able to have a good performance in sample scenario.Nonetheless,

out of sample the results became worse, being almost impossible to defeat a random

walk.In the case of affine models neither in sample or out of it the performance is even

acceptable.

In future research we plan to incorporate new methodologies that allows us to find

optimal results out sample and later find a loss function beyond the root mean squared

error.
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