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Abstract

Existing inference procedures to perform counterfactual decomposition of the

di¤erence between distributional features, applicable when data is fully observed,

are not suitable for censored outcomes. This may explain the lack of counterfac-

tual analyses using target variables related to duration outcomes, typically observed

under right censoring. For instance, there are many studies performing counterfac-

tual decomposition of the gender wage gaps, but very few on gender unemployment

duration gaps. We provide an Oaxaca-Blinder type decomposition method of the

mean for censored data. Consistent estimation of the decomposition components is

based on a prior estimator of the joint distribution of duration and covariates under

suitable restrictions on the censoring mechanism. To decompose other distribu-

tional features, such as the median or the Gini coe¢ cient, we propose an inferential

method for the counterfactual decomposition by introducing restrictions on the func-

tional form of the conditional distribution of duration given covariates. We provide
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formal justi�cation for asymptotic inference and study the �nite sample performance

through Monte Carlo experiments. Finally, we apply the proposed methodology to

the analysis of unemployment duration gaps in Spain. This study suggests that

factors beyond the workers� socioeconomic characteristics play a relevant role in

explaining the di¤erence between several unemployment duration distribution fea-

tures such as the mean, the probability of being long term unemployed and the Gini

coe¢ cient.

Keywords: Oaxaca-Blinder Decomposition, Right Censoring, Counterfactual Out-

comes, Duration Data, Hazard Models, Unemployment Duration, Gender Gaps.

JEL Codes: C14, C24, C41, J64.

1 Introduction
From Oaxaca (1973) and Blinder (1973) contributions (OB henceforth), counterfactual

decomposition technique became a popular research tool for economic analysis. This

consists in decomposing the di¤erence between the means of two subpopulations into

counterfactual components based on observed characteristics. On some occasions, the

decomposition of the mean may not be enough for studying the di¤erence in the outcome

of interest, so that the decomposition of other distributional features, such as the median

or Gini coe¢ cient, has also been proven useful. In this context, Freeman R.B. (1980);

Juhn et al. (1991); DiNardo et al. (1996); Machado and Mata (2005) and Chernozhukov

et al. (2013) developed further decomposition techniques going beyond the mean. See

Fortin et al. (2011) for a comprehensive review.

The aforementioned procedures, designed for the case of fully observed data, have

been widely used in the analysis of microdata, mainly in labor economics. For instance,

there is a large literature devoted to studying the gender wage gap (see Oaxaca, 1973;

Blinder, 1973; Cain, 1986; Cotton, 1988; Machado and Mata, 2005; O�Neill and O�Neill,

2006; Blau and Kahn, 1992) or the increase in the US wage dispersion in the 1980�s (Juhn

et al., 1991, 1993; DiNardo et al., 1996; Melly, 2005). However, other relevant outcomes,

such as unemployment duration, have not received so much attention, possibly due to the

absence of decomposition methods for censored variables.

Collecting duration data requires following individuals over time. In this context,
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censoring occurs because individuals either do not change their status during the follow-up

period or withdraw before the end of the study. For instance, in the case of unemployment

duration, it is not possible to observe the complete unemployment duration for those

individuals still unemployed at the last follow-up period or for those who leave the labor

force.

Existing literature concerning the decomposition of the unemployment duration gender

gap has focused on the average hazard rate (c.f. Powers and Yun, 2009). However,

this parameter does not correspond to the hazard function associated to the underlying

duration distribution, and consequently, the decomposition is hard to interpret. Therefore,

we consider decomposition methods suitable for several parameters related to the duration

distribution that allow the usual interpretation as in the no censoring case. These methods

are based on classical identi�cation assumptions in the survival analysis literature, allow

to deal with covariates of diverse nature (continuous and discrete) and are simple to

implement in conventional software1.

In particular, we provide a regression-based method, analogous to the classical OB,

in a nonparametric context. Consistent estimation of the means in the two subpop-

ulations, and the corresponding decomposition components, requires identi�cation re-

strictions, mainly that the censoring mechanism be random. Additionally, we consider

an alternative method to perform counterfactual decomposition beyond the mean under

weaker identi�cation assumptions, but which requires some knowledge on the functional

form of the underlying conditional distribution of duration given covariates. Thus, we

discuss a �exible decomposition method based on proportional hazard models, but other

speci�cations, e.g., a quantile regression or a fully parametric model, are also possible.

The proposed methodologies are used to study unemployment duration gender gaps in

Spain during the period 2004-2007 using data from the European Survey on Income and

Living Conditions (SILC). Spain is one of the OECD countries with the highest and most

persistent gender gaps in unemployment rates (Azmat et al., 2006). In order to provide

additional evidence about the unemployment gender gap, we investigate the duration in

two dimensions: the duration until leaving unemployment and the duration until getting

1All codes used are available upon request.
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a job.

To do so, we perform counterfactual decomposition for several parameters of the un-

employment duration to quantify to what extent the gender gap is explained by socioeco-

nomic factors, like individual and household background and local labor market char-

acteristics. Particularly, we study the mean unemployment duration, the probability of

being long term unemployed and the Gini coe¢ cient. Our �ndings reveal the important

role of the structure e¤ect, i.e. the return to the characteristics, to explain the gender gap

in the two types of durations; while the di¤erence in the workers�characteristics is only

important for the duration until getting a job.

The rest of the article is organized as follows. The next section introduces the imple-

mentation of the OB method for the censored data case in a full nonparametric context,

and provides su¢ cient conditions to perform valid inferences on the counterfactual de-

composition components. Section 3 discusses the decomposition of other distributional

features under a semiparametric speci�cation. Section 4 studies the �nite sample prop-

erties through Monte Carlo simulations. Section 5 applies the proposed methodologies

to analyze unemployment duration gender gaps in Spain. The last section is devoted to

�nal remarks and suggestions for further work. Some mathematical details and further

discussion on technical results are presented in the Appendix.

2 Nonparametric Oaxaca-Blinder Decomposition un-

der Censoring
Consider a R+�Rk�f0; 1g�valued random vector (Y;X;D) related to the population

under study, where Y denotes duration outcome, X a k � 1 vector of characteristics

(including a constant) and D a dummy variable identifying two subpopulations. For

instance, Y may be unemployment duration, X relevant socioeconomic characteristics

and D a dummy variable for gender.

The di¤erence between the means of the two subpopulations, denoted by ��
Y = �

(1)
Y �

�
(0)
Y , with �

(`)
Y = E (Y j D = `), ` = f0; 1g, can be expressed in terms of the best linear
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predictors for each subpopulation `. That is:

��
Y = �

T
1 �

(1)
X � �T0 �

(0)
X (1)

where, �(`)X = E (X j D = `),

�` = argmin
b2Rk

E
�
Y � bTX j D = `

�2
= E

�
XXT j D = `

��1 E (XY j D = `)
and E is the expectation operator and "T" denotes transpose.

Oaxaca (1973) and Blinder (1973) exploit this fact to rearrange Equation (1) as

��
Y = (�1 � �0)

T �
(1)
X + �T0

�
�
(1)
X � �(0)X

�
= ��

S +�
�
C : (2)

This is the classical Oaxaca-Blinder decomposition (OB decomposition, henceforth), where

the term ��
S , known as the structure e¤ect, is interpreted as the di¤erence explained by

the e¤ect (return) of the explanatory variables on Y , while ��
C , known as the composition

e¤ect, is the part of the mean di¤erence explained by the di¤erence in the characteristics.

The crucial ingredient in this counterfactual decomposition is �T0 �
(1)
X , i.e. the best

predictor of Y in subpopulation 0 given X = E (X j D = 1). Intuitively, this is the

average of the counterfactual outcome Y (0;1) which represents the potential outcome in

population 0 if individuals were endowed with characteristics of population 1. Indeed, the

label counterfactual comes from the fact that this outcome cannot be directly observed

in the data2.

In order to identify the counterfactual average �(0;1)Y = �T0 �
(1)
X , it is necessary to impose

some restrictions. Assumption 1 below summarizes the identi�cation conditions usually

considered in the decomposition methods literature (see Fortin et al., 2011 for further

discussion).

Assumption 1 Let "(`) be the best linear predictor error for subpopulation `, i.e. "(`) =�
Y (`) � �T` X(`)

�
, with Y (`) and X(`) the outcome variable and covariates of the corres-

2Counterfactual analysis, as a concept, has been used in a very philosophical way in many sciences
(Lewis, 1973). In social science, and particularly in economics since the seminal contribution by Rubin
(1974), counterfactual analysis has served to establish a natural framework for studying causal relation
(For discussion on the use of counterfactuals in quantitative analysis see Dawid, 2000; Cartwright and
Reiss, 2004; Reiss and Cartwright, 2004; Rubin, 2005; Hö�er, 2005, and Pearl, 2009).
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ponding subpopulation. The following conditions are satis�ed:

a. Overlapping support: if X � E denotes the support of observables and unobservable

characteristics of the underlying population, then
�
X(0); "(0)

�
[
�
X(1); "(1)

�
2 X � E.

b. The only possible counterfactual outcome for an individual that belongs to subpopula-

tion i is Y (j), with i; j 2 f0; 1g and i 6= j.

c. Conditional independence of treatment and unobservables: D ? "jX.

Assumption 1.a is the classical common support condition. Assumption 1.b , known

as simple counterfactual treatment, rules out the existence of other potential outcomes

besides Y (0) and Y (1). Lastly, Assumption 1.c is the classical ignorability (unconfounded-

ness) condition, which ensures that the distribution of unobservables is the same across

subpopulations3. Conditions 1.b-1.c imply that the conditional distributions of the out-

come and the unobservables given covariates remain unaltered when the distribution of

covariates varies. This invariance property is the key assumption for validating the estim-

ation of counterfactual outcomes by combining estimates from the two subpopulations.

Given a random sample fYi; Xi; Digni=1 from (Y;X;D), the OB decomposition is es-

timated by:

���
Y =

���
S +

���
C =

�
��1 � ��0

�T
��
(1)
X + ��

T
0

�
��
(1)
X � ��(0)X

�
where ��(`)X = n�1`

Pn
i=1Xi1fDi=`g, and

��` = argmin
b2Rk

nX
i=1

�
Y � bTX

�2
1fDi=`g

with n` =
Pn

i=1 1fDi=`g, ` = f0; 1g and 1fAg denoting the indicator function of the event

A.

However, in practice, these estimators are infeasible when Y is observed under cen-

soring. In the context of duration analysis, censoring appears due to lack of follow-up

of the individuals. If individuals are observed along a �xed period, complete durations

are not always available because either the relevant event did not occur at the end of

the observation period (administrative censoring), or the individual abandoned the study.

3Even though identi�cation of decomposition factors is given by analogous assumptions to those used
in the policy evaluation literature, the causal interpretation requires stringent conditions on the nature
of the treatment D and the control variables X.
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For instance, in an unemployment duration study some individuals are still unemployed

at the end of the follow-up period, while others leave the labor force. Under these cir-

cumstances, the observed sample is fZi; Xi; �i; Digni=1 of the random vector (Z;X; �;D),

where Z = min (Y;C), � = 1fY�Cg and C denotes the censoring times. In this case, the

estimator ���
Y , based on observed durations Z, turns out biased.

Consider the joint distribution of (Y;X;D), F (y; x; `) = P (Y � y; X � x;D = `),

where henceforth � is coordinatewise. Notice that, for ` = f0; 1g, we can express �(`)Y =R
R ydF (y;1; `), �

(`)
X =

R
Rk xdF (1; x; `), and

�` = argmin
b2Rk

Z �
y � bTx

�2
dF (y; x; `) :

In fact, in the absence of censoring, ���
Y is the sample analog of�

�
Y , where F is replaced

by the sample version

�F (y; x; `) =
1

n`

nX
i=1

1fYi�y;Xi�x;Di=`g:

Under censoring, a consistent estimator of F can be obtained by exploiting its rep-

resentation in terms of the cumulative, or integrated, hazard function. Consider, in the

context of an unemployment study, the probability that an individual, taken at random

at time y from the subpopulation ` that belongs to the group of individuals with charac-

teristics fX 2 Bg, �nds a job before y + h. This probability can be written as,

P (y � Y < y + h;X 2 B j Y � y;D = `) =
P (y � Y < y + h;X 2 B;D = `)

P (Y � y;D = `)

=

Z
fX2Bg

F (y + h; dx; `)� F (y�; dx; `)
1� F (y�;1; `)

where for any generic function J; J (y�) = limx"y J(x), and B 2 �k the smallest sigma

algebra in Rk. For practical purposes, take B = (�1; x].

Suppose that there exists a function � such that

F (y + h; x; `)� F (y�; x; `)
1� F (y�;1; `) = h� (y; x; `) as h! 0:

This function � (:; x; `) is the hazard function for individuals of subpopulation ` with

fX � xg. In the context of unemployment, � (y; x; `) can be interpreted as the probability

that an individual belonging to subpopulation ` with characteristics fX � xg, �nds a job
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immediately after moment y.

The associated cumulative hazard can be de�ned as

� (y; x; `) =

Z y

0

F (d�y; x; `)

1� F (�y�;1; `) ; (3)

and if � exists, � (y; x; `) =
R y
0
� (�y; x; `) d�y: Using the fact that any distribution function

can be expressed in terms of the corresponding integrated hazard (see Gill, 1980 and

Shorack and Wellner, 2009, p. 301d, for details), we have

1� F (y; x; `) = exp f��c(y; x; `)g
Y
�y�y
[1� � (f�yg ; x; `)] (4)

where �c is the continuous part of �, and for any generic function J; J fyg = J(y)�J(y�).

Therefore, F (y; x; `) can be estimated by plugging-in a proper estimator of �. Because of

the presence of censoring, the identi�cation of � requires to imposing restrictions on the

censoring mechanism.

Assumption 2 The following conditions are satis�ed:

a. P (Y � y; C � c j D = `) = P (Y � y j D = `)P (C � c j D = `).

b. P (Y � C j Y;X;D) = P (Y � C j Y;D).

This assumption has been widely used in survival analysis (c.f. Uña-Álvarez and

Rodríguez-Campos, 2004; Sanchez-Sellero et al., 2005 and Sant�Anna, 2014). Assump-

tion 2.a. is the classical independence assumption that guarantees identi�cation of the

marginal distribution of survival times (c.f. Peterson, 1977). In turn, Assumption 2.b.

states the relation between the censoring mechanism and the covariates so that, given the

actual survival times Y , the covariates do not provide any further information on whether

censoring occurs (see Stute, 1993, 1996, 1999 for further discussion). In this framework,

potential dependence between C and X is allowed, and of course, it is also held when

C is independent of (Y;X), which is another common assumption in survival analysis

literature.
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Then, under Assumption 2 we can express � in terms of the following sub-distributions:

H (y; `) = P (Z � y;D = `) ; and

H11 (y; x; `) = P (Z � y;X � x;D = `; � = 1) :

Proposition 1 Under Assumption 2, the joint cumulative hazard function can be written

as:

� (y; x; `) =

Z y

0

H11 (d�y; x; `)

1�H(�y�; `) :

The sample analogs of H (y; `) and H11 (y; x; `) are given by

Ĥ (y; `) = n�1`

nX
i=1

1fZi�y;Di=`g and Ĥ11(y; x; `) = n
�1
`

nX
i=1

1fZi�y;Xi�x; Di=`;�i=1g

and hence, � (y; x; `) is estimated by

�̂ (y; x; `) =

Z y

0

Ĥ11 (d�y; x; `)

1� Ĥ(�y�; `)
=

nX̀
i=1

1fZi�y;Xi�x;Di=`;�i=1g

n` �R(`)i + 1

where R(`)i = n`Ĥ(Zi; `) is the rank of Zi provided that i-th individual belongs to sub-

population `.

As a consequence, the joint distribution can be estimated by

F̂ (y; x; `) = 1�
Y
�y�y

h
1� �̂ (f�yg ; x; `)

i
= 1�

Y
Z
(`)
i:n`

�y;X(`)

[i:n`]
�x

"
1�

�
(`)
[i:n`]

n` �R(`)i + 1

#
(5)

where Z(`)1:n` � Z
(`)
2:n`

� ::: � Z
(`)
n`:n` are the order statistics of Z in subpopulation `, i.e.

Z
(`)
i:n`

= Zj if R
(`)
j = i, and for any f�ig

n`
i=1, �

(`)
[i:n`]

is the i-th �(`)-concomitant of Z(`)i:n` , that

is, �(`)[i:n`] = �j if Z
(`)
i:n`

= Zj. This is the version of the Kaplan-Meier estimator (Kaplan

and Meier, 1958) taking into account covariates .

Analogous to the univariate case, this estimator admits an additive form which can

be interpreted as a Inverse-Probability-Weighting estimator in the line of Horvitz and

Thompson (1952).

Corollary 1 Under Assumption 2, the estimator of the joint distribution F (y; x; `) can
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be written as:

F̂ (y; x; `) =
nX
i=1

W
(`)
i 1

�
Z
(`)
i:n`

�y;X(`)

[i:n`]
�x
�

where

W
(`)
i =

�
(`)
[i:n`]

n` �R(`)i + 1

i�1Y
j=1

"
1�

�
(`)
[j:n`]

n` �R(`)j + 1

#
:

The weights
n
W

(`)
i

o
represent the mass attached to the i-th order statistic Z(`)i:n` , which

can be obtained multiplying the status �(`)[i:n`] by the inverse of the probability of observing

a failure (see Robins and Rotnitzky, 1992; Satten and Datta, 2001, for further discussion in

the univariate case). Note that F̂ (y; x; `) assigns zero weight to censored observations and

in absence of censoring, i.e. when �(`)[i:n`] = 1 8i, it reduces to the multivariate empirical

distribution with W (`)
i = n�1` . Asymptotic properties of F̂ (y; x; `) and the associated

empirical integrals (known as Kaplan Meier integrals) of the form
R
' (y; x; `) dF̂ (y; x; `),

with ' an integrable function, have been studied by Stute (1993, 1996).

In this way, the OB decomposition under censoring (we call Censored Oaxaca-Blinder,

COB hereafter) can be computed replacing F by its sample analog F̂ . In particular, the

total di¤erence �Y is estimated by:

�̂�
Y = �̂

(1)
Y � �̂(0)Y

where �̂(`)Y =
Pn`

i=1W
(`)
i Z

(`)
i:n`
, and the counterfactual decomposition components are

�̂�
Y =

�
�̂1 � �̂0

�T
�̂
(1)
X + �̂

T

0

�
�̂
(1)
X � �̂(0)X

�
(6)

where �̂(`)X =
Pn`

i=1W
(`)
i X

(`)
[i:n`]

, and �̂` is estimated by the weighted least squares procedure

given by

�̂` = argmin
b2Rk

Z
(y � bTx)2dF̂ (y; x; `) = argmin

b2Rk

nX̀
i=1

W
(`)
i (Z

(`)
i:n`
� bTX(`)

[i:n`]
)2

There are other alternative regression methods for censored data (see Buckley and

James, 1979; Koul et al., 1981; Miller and Halpern, 1982; Ritov, 1990; Heuchenne and

Keilegom, 2007); but using Kaplan Meier integrals provides a parsimonious method. For

instance, it is �exible to compute functions involving both the duration outcome and

the covariates, and �` is simpler to compute, avoiding the use of iterative methods and
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smoothers.

As a general feature in the context of censored outcomes, consistency of the estim-

ator in Equation (6) requires additional restrictions on the support of the duration out-

come and censoring times (for details, see Stute and Wang, 1993; Stute, 1995; Sanchez-

Sellero et al., 2005). To do so, de�ne the subdistribution FY (y; `) = P (Y � y;D = `),

i.e. FY (y; `) = F (y;1; `), and the distribution function of the censoring times as

G (y; `) = P (C � y;D = `). Additionally, for a generic distribution J (y; `) de�ne the

least upper bound as � (`)J = inf fy : J (y; `) = 1g � 1.

Assumption 3 For ` = f0; 1g, it holds that � (`)FY � �
(`)
G .

Hence, if � (`)H = �
(`)
FY

� �
(`)
G , estimators above are consistent over all the support.

But, in the case when � (`)H = �
(`)
G < �

(`)
FY
, the inference is restricted to

�
0; ~Z(`)

i
; ~Z(`)

� Z
(`)
n`:n` < �

(`)
H , and estimates are typically downward biased (c.f. Gill, 1980; Mauro,

1985; Stute, 1994). Efron (1967) proposed an intuitive solution to reduce the bias by

setting �(`)[n`:n`] = 1.

Lastly, Proposition 2 and Corollary 2 provide the basis to perform statistical inference

on the counterfactual decomposition components in Equation (6). First, de�ne:


(`)

0 (y) = exp

�Z y�

0

H0 (d�y; `)

1�H(�y; `)

�

(`)
1

�
y;'(`)

�
=

1

1�H(y; `)

Z
1fy<�yg'

(`)(�y; x)
(`)
0 (�y) dH11 (�y; x; `)


(`)
2

�
y;'(`)

�
=

Z Z
1f�s<y;�s<�yg'

(`)(�y; x)
(`)
0 (�y)

[1�H(�s; `)]2
H0 (d�s; `)H11 (�y; x; `)

Proposition 2 Assume that E
�
X(`)X(`)T

�
is positive semide�nite. Under Condition 1

(in Appendix 7.1) and Assumptions 2-3, for ` = f0; 1g:

n
1=2
`

h�
�̂` � �`

�
;
�
�̂
(`)
X � �(`)X

�i
d�! N2k

�
0;�

(`)
��X

�
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where

�
(`)
��X

=
�
�
(`)
XX

��1
�
(`)
0

�
�
(`)
XX

��1
=

�
�
(`)
� ;�

(`)
��X
;�

(`)
��X
;�(`)�X

�

�
(`)
XX =

0@ E
�
X(`)X(`)T

�
0

0 I
(`)
k

1A and �
(`)
0 =

0@ �
(`)

11

�
(`)

12 �
(`)

22

1A
and

�
(`)

ij = E
�
'i
�
Z(`); X(`)

�
'j
�
Z(`); X(`)

� �

(`)
0

�
Z(`)

��2
�(`) � (`)1

�
Z(`);'i

�

(`)
1

�
Z(`);'j

� �
1� �(`)

��
'i (y; x) = ('i1; : : : ; 'ik), '1l (y; x) = xl

�
y � �Tx

�
, '2l (y; x) = xl � �X for 1 � l � k.

Corollary 2 Under the same conditions as in Proposition 2 and n`
n
! �` with �0+�1 = 1,

we have:

n1=2
�
�̂�
Y ��

�
Y

�
d�! N (0; V�Y )

n1=2
�
�̂�
S ��

�
S

�
d�! N (0; V�S)

n1=2
�
�̂�
C ��

�
C

�
d�! N (0; V�C )

where V�Y , V�S and V�C are de�ned in Appendix 7.1.

Accordingly, a con�dence interval of 100 (1� 2�)% for the structure e¤ect and com-

position e¤ect are given by

�̂�
S �Z1��

V̂�S
n1=2

and �̂�
C �Z1��

V̂�C
n1=2

where,

V̂�S =
1

1� ��̂
T
� �̂

(1)
�X
�̂� +

2

1� ��̂
T
� �̂

(1)
��X
�̂
(1)
X +

1

� (1� �) �̂
(1)T

X �̂��̂
(1)
X ;

V̂�C =
1

�
�̂T
�X
�̂
(0)
� �̂�X +

2

�
�̂
T

0 �̂
(0)
��X
�̂�X +

1

� (1� �) �̂
T

0 �̂�X �̂0;

Z1�� is the (1� �)-quantile of the standard normal distribution, �̂� = �̂1 � �̂0, �̂� =

��̂
(1)
� +(1� �) �̂

(0)
� , �̂�X = �̂

(1)
X � �̂

(0)
X , �̂�X = ��̂

(1)
�X
+(1� �) �̂(0)�X and �0 = �. In addition,

�̂
(`)
� and �̂(`)�X are the empirical analog of �

(`)
� and �(`)�X de�ned in Proposition 2.
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In absence of censoring, these results coincide with those proposed by Jann (2005,

2008). In general, computing the asymptotic variance of the decomposition components is

cumbersome (c.f. Fortin et al., 2011; Rothe, 2012), even more in the case of censoring when

estimating 
(`)

0 and 
(`)

1 is needed. A practical alternative widely used in the decomposition

methods literature, is the implementation of nonparametric bootstrap techniques. Proper

resampling methods for censored data are brie�y described in Section 6.

3 Decomposition based on Model Speci�cation
When the mean di¤erence is not informative, the counterfactural decomposition of

other distributional features, such as the variance or the Gini coe¢ cient, is compelling.

Consider the counterfactual distribution of the subpopulation i given the characteristics of

subpopulation j, say F (i;j)Y , which can be de�ned in terms of the conditional distribution

F (`) (y j x) = P (Y � y;D = ` j X) , ` = f0; 1g ;

then,

F
(i;j)
Y (y) = E

�
F (i) (y j x) j D = j

�
=

Z
F (i) (y j x) dF (j) (x)

with F (`) (x) = P (X � x j D = `), ` = f0; 1g.

The validity of this counterfactual operator (also discussed by Rothe, 2010; Chernozhukov

et al., 2013 and Donald and Hsu, 2014) lies in Assumption 1. That is, when varying the

covariates distribution, the conditional distribution of unobservables is not a¤ected, and

the counterfactual distribution F (i;j)Y is de�ned as the integral of F (i) (y j x) over the co-

variates distribution of subpopulation j. If F (i;j)Y is identi�able, the parameter �
�
F
(i;j)
Y

�
can be decomposed as

��
Y = �

�
F
(1;1)
Y

�
� �

�
F
(0;1)
Y

�
+ �

�
F
(0;1)
Y

�
� �

�
F
(0;0)
Y

�
= ��

S +�
�
C (7)

where ��
S and ��

C are the corresponding structure e¤ect and composition e¤ect.

An estimator of the counterfactual distribution �F (i;j) can be obtained by plugging-in

the empirical analog of the multivariate distribution of covariates,

�F (`) (x) = n�1`

nX
i=1

1fXi�x;Di=`g
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i.e., we have

�F
(i;j)
Y (y) = n�1j

nX
l=1

�F (i) (y j xl) 1fDl=jg:

As a consequence, the estimation procedure reduces to identify and estimate properly

F (`) (y j x). Under Assumption 2, the conditional distribution is identi�ed; however, this

can be replaced by a weaker condition, at the cost of imposing restrictions on the functional

form.

Assumption 4 For each ` = f0; 1g, it holds that Y (`) ? C(`)jX(`).

This assumption is appropriate whenever the strong independence fails. In fact, this

assumption has been taken into consideration to propose numerous generalizations of the

Kaplan-Meier estimator (c.f. Beran, 1981; Dabrowska, 1987, 1989; Gonzalez-Manteiga

and Cadarso-Suarez, 1994; Akritas, 1994; Leconte et al., 2002).

Because of the presence of censoring, classical methods to estimate the conditional

distribution, such as quantile regression and distribution regression (c.f. Chernozhukov

et al., 2013; Koenker et al., 2013), are not valid. There are quantile regression methods

available for censored data (c.f. Ying et al., 1995; Lipsitz et al., 1997; Bang and Tsiatis,

2002; Portnoy, 2003; Peng and Huang, 2008; Wang and Wang, 2009; Gor�ne et al., 2014),

but these procedures are computationally very demanding, and involve inverting functions

to recover the conditional distribution, to make �ne approximation around the tails of the

distribution and to carry out arrangements to guarantee monotonicity.

Taking into account the relation between F and � (see Equation �3�), and that the

hazard function self-adjusts to the presence of censoring, we consider the popular pro-

portional hazard speci�cation proposed by Cox (1972, 1975) which assumes the following

speci�cation for the conditional hazard function:

�(`) (yjx) = �(`)0 (y)� (x; �`) (8)

where �(`)0 is the baseline hazard (common risk) depending only on y and � is a posit-

ive function representing the e¤ect of the covariates on the conditional hazard function,

commonly speci�ed as � (x; �`) = exp(�
T
` x). In this context a fully parametric model is
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possible, but these models usually force the hazard function to be monotone. In fact,

the Cox model does not require any shape assumption on �(`)0 . Moreover, this model is

�exible for incorporating time-varying covariates and unobservable heterogeneity.

As a consequence of Equation (8), the conditional cumulative hazard is

�
(`)
Y (yjx) =

Z y

0

�(`) (�yjx) d�y

and hence, the conditional distribution is given by:

F (`) (yjx) = 1� exp(��(`)Y (yjx)) = 1�
h
exp(��(`)0 (y))

iexp(�T` x)
where �(`)0 (y) =

R y
0
�
(`)
0 (�y) d�y. In order to estimate F

(`) (yjx), Cox (1975) proposed the

partial likelihood method which directly estimates �` and allows the nonparametric com-

ponent �(`)0 (y) to be estimated.

With respect to the latter, there are two popular estimators in the literature. The

�rst and the most commonly used is the Breslow estimator, �̂(`)0B, introduced by Breslow

(1974). This is given by

�̂
(`)
0B (y) =

yX
i=1

1P
j2r(`)(yi) e

�̂
T
` x

(`)
j

.

In turn, the second was proposed by Kalb�eisch and Prentice (1973), which constructs a

discrete cumulative hazard that is consistent with the �rst order condition (or score) of

the partial likelihood function, i.e.:

�̂
(`)
0KP (y) =

nX̀
i=1

�
1� �̂(`)i

�
1fyi�yg

where the hazard probabilities �̂(`)i solve:X
j2d(`)(yi)

e�̂
T
` x

(`)
j

�
1� �̂exp(�̂

T
` x

(`)
j )

i

��1
=

X
l2r(`)(yi)

e�̂
T
` x

(`)
l

with r(`) (yi) the pool risk in subpopulation ` at period yi and d(`) (yi) the set of indi-

viduals in subpopulation ` changing state at period yi. Of course, �̂
(`)
0B presents practical

advantages since it does not involve solving auxiliary equations. Both estimators perform

similarly in �nite sample, as will be discussed in Section 4.
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Thus, an estimator for the counterfactual components of the decomposition in Equa-

tion (7), hereafter Counterfactual Cox decomposition (CCOX), is given by:

�̂� = �
�
F̂
(1;1)
Y

�
� �

�
F̂
(0;1)
Y

�
+ �

�
F̂
(0;1)
Y

�
� �

�
F̂
(0;0)
Y

�
(9)

where

F̂
(i;j)
Y (y) = n�1j

njX
l=1

F̂ (i) (yjxl)

and

F̂ (`) (yjx) = 1�
h
exp(��̂(`)0 (y))

iexp(�̂T` x)
: (10)

The validity of the CCOX is established in Proposition 3.

Proposition 3 Consider that Assumptions 1, 3 and 4, Condition 2 (see Appendix 7.1)

and Equation 8 hold, and n`
n
! �` with �0 + �1 = 1. Then:

n1=2
�
F̂
(i;j)
Y (y)� F (i;j)Y (y)

�
) �M (i;j) (y)

where �Mij is a tight zero-mean Gaussian process with uniform continuous path on Supp(Y ),

de�ne as:

�M (i;j) (y) = �
1=2
i

Z
M (i) (y; x) dF (j) (x) + �

1=2
j N (j)

�
F (i) (yj:)

�
:

Moreover, since the limit process of F̂ (i;j)Y is nonpivotal (see Chernozhukov et al., 2013),

resampling methods are suitable for making inference on the counterfactual components

(see Appendix 7.1 for further discussion).

4 Monte Carlo Simulations
To study �nite sample properties of COB and CCOX, we carry out Monte Carlo

experiments. These exercises allow the proposed methods to be compared with other

competing alternatives, and provide evidence on the performance under di¤erent censoring

scenarios and distributional assumptions.

4.1 COB Decomposition
We study the performance of the COB procedure to estimate the structure and com-

position e¤ects with respect to two alternatives: the classical OB neglecting the presence
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of censoring and OB when censored observations are dropped. To do so, we consider Data

Generator Processes (DGPs) shown in Table 1. In addition, we assume a single covariate

simulated as X(0) � N (1:5; 0:5) and X(1) � N (1; 0:5). To adjust the censoring level to

30%, censoring times distribution are shifted by (�0; �1) = (2:5; 2). Finally, we consider

sample size of 50, 500 and 2500 and evaluate the performance of �̂S and �̂C using the

average of absolute deviations across 1000 simulation draws.

Table 1 Simulation Setup

` = 0
Y (0) = 5 +X(0) + "

(0)
Y "

(0)
Y � N (0; 1)

C(0) = 5 + "
(0)
C "

(0)
C � N (�0; 1:5)

` = 1
Y (1) = 5 +X(1) + "

(1)
Y "

(1)
Y � N (0; 1)

C(1) = 5 + "
(1)
C "

(1)
C � N (�1; 1:5)

Results in Table 6 show that there are important di¤erences among alternative estim-

ators when censoring is present. For instance, if censoring is ignored, the absolute bias

is not reduced as sample size increases, and most importantly, COB outperforms these

alternatives.

4.2 Censoring Mechanism and Distributional Assumption
In this exercise, we examine the performance of the counterfactual distribution oper-

ator based on the Cox model under di¤erent DGPs. This allows three relevant aspects

to be studied: i. the censoring mechanism, ii. the distributional assumption on duration

outcome, and iii. the estimator of the baseline cumulative hazard. The main parameters

of the simulation are presented in Table 2. It is assumed a single covariate following a

uniform distribution U (0; 1). The scale and the shape of censoring times are shifted to

generate censoring levels of 5%, 20% and 50% and sample sizes are set at 50, 500 and

2500.

To evaluate the performance of the counterfactual operator, we make comparisons

with the classical Kaplan-Meier (KM) estimator and use the empirical distribution ~FY as

a benchmark. To do so, we compute three measures: MD is the maximum distance, AD
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Table 2 Simulation Setup

Assumption DGP

Y ? C

Weibull
Y �WB

�
e2�x; 5

�
C �WB

�
e2+�; 5

�
� = (0:25;�0:2;�0:5)

Normal
Y = 5 +X + "Y ; "Y � N (0; 1)
C = 5 + "C ; "C � N (�; 1)

� = (3; 1:5; 0:5)

Y ? CjX

Weibull
Y �WB

�
e2�x; 5

�
C �WB

�
e2�x+�; 7

�
� = (0:45; 0:2;�0:02)

Normal
Y = 5 +X + "Y ; "Y � N (0; 1)
C = 5 +X + "C ; "C � N (�; 1)

� = (2:5; 1; 0)

is the average distance and MSD is the mean squared distance. To be speci�c,

MD = max
y

��� ~FY (y)� F̂Y (y)��� ; AD = 1

n

nX
i=1

��� ~FY (y)� F̂Y (y)���
MSD =

1

n

nX
i=1

�
~FY (y)� F̂Y (y)

�2
:

For MD and AD we report the average over 1000 draws, while for the latter, the square

root of the mean value is reported.

Results in Table 7 suggest that, under the independence assumption, the KM estim-

ator outperforms the CCOX estimator when censorship level is low. But there are not

important di¤erences with medium or heavy censoring levels (20% and 50%). In turn,

under conditional independence, it is noticeable that the performance measures decrease

faster for CCOX than KM with the sample size, and this fact is more remarkable as

censoring becomes more substantial.

Regarding the distributional assumptions (see Tables 8 and 9), we can observe that the

CCOX estimator performs fairly well even if survival times follow a normal distribution.

Regarding the estimators of the baseline cumulative hazard, results are roughly the same,

except for a very small sample where �̂0KP outperforms the �̂0B estimator. This is

explained by the nature of �̂0KP since it is proposed in the context of discrete survival
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times.

4.3 Decomposition Exercise and Inference
To study the �nite sample performance of the CCOX to compute counterfactual de-

compositions beyond the mean, we consider a simulation exercise where all the di¤erence

between the two populations is due to the shape covariates distribution. In particular,

we consider that X(1) is uniform (0; 1) and X(0) is the sum of three independent uniform

distributions in the interval
�
0; 1

3

�
. Hence, we decompose the truncated mean at 15 and

the quartiles. The distribution of censoring times is shifted to achieve censoring levels of

30% so that, Y (`) � WB
�
e3�X

(`)
; 5
�
and C(`) � WB

�
e3:17�X

(`)
; 5
�
. We consider n` = 500

and 1000 draws (Figure 1 shows a typical draw).

We estimate the decomposition given by Equation (9) using the Breslow estimator for

the baseline cumulative hazard and we test the hypothesis ��
S = 0 using 1000 bootstrap

repetitions. The resampling procedure is executed using the simple method, and coverage

intervals (at 95% and 90% con�dence level) are constructed according to percentile and

hybrid methods (see Section 6 for details).

Results in Table 10 suggest that the coverage rate is close to its nominal value and the

accuracy improves if the two subpopulations exhibit similar censoring levels. Regarding

the con�dence intervals, the percentile method tends to outperform the hybrid method,

although the di¤erence is quite small.

5 Unemployment Duration Gender Gaps in Spain
Spain is an interesting case to study unemployment gender gaps. First, Spain has

experienced one of the highest unemployment rates among OECD countries in the recent

decades. According to o¢ cial statistics (OECD, 2013), the average unemployment rate

in OECD countries was around 6.8% and in the US 5% for the period 1995-2005, while

in Spain it was 14%. Moreover, the di¤erence in unemployment rates by gender has also

been important. For the same period, women exhibited on average an unemployment rate

9 percentage points (p.p.) higher in Spain, while in the US such a di¤erence was rather

than slight (0.04 p.p.).
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There are a number of studies exploring the gender gaps in the unemployment rate

(see for instance, Niemi, 1974; Johnson, 1983; Azmat et al., 2006; Queneau and Sen,

2007), but other aspects of unemployment have been neglected. Therefore, we provide

additional evidence of the unemployment gap in Spain by analyzing the duration rather

than the rate. In particular, we estimate the total gender gap and perform counterfac-

tual decomposition analysis to examine to what extent this gap is explained by workers�

socioeconomic characteristics, labor market features or other factors.

Literature devoted to studying unemployment duration gaps has focused exclusively

in explaining the di¤erence in the average hazard rate (see Ham et al., 1999, for the

Czech and Slovak Republic; Gonzalo and Saarela, 2000, for Finland; Eusamio, 2004, for

Spain and Portugal; Ortega, 2008, for Argentina; Du and Dong, 2009, 2009, for China;

Tansel and Tasci, 2010, for Turkey; and Baussola et al., 2015, for Italy and UK). In these

exercises interpretation is di¢ cult since the average hazard rate is not a parameter of

the duration distribution. Instead, we use the proposed methods to decompose several

parameters associated to the unemployment duration distribution.

In particular, we study the gender gap in the average unemployment duration, the

probability of being long term unemployed (12 and 24 months or longer) and the Gini

coe¢ cient. While the mean gives a broad picture of the di¤erence in unemployment

duration by gender, the other two parameters allow the di¤erence in terms of severity

to be analyzed. The latter, the Gini coe¢ cient is interesting since, analogous to income,

unemployment duration has normative implications on social welfare (c.f. Paul, 1992;

Borooah, 2002; Sengupta, 2009; Shorrocks, 2009a,b).

We explore two dimensions of unemployment duration: the duration until exit from

unemployment and the duration until getting a job. To analyze the latter case, we follow

the competing risk approach (similar to Addison and Portugal, 2003), by considering as

censored, transitions from unemployment to a destination other than getting a job. The

distinction of the two types of duration is important for studying the dynamics of the labor

market transitions. For instance, it might be the case that women and men have sim-

ilar unemployment durations, but women might be more prone to transit to inactivity.

In addition, it also allows the role of the identi�cation assumption related to the cen-
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soring mechanism to the illustrated. In the case of duration to exit from unemployment,

censoring can be considered as administrative; but when the transition unemployment-to-

employment is studied, censoring might not be independent since workers�characteristics

a¤ect the decision of being employed or out of the labor force.

To do so, we use information from the Survey of Income and Living Conditions (SILC)

for the period 2004-2007. This survey, managed by the European Commission, is a rotat-

ive household panel that collects information on socioeconomic characteristics, including

the occupational status (monthly) for a period of 4 years. Our population consists of

unemployed workers older than 25 starting their unemployment spell during the period

2004-2007. We take into account a set of explanatory variables commonly used in unem-

ployment duration studies such as age, educational level, tenure, marital status, whether

the individual is head of the household, and the number of unemployed in the household

(see for instance, Foley, 1997; Addison and Portugal, 2003; Kuhn and Skuterud, 2004;

Biewen and Wilke, 2004; Tansel and Tasci, 2010). The �rst three variables control by

human capital characteristics, the rest give information about the opportunity cost of

being unemployed and the reservation wage. In addition, we include city size and region

to control for speci�c labor market characteristics.

We �rst focus on the duration until leaving unemployment. In this case, the censoring

levels are 21.4% for women and 16.2% for men. Based on F̂ (y; x; `) and F̂Y (`;`) , we compute

the average duration, the probability of being long term unemployed (LTU) and the Gini

coe¢ cient (see Table 3). It is noticeable that estimates for both are very similar. To

give some insight about the misleading conclusions produced by ignoring censoring, the

bottom part of Table 3 includes the estimates when censored observations are dropped.

As expected, estimates are lower in the case of the average, and for the LTU and the Gini

coe¢ cient remarkable di¤erences are also found.

Following the COB and CCOX methods, we compute the total di¤erence and the

decomposition components4. Results are presented in Table 4 coupled with con�dence

intervals at 90% built through 1000 bootstrap repetitions by using the percentile method.

4In the case of the CCOX method, we check the validity of the proportional hazard assumption using
the Schoenfeld residuals. The p-values (0.031 and 0.654 for women and men, respectively) suggest that
in both cases the proportional hazard speci�cation might be suitable.
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Table 3 Distributional Parameters of Duration to Exit from Unemployment

Mean LTU(12) LTU(24) Gini

Kaplan-Meier integrals Women 11.090 0.410 0.145 0.496
Men 7.804 0.237 0.065 0.542

CCOX Women 11.160 0.396 0.145 0.508
Men 7.767 0.235 0.067 0.544

Only Uncensored Women 7.456 0.292 0.045 0.446
Men 5.466 0.153 0.014 0.485

Authors�calculations.

For the case of the average unemployment duration, results across methods are qualitat-

ively the same and quantitatively similar. In general, it is observed that women present

higher average duration and higher survival probability, which is consistent with the ar-

gument according to which women are less attached to the labor market. In the case of

the Gini coe¢ cient, the di¤erence is negative indicating that men�s duration distribution

is more unequal, which is consistent with the fact that men leave unemployment faster,

on average, but they are also severely a¤ected by LTU.

With respect to the decomposition factors, it is found that the structure e¤ect is

statistically di¤erent from zero and plays a major role in explaining the gender gap.

Although not signi�cant, the composition e¤ect is always positive indicating that the

di¤erence in workers�characteristics slightly increases the severity of unemployment to

the detriment of women. In turn, the structure e¤ect is positive except in the case

of the Gini coe¢ cient, suggesting that factors others than workers�characteristics, i.e.

institutional factors, labor market circumstances, behavioral aspects, among others, also

increase the average duration and probability of being LTU. Lastly, an interesting �nding

is that the LTU(24) is lower than LTU(12), and this reduction is due to the decrease in

the structure e¤ect, implying that women are relatively less prone to experience long term

unemployment, which agrees with the negative sign in the Gini coe¢ cient di¤erence.

In the second exercise, we study the gender gaps in unemployment duration until get

a job5. Results of this decomposition are presented in Table 5. It can be observed that,

in contrast to the previous exercise, the decomposition factors di¤er importantly between

5As before, we test the validy of the proportional hazard assumption, obtaining p-vaues of 0.283 and
0.410 for woman and men respectively. We also test the presence of unobservable heterogeneity at region
level, but the hypothesis was rejected.
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Table 4 Decomposition Distributional Statistics of Duration to Exit from
Unemployment

Total Composition Structure

COB Mean Di¤erence 3.285 0.386 2.899
CI 90% [2.067 , 4.442] [-0.478 , 2.425] [0.408 , 4.219]

CCOX

Mean Di¤erence 3.392 0.537 2.855
CI 90% [2.098 , 4.491] [-0.349 , 1.361] [1.501 , 4.224]

LTU(12) Di¤erence 0.161 0.012 0.148
CI 90% [0.115 , 0.206] [-0.013 , 0.043] [0.092 , 0.198]

LTU(24) Di¤erence 0.078 0.014 0.064
CI 90% [0.043 , 0.109] [-0.008 , 0.035] [0.022 , 0.104]

Gini Di¤erence -0.036 0.006 -0.042
CI 90% [-0.071 , 0.000] [-0.002 , 0.010] [-0.075 , -0.005]

Authors�calculations.

the COB and CCOX methods, which can be related to the validity of the identi�cation

assumptions. As mentioned previously, in this case the independence assumption between

survival times and censoring times might be strong. Despite the fact that the identi�cation

assumptions cannot be tested because of the unobservability of complete durations, we

provide some suggestive evidence on the relation between the probability of censoring and

the covariates.

Table 11 presents measures of goodness-of-�t for di¤erent probability models for the

censoring indicator on the covariates. In particular, we estimate linear probability models

and logit medels, and report the corresponding R2-adjusted and p-seudo R2. Overall,

we observe that the covariates are relatively more important for predicting the censor-

ing indicator for the duration until getting a job. Therefore, Assumption 2 might not

be appropriate. We provide some additional evidence by performing the decomposition

eliminating the censored observations (see Table 12), obtaining similar results for the

two kinds of transitions we study. This exercises is appealing since assumptions on the

censoring mechanism have no role.

Hence, focusing on the CCOX methods, results are qualitatively the same as in the

case of duration to leave unemployment. Moreover, we observe that the magnitudes of

the total di¤erences are higher, implying that inactivity is an important destination for

women. This fact is also proven by the persistent di¤erence in the LTU. That is, the total
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di¤erence in the probability of being unemployed in the long term does not decrease over

duration spells.

Table 5 Decomposition Distributional Statistics of Duration from
Unemployment to Employment

Total Composition Structure

COB Mean Di¤erence 7.224 5.698 1.525
CI 90% [4.804 , 9.020] [3.816 , 8.678] [-1.691 , 3.203]

CCOX

Mean Di¤erence 7.865 1.713 6.151
CI 90% [5.266 , 9.507] [0.159 , 3.028] [3.813 , 8.191]

LTU(12) Di¤erence 0.184 0.036 0.148
CI 90% [0.137 , 0.231] [0.000 , 0.071] [0.095 , 0.202]

LTU(24) Di¤erence 0.176 0.041 0.135
CI 90% [0.130 , 0.226] [0.003 , 0.074] [0.084 , 0.192]

Gini Di¤erence -0.040 -0.014 -0.025
CI 90% [-0.079 , -0.008] [-0.029 , 0.001] [-0.065 , 0.007]

Authors�calculations.

Likewise, the composition e¤ect turns out to be statistically signi�cant, except for

the Gini coe¢ cient, and the structure e¤ect has the most relevant role in explaining the

unemployment duration gender gaps. The latter result has been also reported by Ham

et al. (1999); Gonzalo and Saarela (2000); Eusamio (2004) and Ortega (2008) who study

the average hazard rate. It is remarkable that this unexplained component is associated to

many factors involved in the job search process, i.e. the behavior of workers and employers

and di¤erent circumstances of the labor market such as the labor market tightness, and

discrimination, among others. Thus, these results point out the importance of deeply

studying such factors to assess the di¤erential gender e¤ect of labor market policies.

6 Final Remarks and Further Research
We have proposed inferential tools to perform counterfactual decompositions under

censoring. These tools encompass decompositions for the mean di¤erence as well as the

di¤erence in other distributional features. For the mean di¤erence decomposition, we

provide asymptotic results useful to test statistically the signi�cance of the decomposi-

tion components. However, the form of the variances tend to be cumbersome to compute.

Additionally, in the case of the decomposition based on models, the limit processes are
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non-pivotal. Thus, bootstrapping methods turn out to be practical alternative for per-

forming statistical inference. The implementation of statistical inference based on boot-

strapping techniques is more accurate than �rst-order asymptotic approximation (Hall,

1992).

In the context of censored data, Efron (1981) presents two alternative resampling

schemes that have been recognized in the literature as the simple bootstrap method and

the obvious bootstrap method. In short, the simple method consists in drawing boot-

strap samples (Z�; X�; D�; ��) by independent sampling of size n with replacement and

assigning equal mass n�1 at each selected observation. Instead, the obvious method

requires estimating the distribution of the survival times and censoring times. In par-

ticular, for each draw (X�
i ; D

�
i ), compute Y

�
i � F̂ (`) (y j x), and C�i � Ĝ(`) (y j x) and

de�ne Z�i = min (Y �i ; C
�
i ) and �

�
i = 1fY �i �C�i g. Under independence between Y and C,

these methods are equivalent (c.f. Efron and Tibshirani, 1986). The simple method has

important practical convenience because it does not require imposing any assumption on

the structure of the data and does not depend on the censoring mechanism.

To construct con�dence bands, we consider classical methods such as percentile and

hybrid (see Hall, 1988; Efron, 1992; Burr, 1994, for a detailed comparison of coverage bands

construction methods). One important advantage of these methods is that estimation of

variances is not needed. In order to describe the pivotal quantities, suppose we are

interested in forming 100 (1� 2�)% con�dence bands for the target parameter �. Denote

the estimated parameter from a bootstrap sample as �̂
�
and its distribution given by J .

The percentile method sets the con�dence interval as:

�
J�1 (�) ; J�1 (1� �)

�
Instead of approximating the distribution of �̂

�
, the hybrid method approximates the

distribution of
�
�̂ � �

�
through the distribution of

�
�̂
� � �̂

�
. Therefore, the coverage

interval is de�ned as: �
2�̂ � J�1 (1� �) ; 2�̂ � J�1 (�)

�
There is not a general rule to select the proper method. For instance, in the particular
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case of censored data, considering real-valued and function-valued parameters estimated

through the Cox model, Burr (1994) makes comparative analysis of bootstrap con�dence

intervals combining resampling and interval construction methods. The results suggest

that there is no single winner and the pertinence of each method depends on the target

parameter.

The COB method can be extended either to detailed decomposition or to approximate

decomposition of other distributional features. With respect to the former, the usual

procedure can be implemented by addressing the identi�cation issues related to the path

dependence (c.f. Firpo et al., 2007; Firpo and Pinto, 2011; Rothe, 2012) and the omitted

group problem (c.f. Oaxaca and Ransom, 1999; Gardeazabal and Ugidos, 2004; Yun,

2005). In turn, our weighted regression method can be adapted to estimate the conditional

recentered in�uence function for several distributional statistics as proposed in Firpo et al.

(2009) by applying the proper transformation in the dependent variable. A list of RIF s for

relevant distributional parameters can be found in Firpo et al. (2007) and Essama-Nssah

and Lambert (2011).

In the decomposition methods based on the speci�cation of the conditional distri-

bution, we consider a proportional hazard model. Naturally, in some applications the

proportional hazard model might induce misspeci�cation, and hence, more �exible mod-

els for the conditional distribution are needed. In this context the use of nonparametric

models might be complicated since it is usual to deal with a large number of covariates,

and establishing the limit process of the counterfactual operator would require further

theoretical work (Rothe, 2010). In this respect, other semiparametric approaches such

as distributional regression-type methods in the spirit of Foresi and Peracchi (1995) and

Chernozhukov et al. (2013) are a compelling alternative. We pursue this approach in

separate ongoing work.
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7 Appendix

7.1 Some Theoretical Results
Proof of Proposition 1 and Estimation of the Joint Distribution

To achieve identi�cation of the joint distribution we consider Assumption 2. Under As-

sumption 2.b. we have:

H11 (y; x; `) = P (Z � y;X � x;D = `; � = 1)

= P (min (Y;C) � y;X � x;D = `; � = 1)

= P (Y � y;X � x;D = `; Y � C)

= E
�
1fY�yg1fX�xg1fD=`gP (Y � CjY;X;D)

�
= E

�
1fY�yg1fX�xg1fD=`gP (Y � CjY;D)

�
= E

�
1fY�yg1fX�xg1fD=`gP (C � yjY;D)

�
= E

�
1fY�yg1fX�xg1fD=`g [1�G(Y � jD = `)]

�
=

Z y

0

[1�G(�y � jD = `)]F (d�y; x; `)

and by Assumption 2.a.

1�H (y; `) = P (Z > y;D = `)

= P (Y > y;D = `; C > y)

= P (Y > yjD = `)P (C > yjD = `)P (D = `)

= P (Y � y;D = `)P (C > yjD = `)

= [1� F (y; `)] [1�G (yjD = `)]

= [1� F (y;1; `)] [1�G (yjD = `)]
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Thus, using Equation (3)

� (y; x; `) =

Z y

0

F (d�y; x; `)

1� F (�y�;1; `)

=

Z y

0

F (d�y; x; `) [1�G(Y � jD = `)]
1� F (�y�;1; `) [1�G(Y � jD = `)]

=

Z y

0

H11 (d�y; x; `)

1�H(�y�; `) :

Using the sample version of H11 and H given by

Ĥ (y; `) = n�1`

nX
i=1

1fZi�y;Di=`g and Ĥ11(y; x; `) = n
�1
`

nX
i=1

1fZi�y;Xi�x; Di=`;�i=1g

the jump �̂ is de�ned as

�̂ (f�yg ; x; `) =
�
(`)
[i:n`]

n` �R(`)i + 1
:

Therefore, F̂ (y; x; `) can be estimated by:

F̂ (y; x; `) = 1�
Y
�y�y

h
1� �̂ (f�yg ; x; `)

i
= 1�

Y
Z
(`)
i:n`

�y;X(`)

[i:n`]
�x

"
1�

�
(`)
[i:n`]

n` �R(`)i + 1

#

Proof of Corollary 1

De�ne S (y; `) = 1� FY (y; `). The joint distribution can be written as:

F (y; x; `) =

Z y

0

F (d�y; x; `)

=

Z y

0

[1� FY (�y�; `)]
F (d�y; x; `)

[1� FY (�y�; `)]

=

Z y

0

S (�y; `) � (d�y; x; `)

=

Z y

0

S (�y; `)
H11 (d�y; x; `)

[1�H(�y�; `)] :

H11 and H can be estimated from available data and SY is consistently estimated by
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the Kaplan-Meier estimator (by Assumption 2.a.). Thus,

F̂ (y; x; `) =

Z y

0

Ŝ (�y; `)
Ĥ11 (d�y; x; `)h
1� Ĥ(�y�; `)

i
where,

Ŝ(y; `) =
Y

Z
(`)
i:n`

�y

"
1�

�
(`)
[i:n`]

n` �R(`)i + 1

#
;

Thus, an estimator of the joint distribution is given by:

F̂ (y; x; `) =

nX
i=1

i�1Y
j=1

"
1�

�
(`)
[j:n`]

n` �R(`)j + 1

# 1�
Z
(`)
i:n`

�y;X(`)

[i:n`]
�x;�(`)

[i:n`]
=1

�
n` �R(`)i + 1

=
nX
i=1

(
i�1Y
j=1

"
1�

�
(`)
[j:n`]

n` �R(`)j + 1

#
�
(`)
[i:n`]

n�R(`)i + 1

)
1�

Z
(`)
i:n`

�y;X(`)

[i:n`]
�x
�

=
nX
i=1

W
(`)
i 1

�
Z
(`)
i:n`

�y;X(`)

[i:n`]
�x
�

where

W
(`)
i =

�
(`)
[i:n`]

n` �R(`)i + 1

i�1Y
j=1

"
1�

�
(`)
[j:n`]

n` �R(`)j + 1

#
:

Proof of Proposition 2

Before state the main result, we require some regularity conditions on the generic integ-

rable functions '(`).

Condition 1 Consider that following integrability conditions holds:

a.
Z h

'(`)(Z;X)
(`)
0 (Z) �

(`)
i
dP <1

b.
Z ��'(`)(�y; �x)��K1=2 (�y; `) dP <1

with

K (y; `) =

Z y�

0

G (d�y; `)

[1�H(�y; `)] [1�G (�y; `)]
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Condition 1.a. generalizes the second order assumption on '(`) so that when censoring

is not presence, this condition states that the second moment is �nite. In turn, Condi-

tion 1.b controls the bias of E
�
'(`)(y; x)

�
and guarantees that censoring e¤ects does not

dominate in the right tail.

Now de�ne:

Q
(`)
XX =

nX̀
i=1

W
(`)
i X

(`)
[i:n`]

X
(`)T

[i:n`]

By Theorem 1 in Stute and Wang (1993), we have Q(`)XX �! E
h
X(`)X(`)T

i
.

To compute the joint distribution of
h�
�̂` � �`

�
;
�
�̂
(`)
X � �(`)X

�i
, note that we can write:

�̂` = Q
(`)�1

XX

nX̀
i=1

W
(`)
i X

(`)
[i:n`]

Z
(`)
i:n`
:

For all i, we know that �(`)[i:n`]Z
(`)
i:n`
= �

(`)
[i:n`]

Y
(`)
i:n`
. Then, we have:

�̂` � �` = Q
(`)�1

XX

nX̀
i=1

W
(`)
i X

(`)
[i:n`]

"
(`)
i:n`

Therefore,0@ �̂` � �`
�̂
(`)
X � �(`)X

1A =

0@ Q
(`)�1

XX 0

0 IK

1A0@ Pn
i=1W

(`)
i X

(`)
[i:n`]

"[i:n`]Pn
i=1W

(`)
i X

(`)
[i:n`]

� �(`)X

1A
= Q

(`)�1

XX

0@ Pn
i=1W

(`)
i '

(`)
1 (Z

(`)
i ; X

(`)
i )Pn

i=1W
(`)
i '

(`)
2 (Z

(`)
i ; X

(`)
i )

1A
= Q

(`)�1

XX U

where:

� 'i (y; x) = ('i1; : : : ; 'ik)

� '1l (y; x) = xl
�
y � �Tx

�
for 1 � l � k

� '2l (y; x) = xl � �
(`)
X for 1 � l � k:
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From the SLLN (Stute, 1993), it follows that U �! 0. For a generic integrable '(`),

under Condition 1, Q(`)' =
R
'(`)(y; x)dF admits the following representation (see Stute,

1996 for details):

Q(`)' =

nX̀
i=1

W
(`)
i '(Z

(`)
i:n`
; X

(`)
[i:n`]

)

=
1

n`

nX̀
i=1

h
'(`)(Z

(`)
i ; X

(`)
i )

(`)
0

�
Z
(`)
i

�
�
(`)
i + 

(`)
1

�
Z
(`)
i ;'

(`)
��
1� �(`)i

�
� (`)2

�
Z
(`)
i ;'

(`)
�i

+oP

�
n
�1=2
`

�
=

1

n`

nX̀
i=1

�
(`)
i

�
Z
(`)
i ; X

(`)
i ;'

(`)
�
+ oP

�
n
�1=2
`

�
with

�
(`)
i

�
Z
(`)
i ; X

(`)
i ;'

(`)
�
= '(`)(Z

(`)
i ; X

(`)
i )

(`)
0

�
Z
(`)
i

�
�
(`)
i + 

(`)
1

�
Z
(`)
i ;'

(`)
��
1� �(`)i

�
(11)

�(`)2
�
Z
(`)
i ;'

(`)
�

= A
(`)
i +B

(`)
i � C(`)i

a sum of iid quantities such that:

� E
h
A
(`)
i

i
= E

h
'(`)(Z

(`)
i ; X

(`)
i )
i

� E
h
B
(`)
i

i
= E

h
C
(`)
i

i
In such manner, we have the following result:

n
1=2
` U

d�! N2k

�
0;�

(`)
0

�
where

�(`) =

0@ �
(`)

11 :

�
(`)

12 �
(`)

22

1A

�
(`)

ij = Cov
h
�(`)

�
Z(`); X(`);'

(`)
i

�
;�(`)

�
Z(`); X(`);'

(`)
j

� i
where each element of the vector �(`) can be written as in Equation (11).
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To simplify notation, let�s omit "(`)".Since each component of � has zero mean, the

covariance can be written as:

Cov
�
� (Z;X;'i) ;�

�
Z;X;'j

� �
= E (AiAj) + E (AiBj)� E (AiCj)

+E (BiAj) + E (BiBj)� E (BiCj)

�E (CiAj)� E (CiBj) + E (CiCj)

Azarang et al. (2015) shown that:

� E (AiCj) = E (BiBj)

� E (CiCj) = E (BiCj) + E (CiBj)

In addition, E (AiBj) = E (BiAj) = 0 so that the covariance becomes:

�ij = E (AiAj)� E (BiBj)

= E
�
'i (Z;X)'j (Z;X) (0 (Z))

2 � � 1 (Z;'i) 1
�
Z;'j

�
(1� �)

�
Finally, as

Q
(`)
XX �! �

(`)
XX =

0@ E
�
XXT

�
0

0 IK

1A
we get our result.

Note that an estimator of the variance is obtained by plugging-in the sample analogs

of �(`)XX , 
(`)
0 and (`)1 . Moreover, in absence of censoring, 

(`)
0 = �(`) = 1 and it arrives to

the classical result given by:

�
(`)
ij = E

h
'
(`)
i (Z;X)'

(`)
j (Z;X)

i
where �(`)12 = 0 as long as E ("jX) = 0 holds.
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Proof of Corollary 2

By Proporsition 2, we can write:

n1=2

0@ �̂`

�̂
(`)
X

1A d�! N
��
�`; �

(`)
X

�T
;
1

�`
�
(`)
��X

�

where n`
n
! �`.

Then,

n1=2�̂`�̂
(`)
X

d�! N
�
�`�

(`)
X ;

1

�`
V`

�
with

V` = �
(`)T

X �
(`)
� �

(`)
X + �T` �

(`)
�X
�` + 2�

T
` �

(`)
��X
�
(`)
X

Denote �0 = �. Thus, for the total mean di¤erence, it follows that:

n1=2�̂Y
d�! N (�Y ; V�Y )

and

V�Y =
1

�
V0 +

1

1� �V1:

Analogously, to compute the asymptotic distribution of �̂S =
�
�̂1 � �̂0

�T
�̂
(1)
X we

know that:

n1=2

0@ �̂1 � �̂0
�̂
(1)
X

1A d�! N

0@0@ �1 � �0
�
(1)
X

1A ;
0@ ��

�(1��) :

�
(1)
��X

(1��)
�
(1)
�X

(1��)

1A1A
where �� = ��

(1)
� + (1� �)�(0)� .

Now, de�ne �� = �1 � �0. For the structure e¤ect we have:

n1=2�̂S
d�! N (�S; V�S)

and

V�S =
1

1� ��
T
��

(1)
�X
�� +

2

1� ��
T
��

(1)
��X
�
(1)
X +

1

� (1� �)�
(1)T

X ���
(1)
X :
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In a similar way, for the composition e¤ect we get:

n1=2�̂C
d�! N (�C ; V�C )

and

V�C =
1

�
�T
�X
�
(0)
� ��X +

2

�
�T0�

(0)
��X
��X +

1

� (1� �)�
T
0��X�0

with ��X = �
(1)
X � �(0)X and ��X = ��

(1)
�X + (1� �)�

(0)
�X .

Additionally, t-statistics can be constructed by plugging-in the empirical analogs of

the corresponding variances. For instance:

t�Y =
�̂Yp
V̂�Y

d�! N (0; 1)

with V̂�Y =
1
n
V̂�Y =

1
n0
V̂0 +

1
n1
V̂1.

Validity of the Counterfactual Operator based on Cox model

The validity of the estimation and inference procedure of the CCOX follows the argu-

ments in Chernozhukov et al. (2013, CFM, hereafter). Consider the following regularity

condition:

Condition 2 Let F be a class of bounded measurable functions under the metric �(`)

de�ned as:

�(`) =

�Z �
f � ~f

�2
dF (`) (x)

�2
The following regularities hold:

a. De�ne the empirical processes:

M̂ (`) (y; x) = n
1=2
`

�
F̂ (`) (yjx)�F (`) (yjx)

�

N̂ (`) (f) = n
1=2
`

Z
fd
�
F̂ (`) (x)� F (`) (x)

�
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with f 2 F . Then:

�
M̂ (`) (y; x) ; N̂ (`) (f)

�
=)

�
M (`) (y; x) ; N (`) (f)

�
where

�
M (`) (y; x) ; N (`) (f)

�
is a zero mean tight Gaussian process, M (`) has uniformly

continuous paths with respect to a standard metric on R1+k and N (`) has uniformly con-

tinuous paths with respect to the metric �(`) on F .

b. The map y 7! F (`) (yj:) is uniformly continuous with respect to the metric �(`).

To establish validity of the estimation and inference procedure based on bootstrapping

methods, it is needed to veri�ed the ful�llment of two high-level requirements, namely:

i. the estimator of both conditional distribution and covariates distribution converge at

parametric rate and satisfy a functional central limit theorem; and ii. bootstrapping

methods are valid for estimating the limit laws of the conditional and the covariates

distributions.

Under requirement i., the counterfactual operator satis�es a functional central limit

theorem, while requirements i. and ii. jointly guarantee that bootstrapping techniques

are valid for making inference of the counterfactual operator and its smooth related func-

tionals. The latter result is pertinent since the limit process of the counterfactual operator

is nonpivotal.

Condition 2 is veri�ed by Tsiatis (1981) and Andersen and Gill (1982). In particular,

Tsiatis (1981) shows that n1=2
�
�̂` � �`

�
converges in distribution to a normal random

variable with zero mean, while the random function n1=2
�
�̂
(`)
0 (y)� �

(`)
0 (y)

�
converges

weakly to a Gaussian process (Theorems 3.2 and 6.1, respectively). These asymptotic

results have also been documented by Naes (1982); Bailey (1983, 1984); Gill (1984). Fol-

lowing Tsiatis (1981, Lemma 6.2), we have that:

n
1=2
`

�
�̂
(`)
0 (y) exp

�
�̂
T

` x
�
� �(`)0 (y) exp

�
�T` x

��
=) V(`)x (y)

n
1=2
`

�
1� exp�

�
�̂
(`)
0 (y) exp

�
�̂
T

` x
��
� F (`) (yjx)

�
=) S(`)x (y)
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where Sx (y) is a Gaussian process with zero mean and covariance structure given by:

Cov
�
S(`)x (y) ;S(`)x (z)

�
= F (`) (yjx)F (`) (zjx)Cov

�
V(`)x (y) ;V(`)x (z)

�
0 � y � z � � (`)H

Consequently, CCOX estimator satis�es a functional central limit theorem (that fol-

lows from CFM, Theorem 4.1). In addition, since F (`) (yjx) is Hadamard di¤erentiable

with respect to �` and �
(`)
0 (:) (see for details Freitag and Munk, 2005; McLain and Ghosh,

2011; Chen et al., 2010; Hirose, 2011), and hence, by the chain rule of Hadamard di¤eren-

tiable maps (van der Vaart and Wellner, 2004, Lemma 3.9.3), the counterfactual operator

is Hadamard di¤erentiable respect its arguments. Hence, the related smooth functionals

also obey a central limit theorem (see Corollary 4.2 in CFM for details).

With respect to the inferential procedure, Cheng and Huang (2010) justify the validity

of exchangeable resampling methods for general semiparametricM�estimators, which in-

cludes the Cox model as particular case. This veri�es the second high-level requirement.

As Corollaries 5.3 and 5.4 in CFM state, this shows that bootstrap consistently estimates

the limit laws of the counterfactual operator based on the Cox model. Using the afore-

mentioned argument, by Hadamard di¤erentiability, this result holds for their smooth

functionals.
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7.2 Tables

Table 6 Performance OB Decomposition

�C

Censoring Level Sample Size OB OB - censored COB

0.0
50 0.141 0.141 0.141
500 0.045 0.045 0.045
2500 0.020 0.020 0.020

0.3
50 0.184 0.167 0.168
500 0.151 0.082 0.056
2500 0.149 0.075 0.026

�S

Censoring Level Sample Size OB OB - censored COB

0.0
50 0.201 0.201 0.201
500 0.064 0.064 0.064
2500 0.027 0.027 0.027

0.3
50 0.228 0.226 0.241
500 0.155 0.098 0.080
2500 0.148 0.074 0.036
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Table 7 Comparison between Kaplan-Meier and CCOX Estimators

Y ? C

Censoring Level Sample Size Kaplan-Meier CCOX

MD AD MSE MD AD MSE

0
50 0.00 0.00 0.00 26.81 9.20 0.39
500 0.00 0.00 0.00 7.61 2.29 0.11
2500 0.00 0.00 0.00 2.39 0.62 0.03

0.05
50 23.54 5.54 0.32 34.92 11.75 0.50
500 7.82 1.81 0.09 10.36 3.00 0.13
2500 2.52 0.53 0.03 3.23 0.83 0.04

0.2
50 94.91 22.99 1.13 97.53 24.43 1.16
500 40.91 7.62 0.39 41.05 7.69 0.39
2500 17.62 2.69 0.15 17.72 2.69 0.14

0.5
50 226.17 54.30 2.62 226.79 53.66 2.61
500 147.41 24.28 1.34 147.06 23.52 1.32
2500 101.99 12.53 0.79 101.98 12.21 0.78

Y ? CjX

Censoring Level Sample Size Kaplan-Meier CCOX

MD AD MSE MD AD MSE

0
50 0.00 0.00 0.00 26.77 9.20 0.39
500 0.00 0.00 0.00 7.62 2.29 0.11
2500 0.00 0.00 0.00 2.39 0.62 0.03

0.05
50 24.75 7.10 0.37 32.71 10.69 0.46
500 14.06 4.52 0.20 9.72 2.64 0.12
2500 11.21 3.80 0.17 3.04 0.72 0.03

0.2
50 80.70 29.71 1.30 54.24 15.98 0.70
500 57.23 21.80 0.92 15.67 4.01 0.18
2500 51.56 18.81 0.84 4.93 1.14 0.05

0.5
50 212.58 82.98 3.50 114.75 32.68 1.48
500 162.56 65.64 2.78 36.54 8.68 0.39
2500 150.83 57.97 2.56 12.86 2.72 0.13

MD, AD and MSE are multiplied by 1000 to facilitate comparisons.
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Table 8 Performance CCOX Estimator: Y ? C
Weibull Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 26.75 22.52 9.18 8.22 0.63 0.60
500 7.61 7.48 2.30 2.23 0.32 0.32
2500 2.39 2.38 0.62 0.61 0.17 0.17

0.05
50 34.84 31.29 11.71 10.51 0.71 0.68
500 10.34 10.18 3.00 2.91 0.36 0.36
2500 3.22 3.21 0.83 0.82 0.20 0.19

0.2
50 98.03 93.86 24.46 23.39 1.08 1.05
500 41.18 40.45 7.69 7.59 0.62 0.62
2500 17.73 17.46 2.68 2.66 0.38 0.38

0.5
50 227.41 225.05 53.73 53.09 1.62 1.61
500 147.01 146.76 23.51 23.51 1.15 1.15
2500 101.68 101.59 12.19 12.23 0.89 0.89

Normal Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 14.62 7.46 4.99 2.59 0.22 0.13
500 3.87 4.28 1.40 1.30 0.06 0.06
2500 3.85 3.91 1.08 1.06 0.05 0.05

0.05
50 28.25 23.46 6.97 5.40 0.36 0.29
500 8.61 8.18 2.01 1.99 0.10 0.09
2500 4.17 4.20 1.17 1.15 0.05 0.05

0.2
50 82.44 78.41 18.64 17.79 0.96 0.90
500 27.45 26.66 5.07 4.92 0.27 0.26
2500 9.74 9.50 1.84 1.78 0.10 0.09

0.5
50 162.23 157.60 36.83 36.07 1.83 1.78
500 62.71 61.33 10.87 10.63 0.59 0.57
2500 23.91 23.18 3.66 3.53 0.21 0.20

MD, AD and MSE are multiplied by 1000 to facilitate comparisons.

49



Table 9 Performance CCOX Estimator: Y ? CjX
Weibull Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 26.79 22.55 9.20 8.22 0.39 0.36
500 7.61 7.48 2.29 2.22 0.11 0.10
2500 2.39 2.39 0.62 0.61 0.03 0.03

0.05
50 32.76 29.80 10.69 9.55 0.46 0.41
500 9.70 9.54 2.63 2.54 0.12 0.12
2500 3.04 3.04 0.72 0.72 0.03 0.03

0.2
50 54.32 51.78 16.02 14.85 0.70 0.65
500 15.68 15.43 4.01 3.92 0.18 0.17
2500 4.94 4.93 1.14 1.13 0.05 0.05

0.5
50 115.32 111.99 32.76 31.71 1.49 1.43
500 36.56 36.08 8.69 8.61 0.39 0.39
2500 12.87 12.75 2.72 2.71 0.13 0.13

Normal Times

Censoring Level Sample Size MD AD MSE

B KP B KP B KP

0
50 14.61 7.46 4.98 2.59 0.22 0.13
500 3.88 4.28 1.40 1.31 0.06 0.06
2500 3.85 3.91 1.08 1.06 0.05 0.05

0.05
50 26.56 21.89 6.78 5.11 0.34 0.27
500 7.72 7.52 1.87 1.88 0.09 0.09
2500 4.17 4.23 1.09 1.08 0.05 0.05

0.2
50 75.22 72.44 17.62 16.96 0.88 0.84
500 24.07 23.83 4.70 4.65 0.24 0.24
2500 8.30 8.30 1.65 1.64 0.08 0.08

0.5
50 149.78 146.90 35.71 35.27 1.74 1.70
500 52.93 52.52 9.88 9.82 0.51 0.51
2500 18.81 18.75 3.20 3.19 0.17 0.17

MD, AD and MSE are multiplied by 1000 to facilitate comparisons.
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Table 10 Decomposition Exercise: Mean Lifetime and Quartiles

Con�dence Level Censoring Levels Truncated Mean Q(0.50)

Pr
�
�(0) = 0

�
Pr
�
�(1) = 0

�
Percentile Hybrid Percentile Hybrid

95

0.0 0.0 0.961 0.962 0.958 0.953
0.0 0.3 0.954 0.963 0.952 0.940
0.3 0.0 0.963 0.972 0.958 0.944
0.3 0.3 0.952 0.966 0.968 0.944

90

0.0 0.0 0.907 0.913 0.917 0.911
0.0 0.3 0.902 0.911 0.915 0.903
0.3 0.0 0.915 0.923 0.915 0.897
0.3 0.3 0.912 0.917 0.907 0.895

Con�dence Level Censoring Levels Q(0.25) Q(0.75)

Pr
�
�(0) = 0

�
Pr
�
�(1) = 0

�
Percentile Hybrid Percentile Hybrid

95

0.0 0.0 0.946 0.928 0.957 0.935
0.0 0.3 0.965 0.945 0.958 0.940
0.3 0.0 0.968 0.942 0.964 0.931
0.3 0.3 0.963 0.933 0.958 0.930

90

0.0 0.0 0.907 0.882 0.909 0.869
0.0 0.3 0.926 0.897 0.920 0.896
0.3 0.0 0.925 0.897 0.920 0.884
0.3 0.3 0.916 0.886 0.909 0.884

Table 11 Dependence of Censoring on Covariates

Exit from Unemp. Unemp. to Emp.

Women Men Women Men

Linear Prob. Model 0.046 0.083 0.177 0.123
Logit 0.070 0.128 0.166 0.167

Authors�calculations.

Table 12 Decomposition of Mean Di¤erence Ignoring Censoring

Exit from Unemp. Unemp. to Emp.

COB CCOX COB CCOX

Total 2.085 2.040 0.945 0.876
Composition 0.438 0.471 0.089 0.029
Structure 1.647 1.569 0.857 0.847

Authors�calculations.
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7.3 Figures

Figure 1 Decomposition Exercise: Simulated Data
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