UNIVERSIDAD DEL ROSARIO FACULTAD DE ECONOMÍA

Taller 7 Teorema de la Envolvente- Aplicaciones — Septiembre de 2016 Profesores: Juan C. Zambrano y Andrés Felipe Cardenas

- 1. Sea $U(x_1, x_2) = \alpha \log(x_1 \overline{x_1}) + (1 \alpha) \log(x_2 \overline{x_2})$ $x_1 > \overline{x_1}$ $x_2 > \overline{x_2}$
 - (a) Solucione el problema $MaxU(x_1, x_2)$ s.a $p_1x_1 + p_2x_2 = m$
 - (b) Interprete la solución.
 - (c) Calcule $V(p_1, p_2, m)$
 - (d) Calcule $\frac{\partial V}{\partial m} \frac{\partial V}{\partial p_1} \frac{\partial V}{\partial P_2}$ y verifique la validez de la identidad de Roy.
 - (e) Deduzca la función de Gastos y las funciones de demanda hicksianas para la función de utilidad dada.
- 2. Suponga que la despues del proceso de optimización se obtiene la función de Gasto

$$E(p, \overline{U}) = (\frac{1}{3}p_1 + \sqrt{p_1p_2} + \frac{2}{3}p_2)\overline{U}$$

Obtenga de esta expresión:

$$x_1^h; x_2^h; x_1^*; x_2^* y V(p, m)$$

- 3. Verifique el lema de Hotelling para el caso de una tecnología tipo Cobb-Douglas.
- 4. Una empresa produce un solo producto con ayuda de los factores de producción K y L, la función de producción viene dada por:

$$q = log(K) + Log(L)$$

Los precios de K y L son respectivamente r y w.

- (a) Encuentre los niveles óptimos de K y L que minimizan los costos dado un nivel de producción q_0
- (b) Muestre que las funciones de demanda óptima $K^*(w, r, q_0)$ y $L^*(w, r, q_0)$ son homogéneas de grado cero en r y w
- (c) Calcule la función de costos óptima $C^*(w, r, q_0)$
- (d) Muestre que si la empresa tiene una función de demanda p=a-bq con a,b>0 el nivel q^* que maximiza el beneficio es positivo si y solo si $a^2>wr$
- Compruebe la ecuación de Slutzky par la función de utilidad dada por:

$$U(x_1, x_2) = \alpha log(x_1) + (1 - \alpha)log(x_2)$$

6. La función de Utildad en una industria es $U(x_1, x_2) = Ax_1^{\alpha}x_1^{\beta}$, considere los siguientes problemas:

$$P1: \ Max \ U(X) \ s.a \ px = m \qquad P \quad vector deprecios$$

$$P2: \ Max \ Px \ s.a \ U(X) = \overline{U}$$

- (a) determine la relación entre: $\frac{\partial V_1(p,m)}{\partial m}$ y $\frac{\partial V_2(p,\overline{U})}{\partial \overline{U}}$
 - donde V_1 y V_2 son las funciones de máximo valor, con los multiplicadores de lagrange asociados a los problemas P_1 y P_2 respectivamente.
- (b) Se conoce que $V_2(p, \overline{U}) = -E(p, \overline{U})$ y que $E(p, V_1(p, m)) = m$ muestre que si λ_1 es el multiplicador para P_1 y λ_2 es el multiplicador para P_2 entonces $\lambda_1\lambda_2 = -1$