
ChaosXploit: A Security Chaos Engineering framework based on Attack
Trees

Author
Sara Palacios Chavarro

Work presented as a requirement to qualify for the
degree of Professional in Applied Mathematics and Computer Science

Director
Daniel Orlando Dı́az López

School of Engineering, Science and Technology
Applied Mathematics and Computer Science

Universidad del Rosario

Bogotá - Colombia
2022

Contents

1 Abstract 2

2 Introduction 3

3 Problem Description 4

4 Objectives 5

5 Methodology 6

6 State of the art 7

7 Chaos Engineering Fundamentals 9
7.1 Key Concepts . 9
7.2 Chaos Engineering Tools . 11

8 Chaos Engineering experiments 12
8.1 Inject faults at application level . 13

8.1.1 Experiment 1: Redis Latency 14
8.1.2 Experiment 2: Failed Requests on Redis 16

8.2 Inject faults into a browser . 16
8.2.1 Experiment 3: Latency in pgweb 17
8.2.2 Experiment 4: Adding Failures to pgweb 18

9 Towards Security Chaos Engineering 19
9.1 Key Concepts . 19
9.2 Security Chaos Engineering Tools . 21
9.3 Benefits of SCE . 23

10 Proposal of ChaosXploit 24
10.1 Knowledge database . 25
10.2 Observer . 26
10.3 SCE Experiments Runner . 27
10.4 Connector . 28
10.5 Flow Diagram . 28

11 Experiments 29
11.1 Settings . 30
11.2 Definition of the Knowledge Database 30
11.3 SCE experiment . 32
11.4 Results Analysis . 34

12 Results Summary 36

13 Conclusions and Future Work 37

1

1 Abstract

Security incidents may have several origins. However, many times they are caused

due to components that are supposed to be correctly configured or deployed. That is,

traditional methods may not detect those security assumptions, and new alternatives

need to be tried. Security Chaos Engineering (SCE) represents a new way to detect

such failing components in order to protect assets under cyber risk scenarios.

To demonstrate the application of SCE in security, this degree project presents,

in the first place, an introduction to the fundamentals of Chaos Engineering (CE)

as SCE inherits its principles and methodology. This is done to understand its ap-

plication in engineering, a series of analyses of the proposed frameworks and tools

for the implementation of CE is provided, and its functionality is tested with four

experiments.

In the second place, this degree project proposes ChaosXploit, a security chaos en-

gineering framework based on attack trees, which leverages the CE methodology along

with a knowledge database composed of attack trees to detect and exploit vulnerabil-

ities in different targets as part of an offensive security exercise. Once the theoretical

and conceptual components of SCE are detailed and the proposal for ChaosXploit is

explained, a set of experiments are conducted to validate the feasibility of ChaosXploit

to validate the security of cloud managed services, i.e. Amazon buckets, which may

be prone to misconfigurations.

2

2 Introduction

Site Reliability Engineering (SRE) is defined as a discipline focused on improving sys-

tems’ design and operation to make them more scalable, reliable, and efficient [3].With

this in mind, by 2006 Google founded the Disaster Recovery Testing (DiRT) program to

test the resilience of systems by regularly simulating various internal system failures[1].

These activities led to the creation of a new approach for testing the resiliency of dis-

tributed systems [2], which is known as Chaos Engineering (CE). CE is used to

identify the system’s immunities when damage is injected, so vulnerabilities can be

found and lately mitigated. CE tests are designed to “build confidence in the system’s

capability to withstand turbulent conditions in production” [13].

Designing CE experiments implies defining a prepared and controlled environment

to analyze a target system [20] and applying a scientific method that allows to observe

the environment, define a set of hypotheses, and validate them. CE has proven to be

extremely useful in validating attributes of reliability and availability in a production

environment. Nevertheless, it may not be enough if the final objective is an holistic

validation of the security level of the system as is required for different distributed

systems, e.g. secure IoT services [10] or personal data managers with high security

requirements [11].

Considering what was previously said, some efforts have come up towards applying

CE to cybersecurity in the last five years, which is known as Security Chaos Engi-

neering (SCE). In particular, SCE aims to use the CE principles to evaluate the three

most important attributes of a system from an holistic cybersecurity perspective, i.e.,

confidentiality, integrity, and availability [28].

Noting that this new methodology can have a great impact on new developments by

reducing vulnerabilities through experimentation, it has been decided for this degree

project to follow this innovative line to provide a new CE security framework based

on attack trees, known as ChaosXploit.

This document is structured as follows: First, Section 3 presents the context and

the main problem addressed in this work. Then, Section 4 presents the main objective

3

of the work along with the specific ones. Next, Section 5 presents the methodology

that was followed in this thesis and the inner activities developed in the two phases

of this project. Section 6 collects the most recent works on CE and SCE exploring

its advantages and disadvantages. Further, Sections 7 and 8 narrate the theoretical

fundamentals of CE, as well as the detailed execution of four CE experiments that

allowed the appropriation of the concepts of this subject. Later, Section 9 shows

the theoretical component on SCE and the possible contribution opportunities. In

Sections 10 and 11 the proposal of this degree work that is ChaosXploit is presented

and validated. Finally, Section 13 concludes the work, showing some future works that

can improve the proposal.

3 Problem Description

As information technologies and the fields of study related grow, so do the techniques

used by adversaries to search for vulnerabilities in applications and exploit them [12].

To avoid these vulnerabilities being exposed when the applications are already de-

ployed, it is necessary to think about security from the first phases of the software

development cycle.

However, there are organizations that claim that their developers do not have the

necessary knowledge about security or the necessary tools to implement it [15]. In

addition, an insecure application could jeopardize the three fundamental pillars of

cybersecurity: confidentiality, integrity, and availability.

To prevent the fundamental pillars of cybersecurity from being breached, OWASP

[18], a foundation working to improve software security, lists the 10 most common

computer security vulnerabilities [19]. This set of vulnerabilities aims to provide or-

ganizations with the techniques most commonly used by modern attackers and the

appropriate mitigation processes so that they can use them to minimize the risks to

their systems.

These techniques provided by OWASP are commonly used in Static (SAST) or

Dynamic (DAST) Analysis Security Testing[15]. However, performing this type of

4

testing can be a very exhaustive process and it is usually necessary to hire an external

party to implement them.

In response to this problem, there is an emerging field of study that seeks to

identify flaws in security controls to defend against malicious conditions [22], known

as SCE. This field proposes a methodology that complements the incorporation of

safety within the software development cycle. However, it is a concept that has been

developing over the last five years, and the few tools that exist for its implementation

have been archived or are not open source.

Therefore, this area is considered worthy of study to propose a new framework to

support the process of vulnerability detection and mitigation during the testing, de-

ployment and maintenance phases of the software development cycle and thus reinforce

traditional methodologies.

4 Objectives

The main objective of this degree work is to design and implement a SCE framework

based on attack trees to support the process of identifying vulnerabilities in a system in

the testing, deployment, and maintenance phases. Developing this objective will allow

not only to understand the theoretical basis of CE but also to apply its methodology

and ideology to traditional methodologies specifically in pentesting exercises for those

phases of the software development life cycle where security controls must be involved.

To achieve this, the following specific objectives were set:

• Review the theoretical and conceptual approaches to CE and SCE.

• Comparatively analyze tools that have applied chaos engineering in real contexts

and identify opportunities for improvement in their implementation.

• Propose an SCE framework that uses attack trees as the main flowchart for

attack execution.

5

• Conduct experiments to test the effectiveness of the framework on different tar-

gets.

5 Methodology

The development of this degree work was divided into an exploratory and an experi-

mental phase. During the first phase, carried out during the second semester of 2021,

the first two specific objectives previously proposed were completed. The first one

aimed to review the theory and concepts surrounding CE, its components, and limita-

tions. This was done through a literature review in specialized academic and scientific

sources published in recent years, the results are outlined in Sections 6 and 7. In

addition, several experiments described in Section 8 were replicated to understand the

methodology and explore new ways of implementation.

The second objective focused on the analysis of CE tools and the identification

of opportunities for improvement in their implementation. This analysis took the

documentation of tools such as gremlin1, ChaosToolkit2, among others to know the

capabilities of each one of them. Additionally, the application of security to CE, the

motivation to implement it and the possible opportunities to work and contribute were

studied and analyzed in Section 9.

The experimental phase was carried out in the first half of 2022. During this phase,

the development of ChaosXploit, the framework proposed for this degree project, was

carried out. With the analysis of tools, the main characteristics of each one of them

were detected and the architecture defined in Section 10 was built. Once the archi-

tecture was understood, its functionality was tested with the experiment described in

Section 11.

1https://www.gremlin.com/
2https://chaostoolkit.org/

6

https://www.gremlin.com/
https://chaostoolkit.org/

6 State of the art

As far as CE research is concerned, there are various publications that highlight its

capabilities, methodology and definitions. This whole world starts with Chaos Monkey,

a tool created by Netflix [24] to test the reliability of cloud infrastructure, specifically

for Amazon Web Services (AWS).

Following the cloud-native software line, Camacho et al. [9] presents Pystol, a

novel reference architecture for executing fault injection actions focused on cloud-

native environments. This architecture is based on the software product line paradigm,

which is a reference architecture for building different products that share common

software artifacts in a prescribed manner. An empirical study is presented which seeks

to analyze how the execution of fault injection actions impacts system behavior when

applications and user services are serving requests to test the architecture. This is

mounted on a Kubernetes cluster mounted on AWS.

Moreover, Zhang et al. [30] proposed ChaosMachine, a CE system to analyze the

error handling response of a java application put into production. This system is able

to reveal the resilience of strengths and weaknesses of each try-catch block with two

types of experiments: falsification experiments that validate or refute the hypothesis

about the behavior of a try-catch block and exploration experiments that seek to

monitor the behavior of try-catch blocks under perturbation. To test its functionality,

3 real-life projects developed in java were used: TTorrent, BroadLeaf, and X-Wiki.

ChaosMachine was able to produce actionable reports for developers to gain more

confidence about the resilience of their systems.

In 2021, after developing ChaosMachine, Zhang et al. [29] proposed a new frame-

work that performs error injection at the system call level. This framework is known

as PHOEBE and allows developers to have full observability of system call invocation.

PHOEBE synthesizes a series of error injection models that systematically amplify

natural errors that occur in a production system. Their functionality is tested on

two real-life applications: Hedwig and TTorrent. They conclude that it is possible to

detect reliability weaknesses with low overhead.

7

System call analysis was continued in the work of Simonsson et al. [25]. This paper

presents ChaosOrca, a tool that performs CE experiments to assess the resilience of

any docker-based microservice. This tool aims at evaluating a given application’s

self-protection capability with respect to system call errors. It is composed of i) the

monitor, which is responsible for capturing the behavior of the system in runtime; ii)

the perturbator, which injects different types of faults with respect to system calls

and iii) the orchestrator that controls the first two to carry out the experiment and

generates reports. This architecture was tested on three applications TTorrent, Nginx

and Bookinfo.

Several works seek to test the resilience of a system in different infrastructures and

at different levels. This involves analyzing and testing the availability of the systems

in question. Yet, when it comes to security issues, these investigations fall short,

since, to completely secure a system, it is necessary to take into account not only the

availability of the service but also its integrity and confidentiality. For this reason, SCE

is born, inherits the characteristics of CE, and focuses on security controls through

experiments to ensure the capabilities of a system against attacks. However, since it

is an emerging topic, there are very few academic works related to it.

In this sense, the first open source framework that demonstrated the value of ap-

plying CE to information security [24] was ChaosSlingr 3. This tool was led by Aaron

Rinehart and proposed a simple experiment. It sought to misconfigure some ports on

a system and observe the behavior. Although it was a good initiative, ChaoSlinger

was no longer maintained and became part of a larger project known as Verica4.

The second framework that focuses on this field is presented in [28] as CloudStrike.

It is defined as a software tool that applies Risk-Driven Fault Injection (RDFI) to cloud

infrastructures. It is worth mentioning that the first version of this work is presented

at [27]. Specifically, RDFI extends the application of CE to include cloud security

by injecting security faults using attack graphs. The SCE-based proposal is then

tested in some cloud services of leading platforms, namely, AWS and Google Cloud

3https://github.com/Optum/ChaoSlingr
4https://www.verica.io/

8

https://github.com/Optum/ChaoSlingr
https://www.verica.io/

Platform. Interestingly, the authors claim they compute the risk to which the assets

are exposed using the CVSS. Later on, the same authors leveraged the SCE strategies

to test another proposal, CSBAuditor, a cloud security framework that can constantly

monitor a specific cloud infrastructure to detect possible malicious activities [26].

7 Chaos Engineering Fundamentals

7.1 Key Concepts

The concept of CE was created in 2011 when Netflix moved its services to the AWS

cloud. Netflix’s engineers feared that an internal instance could fail during the move,

severely impacting the operation. For such reason, ChaosMonkey [4] was created with

the aim of testing Netflix stability by injecting faults that randomly terminate internal

instances. A year after launching ChaosMonkey, Netflix added new modes that report

different types of faults or detected abnormal conditions. Each of these modes was

considered a new simian, and together they formed what is known as SimianArmy [5].

In 2016 Kolton Andrus and Matthew Fornaciari founded Gremlin5, recognized as a

leading CE solution. Along with the creation of Gremlin, the formal definition of CE

was also born as “the discipline of experimenting on a system in order to build confi-

dence in the system’s capability to withstand turbulent conditions in production” [13].

The CE experiments are based on the scientific method and should follow the CE

principles [13] that define certain steps to guarantee that they are correctly executed.

First, it is essential to mark out the normal behavior of the system. This process is

known as defining the steady-state. Then, it is necessary to define a hypothesis that

will be proved or refuted at the end of the experiment. Once the steady-state and hy-

pothesis are set, experiments may be conducted introducing real-world events related

to the hypothesis being proved, like instances that expose malfunctions, interrupted

network connections, among others. Along with the execution of the experiments,

metrics appropriated for the steady-state should be gathered so the hypothesis may

5https://www.gremlin.com/

9

https://www.gremlin.com/

be refuted or confirmed.

Although the principles of CE do not specify explicitly a observability component,

it may be applied for the definition of experiments, since, for an experiment to be

properly executed, observability helps to detect the normality of the system and even

supports the variation of the steady-state [16]. Therefore, it is possible to affirm

that CE and observability complement each other, and apply it in experiments can

be done using traditional graphics (line charts, histograms, pie charts) or also visual

metaphors that are considered a strategy to map from concepts and objects of an

application domain to a system of similarities and analogies [23].

In addition to defining the hypothesis, steady state, and observability of each ex-

periment, it is important to consider the Blast radius for each execution to ensure that

the fallout from the experiment is minimized and contained[13]. In the same way, each

experiment must have defined the set of actions to be carried out and the necessary

probes to evaluate whether the hypothesis is disproved or not.

The fact that CE experiments have a defined method corroborates that this disci-

pline does not consist of “breaking things on purpose”. On the contrary, CE exper-

iments are generally done in a proper testing environment with similar conditions to

the ones obtained in a real environment exposed to disruptive incidents. Thus, the

application of CE allows testing attributes such as availability and reliability in a con-

trolled environment, and the results that arise from conducting a CE experiment can

help anticipate incidents, improve understanding of system failure modes and reduce

maintenance costs [8].

Finally, to complement and justify all this theoretical component, as part of the

learning process behind this thesis, the following courses were conducted: Gremlin

Certified Chaos Engineering Practitioner [6] and Gremlin Certified Chaos Engineer-

ing Professional [7]. These courses allowed building the theoretical component of this

work through the learning of topics such as: Facilitating CE practice with Gremlin;

explaining CE attacks and their use cases; identifying the business and technical ini-

tiatives associated with each type of attack; facilitating CE experiments with Gremlin

10

and understanding what are the GameDays were evaluated. Both courses were suc-

cessfully completed and certified, for the first course the certification can be found

here and the second here.

7.2 Chaos Engineering Tools

A few CE frameworks may be found in-the-wild. It should be noted that the tools

mentioned in Section 6 are tools that come from academia and are described in pa-

pers, books or magazines. However, the tools shown below are the most commonly

used in the industry starting with the above-mentioned Gremlin, which allows one

to experiment with more than ten different attack modes on different infrastructures.

Nevertheless, not all of these modes are free, and it does not have reporting capabili-

ties. Another known framework is ChaosMesh6, which is an open-source cloud-native

tool built on Kubernetes CRD (Custom Resource Definition). It allows testing several

scenarios checking for network latency, system time manipulation, resource utilization,

and more. Nonetheless, this tool does not have the advantage of scheduling attacks.

Another open-source CE framework is Litmus7 which allows developers to use

a set of tools to create, facilitate and analyze chaos in Kubernetes with automatic

error detection and resilience scoring. Last but not least, it is important to mention

ChaosToolkit (CTK)8, another open-source tool that allows to automate and customize

CE experiments by defining a set of probes and actions that may be pointed to different

types of targets.

It should be noted that these well-known frameworks are not the only solution for

exploring CE. They automate the process. However, there are command-line tools that

allow performing several tasks that these frameworks already do, such as analyzing

the use of resources in a system and detecting failures or malfunctions.

For example, for Linux users, there are several pre-installed comments that help

to monitor different resources on the system. Table 1 shows some of these commands

6https://chaos-mesh.org/
7https://litmuschaos.io/
8https://chaostoolkit.org/

11

https://www.credential.net/fa5a0098-9f4a-4363-a050-3973630daba3
https://www.credential.net/df43a582-ff7a-4b93-bea0-c1a382d58532
https://chaos-mesh.org/
https://litmuschaos.io/
https://chaostoolkit.org/

along with a brief description. Additionally, one can highlight the stress9 tool that

allows to impose loads and stress on the system. This tool can be used in conjunction

with those shown above to observe and monitor the behavior of the system under load.

Tool Resource Description Manuals

iostat Disk
Looks in terms of throughput disk
performance and utilization

Manual

sar Network
Collects, reports and saves system
metrics

Manual

free RAM
Displays amount of free and used
memory in the system

Manual

stress CPU
Tool to impose load on and
stress test systems

Manual

Table 1: Linux tools for monitoring resources

On the other hand, the BPF Compiler Collection (BCC)10 is a set of tools for

kernel tracing. Table 2 shows some tools for monitoring resources in the system. The

added value of these tools is that they allow seeing the results in a more dynamic and

user-friendly way.

Tool Resource Description Example

biotop Disk
Reads and identifies the load
written to the disk.

Use Example

tcptop Network
Summarize TCP send/recv
throughput by host.

Use Example

oomkill RAM
Traces the kernel out-of-memory killer,
and prints basic details
including the system load averages.

Use Example

cpudist CPU
Measures the time a task spends
on or off the CPU, and shows
this time as a histogram.

Use Example

Table 2: BCC tools for kernerl tracing

8 Chaos Engineering experiments

Once the method and benefits of implementing CE are known, defining and imple-

menting an experiment can be very simple. Several CE experiments are presented

9https://linux.die.net/man/1/stress
10https://github.com/iovisor/bcc

12

https://man7.org/linux/man-pages/man1/iostat.1.html
https://man7.org/linux/man-pages/man1/sar.1.html
https://man7.org/linux/man-pages/man1/free.1.html
https://linux.die.net/man/1/stress
https://github.com/iovisor/bcc/blob/master/tools/biotop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/tcptop_example.txt
https://github.com/iovisor/bcc/blob/master/tools/oomkill_example.txt
https://github.com/iovisor/bcc/blob/master/tools/cpudist_example.txt
https://linux.die.net/man/1/stress
https://github.com/iovisor/bcc

in [20]. These experiments aim to test the resilience of the systems in different envi-

ronments such as containers (Docker11 or kubernetes12) or the Java Virtual Machine

(JVM) that allows to execute the compiled code of a program written in Java. Then,

for a better understanding of the methodology applied to the CE experiments, four

experiments were implemented and documented in this section: Experiment 1: Redis

Latency, Experiment 2: Failed Requests on Redis, Experiment 3: Latency in pgweb

and Experiment 4: Adding Failures to pgweb.

8.1 Inject faults at application level

The following two experiments consider the design of a product recommendation sys-

tem for e-commerce customers. This recommendation was based on previous searches

made by the user. In order to generate recommendations, a cookie was used to store

the user’s sessionID to provide personalized recommendations. In addition, to avoid

latency problems, since this would lead to the clients’ desertion, Redis was used. Redis

is known as a in-memory data structure store used as a database, cache, message bro-

ker, and streaming engine13. It worked as a cache that stored the last three searches

of each client.

Figure 1 presents the flow of the system. First, the user interacts with the interface

by searching for an item. Then, the interface creates the sessionID and sends it to

the search engine along with the item provided by the user so that the Redis client

queries if that session already exists, if not, then stores it.

Once stored, the search engine queries the Redis client to request a user’s interests,

Redis stores the current interests and returns the user’s last three searches. These last

three searches are then analyzed with the recommend() method to finally provide an

appropriate recommendation for the user based on their searches.

11https://www.docker.com/
12https://kubernetes.io/
13https://redis.io/

13

https://www.docker.com/
https://kubernetes.io/
https://redis.io/

get interests(sessionID)

send(sessionID, "Laptop")

User

UI

Search "Laptop"

recomend(["apple","Laptop"])

Search

set(sessionID) store interests(sessionID,
"Laptop")

["apple", "Laptop"]

Recomendations

Client Server

set(sessionID,"Laptop")

get(sessionID)

["apple"]

["apple", "Laptop"]

Redis

Figure 1: Execution flow for Experiments 1 and 2

8.1.1 Experiment 1: Redis Latency

This first experiment assumes that if the system slows down, users will start accessing

competing sites. This is not a desirable case as it can result in financial losses for the

business. Therefore, it is important to understand how the latency arising from the

communication with Redis could affect the overall speed of the website.

As shown in Figure 1, the application is based on a Redis client which is accessed by

the get interests() and store interests() functions, which in turn make use of the get()

and set() methods to use the information stored in the cache. What this experiment

does is to replace the original client with a chaos client which will inject latency in the

get() and set() methods. This client will be used only when the environment variable

“CHAOS” is activated when running the application.

With this, the following experiment is proposed following the CE methodology for

its implementation

• Observability: Generate traffic and observe latency.

• Steady State: Observe latency without chaos changes.

• Hypothesis: If we add latency of 100ms to each interaction with the cache (writes

and reads), then the overall latency of the search page should increase by 200ms.

14

Apache Bench was used to define observability and steady-state. This tool allows

the generation of HTTP requests. In this case, POST requests were used to simulate

a user’s behavior searching the website. In this way, the total of completed and failed

requests can be observed and the time taken for each of them.

Then, the idea of the experiment was to make the first scan during 10 seconds

using Apache Bench in the normal state of the application, then activate the chaotic

environment and run Apache Bench again for 10 seconds to observe the changes.

The results shown by Apache Bench were summarized in Tables 3a and 3b for better

understanding.

In Table 3a shows that a total of 859 complete requests were completed. Also,

85.7 requests per second were obtained for the steady state and the time taken for

each request was on average 11.668 seconds. However, when adding latency to the

application in a chaotic environment, Table 3b shows a total of 47 complete requests,

noting that only 4.61 requests per second were sent and each one took an average time

of 216.916 seconds.

Description Metric
Complete Requests 859
Requests per Second 85.70 [sec]
Time per Request 11.668 [ms]

(a) Steady State Results

Description Metric
Complete Requests 47
Requests per Second 4.61 [sec]
Time per Request 216.916 [ms]

(b) Execution Results

Table 3: Results for Redis Latency

With this experiment it was found that the hypothesis is confirmed because if

latency of 100ms was added to each interaction with the cache, then the overall la-

tency of the search page increases 200ms. Regarding the implementation, it is worth

mentioning that adding chaos directly to the source code of the application can be a

double-edged sword. It is simple to do but increases the chance of bugs being gener-

ated. Finally, the experiment emulated an unexpected behavior that allowed testing

how the application components were affected and how the whole system reacted to

this case.

15

8.1.2 Experiment 2: Failed Requests on Redis

Besides analyzing the latency in the application it is also fair to analyze the behavior

in case of failure of any component. To prove the handling of exceptions, unit tests

are usually performed. However, these do not allow testing the whole system. This is

where CE comes into play since if this discipline is used as a kind of end-to-end test,

the consequences of poor error handling on the client-side can be observed.

The experiment uses CE to check what would happen if the communication between

i) the process (Redis Client) requesting to store the queries and ii) the cache (Redis

server) that effectively stores them fails. In this case, the CE experiment is defined as

follows:

• Observability: Navigate the application and view recommended products.

• Steady State: The recommended products should be returned to the user.

• Hypothesis: A failure in the communication with the storage component (Redis

server) causes a failure in the product returned to the user by the recommenda-

tion system, even in subsequent queries when the storage component is restored.

In this case, the steady-state of the experiment was given by the interaction with

the website. The application showed its products and recommendations without any

alteration. At the time the experiment was started, it was possible to observe that

in some requests the application failed, however, the recommendation system handled

the error and managed to recover automatically as soon as the access to the storage

system was reestablished. Thus, it proves that the recommendation system is resilient

to failures in the storage system.

8.2 Inject faults into a browser

For this section, it is assumed that a team is looking for an optimal way to manage

their PostgreSQL databases. The team evaluated several open source options and

decided to use pgweb, a UI for PostgreSQL databases. Pgweb allows to browse and

export data, run searches and insert new information.

16

GET/

User

Browser

Browse to pgweb UI

web page + *.js

PGweb

Click on table
GET/../rows

json data

SELECT * FROM table
rows data

Displays rows data

postgreSQL

Figure 2: Execution flow for Experiments 3 and 4

Figure 2 shows the flow that pgweb follows to display the stored data. First, the

user navigates the pgweb interface, then pgweb connects to the database and returns

the web page along with the JavaScript code used to create it.

When the user interacts with one of the tables, the browser performs an HTTP

GET request which makes a query to select the data in the selected table. To dis-

play the information to the user, the HTTP server reads the information returned by

PostgreSQL in the form of a JSON and sends it to the user interface for display.

8.2.1 Experiment 3: Latency in pgweb

This experiment sought to analyze how latency would affect the behavior of pgweb. To

achieve this, latency of 1 second was added to all requests generated by the code when

selecting a table, and the response time of each request was checked. The experiment

was defined as:

• Observability: The built-in Firefox timer is used to read the time it takes to

execute the three requests made by the JavaScript code.

• Steady State: Browser measurements were taken before implementing the ex-

periment.

17

• Hypothesis: If a latency of 1 second is added to all requests made from the

application’s JavaScript code, then the total time it takes to display the new

table increases by 1 second.

To run the experiment, the method that sent the HTTP request has been modified

by adding a timeout of 1 second before sending the request. When running the exper-

iment, it was found that three requests were sent to the database at the moment of

selecting a table, and it was observed that they did not depend on each other. Meaning

that they were made in parallel, which allows concluding that the aggregate latency

did not correspond to each request but to the set of the 3 requests.

(a) Chaos Calling Result

(b) Response time first request

Figure 3: Results for pgweb Latency

As can be seen in Figure 3a, the modified method printed on the console the date

on which the requests were sent. In this case, it can be seen how all of them are sent

at the same time. Nonetheless, Figure 3b shows that the response time of the selected

request was one second after the message was printed in the console. This allows

confirming the hypothesis since there is a one-second difference but not between each

request.

8.2.2 Experiment 4: Adding Failures to pgweb

This last experiment starts from the idea that when launching pgweb locally, connectiv-

ity problems are not experienced, but in real life, it is very likely to happen. Therefore,

18

for this experiment, the goal is to analyze how the application should behave when

there are connectivity problems. Normally, a user would try to retry the request and if

it fails again, then the application should display an error message to avoid displaying

obsolete or inconsistent data. Thus, the following experiment structure is defined:

• Observability: Observe if the user interface shows errors or obsolete data when

selecting a table.

• Steady State: There are no errors or obsolete data.

• Hypothesis: If an error is added in some requests made by the JavaScript inter-

face, then an error message and no inconsistent data should be displayed every

time a table is selected.

In this case, an error message has been injected once or twice when sending the

HTTP request. And the experiment consisted of browsing the application and analyz-

ing whether an error message was provided to the user every time the requests threw

the error.

However, when running the experiment and navigating the application, it was

observed that the tables were not always refreshed when they were selected. That

is, there was inconsistency in the data displayed. Also, the application did not show

any error message associated with what happened to notify the user that something

unusual was occurring. Therefore, it can be concluded that the application is not

resilient to errors and therefore, the hypothesis was refuted.

9 Towards Security Chaos Engineering

9.1 Key Concepts

Using CE, testing security in systems under the premise that “failure is the greatest

teacher” is possible. This idea was first proposed by Aaron Rinehart, who pursued

the application of CE in cybersecurity while working as Chief Security Architecture at

19

UnitedHealth Group. As mentioned in the previous section, CE has been tradition-

ally focused on testing system availability, while recent research is striving to apply

this discipline in the field of cybersecurity. Concretely, the main goal is to apply CE

concepts by testing not only availability but also other attributes such as integrity and

confidentiality to boost the concept of SCE. This concept, has been defined as “the

identification of security control failures through proactive experimentation to build

confidence in the system’s ability to defend against malicious conditions in produc-

tion” [22].

The methodology applied by SCE is similar to the one described for CE, as it

incorporates the definition of steady state, observability and hypothesis. However, it

pursues a different objective as it aims to validate the security of a system, for example,

by discovering vulnerabilities, bad configurations, logic flaws, and insecure design,

among others. In addition, SCE may help in the reduction of security incidents and

remediation costs, if SCE experiments are executed frequently, as it allows developers

to: i) understand their system, ii) define a response plan, iii) identify system modules

failing or iv) note that some components were omitted during development. Also,

SCE minimizes impacts on users through experimentation, which in turn improves

the ability of developers to track and measure security.

The main factors motivating the implementation of SCE can be seen in Figure 4.

First of all, SCE allows finding emergent properties in a system, either unexpected

behaviors or properties that arise from the interaction with components that flow

differently from the usual operation of the application. Secondly, it allows minimizing

risks such as data leakage by testing confidentiality, data corruption compromising

data integrity, and even component failures affecting availability. Finally, SCE allows

testing of the entire system by integrating different types of tests such as unit testing,

end to end, and integration testing.

20

MOTIVATION

Properties arising
from interaction

Unexpected
behaviors

Test the entire
system

Find emerging
properties

End to end

Integration tests

Unit testing

Bench marking

Minimize
risks

Data leakage affecting
confidentiality

Data corruption with
integrity implications

Component failure with
impact on availability

Figure 4: Motivation for SCE

9.2 Security Chaos Engineering Tools

Very few SCE frameworks exist today, with ChaoSlingr [22] and CloudStrike [28]

mentioned in the state of the art (Section 6) being two good examples.

Using this fact as motivation to generate a new framework for SCE, an analysis of

each of the most common vulnerabilities in web applications compiled in the OWASP

TOP 10 and the different experiments that can be done with CE was performed. As

a result of this review, the matrix shown in Table 4 was constructed.

The rows show each of the vulnerabilities mentioned in the OWASP Top 10 for

2021. In the case of the columns, the most basic and common CE experiments were

considered. The following is a brief description of each of them.

• Blackhole: These experiments test the availability of the network by testing

its response when system dependencies are not available. In other words, a

blackhole experiment simulates the unavailability of dependencies by dropping

network traffic between services.

• Latency: The idea for these experiments is to inject a delay into network traffic

to validate system resilience to slow network scenarios.

• Error Injection: These are used to test the error handling of an application.

21

Identification and Authentication Failures

Software and Data Integrity Failures

Blackhole Latency Error
Injection

Disk Usage Packet loss

Broken Access Control

Cryptographic Failures

Injection

Insecure Design

Security Misconfiguration

Vulnerable and Outdated Components

Security Logging and Monitoring Failures

Server-Side Request Forgery (SSRF)

Not applicableApplicable

Partially applicable

Table 4: CE Experiments Vs Vulnerabilities

Exceptions that may occur in production are launched and the response of the

application is evaluated.

• Disk Usage: These experiments are created to simulate disk behavior against

reads and writes of a very large data set to test disk capacity for situations such

as data migration or recovery jobs.

• Packet Loss: These experiments simulate the state of a congested network

where packets may be dropped or lost. this allows for testing the user experience

when a percentage of packets are lost or corrupted.

To define each intersection, an assessment was performed on the application layers

where vulnerabilities can be found, and then the CE experiment was identified to test

that layer. For example, code injection vulnerabilities can be directly associated with

error injection experiments because errors can be thrown either from the database

(testing SQL injection) or from the system (testing command injection) and evaluate

if the application handles the error correctly or if it is otherwise vulnerable to code

injections.

In Table 4, it is also feasible to identify vulnerabilities where the relationship is

22

not so direct and therefore the experiments are defined as partially applicable. This

is because the experiments must be adapted and modified for a specific use case. For

example, the insecure design vulnerability is very broad and depends very much on

the software that is being considered for implementation.

Finally, the cells that indicate that an experiment is not applicable were defined

by the scope of the experiment, since there was probably no direct relationship with

the layer in which the vulnerability can be generated, or because proving its existence

requires a very high manual component, which is not easy to achieve with these specific

experiments. For example, to exploit a Broken Access Control, the attacker must go

through different attack techniques such as user enumeration processes, the use of

rainbow tables to access credentials, or social engineering processes such as phishing,

and this is not easy to achieve with the mapped experiments.

This matrix has been the first approach from this degree work to the integration of

security in CE. However, the nature of these experiments evaluates only the availability

of a service or system, but security goes beyond that, as it is necessary to maintain

integrity and confidentiality as well.

9.3 Benefits of SCE

SCE has been identified as a source of knowledge that can contribute significantly to

the field of computer security. Specifically, it is able to support ethical hacking and

pentesting exercises.

The ethical hacking and pentesting processes allow attacking different targets by

finding and exploiting vulnerabilities. Specifically, the pentensting process groups a

set of offensive activities (manual and automated) performed by a red team, which at

the same time are contained through defensive activities conducted by a blue team. In

most cases, pentesting exercises involve time and effort that will result in an extensive

report with the characterization of the vulnerabilities found and exploited, and gen-

erally a set of remediation proposals. In organizations with an intermediate maturity

security level, pentesting exercises are developed regularly, for example, every 3 or 6

23

months.

In this context, SCE may improve a traditional pententing process as it offers

an alternative way of detecting vulnerabilities in targets, providing a new tactic that

enriches the existing tool-set of blue and red teams. SCE experiments can be performed

both in production and testing environments, in contrast with the pentesting, whose

main focus is production ones. This allows testing the system in the early stages of

development and reduces remediation costs. Additionally, when considering complex

or distributed systems, SCE experiments help to understand the system as a whole,

going beyond unit tests over specific components. It allows not only to test for system

errors but also for assumptions about the system, such as component configuration or

human errors.

Moreover, pentesting is focused on the use of tools with an offensive purpose and is

generally executed by personnel external to the organization, while SCE is focused on

tools that seek to build a more defensive strategy and are generally executed by the

organization’s internal personnel. Finally, pentesting techniques are generally manual

and there is no specific method to follow. In contrast, SCE experiment execution

procedures have a very high automation component and follow CE principles, which

are aligned with the scientific method.

10 Proposal of ChaosXploit

ChaosXploit14 is a SCE-powered framework composed of different modules that sup-

port the application of CE methodology to test security in different kinds of infor-

mation systems. The architecture of the proposal is depicted in Figure 5, and each

internal module is described in the following sections.

14https://github.com/SaraPalaciosCh/ChaosXploit

24

https://github.com/SaraPalaciosCh/ChaosXploit

TerminatorContinuous ValidatorSteady State Validator

Attack Goals

Decider
Exploiter

Observer

RollBack

Runner

SCE Experiments Runner

Hypothesis

Generator

Rollback

User Applications

Tree

Steady

State

Knowledge DataBase

Rollback

Steady

State

Managed Cloud

Services Tree

Rollback

Kubernetes-

related Tree

Steady

State

Network-related

Tree

Steady

State

Rollback

Connector Target

Figure 5: Proposed architecture of ChaosXploit

10.1 Knowledge database

The knowledge database is responsible for providing the steps required to conduct

an offensive SCE experiment executed by a team (blue team) interested in mature

a defensive strategy. Thus, this module is composed of a set of attack trees and a

hypothesis generator.

• Attack trees: This module is in charge of delivering the intelligence for exe-

cuting the SCE experiments. Such intelligence is represented by different attack

trees, where each tree clusters different branches focused on achieving a specific

attack goal, e.g., gaining access to data stored in a cloud storage solution. So,

different attack goals may be pursued as attack trees are contained in the knowl-

edge database. Each branch of an attack tree gathers different offensive actions

that may be conducted to achieve the final attack goal, where an action may

be a python script, a HTTP request or some process to be run on the operat-

ing system. Also, each attack tree contains a set of steady states and rollbacks

associated with the actions defined in the tree to support the execution of the

experiment. It is worth mentioning that attack trees for different types of tar-

gets may be defined, such as trees for: user applications, managed cloud services,

25

Kubernetes, and network devices, among others.

• Hypothesis Generator: Intelligence contained in the attack trees needs to

be converted to a hypothesis so it can be consumed by the other modules of

ChaosXploit. So, the Hypothesis Generator is responsible for translating the

branch actions contained in an attack tree into a form readable for the module

that executes the SCE experiments, i.e. the exploiter. Each hypothesis generated

by this module is a statement about the system being tested that must be refuted

or confirmed by the SCE experiments, e.g. an organization will not expose

private data when the recognition tool Foca15 is pointed out to the main domain.

10.2 Observer

The observer groups all the activities related to the observation of both the target and

the SCE experiment. This module is important because it allows to monitor specific

conditions of the target before, along and after the execution of the SCE experiments.

This module is composed of a steady state validator, a continuous validator and a

terminator.

• Steady state Validator: The steady state validator is in charge of verifying

the steady state hypothesis in the target that represents the conditions that

are considered normal. Normal conditions will depend on the attack goal and

the specific hypothesis being tested, for example a normal condition may be a

well-formed response from a web server.

• Continuous validator: The continuous validator permits verifying specific sig-

nals detected from the target, which allows determining the results of an in-

teraction between the exploiter and the target. These signals are particularly

important because they may indicate if a current action included in a branch of

an attack tree was successful, so the following action in the branch should be

triggered, or they simply may indicate that target is not vulnerable and following

15https://github.com/ElevenPaths/FOCA

26

https://github.com/ElevenPaths/FOCA

actions of the branch should not be executed.

• Terminator: The terminator observes the failure states of the SCE experiment

to define the actions to follow consequently. for example, if the target gets

unresponsive due to the execution of a SCE experiment, a failure state will be

launched and the terminator will able to inform to the Rollback Runner so it

can restore the target.

10.3 SCE Experiments Runner

The SCE Experiments Runner is in charge of the SCE experiment’s execution over a

target to validate or refute a hypothesis. This component is fundamental because it

leads the interaction with the target but it also centralizes the communication with

the observer and knowledge database. It consists of three main elements: attack goal

decider, exploiter, and rollback runner.

• Attack goal decider: The attack goal decider receives a defined goal attack as

input to be tested over a target. Such attack goal may be contributed by the user

of ChaosXploit who is interested in probing if a particular system is susceptible to

a specific attack. Then, the attack goal decider requests the knowledge database

for the proper attack tree that matches such a defined goal.

• Exploiter: The exploiter executes the SCE experiment over a target with the

purpose of validating or refuting a hypothesis. With such purpose, the exploiter

performs the offensive actions defined previously by the attack tree obtained

from the knowledge database. Besides, it is also able to collect information

about specific responses coming from the target to define the next step in an

attack.

• Rollback runner: An experiment may contain a sequence of actions that re-

verse what was undone during the experiment. These actions will be called by the

Rollback Runner after the continuous validator finishes its execution regardless

of whether an error occurred in the process or not.

27

10.4 Connector

The connector is responsible for searching for the most suitable extension to connect

to the target on which the user wants to run the experiment. Once an extension has

been defined, the connector establishes the link with the target and tests that the

scenario is adequate to run the SCE experiment.

The main essence of this architecture is that it allows the automation of CE ex-

periments. Although this is a generic infrastructure, it should be noted that the

effectiveness of automation of each experiment depends on the attack goal defined in

the tree associated with the experiment since it is possible that not all branches can be

easily automated. However, the human role could play a significant part in supporting

the execution process, validating those phases that are not easily automated.

10.5 Flow Diagram

The interactions between the components of ChaosXploit are shown in Figure 6.

SCE Experiments Runner Knowledge DB Connector Target

RollBack Runner Attack Goal Decider Exploiter Steady-State Validator Cont. Validator Terminator

Observer

Hypothesis GeneratorUser

get_execution(Goal, Target) get_elemets(Goal)

[Steady State, Rollback, Hypothesis]

set_extension(Target) Connect(Target)

Connection Status

set_steady_state(Target)

terminate()

start()

exploit()
validate_steady_state(Target)

Status

Status

Status

Connection Status

Status: invalid

terminate()

Status: invalid
Status

Status

run_rollback()

Result

Final Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Connect(Target)

Connection Status

Figure 6: Flow diagram of the execution of a SCE experiment in ChaosXploit

First, the user of ChaosXploit request to the Attack Goal Decider the execution of

a SCE experiment, informing: the attack goal to be considered and the target where

the SCE experiment should be addressed. Then, the Attack Goal Decider gets from

28

the knowledge database the steady state of the experiment, the rollback procedure,

and the most proper hypothesis (attack tree) that matches the attack goal desired by

the user. The Attack Goal Decider also request to the Connector the preparation of

the proper extension for the target informed by the user. When a connection to the

target is established and a hypothesis is defined, then the Attack Goal Decider does

the following actions: i) set the steady state of the experiment in the Observer, ii) start

the execution of the steps defined in the first branch of the attack tree with the help of

the Exploiter, and iii) keep continuous communication with the Continuous Validator

to monitor the execution of the exploitation in progress and in that way be aware

if the attack goal was achieved. If the Continuous Validation fails, the termination

process is activated with the Terminator. The experiment ends with the execution of

the Rollback Runner to restore everything.

11 Experiments

Multiple experiments have been conducted using the ChaosXploit proposal mentioned

earlier. Based on the fact that AWS S3 buckets and Elasticsearch databases account

for nearly 45% of the cloud misconfigured and compromised technologies [21], for this

experiment, ChaosXploit focuses on evaluating the security of the AWS S3 service

considering the possible configurations whether they permit establishing a connection,

whether they are public or private buckets or whether they permit getting the con-

figured Access Control Lists (ACLs) which allow managing the access to the buckets

and their objects. These lists define which AWS accounts or groups have access and

what kind of permissions they have.

This section of experiments is composed of the following subsections: Settings

11.1, where the hardware and software requirements to carry out the experiment,

are specified. Definition of the knowledge database 11.2, where the attack tree is

presented together with the specification of the branch chosen for the experiment.

SCE experiment 11.3 in which the steady state and the hypothesis of the experiment

are defined, as well as the input parameters and the monitored variables.

29

11.1 Settings

The following setup was used to make use of ChaosXploit:

• Hardware: the experiment was executed on a Fedora OS with AMD Ryzen 5

3500U CPU, 8GB RAM and 512GB SSD.

• Internal Components: Some of the components of ChaosXploit have been built

over existing modules of ChaosToolkit, as it is a open source framework that

allow its extension and improvement to make it oriented to security purposes.

ChaosToolkit was chosen since this tool allows to automate the experiments in

a simple way using json files. The connection to the different targets (buckets)

was done using boto3 (SDK for python).

• Environment: The first version of ChaosXploit should be installed on a virtual

environment with python3.7 and Chaostoolkit installed.

11.2 Definition of the Knowledge Database

In Figure 7 it is possible to observe the attack tree implemented for this experiment.

It starts with the attacker finding public buckets by either enumerating the names

or searching sites such as the Wayback Machine. Then, the next action seeks to confirm

if the attacker succeeds in establishing a connection to the bucket. Once the connection

is established, the attacker can follow one of the 4 different branches to reach the attack

goal identified in the tree as the last box: extract or modify information. These paths

are described as:

• Branch 1: Where the attacker has gained access to the bucket without any

permission or authentication process. Once inside, he can make an inspection

of the objects contained in the storage system, and read the Access Control

Lists (ACL). If these ACLs have permissions open to the entire public, then the

attacker will be able to reach the attack goal.

30

Find public
buckets

Check
possible

connection

Inspect
collectable

buckets

Search
ACL- collectable

buckets

Extract or
modify

information

Exploit AWS
ACS

vulnerability

Privilege
escalation

Compromise
admin

credentials

Phishing
Bruteforce

admin
credentials

Compromise
AWS admin
credentials

Figure 7: Attack Tree for the experimental scenario, highlighting the implemented
path

• Branch 2: It is a path taken by the attacker in case the bucket has the access

permissions properly configured. At this point, the attacker could make use of

possible vulnerabilities in the AWS access control system, also known as IAM,

to then elevate his privileges and gain access to the bucket’s information, thus

achieving the attack goal.

• Branch 3: In which the attacker can use of brute-forcing techniques to compro-

mise admin credentials and thereby gain access.

• Branch 4: Where the attacker can use of social engineering techniques such as

phishing to compromise credentials and gain access.

It is important to note that the execution of the first branch was included in the

scope of this project, since the actions included in that branch were fully automatable.

31

Other branches could also be implemented through a combination of manual and

automatic actions.

11.3 SCE experiment

The goal of this experiment stems from the fact that amazon s3 allows data to be

stored and protected from unauthorized access with encryption features and access

management tools. However, the shared responsibility mode of cloud services has

led the creators of this type of storage to commit flaws during security configuration.

Leaving the information open to the public, putting its confidentiality, integrity, and

availability at risk.

Based on the goal of the attack tree (Extract or modify Information), it is possible

to define the experiment following the scientific method as follows:

• Observability: Public AWS S3 Buckets.

• Steady State: The buckets to be analyzed suggest having the access controls

properly configured.

• Hypothesis: if you try to access the objects stored in the buckets, then you will

not be able to see their contents or the associated access controls since they are

properly configured to prevent information leaks.

Implementation of the first branch of the attack tree defined for this scenario is

described below. First the finding of public buckets was done using enumeration

techniques by considering regular expressions. Since amazon s3 has defined a series

of requirements for the bucket names, this makes it very easy for the attacker to

enumerate them. Then, the connection check was performed using boto3, the AWS

SDK for python. With this step, the buckets were cleaned, leaving out those that no

longer exist or had invalid names. Afterward, ChaosXploit inspects the buckets to

identify if their objects can be read and finally searches if there are buckets that allow

access to the ACLs.

32

As shown in Table 5, different parameters were considered as input values for

ChaosXploit.

Monitored Variables
Name Description

Object - Collectable
No. of buckets that have public objects
and are accessible by anyone

ACL-Collectable
No. of buckets that have public ACLs
and are accessible by anyone

Permissions No. of permissions obtained from the ACL.
Input Parameters

Name Description

Domain(Optional)
Domain name to which
you want to identify the buckets

Threads Execution Threads
Mode Object-Collectable or ACL-Collectable
Output Output File Name

Table 5: Monitored variables and input parameters for experiments.

First, the domain is an optional input that should contain the name of the organi-

zation to be analyzed. This option was considered since ChaosXploit can be used as

an internal audit tool. Therefore, with this argument, the enumeration of the buckets

will be limited to all those that are related to the given domain. In case this input

is not provided, ChaosXploit will generate a list of names using bruteforce, wordlists

and bucket naming rules defined by AWS. Second, the number of threads is considered

as an input, so that the process of connecting and reading buckets may be performed

in parallel on the different cores, according to the defined thread’s value. Third, the

mode indicates the type of analysis to be performed, whether it aims to find Object-

Collectable or ACL-Collectable buckets. The last input, output, is a file name used to

store the results and feed the ChaosXploit continuous validator.

Regarding the monitored variables, three were considered: i) Buckets that have

public objects that can be accessed by anyone, denoted by Object-Collectable in

Table 5, ii) Buckets that have public ACLs and can be accessed by anyone denoted

by ACL-Collectable and iii) the Permissions obtained from the ACLs.

33

11.4 Results Analysis

ChaosXploit’s functionality was tested using a list of 3k buckets obtained through

a bucket name enumeration process which can be performed using tools such as

s3enum16, bucketkicker17 or Sublist3r18.

To
ta
l p
ub
lic
buc

kets
found: 3k

Connection

Refused
271

Bu
ck
ets
Con

nected: 2729

Access

Denied

2454

O
b
je
ct
sC

oll
ectable: 252

ACLCollectable: 9
269183
23

jpg
Othe

r
pn

g js pd
f

mp4 gif sw
f

mp3 htm
l

zip gz cs
s flv sv

g
jso

n
cs

v txt jpe
g

do
c

xm
l

m4v

2,000

1,500

1,000

500

0

Types of files collected on 252 Objects

Collectable buckets

Identified permissions in 69 Objects Collectable and ACL

Collectable buckets

FULL_CONTROL READ READ_ACP WRITE WRITE_ACP

100

75

50

25

0

84

26

38

64

38

89

37 37

15
11

41

40

15

6 5

17

21

8

5

6

Canonical User

Group

FULL_CONTROL WRITE WRITE_ACP

A
ll
U
se
rs

A
u
th
e
n
tic
a
te
d
U
se
rs

N
u
m
b
e
r
o
f
fi
le
s

Types of files

Permissions identified in 92 ACL Collectable buckets

READ_ACP READ

Figure 8: Results of the execution of each action included in the first branch of the
attack tree

As seen in the upper left part of Figure 8, all possible actions of the attack tree

were executed by ChaosXploit. It is possible to identify that for the second one (Check

possible connection), out of the 3k buckets listed, 271 did not allow a connection. This

is because the bucket no longer existed or had an invalid name, i.e. it did not follow

the common bucket naming characteristics proposed by AWS. This leaves us with 2729

buckets remaining to test.

In the case of the third action of the attack tree (Inspect collectible buckets), 2454

buckets were well configured and passed the steady state defined in our experiment,

since they did not allow reading files or permissions listed in the ACLs. However, 275

did not pass validation.

16https://github.com/koenrh/s3enum
17https://github.com/craighays/bucketkicker
18https://github.com/aboul3la/Sublist3r

34

https://github.com/koenrh/s3enum
https://github.com/craighays/bucketkicker
https://github.com/aboul3la/Sublist3r

The lower left part of Figure 8 shows the file extensions that were extracted from

252 buckets that were Object Collectable. From each bucket only the first 50 objects

were collected, since some buckets had more than 100000 files stored, for a total of

7465 collected files. Of all these files it was possible to identify that more than 2000

were images (jpg and png) and approximately 1250 were categorized as others because

they could be log files, folders or had no extension.

To analyze the users and user groups associated with each bucket first consider

that Amazon S3 has a set of predefined groups:

• Authenticated Users group: Representing all AWS accounts.

• All Users group: Allowing anyone in the world to access the resource.

• Log Delivery group: allowing access logs to be written to the bucket.

Additionally, AWS defines also the following types of permissions:

• READ: Allows grantee to list the objects in the bucket.

• WRITE: allows grantee to create new objects in the bucket. For the bucket and

object owners of existing objects, also allows deletions and overwrites of those

objects.

• READ ACP: Allows grantee to read the bucket ACL

• WRITE ACP: Allows grantee to write the ACL for the applicable bucket.

• FULL CONTROL: Allows grantee the READ, WRITE, READ ACP, and

WRITE ACP permissions on the bucket

In the upper right part of Figure 8 is possible to identify that 92 of the 257 buckets

allowed the extraction of the ACLs. Up to 13 permissions per bucket were identified.

These showed information about the user who owned the bucket, known as Canon-

icalUser by AWS, or about the user groups that had access to it. Then, it is worth

noting that for canonical users the FULL CONTROL permission was enabled for 84

35

buckets (91.3%), and in the case of the user groups, 64 (69.5%) of them allow the

reading of the stored objects (READ permission) and 89 (96.7%) allow the reading of

the ACLs (READ ACP permission).

Finally, the last step is to analyze the results of those buckets that allowed the

extraction of both objects and ACLs. As seen in the lower right part of Figure 8, 69

buckets (25%) allowed both tasks to be performed. These were filtered by the AllUsers

and AuthenticatedUsers user groups and it was identified that 41(38.3%) from the

AllUsers group and 17 (29.8%) from the AuthenticatedUsers group were allowed to

read the ACLs and the objects. Nevertheless, it was identified that 11 buckets (10.3%)

from the AllUsers group and 11 buckets (19.3%) from the AuthentucadedUsers group

allowed the modification of their content (WRITE permission) and the alteration of

the ACLs (WRITE ACP permission), indicating a big flaw that could compromise

severally the confidentiality, integrity and availability of the stored data.

With these results, it was noted the importance of not only providing a tool for

the detection of flaws or vulnerabilities but also seeing it as an aid to infer possible

mitigations to prevent the exploitation of such vulnerabilities. For example, for the

case presented above, resilience strategies can be taken to secure the analyzed objects

so that they do not fall back into misconfiguration. These strategies can range from the

encryption of the stored information, the correct configuration of the Access Control

Lists so that they cannot be modified, to the simple action of configuring the bucket

as private to avoid information manipulation.

12 Results Summary

This section describes very briefly the results obtained throughout the development

of the project. The first phase of this project was completely exploratory, so this

phase provided 2 official certificates as practitioner and professional in CE granted by

Gremlin to reinforce the concepts mentioned in Section 7 and the implementation and

documentation of 4 CE experiments to understand the use of the CE methodology

shown in Section 8.

36

The second phase focused on the proposal described in Section 10 of ChaosXploit

as an SCE framework for vulnerability detection and mitigation support. Additionally,

a set of ChaosXploit validation experiments on a real scenario was presented. It should

be noted that all the development was published in a GitHub repository and is fully

accessible.

Finally, as a result of this research, a summary article was submitted to the VI Cy-

bersecurity Research Conference (JNIC, Bilbao, Spain) in the category ”Cybersecurity

Research”.

13 Conclusions and Future Work

No one could expect the impactful digital revolution we live in, changing substantially

how we live our lives with great benefit. On the downside, such a change also implies

the existence of ill-motivated entities that constantly try to attack connected systems

to damage the confidentiality, integrity, or availability of the provided services. Such

threat entities use increasingly advanced techniques, for example based on malware

campaigns [14] or threats addressed to a specific technology [17].

Over the last ten years, a novel paradigm has emerged, the so-called Chaos En-

gineering, whose main objective consists of testing the resiliency of distributed and

complex systems. More recently, the paradigm has evolved to embrace the entire

cybersecurity ecosystem, i.e., the Security Chaos Engineering, to defend the system

assets against cyberattacks through continuous and rigorous experimentations on pos-

sible security holes and consequent mitigations.

This degree work enabled to perform an exploratory research in terms of the anal-

ysis that was developed during its first phase. This component allowed the under-

standing of the essence of chaos engineering and its wide variety of applications. As

well as the collection and implementation of experiments based on chaos engineering

to understand its methodology and the value provided by its application in different

fields.

Thanks to this learning process carried out in the first semester of this project, an

37

https://github.com/SaraPalaciosCh/ChaosXploit

opportunity to contribute to the field of cybersecurity by integrating chaos engineering

was identified. This integration is known as security chaos engineering and was the

driving force behind the creation of ChaosXploit.

ChaosXploit helped to work on the experimental axis of this research, also de-

fined as the second phase, as it is a SCE-powered framework that is able to conduct

Security Chaos Engineering experiments on different target architectures. Based on

the hypothesis generated by the knowledge database and the attack representations,

ChaosXploit executes SCE experiments over a target to find a potential security prob-

lem as an ultimate goal. Also, ChaosXploit features an observer, which in turn is

in charge of verifying the change between the steady state of a certain hypothesis

and the current state of the system. To prove the capabilities of ChaosXploit, a set

of experiments was conducted on several AWS S3 buckets, evaluating their security

characteristics with SCE. Results demonstrated that the approach can be successful,

highlighting several unprotected buckets for a specific attack path.

It is important to mention that the work with ChaosXploit can be fully extended.

The point where this research ends opens the possibility of extending the target ar-

chitectures of the ChaosXploit framework in future work to include other use cases,

systems, or vendors. In addition, the integration of a recommendation module that

suggests countermeasures once a security flaw is discovered is worth investigating.

On the other hand, the performance of ChaosXploit should be further evaluated to

definitively demonstrate its usefulness in performance-demanding scenarios.

References

[1] H. Adkins, B. Beyer, P. Blankinship, A. Oprea, P. Lewandowski, and A. Stub-

blefield. Building Secure and Reliable Systems: Best Practices for Designing,

Implementing, and Maintaining Systems. O’Reilly Media, 2020.

[2] Ali Basiri, Lorin Hochstein, Nora Jones, and Haley Tucker. Automating chaos

experiments in production. CoRR, abs/1905.04648, 2019.

38

[3] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site Relia-

bility Engineering: How Google Runs Production Systems. O’Reilly Media, Inc.,

1st edition, 2016.

[4] Netflix Technology Blog. Netflix chaos monkey upgraded. https://

netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d. Last

time accessed: 2022-03-14.

[5] Netflix Technology Blog. The netflix simian army. https://netflixtechblog.

com/the-netflix-simian-army-16e57fbab116. Last time accessed: 2022-03-

14.

[6] Tammy Butow. Gremlin certified chaos engineering practiotioner. Practitioner.

Last time Accessed: 2021-11-10.

[7] Tammy Butow. Gremlin certified chaos engineering professional. Professional.

Last time Accessed: 2021-11-10.

[8] Tammy Buttow. Chaos engineering: the history, principles,

and practice. https://www.gremlin.com/community/tutorials/

chaos-engineering-the-history-principles-and-practice/. Last time

accessed: 2022-03-21.

[9] Carlos Camacho, Pablo C. Cañizares, Luis Llana, and Alberto Núñez. Chaos as

a Software Product Line—A platform for improving open hybrid-cloud systems

resiliency. Software - Practice and Experience, pages 1–34, 2022.

[10] Daniel Dı́az-López, Maŕıa Blanco Uribe, Claudia Santiago Cely, Daniel Tar-

quino Murgueitio, Edwin Garcia Garcia, Pantaleone Nespoli, and Félix

Gómez Mármol. Developing secure iot services: A security-oriented review of

iot platforms. Symmetry, 10(12), 2018.

[11] Daniel Dı́az-López, Ginés Dólera Tormo, Félix Gómez Mármol, Jose M. Alcaraz

Calero, and Gregorio Mart́ınez Pérez. Live digital, remember digital: State of the

39

https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://netflixtechblog.com/netflix-chaos-monkey-upgraded-1d679429be5d
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://netflixtechblog.com/the-netflix-simian-army-16e57fbab116
https://www.gremlin.com/blog/announcing-the-gremlin-chaos-engineering-practitioner-certificate-program/
https://www.gremlin.com/blog/announcing-the-gremlin-chaos-engineering-professional-certificate-program/
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/

art and research challenges. Computers & Electrical Engineering, 40(1):109–120,

2014. 40th-year commemorative issue.

[12] Alya Hannah Ahmad Kamal, Caryn Chuah Yi Yen, Gan Jia Hui, Pang Sze Ling,

and Fatima tuz Zahra. Risk assessment, threat modeling and security testing in

sdlc, 2020.

[13] Mathias Lafeldt and Gu Yu. Principles of chaos engineering. https://

principlesofchaos.org/. Last time accessed: 2021-11-16.

[14] Isabella Mart́ınez Mart́ınez, Andrés Florián Quitián, Daniel Dı́az-López, Panta-

leone Nespoli, and Félix Gómez Mármol. Malseirs: Forecasting malware spread

based on compartmental models in epidemiology. Complexity, 2021, 2021.

[15] Francesc Mateo Tudela, Juan-Ramón Bermejo Higuera, Javier Bermejo Higuera,

Juan-Antonio Sicilia Montalvo, and Michael I. Argyros. On combining static,

dynamic and interactive analysis security testing tools to improve owasp top ten

security vulnerability detection in web applications. Applied Sciences, 10(24),

2020.

[16] R. Miles. Chaos Engineering Observability. O’Reilly Media, Incorporated, 2019.

[17] Pantaleone Nespoli, Daniel Dı́az-López, and Félix Gómez Mármol. Cyberprotec-

tion in iot environments: A dynamic rule-based solution to defend smart devices.

Journal of Information Security and Applications, 60:102878, 2021.

[18] OWASP. Owasp org. https://owasp.org/. Last time Accessed: 2021-05-14.

[19] OWASP. Owasp top ten. https://owasp.org/www-project-top-ten/. Last

time Accessed: 2021-05-12.

[20] M. Pawlikowski. Chaos Engineering: Site reliability through controlled disruption.

Manning, 2021.

[21] Rapid7. 2021 cloud misconfiguration report. Technical report, 2021.

40

https://principlesofchaos.org/
https://principlesofchaos.org/
https://owasp.org/
https://owasp.org/www-project-top-ten/

[22] Aaron Rinehart and Kelly Shortridge. Security chaos engineering gaining confi-

dence in resilience and safety at speed and scale. Technical report, 2020.

[23] Yury Niño Roa. Chaos engineering and observability with visual metaphors. 2022.

[24] C. Rosenthal and N. Jones. Chaos Engineering: System Resiliency in Practice.

O’Reilly Media, 2020.

[25] Jesper Simonsson, Long Zhang, Brice Morin, Benoit Baudry, and Martin Mon-

perrus. Observability and chaos engineering on system calls for containerized

applications in Docker. Future Generation Computer Systems, 122:117–129, 2021.

[26] K. A. Torkura, Muhammad Sukmana, Feng Cheng, and Christoph Meinel. Con-

tinuous auditing and threat detection in multi-cloud infrastructure. Computers

and Security, 102:102124, 2021.

[27] Kennedy A. Torkura, Muhammad I.H. Sukmana, Feng Cheng, and Christoph

Meinel. Security chaos engineering for cloud services: Work in progress. In 2019

IEEE 18th International Symposium on Network Computing and Applications,

NCA 2019. Institute of Electrical and Electronics Engineers Inc., sep 2019.

[28] Kennedy A. Torkura, Muhammad I.H. Sukmana, Feng Cheng, and Christoph

Meinel. CloudStrike: Chaos Engineering for Security and Resiliency in Cloud

Infrastructure. IEEE Access, 8:123044–123060, 2020.

[29] Long Zhang, Brice Morin, Benoit Baudry, and Martin Monperrus. Maximizing

error injection realism for chaos engineering with system calls. IEEE Transactions

on Dependable and Secure Computing, pages 1–1, 2021.

[30] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry, and Martin Monperrus.

A Chaos Engineering System for Live Analysis and Falsification of Exception-

Handling in the JVM. IEEE Transactions on Software Engineering, 47(11):2534–

2548, 2018.

41

	Abstract
	Introduction
	Problem Description
	Objectives
	Methodology
	State of the art
	Chaos Engineering Fundamentals
	Key Concepts
	Chaos Engineering Tools

	Chaos Engineering experiments
	Inject faults at application level
	Experiment 1: Redis Latency
	Experiment 2: Failed Requests on Redis

	Inject faults into a browser
	Experiment 3: Latency in pgweb
	Experiment 4: Adding Failures to pgweb

	Towards Security Chaos Engineering
	Key Concepts
	Security Chaos Engineering Tools
	Benefits of SCE

	Proposal of ChaosXploit
	Knowledge database
	Observer
	SCE Experiments Runner
	Connector
	Flow Diagram

	Experiments
	Settings
	Definition of the Knowledge Database
	SCE experiment
	Results Analysis

	Results Summary
	Conclusions and Future Work

