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The heart is a muscular and a pacemaker organ that pumps blood through the blood 

vessels to provide the body with oxygen and nutrients, as well as the removal of metabolic wastes 

[1]. The human heart has four chambers: the upper right and left atria which drain blood through 

incoming cavae and pulmonary veins, respectively; and the lower right and left ventricles where 

blood is pumped through the pulmonary and aortic arteries, respectively. Pacemaker cells 

distributed along the sinoatrial node, the atrioventricular node and a conduction system that 

generates electrical impulses pulse determine the rhythm of contraction of the heart muscle [2].  

Abnormalities of the heart rhythm or cardiac arrhythmias are characterized by conduction 

abnormalities that may lead to various conditions, including sudden cardiac death, atrial 

fibrillation, ventricular hypertrophy (LVH) among others. Sudden cardiac death is estimated to 

occur in 50 – 100 individuals per 100,000 per year in the United States (U.S.) and Europe [3]. Atrial 

fibrillation has become one of the most important public health problems and its prevalence is 

increasing due to our greater ability to treat chronic cardiac and non-cardiac diseases and aging of 

the populations [4]. These disorders impose high societal costs, both in terms of emotional well-

being for patients and their relatives, and the financial burdens imposed on medical systems for 

patient care, medication, and surgery (such as pacemaker implantation).  

In 1918, James B. Herrick advocated the use of the electrocardiogram (ECG) to diagnose 

myocardial infarction [5, 6]. Since then, the ECG has proven to be a key diagnostic tool for heart 

failure, arrhythmias, stress testing and cardiology consultation [7]. The ECG provides information 

on the depolarization and repolarization of myocardial tissue, reflecting electrical activity in the 

heart. Electrical activity abnormalities might indicate an evolving myocardial infarction, rhythm 

alterations, related pathology effects, cardiac exercise and rehabilitation, among other syndromes 

[8].  The overall rhythm of the heart and development of the heart muscle can be deducted from 
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the ECG (Figure 1) [9]. The most common parameters are the P wave, QRS interval, T wave and QT 

interval. The P wave reflects conduction of the cardiac impulse that is transmitted through the 

atria. The QRS complex amplitude is larger than the P wave and is produced by the ventricular 

contraction, after the ventricular myocardial cells depolarize [8, 10]. The T wave corresponds to 

the repolarization of the ventricle, while the QT interval depicts the time between the onset of 

ventricular depolarization and the end of ventricular repolarization, and the PR interval measures 

atrial and atrioventricular conduction from the sinoatrial node to the ventricular myocardium, 

primarily through the atrioventricular node [11]. The ECG can also be used to quantify LVH, a risk 

factor for cardiovascular morbidity and mortality [12]. More than 30 electrocardiographic indexes 

have been described for the diagnosis of LVH, the Sokolow-Lyon voltage index, the Cornell 

Voltage, Cornell product indexes, the Gubner index and the Romhilt-Estes score, with two 

different thresholds, are the indexes most commonly used [13]. Even though ECG has a low 

sensitivity for detection of LVH, the Sokolow-Lyon voltage together with the Cornell voltage 

duration product have been recommended as relevant parameters to access LVH according to the 

European Society of Hypertension. These guidelines are based on the LIFE study [14].  

 

FIGURE 1. A typical electrocardiogram trace depicting various ECG intervals and waves 
observed in a normal ECG. 
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Heart rhythm disturbances Inheritance 

It has been recognized for long, that genetics plays a key role in heart rhythm disorders, 

many of which have been linked to premature mortality [1]. Inherited heart rhythm disturbances, 

often also referred to as ion channelopathies, are a group of genetic conditions that can cause life-

threatening arrhythmias. The most common are discussed in detail below: Brugada Syndrome, 

familial atrial fibrillation, catecholaminergic polymorphic ventricular tachycardia, long QT 

syndrome, progressive cardiac conduction defect and short QT Syndrome.  

 The Brugada syndrome was first described in 1992 and is characterized by an ST-

segment elevation in the right precordial electrocardiogram that leads to a high incidence of 

sudden cardiac death in patients with structurally normal hearts. It affects 5 in 10,000 people 

worldwide [15] and is believed to cause up to 4-

12% of cases of sudden cardiac death [16-19]. 

Clinically, there are three types of Brugada 

syndrome based on the electrophysiological 

classification: Type 1, characterized by a 

prominent ST-segment elevation ≥2 mm or 0.2 

mV followed by a negative T-wave, with little or 

no isoelectric separation. Type 2 also has a high 

take-off ST-segment elevation, which gradually 

descends thereafter and is followed by a positive 

or biphasic T-wave that results in a saddle back 

configuration. Type 3 displays either a right 

precordial ST-segment elevation of <1 mm of 

Three different classifications of BrS are shown in 

Table.1 OMIM considers 9 subtypes, Nielsen 17 subtypes and 

Fernandez described 24 genes involved in BrS without assigning 

specific subtypes to each gene. The genes shown in blue font 
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saddle back type, a coved type, or both [20]. 

Genetically, the OMIM database (http://www.omim.org/) reports nine types of Brugada 

syndrome (BrS1 – BrS9) based on mutations in nine different genes: SCN5A, GPD1L, CACNA1C, 

CACNB2, SCN1B, KCNE3, SCN3B, HCN4 and KCND3 (Table 1). Nielsen described 17 subtypes of 

Brugada syndrome (from BrS1 to BrS17) based on mutations in 17 genes. The first seven are 

identical to those reported in the OMIM database, but BrS8 and BrS9 in the  Nielsen classification 

(KCNH2 and KCNJ8) are different from those described in OMIM (HCN4 and KCND3) (Table.1). In 

the Nielsen classification, mutations in CACNA2D1, RANGRF, KCNE5, KCND3, SLMAP, TRPM4 and 

SCN2B  characterize  BrS10-BrS17 (Table 1)  [21]. In 2017, seven additional genes were described 

by Fernández-Falgueras et al in ABCC9, FGF12, HEY2, KCND2, PKP2, SCN10A and SEMA3A (Table 1 

and Figure 2) [21-23]. Even though these advances in dissecting the genetic causes of the Brugada 

syndrome, there is a large proportion of the patients with Brugada syndrome (60 – 70%) for whom 

the genetic variants responsible for this pathology remain to be discovered.  

 

 

FIGURE 2. Genes related to Brugada syndrome, long QT syndrome, short QT syndrome 
and Catecholaminergic polymorphic ventricular tachycardia (adapted from Fernández-Falgueras et 
al) [23]. Among genes related to Brugada syndrome, long QT syndrome, short QT  syndrome and 
Catecholaminergic polymorphic ventricular tachycardia, there are: ATP binding cassette subfamily 
C member 9 (ABCC9), glycerol-3-phosphate dehydrogenase 1 like (GPD1L), fibroblast growth factor 
12 (FGF12), hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4), hes 
related family bHLH transcription factor with YRPW motif 2 (HEY2), potassium voltage-gated 

http://www.omim.org/
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channel subfamily D member 2 (KCND2), potassium voltage-gated channel subfamily D member 3 
(KCND3), potassium voltage-gated channel subfamily J member 8 (KCNJ8), potassium voltage-
gated channel subfamily E regulatory subunit 3 (KCNE3), potassium voltage-gated channel 
subfamily E regulatory subunit 5 (KCNE5), plakophilin 2 (PKP2), sodium voltage-gated channel 
alpha subunit 10 (SCN10A), sodium voltage-gated channel beta subunit 2 (SCN2B), semaphorin 3A 
(SEMA3A), transient receptor potential cation channel subfamily M member 4 (TRPM4), sodium 
voltage-gated channel beta subunit 3 (SCN3B), sarcolemma associated protein (SLMAP), RAN 
guanine nucleotide release factor (RANGRF), sodium voltage-gated channel alpha subunit 5 
(SCN5A), sodium voltage-gated channel beta subunit 1(SCN1B), A-kinase anchoring protein 9 
(AKAP9), potassium voltage-gated channel subfamily E regulatory subunit 1 (KCNE1), potassium 
voltage-gated channel subfamily E regulatory subunit 2 (KCNE2), caveolin 3 (CAV3), potassium 
voltage-gated channel subfamily J member 5 (KCNJ5), sodium voltage-gated channel beta subunit 
4 (SCN4B), syntrophin alpha 1 (SNTA1), potassium voltage-gated channel subfamily H member 2 
(KCNH2), calcium voltage-gated channel subunit alpha1 C (CACNA1C), ankyrin 2 (ANK2), 
calmodulin 1 (CALM1), ryanodine receptor 2 (RYR2), triadin (TRDN), calmodulin 2 (CALM2), 
calmodulin 3 (CALM3), calcium voltage-gated channel auxiliary subunit alpha2delta 1 (CACNA2D1), 
calcium voltage-gated channel auxiliary subunit beta 2 (CACNB2), potassium voltage-gated 
channel subfamily Q member 1 (KCNQ1), potassium voltage-gated channel subfamily J member 2 
(KCNJ2), calsequestrin 2 (CASQ2). 

 

Catecholaminergic polymorphic ventricular tachycardia are inherited cardiac 

channelopathies with an estimated prevalence of 1 in 10.000. Catecholaminergic polymorphic 

ventricular tachycardia (CPVT1 to CPVT5) are associated with mutations in respectively the 

ryanodine receptor 2 (RYR2), cancer susceptibility 2 (non-protein coding) (CASC2), trans-2,3-enoyl-

CoA reductase like (TECRL), calmodulin 1 (CALM1) and triadin (TRDN) genes. Additionally, 

mutations in potassium voltage-gated channel subfamily J member 2 (KCNJ2), have been identified 

in patients with a CPVT-like phenotype [24, 25]. Two additional genes possibly involved in 

catecholaminergic polymorphic ventricular tachycardia are Ankyrin 2 (ANK2) and calmodulin 3 

(CALM3) (Figure 2) [23]. Catecholaminergic polymorphic ventricular tachycardia is characterized by 

potentially life-threatening polymorphic ventricular tachycardias during exercise or emotional 

stress. There result in light-headedness, dizziness, syncope, and sudden death, in individuals 

without structural cardiac abnormalities [25, 26].  

 Pathologically, catecholaminergic polymorphic ventricular tachycardia are 

characterized by a dysregulation of intracellular calcium handling, and the subjacent molecular 
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mechanism includes dysfunction of the sarcoplasmic reticulum during exercise due to release of 

catecholamines related to intracellular calcium dysregulation. Calcium uptake is stimulated via 

beta-adrenergic input into the sarcoplasmic reticulum by increasing permeability to calcium in 

ryanodine receptor 2 (RYR2), a calcium channel. Sarcoplasmic reticulum calcium release, results in 

catecholamines and myocyte calcium loading, consequently increasing heart rate and the 

susceptibility to trigger ventricular tachycardia [25].  

Long QT syndrome is a congenital disease with an estimated prevalence in 2009 of 1/2000 

[27]. According to the portal for rare disease and orphan drugs (Orphanet), the prevalence in 2016 

was about to 1/2500 (orphanet). This syndrome is characterized by prolongation of the QT 

interval, syncopal attacks due to ventricular arrhythmias, and an elevated risk of sudden cardiac 

death [28]. Syncope during exercise or high emotional states are usually the first symptoms. 

Strikingly, 50% of patients have the first cardiac event by the age of 12 years [29, 30]. Long QT 

syndrome is divided according to the underlying genetic substrate in long QT syndrome type1 to 

Long QT syndrome type15 [30, 31]. Diagnosis of Long QT syndrome according to the Schwartz 

score is based on: suggestive findings such as 1) prolongation of the corrected QT (QTc) interval 

bigger than 450ms (male) and 470ms (women) in the absence of specific conditions known to 

lengthen the interval, 2) 4-min recovery QT after exercise test ≥ 480ms, 3) torsades points, 4) 

lower heart rate for age and/or T-wave alterations on the ECG, and 5) a clinical history of syncope 

and/or congenital deafness [32, 33]. Nowadays, molecular genetic testing of one or more of the 15 

genes known to be associated with long QT syndrome, confirms clinical assessment. Genes leading 

to Long QT syndrome type 1 to Long QT syndrome type15 are potassium voltage-gated channel 

subfamily Q member 1 (KCNQ1), KCNH2, sodium voltage-gated channel alpha subunit 5 (SCN5A), 

ankyrin-B (ANKB), potassium voltage-gated channel subfamily E regulatory subunit 1 (KCNE1), 

potassium voltage-gated channel subfamily E regulatory subunit 2 (KCNE2), potassium voltage-
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gated channel subfamily J member 2  (KCNJ2), calcium voltage-gated channel subunit alpha1 C 

(CACNA1C), caveolin 3 (CAV3), sodium voltage-gated channel beta subunit 4 (SCN4B), A-kinase 

anchoring protein 9 (AKAP9), potassium voltage-gated channel subfamily J member 5 (KCNJ5), 

syntrophin alpha 1 (SNTA1), calmodulin 1 (CALM1), and calmodulin 2 (CALM2) respectively [34]. 

Additional mutations have been described in other genes including sodium voltage-gated channel 

beta subunit 1 (SCN1B), RYR2, TRDN and CALM3 (Figure 2) [23]. 

 Long QT syndrome shows an autosomal dominant inheritance. This implies that 

individuals diagnosed with long QT syndrome usually have an affected parent, and that the risk of 

a child with long QT syndrome is 50%. However, a small proportion of the cases have de novo 

mutations. The mutational spectrum includes all type of mutations (missense, frameshift, 

nonsense, splice sites, deletions, and insertions), which are analyzed by different techniques like 

new generation sequencing, SNaPshot, whole exome sequencing and multiplex ligation-

dependent probe amplification [35, 36]. More than 75% of the mutations are found in KCNQ1, 

KCNH2 and SCN5A [37, 38] and the remaining genes represent only 5%. Approximately 20% of 

patients with long QT syndrome lack any of the known mutations [38]. This unknown mutations, 

could be uncovered through whole genome sequencing, looking for rare variants in unknown 

genes or regulatory regions.  

Incomplete penetrance and variable expressivity have been described, conferring different 

risks in related individuals [39]. Recently, genetic factors have been described to be involved in 

disease modulation and clinical severity. Those factors are recognized as genetic modifier. The first 

variant described as genetic modifier influencing LQT was a single nucleotide polymorphism (SNP) 

in KCNH2-K897T, which modulates the clinical expression of a primary mutation for LQT2 in the 

same gene [34, 40]. There are variants in at least 18 genes involved in the pathophysiology of Long 

QT syndrome, three of those genes are genes with large effect on the phenotype (KCNQ1, KCNH2, 
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and SCN5A), and 15 with minor influence [41]. Further, SNPs that modulate Long QT syndrome 

phenotype have been described including polymorphisms in nitric oxide synthase 1 adaptor 

protein encoded by NOS1AP, this SNP in combination with KCNQ1 (A341V) modulates occurrence 

of symptoms, with clinical severity and QT interval [34, 42].  

Drugs may cause a prolonged QT interval as well, leading to some drug being taken of the 

market [43, 44]. These include drugs related to QT prolongation such as antiarrhythmic drugs 

(flecainide and amiodarone among others), and non-cardiac drugs as antidepressants like 

citalopram and antibiotics as erythromycin and fluoroquinolones [32]. Drug susceptibility can also 

be related to genetic variability. NOS1AP, is one of the strongest genes revealed by genome wide 

association studies (GWAs) related to QT interval and has a pharmacodynamic effect. NOS1P 

regulates the enzyme neuronal nitric oxide synthase (nNOS) and nNOS is a regulator of calcium 

levels [32]. Another gene known to influence pharmacodynamic susceptibility is KCNH2. Mutations 

in KCNH2 are responsible for the congenital long QT syndrome type 2 and mutations in this gene 

have been described in people with prolonged QT interval induced by drugs [32]. Variation in 

pharmacokinetics response is due to genetics factors. Some polymorphisms in genes related to 

metabolism, absorption, distribution and drug elimination are responsible for these differences. 

Among these genes of the cytochrome P450 (CYP) like system such as cytochrome P450 family 2 

subfamily B member 6 (CYP2B6), cytochrome P450 family 2 subfamily C member 9 (CYP2C9), 

cytochrome P450, family 19 (CYP19), cytochrome P450 family 2 subfamily D member 6 (CYP2D6), 

cytochrome P450 family 3 subfamily A member 4 (CYP3A4), which encode for proteins involved in 

drug metabolism in the liver have been described related to drug-induced QT interval prolongation 

[32].  

 Short QT Syndrome. Until 2014, approximately 100 short QT syndrome patients 

were reported in the literature [62]. Short QT Syndrome is a rare disease, with debated diagnostic 
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criteria and a cutoff value is not fully established [63]. It has an estimated prevalence that is lower 

than 1 in 10.000 [23], and is defined by: a QTc interval ≤340 ms or a QTc interval between 341 ms 

and 360 ms and additionally, one or more of the following factors: family history of short QT 

syndrome, family history of unexplained cardiac arrest at 40 years of age or younger, history of 

cardiac arrest or syncope, or the presence of a disease-causing disease mutation. Mazzanti et al 

proposed that those with a Short QT syndrome interval ≤360 ms should be classified as suspected 

patients [62].  

Several groups have reported a relationship to sudden cardiac death morbidity. In 1993, 

Algra et al showed a 2-fold higher risk of arrhythmias and sudden cardiac death in people with 

short QT interval. In 2000 Gussak et al showed the relationship among short QT syndrome and 

sudden cardiac death [61, 64, 65]. Guzzak et al described two cases with Short QT syndrome and 

spontaneous atrial fibrillation, but it was not until 2003 when a new autosomal dominant sort QT 

syndrome was reported [66] based on seven patients with short QT interval and syncope, 

palpitations and sudden cardiac death [67]. The age of onset ranged between infancy and old age, 

and 25% to 33% are presented with cardiac arrest, and 15% of cases are presented with syncope. 

Other minor events at the clinical expression described involve palpitations and/or dizziness.  

So far, six types of short QT syndrome have been described according to the underlying 

genes. KCNH2, KCNQ1, KCNJ2, CACNA1C, CACNB2, CACNA2D1 are related to Short QT syndrome 

type 1 to Short QT syndrome type 6, respectively (Figure 2). These mutations lead to loss of 

normal rectification of the electrical current at plateau voltages, and consequently an increase of 

the rapid activating current potassium channel (IKr). Since ventricular action potentials are directly 

related to the duration of the QT interval, an action potential shortening produced by a shortening 

of the refractory period creates an increased ventricular and atrial susceptibility to premature 

stimulation [67]. KCNQ1 mutations have been studied in detail and these studies demonstrated 
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that V141M abolishes pacemaker activity of the sinoatrial node and shortens the action potential 

duration of human ventricular myocytes [67-69]. Collectively, these changes cause a significant 

increase in the inwardly rectifying potassium current [70].  

Figure 2 shows that in addition to overlap in genes involved in various disorders, mutations 

in genes encoding for potassium channels or their subunits (Table 1) are the predominant gene 

family involved in these syndromes. They are the largest group of ion channels in the human heart, 

and consequently these channels contribute to distinct phases of action potential, and 

consequently with cardiomyocyte repolarization [71]. Mutations in genes encoding these proteins 

are related to Brugada syndrome, atrial fibrillation, long and short QT syndrome as described in 

Table 1 [71]. 

Gene Name 
S

ymbol 
Phenotype 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, KQT-LIKE 
SUBFAMILY, MEMBER 1 

K
CNQ1 

Atrial fibrillation, long QT 
syndrome 1, short QT syndrome 2 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, SUBFAMILY H, 
MEMBER 2 

K
CNH2 

Long QT syndrome 2, short QT 
syndrome 1, Brugada syndrome 8 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, SHAKER-RELATED 
SUBFAMILY, MEMBER 5 

K
CNA5 

Atrial fibrillation 

POTASSIUM CHANNEL, 
INWARDLY RECTIFYING, SUBFAMILY J, 
MEMBER 5 

K
CNJ5 

Long QT syndrome 13 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, ISK-RELATED 
SUBFAMILY, MEMBER 1 

K
CNE1 

Long QT syndrome 5 

POTASSIUM CHANNEL, 
INWARDLY RECTIFYING, SUBFAMILY J, 
MEMBER 8 

K
CNJ8 

Brugada syndrome 9 

POTASSIUM CHANNEL, 
INWARDLY RECTIFYING, SUBFAMILY J, 
MEMBER 2 

K
CNJ2 

Atrial fibrillation, short QT 
syndrome 3, long QT syndrome 7 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, ISK-RELATED 
SUBFAMILY, MEMBER 3 

K
CNE3 

Brugada syndrome 6 



Introduction 

 

21 

Gene Name 
S

ymbol 
Phenotype 

POTASSIUM CHANNEL, 
VOLTAGE-GATED, ISK-RELATED 
SUBFAMILY, MEMBER 2 

K
CNE2 

Atrial fibrillation, long QT 
syndrome 6 

POTASSIUM VOLTAGE-GATED 
CHANNEL, SHAL-RELATED SUBFAMILY, 
MEMBER 3 

K
CND3 

Brugada syndrome 13 

Potassium Voltage-Gated 
Channel Subfamily E Regulatory 
Subunit 5 

K
CNE5 

Brugada syndrome 5 

TABLE 1. Potassium channels related to channelopaties 

Familial atrial fibrillation. Atrial fibrillation is characterized by a fast an irregular heartbeat 

due to an uncoordinated electrical activity in the heart’s atria. It is the most prevalent 

supraventricular sustained arrhythmia affecting nearly 33.5 million people worldwide and the 

number of affected individuals by this pathological condition is increasing over time and has 

doubled since 2010. Atrial fibrillation is associated with an increased risk of stroke, sudden death, 

heart failure, dementia, and mortality. One of the largest population-based cohort from the UK 

Clinical Practice Research Datalink showed that the incidence of atrial fibrillation has increased 

from 5.9/1000 person-year in 2001 to 6.9/1000 person-year in 2013 [45].  There are several risk 

factors for atrial fibrillation such as the use of Ivabradine for treatment of heart failure, diastolic 

dysfunction, and hemodialysis, among others [45]. Hemodialysis itself, in patients with an 

implanted pacemaker or defibrillator may trigger atrial fibrillation, with a prevalence ranging 

among 13%-23% [45-47]. This could be explained by two different pathways, the first one is 

related to intravascular volume reduction, causing liberation of catecholamine and sympathetic 

activation. The second one is related to transmembranous fluxes of electrolytes, especially 

potassium which is produced during hemodialysis, suggesting an association with the 

concentration of potassium [45, 46].  

For long it has been recognized that there is a strong genetic component determining the 

risk of atrial fibrillation [48]. Various studies showed that family members have an increased 
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relative risk of atrial fibrillation compared to the general population [49-51]. Genetic variants have 

been associated with atrial fibrillation and involve genes encoding signaling molecules, potassium 

channel, proteins involved in cardiac polarization and repolarization, cardiac gap junctions 

proteins, transcription factors, and sodium channels: paired like homeodomain 2 (PITX2), zinc 

finger homeobox 3 (ZFHX3), potassium calcium-activated channel subfamily N member 3 (KCNN3), 

caveolin 1/caveolin2 (CAV1/CAV2), paired related homeobox 1 (PRRX1), spectrin repeat containing 

nuclear envelope protein 2 (SYNE2), chromosome 9 open reading frame 3 (C9orf3), HCN4, 

synaptopodin 2 like (SYNPO2L), KCNQ1, potassium voltage-gated channel subfamily E regulatory 

subunit 1 to 5( KCNE1-5), SCN5A, T-box 5 (TBX5), sodium voltage-gated cannel geta subunit 1 to 4 

(SCN1B-4), nucleoporin 155 (NUP155), natriuretic peptide A (NPPA), GATA binding protein 4  

(GATA4), GATA binding protein 6 (GATA6), lamin A/C (LMNA), gremlin 2, DAN family BMP 

antagonist (GREM2), gap junction protein alpha 1 (GJA1), gap junction protein alpha 5 (GJA5), 

KCNA5, KCNJ2, ABCC9, PRRX1, KCND3, KCNH2, KCNJ8 and NK2 homeobox 5 (NKX2-5) [52, 53]. 

Atrial fibrillation diagnostic testing may include, ECG, echocardiogram and a chest X-ray. Despite 

its clinical relevance, treatments have low efficacy, due to poor understanding of atrial fibrillation 

pathophysiology, which makes clinical control more difficult to reach. Inter individual variability 

and complex genetic inheritance are part of the heterogeneous nature of atrial fibrillation.  

Progressive cardiac conduction defect. It is a common genetic disease that occurs in 

adults, and appears typically in the fifth decade of life. More than 50 families presenting this 

pathological condition have been described in the literature. This disease affects the His-Purkinje 

system and is characterized by a progressive slowing of cardiac conduction and prolongation of 

QRS complex, leading to the atrioventricular block. The disease, also called as Lenègre or Lev 

disease, is either asymptomatic or manifests as dyspnea, dizziness, syncope, abdominal pain, heart 

failure or sudden death [54]. Currently, therapeutic strategies for progressive cardiac conduction 
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defects involve the implantation of a permanent pacemaker. In patients who receive a pacemaker 

implantation, the prognosis is excellent and their life expectancy is very close to that of the 

general population, except in those with LMNA mutations that can lead to ventricular tachycardia 

and sudden cardiac death. In this population, cardioverter defibrillator implantation is 

recommended in case of severe cardiac conduction defect. Progressive cardiac conduction defect 

is an autosomal dominant inherited disease, mutations in SCN5A, SCN1B, TRPM4, NKX2.5, TBX5 

and recently potassium two pore domain channel subfamily K member 17 (KCNK17) have been 

described [55, 56]. SCN5A mutations are related to several cardiac diseases, including lethal 

arrhythmias, long QT syndrome type 3, early-onset lone atrial fibrillation, dilated cardiomyopathy, 

Brugada syndrome, and channelopathies. Phenotypic variability of SCN5A mutation carriers is 

called overlap syndrome. Patients suffering this pathological condition display overlapping clinical 

manifestations of the different SCN5A-related syndromes [54, 57]. The phenotypic difference is an 

unclear phenomenon, and could be related to either a gain or loss of function of the channel.  

Long QT syndrome type 3 is related to gain of function of SCN5A, whereas Brugada syndrome is 

caused by loss of function [58]. Mutations in SCN1B have been described in families with alteration 

of the conduction system. SCN1B, encodes beta1 subunit of the voltage-gated sodium channel, 

this beta-subunit interact with the cardiac sodium channel protein Nav1.5 [54]. TRPM4 is involved 

in the pathogenesis of conduction disorders through gain-of-function mutations. Mutant TRPM4 

channels produce a higher voltage than their wild-type counterparts, leading to a cell membrane 

depolarization [54]. Kruse M et al proposed that this is related to deSUMOylation intensity, which 

may impair endocytosis and stabilize the mutant channels at the level of the cell surface [59]. The 

gain of function has been related to altered deSUMOylation, which leads to a depolarization of the 

membrane due to the mutant channels [59]. Gain of function mutation in the gene encoding 

potassium channel TASK-4 results in an increase in voltage amplitude, membrane 
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hyperpolarization and slow conductivity [55]. The KCNK17 missense mutation (G88R) implicated in 

progressive cardiac conduction defects was described in a single patient. Additionally, other genes 

related to progressive cardiac conduction defects are associated with congenital heart disease, 

including transcription factors related to endocardial cushion remodeling, conduction system 

development, and cardiac chamber formation like NKX2.5 and TBX5 [60, 61]. NKX2.5 encodes a 

cardiac-specific homeobox transcription factor, which could harbor a large number of mutations 

related to different congenital heart phenotypes.  

From Mendelian genetics to complex genetics 

There are ongoing efforts to screen for mutations in high-risk families to prevent sudden 

cardiac death and atrial fibrillation at an early stage to ensure therapeutical interventions to 

prevent morbidity and mortality. Like familial forms of dyslipidemia, screening programs approach 

relatives of patients systematically and invite them to participate for clinical and genetic 

evaluations. This type of cascade screening is controversial as such screening programs may 

undermine the autonomy of relatives, who may feel obliged to participate [62]. However, in 

families with known mutations, cascade screening may be extremely effective and successful in 

preventing morbidity and mortality. Nevertheless, for many families the genetic cause of disease is 

still not understood and there is an urgent need to search for rare variants explaining the disease 

in these families. The classical approach to find rare variants with large effects is to conduct 

genome wide studies covering the full genome in families and analyze the data statistically using 

linkage analysis. In linkage analyses, co-segregation of DNA markers with the disease is assessed 

(Figure 3; left side). The rationale of these analyses is that co-segregation occurs not only for the 

disease mutation, but also for genetic variants in linkage disequilibrium with the mutation 

underpinning the disease. When two variants are located close together in a chromosome, it is 
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unlikely that a new mutation occurs and therefore these variants are likely passed on jointly from 

one generation to the next in a family.  

 

 

 

FIGURE 3. Linkage and linkage Disequilibrium 
Within a family, linkage occurs when two genetic markers (points on a chromosome) remain linked 

on a chromosome rather than being broken apart by recombination events during meiosis, shown as red 
lines. In a population, contiguous stretches of founder chromosomes from the initial generation are 
sequentially reduced in size by recombination events. Over time, a pair of markers or points on a 
chromosome in the population move from linkage disequilibrium to linkage equilibrium, as recombination 
events eventually occur between every possible point on the chromosome. Source: Bush and Moore [63]. 

 

Without any doubt, within the general population, rare variants that convey an elevated 

risk of disease occur and may explain part of the disease [12, 64, 65]. However, in a substantial 

number of patients, the genetic architecture of conduction disorders appears to be more complex, 

involving the interplay of multiple genes and non-genetic risk factors. The effect of a single 

common variant on disease risk for an individual may be small. However, the additive effect of 

many of those common low risk variants may be substantial, depending on the combination of the 

genetic risk factors a person carries and their effects on the disease. Figure 4 shows that life time 
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risks for those carrying over 25 risk variants may increase up to 60%. Common variants implicated 

in a disease can be discovered by the same principle as linkage analyses, i.e., the assumption that 

only loci close to the disease locus are segregating together in the population. However, if we are 

dealing with very distantly related or even unrelated subjects, linkage analyses fail. Association 

analyses has proven to be a powerful approach to discover these genes of minor effect in 

unrelated persons. In the past decade, many of such genes have been identified by association 

analyses [66]. The basic rationale of association is that genes causally related to a disease should 

be found more often in cases than in controls. However, since recombination between two genes 

that are close together on a chromosome is unlikely also in unrelated subjects from the same 

population (linkage disequilibrium), genetic variants in the nearby of the causal variant will also be 

found more often in affected persons than in unaffected subjects. This phenomenon will result in 

association of the disease to genetic variants near the causal variant [63]. The effect of a single 

variant is small but as each of us may carry a substantial number of low risk variants for disorders, 

the impact of the genes may be substantial (see figure 4) and may increase the risk of disease 6 

fold (up to 60%) depending on the effect of the variants carried by a person. 

 

 

 

 

 

 

 

FIGURE 4. Disease risks when adding up the effects of multiple low risk variants 

Disease risks for the complex diseases example were based on simulated data assuming a 
population risk of disease of 10% (dashed line), frequencies of the risk genotypes varying between 
1 and 60% and odds ratios varying from 1.05 to 2.0. The bars in the scatterplot represent the 
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frequency distribution of the number of risk genotypes. The example and the simulation strategy 
have been described previously [67].  

 
GWAs has proven to be a powerful approach to discover common but of small effect risk 

variants. Large scale studies of the various ECG parameters have brought to surface a large 

number of genetic risk variants.  ECG parameters in the general population show non-mendelian 

inheritance patterns and are most likely explained by the additive effect of common variants [3]. 

By GWAS, more than 120 loci involved in ECG variability have been uncovered (Figure 5). 

These loci are related with the PR, QRS and QT intervals (Figure 5) [67-78]. Also, for common 

variants, there are several genes with different phenotypic effects over different hereditary 

diseases, e.g. KCN5A and KNNJ2, among others. Indeed, in addition to these highly penetrant, rare 

mutations, recent evidence suggests that combinations of common variants can also lead to 

conditions that emulate rare Mendelian disorders, such as Brugada syndrome [67, 68].  
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FIGURE 5. Loci associated by GWAs with each ECG interval: PR, QRS and QTCandidate 

genes identified by GWAs for PR, QT and QRS interval and their chromosomal location   
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Scope of this thesis 

The scope of this thesis is to understand the heritability of heart rhythm and conduction 

disorders. Heritability is the portion of the phenotypic variability explained by genetic 

components. Several studies estimated a high heritability for RR interval (40% - 98%) and 

moderate heritability’s for QT/QTc (25% - 67%), PR (34% - 46%), and QRS (33% - 43%) [69-73, 79-

83]. To date, no studies have directly estimated the extent to which the GWAs loci explain the 

heritability. In the chapter 2 of this thesis, I present a heritability study of the various ECG 

parameters in the Erasmus Rucphen Family study (ERF). ERF is a family based study, a cohort 

derived from a region in the Southwest of the Netherlands. In the ERF study, we addressed the 

following question: what is the extent of heritability that can be explained by GWAs findings up to 

date?  

In this thesis, I also aimed to discover new loci that may explain the heritability of heart 

rhythm and conduction disorders. My first aim was to discover new rare variants with large 

effects. To this end, we conducted linkage analyses of several ECG parameters including classical 

parameters QT, QRS and PR for sudden cardiac death (chapter 3) and LVH (chapter 4) in the ERF 

study. We combined the linkage analyses with association studies of the region. Association is not 

only powerful to detect common variants with small effects but can also be used for detecting rare 

variants with modest effects under a linkage peak [84]. Chapter 5 and 6 present 2 GWA studies. 

Chapter 5 involves the findings of a meta-analysis of GWAS. We identified 52 genomic loci, 

associated to 4 QRS traits providing new knowledge into genes and pathways related to 

myocardial mass. Chapter 6, involves a study using the genome of the Netherlands as a basis to 

identify new genes involved in conduct disorders. In chapter 7, a functional study of the 

ARHGAP24 gene is presented including a search for rare variants in this gene associated to ECG 

parameters. I explored the cellular function of ARHGAP24 in heart development using a 
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knockdown strategy with morpholino antisense oligonucleotides in zebrafish. Finally, the findings 

of the thesis are discussed in chapter 8.  
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Abstract  

Electrocardiogram (ECG) measurements are a powerful tool for evaluating cardiac function and 

are widely used for the diagnosis and prediction of a variety of conditions, including myocardial 

infarction, cardiac arrhythmias, and sudden cardiac death. Recently, genome-wide association 

studies (GWASs) identified a large number of genes related to ECG parameter variability, 

specifically for the QT, QRS, and PR intervals. The aims of this study were to establish the 

heritability of ECG traits, including indices of left ventricular hypertrophy, and to directly assess 

the proportion of those heritabilities explained by GWAS variants. These analyses were conducted 

in a large, Dutch family-based cohort study, the Erasmus Rucphen Family study using variance 

component methods implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) 

software package. Heritability estimates ranged from 34 % for QRS and Cornell voltage product to 

49 % for 12-lead sum. Trait-specific GWAS findings for each trait explained a fraction of their 

heritability (17 % for QRS, 4 % for QT, 2 % for PR, 3 % for Sokolow–Lyon index, and 4 % for 12-lead 

sum). The inclusion of all ECG-associated single nucleotide polymorphisms explained an additional 

6 % of the heritability of PR. In conclusion, this study shows that, although GWAS explain a portion 

of ECG trait variability, a large amount of heritability remains to be explained. In addition, larger 

GWAS for PR are likely to detect loci already identified, particularly those observed for QRS and 

12-lead sum. 
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Abstract 

Electrocardiogram (ECG) measurements play a key role in the diagnosis and prediction of cardiac 

arrhythmias and sudden cardiac death. ECG parameters, such as the PR, QRS, and QT intervals, are 

known to be heritable and genome-wide association studies of these phenotypes have been 

successful in identifying common variants; however, a large proportion of the genetic variability of 

these traits remains to be elucidated. The aim of this study was to discover loci potentially 

harboring rare variants utilizing variance component linkage analysis in 1547 individuals from a 

large family-based study, the Erasmus Rucphen Family Study (ERF). Linked regions were further 

explored using exome sequencing. Five suggestive linkage peaks were identified: two for QT 

interval (1q24, LOD = 2.63; 2q34, LOD = 2.05), one for QRS interval (1p35, LOD = 2.52) and two for 

PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). Fine-mapping using exome sequence data 

identified a C > G missense variant (c.713C > G, p.Ser238Cys) in the FCRL2 gene associated with QT 

(rs74608430; P = 2.8 × 10-4, minor allele frequency = 0.019). Heritability analysis demonstrated 

that the SNP explained 2.42% of the trait’s genetic variability in ERF (P = 0.02). Pathway analysis 

suggested that the gene is involved in cytosolic Ca2+ levels (P = 3.3 × 10-3) and AMPK stimulated 

fatty acid oxidation in muscle (P = 4.1 × 10-3). Look-ups in bioinformatics resources showed that 

expression of FCRL2 is associated with ARHGAP24 and SETBP1 expression. This finding was not 

replicated in the Rotterdam study. Combining the bioinformatics information with the association 

and linkage analyses, FCRL2 emerges as a strong candidate gene for QT interval. 

Keywords: genetics, epidemiology, electrocardiography, linkage, exome 
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Introduction 

The electrocardiogram (ECG) is an important tool for diagnosing, monitoring and evaluating risk in 

patients with cardiovascular disease (CVD; [1, 2]. ECG measurements, such as PR interval, QRS 

complex duration, and QT interval, are used for the diagnosis and prediction of cardiac 

arrhythmias and sudden cardiac death (SCD; [3]. Myocardial depolarization and repolarization 

time are measured by the QT interval: the time between the onset of the QRS complex and the 

end of the T wave. QT shortening or prolongation has been associated with an increased risk for 

arrhythmias and SCD [4]. PR interval and QRS duration are measures of cardiac conduction time; 

QRS duration reflects conduction through the ventricular myocardium, while PR interval measures 

atrial and atrioventricular conduction from the sinoatrial node to the ventricular myocardium, 

primarily through the atrioventricular node [5, 6]. 

There are significant genetic contributions to ECG measurements; genome-wide 

association studies (GWAS) identified at least 71 common variants associated with their variability 

[7-14]. A number of these associations were established in loci containing genes that encode 

proteins with previously known roles in heart development and function, such as cardiac 

transcription factors; sodium, calcium, and potassium ion channels; genes with a role in 

myocardial electrophysiology; and others involved in the conduction of electrical impulses [3]. 

These include ARHGAP24, SETBP1, LRIG1, CREBBP, MEIS1. TBX20, and TBX5. Some ion channel 

encoding genes, such as SCN5A, HERG, KCNE1, and KCNE2, have been associated with long QT 

syndrome (LQTS; [15], atrial fibrillation (AF) and  
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Brugada Syndrome [16]. Collectively, however, these loci explain only modest proportions of 

phenotypic variability; GWAS SNPs specific for each trait account for limited trait heritability (17% 

for QRS, 4% for QT, and 2% for PR) [17]. 

Genome-wide association studies generally interrogate only common variants, typically of 

small effect. Families, in addition to being robust against population stratification, may be 

enriched for less frequent variants, which can potentially be identified by linkage and fine 

mapping. The aim of this study, therefore, was to discover less frequent variants using linkage 

analysis in a large family-based study, the Erasmus Rucphen Family Study (ERF). 

Methods 

Study population 

The ERF study, which is a part of the Genetic Research in Isolated Populations (GRIP) Program, is a 

family-based study including over 3000 participants descendant from 22 couples that lived in the 

Rucphen region in the southwest Netherlands in the 19th century [18]. All descendants of those 

couples were invited to visit the clinical research center in the region, where they were examined 

in person [19]. Interviews at the time of blood sampling were performed by medical practitioners 

and included questions on a broad range of topics, including current medication use and medical 

history [20]. Height and weight were measured with the participant in light underclothing and 

body mass index (kg/m2) was computed. Blood pressure (BP) was measured twice on the right 

arm in a sitting position after at least five minutes rest, using an automated device (OMRON 711, 

Omron Healthcare, Bannockburn, IL, USA). The average of the two measures was used for analysis. 

Hypertension was defined through the use of antihypertensive medication and/or through the 

assessment of BP measurements according to the World Health Organization [21] guidelines 

(individuals with BP ≥ 140/90 mmHg should be regarded as hypertensive). The Medical Ethics 
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Committee of the Erasmus University Medical Center appro[22]ved the ERF study protocol and all 

participants, or their legal representatives, provided written informed consent. 

ECG measurement and interpretation 

Examinations included 10 s 12-lead ECG measurements, recorded with an ACTA-ECG (Esaote, 

Florence, Italy) with a sampling frequency of 500 Hz. Digital measurements of the ECG parameters 

were made using the Modular ECG Analysis System (MEANS; [22]. Briefly, MEANS operates on 

multiple simultaneously recorded leads, which are transformed to a detection function that brings 

out the QRS complex and the other parts of the signal. MEANS determines common onsets and 

offsets for all 12 leads together on one representative averaged beat, with the use of template 

matching techniques. The measurement and diagnostic performance of MEANS have been 

extensively evaluated, both by the developers and by others [22-26]. The MEANS criteria for MI 

are mainly based on pathological Q waves, QR ratio, and R-wave progression [27]. A cardiologist, 

specialized in ECG methodology, ascertained the final diagnosis of MI. QT interval was corrected 

for heart rate using Bazett’s formula in all analyses [28]. 

Genotyping and statistical analyses of the linkage study 

Illumina’s HumanHap6k Genotyping BeadChip (6K Illumina Linkage IV PanelsR) was used for 

genotyping for the linkage analyses. All genotyping procedures were performed according to the 

manufacturer’s protocols. Only markers with minor allele frequency (MAF) > 0.05 were selected 

for further analysis. Genotyping errors leading to Mendelian inconsistencies were detected using 

PedCheck [29]. Unlikely double recombination events were detected using MERLIN [30]. All 

observed Mendelian errors were eliminated from the data. A total of 5250 autosomal SNPs with a 

call rate greater than 95% were included in the linkage analyses. All traits were adjusted for age, 

sex, BMI and height and inverse-normal transformation of ranks was applied before analysis. One 

thousand five hundred and forty-seven people with complete ECG, covariate, and genotype data 
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were included in the initial analysis. Variance component multipoint linkage was performed using 

the –vc option in the MERLIN v.1.0.1 software [30, 31]. This program calculates exact IBD sharing 

probabilities using the Lander-Green algorithm, requiring restriction of pedigree size. Because of 

this, the large single ERF pedigree with multiple loops was split into non-overlapping fragments of 

no more than 18 bits with the help of the PedSTR program [32]. Final variance component two-

point linkage analysis for the identified FCRL2 variant (rs74608430) was performed using Merlin in 

one large, single pedigree. 

Regions of interest with LOD > 1.9 were selected for further study [33]. Borders of the 

linkage areas were defined as LOD score minus 2 support intervals (LOD-2 SI) around the linkage 

peaks. Genes within the LOD-2 SI were annotated using SCAN (SNP and CNV Annotation 

Database1). 

Exome-sequencing 

Exomes for 1336 individuals from ERF were sequenced at the Center for Biomics, Department of 

Cell Biology, Erasmus MC, the Netherlands, using the Agilent V4 capture kit on an Illumina 

HiSeq2000 sequencer using the TruSeq Version 3 protocol. Mean depth base was 74.23x (median 

= 57x) and mean depth region was 65.26x (median = 52.87x). The sequence reads were aligned to 

the human genome build 19 (hg19) using BWA and the NARWHAL pipeline [34, 35]. The aligned 

reads were processed further using the IndelRealigner, MarkDuplicates, and TableRecalibration 

tools from the Genome Analysis Toolkit (GATK) and Picard2 to remove systematic biases and to 

recalibrate the PHRED quality scores in the alignments. Genetic variants were called using the 

Unified Genotyper tool of the GATK. About 1.4 million Single Nucleotide Variants (SNVs) were 

called and, after removing the low quality variants (QUAL < 150), we retrieved 577,703 SNVs in 

1,309 individuals. Linear regression analyses, with SNVs in an additive model, were conducted on 

ECG measures, adjusted for age, sex, BMI, and height. To reduce the burden of multiple testing, 
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we assessed only damaging variants in the LOD-2 SI; we found 324 such variants for QT, 52 for QRS 

and 61 for PR. We employed a Bonferroni correction for the number of deleterious mutations 

selected for each trait (QT: P = 1.5 × 10-4, QRS: P = 9.6 × 10-4, and PR: P = 8.2 × 10-4). The proportion 

of trait variance explained by the SNP was calculated using the Merlin software [30]. 

Replication 

We sought to replicate our findings in the Rotterdam Study (RS) cohort. The RS is an ongoing 

prospective cohort study conducted since 1990 in the city of Rotterdam in The Netherlands [36]. 

The Illumina Exome BeadChip array (“exome chip”) was developed through a large international 

initiative to efficiently study coding variants spanning the genome. The v1.0 array contains 

247,870 variants, which were genotyped in 3,183 individuals from the RS population. Calling for 

this sample, and numerous others, was done centrally (in total, 62,267 samples). After rigorous 

quality control and exclusion of variants that were monomorphic or too rare to analyze, the final 

dataset consisted of 108,678 polymorphic variants in 3,163 individuals. 

Bioinformatics analysis 

To predict the functionality of genetic variants, and for comparison to BWA and NARWHAL, 

annotations were also performed using the dbNSFP (database of human non-synonymous SNPs 

and their functional predictions3 and Seattle4 databases. These databases gave functional 

prediction results from four different programs (PolyPhen-2, SIFT, MutationTaster, and LRT) [37-

40], in addition to gene and variant annotations. Genes containing nominally significant variants 

(Table 2) were analyzed using Ingenuity Pathway Analysis (IPA; Ingenuity systems Inc, Redwood 

city, CA, USA). Several IPA modules were implemented: the “core analysis” was used to assess 

pathways, relationships, and mechanisms relevant to the dataset; the “upstream regulator 

analysis” was implemented to identify molecules (including microRNA and transcription factors) 

that may affect expression levels; and the “downstream effects analysis” was utilized to predict 
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downstream biological processes that are increased or decreased5. The GEO2R6 tool was used to 

analyse microarray-based expression data in the GEO database (GEO Accession numbers: GSE2240 

and GSE41177). The Gene Network tool7 was used to describe co-expression networks and to 

assess potential functional effects of identified genes. 

  

Table 2. Selection of the coding variants 
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Trait 

 

Locus 

 

Variants in the coding region 

 

Observations <=5% 

 

Predicted to be damaging 

   

 

 

 

 

Synonymous 

 

Missense 

 

Stop 

 

Splice 

 

Total 

 

Missense 

 

Stop 

 

Splice 

 

Missense 

 

Stop 

 

Splice 

 

Genes 

QT 1 3110 5089 117 36 8353 660 0 4 207 2 0 

DENND2C, RWDD3, FCER1A, GPR25, 

CD1C, OMA1, LIX1L, LRRC8B,TPR, 

HOOK1, GTF2B, TXNIP, DDR2, CNN3, 

RBM15, BCL9, IVNS1ABP TNN, CEPT1, 

ACOT11, SARS, VAV3, TOMM40L, GABPB2, 

RFX5, ETV3L, APOBEC4, KIAA1614 

ASPM,SPRR3, CEP350, C1orf168 COL24A1, 

SEMA6C, C1orf49, CACNA1S, IVL, VSIG8, 

EDEM3, HMCN1, TBX19, GLRX2, IFI16, 

PODN,INADL, MPL, HYI, CAPZA1, 

AMIGO1, HCN3, RTCD1, OR10J1, FLG, 

DMRTB1,SPTA1, HFM1,CFHR2, FCRL2, 

NCF2, CHIA, RBMXL1,C8A, SGIP1, FMO4, 

GBP1, CELSR2,ODF2L, PEAR1, FCRL1, 

SLC44A5, UROD,MOBKL2C, LRRC7, 

LRRC8C,IPO9,PRPF38B, MSH4, KIFAP3, 

LAMC2, PAQR6, ZNF687,MIER1, SMG7, 
TMEM61, ALX3,FAM189B, PDE4DIP, 

ATPAF1,C1orf50, PRRC2C, ZNF281, IGSF3, 

CRCT1, UQCRH, SLC27A3, NPHS2, PKLR, 

ATP1A4,TMEM125, TNR, , OVGP1, 

SHCBP1L, UHMK1, B4GALT2 

RNF220,PIAS3, KIF2C, TARS2, 

TMEM59,PIGK,CMPK1, PIK3R3, 

METTL11B CITED4,EFCAB7,TTF2, 

AXDND1, DDX20, IGSF9, 

LEPRE1,ADAMTSL4 WDR77, GNAT2, 

GPSM2, PPM1J, ABCA4, EXTL2, AP4B1, 

HIVEP3, UBQLN4, POLR3C, NEGR1, 

TBX15, GBP6, KIAA1324 DPYD,F5, 

GJA5,CYP4A22, HENMT1,MRPL37,TDRD5, 

ZBTB7B, SPATA6, FCRLB, ABL2, ZFYVE9, 

LAMC1, RHBG, DUSP12, ZYG11A, WDR3, 

FAAH, C1orf106 HSD3B1, CTSS, TRIM45, 

ALG6, ACP6, PRUNE, TRIM46, AGL, 

MAGI3, C1orf27, AL359075.1 SLC5A9, 
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EBNA1BP2, COL11A1, FGGY, AMPD1, 

FAM63A, GLT25D2, DMRTA2, EVI5, DPT, 

OR6P1 

2 1662 2444 40 17 4165 328 0 2 113 2 0 

CRYGA, TTN, ARMC9, GTF3C3, ADAM23, 

ZFAND2B, PER2, COL6A3, TNS1, PAX3, 

HDAC4, OBSL1, CAPN10, IGFBP5, 

TMEM198, ESPNL, SPAG16, COL4A3, 

ANKAR, NEUROD1, NOP58, DNAH7, 

IQCA1, CCDC141, KIF1A, CASP10, SSFA2, 

CRYGC, ECEL1, AP1S3, COL5A2, NDUFS1, 

ATF2, STK36, UNC80, ABCB6, KIAA1486, 

ANKMY1, C2orf67, PLEKHM3, CNPPD1, 

ALPP, EFHD1, ZSWIM2, C2orf62, AQP12B, 

WIPF1, PDE11A, GLB1L, CCDC150, DGKD, 

SERPINE2, ABCA12, ITGAV, IDH1, 

SPHKAP, FN1, CDK15, GPR35, WNT10A, 

CYP27A1, ACSL3, ANKZF1, DNAJC10, 

FBXO36, STK16, MYO1B, KLHL30, 

PIKFYVE, DES, ASNSD1 

QRS 1 1057 1446 25 17 2546 152 1 4 51 1 0 

OTUD3, PHC2, SYF2, DHDDS, EPB41, 

NBPF3, ZBTB40, COL16A1, RAP1GAP, 

C1orf38, EPHA10, MACF1, PADI4, 

LDLRAP1, RCC2, AK2, SEPN1, TMCO2, 

HSPG2, MAP3K6, TMCO4, CCDC28B, 

TMEM234 GRHL3, ALDH4A1, GJB4, 

MAN1C1, SERINC2, E2F2, MUL1, 

PHACTR4, MYOM3, SRRM1, RLF, 

TINAGL1, KIAA0319L, C1orf94, C1orf63, 

UBXN11, USP48 

PR 

9 375 656 8 5 1053 96 0 0 29 0 0 

DENND4C, CA9, FRMPD1, PLIN2, CCIN, 

IFT74, UBAP1, IFNA10, RECK, UNC13B, 

GRHPR, KIAA1045, FREM1, OR2S2, 

IFNA14, FAM154A, KIAA1797, RGP1, 

ALDH1B1, NOL6, (GALT; GALT; RP11-

195F19.29), PTPLAD2, DDX58 

14 440 792 24 6 1276 86 0 1 31 1 0 
HEATR5A, RABGGTA, LRRC16B, RBM23, 

CMA1, SUPT16H, MMP14, PARP2, CEBPE, 
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Table 2. Selection of the coding variants 

 

 

 

  

OR4K1, PRKD1, LRRC16B, MYH6, PSMB11, 

HEATR5A, LRP10, LRRC16B, TTC5, 

OR10G3, OR4N5, MYH6, TEP1, SDR39U1, 

TEP1, SLC7A7, LRP10, TEP1, ADCY4, 

(AL163636.2;AL163636.2;AL163636.2;RNAS

E4;RNASE4; RNASE4), PCK2, ARHGEF40, 

KLHL33 
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Results 

Table 1 shows the characteristics of the participants included in the discovery linkage analyses and exome 

sequencing, as well as the exome chip replication sample. There were no significant differences between the 

largely overlapping linkage and exome sequence groups. The replication sample was considerably older, and 

was characterized by increased frequency of hypertension (and BP differences), increased PR interval and 

decreased QT interval compared to the discovery samples. The three ECG traits studied (the QT, QRS, and PR 

intervals) demonstrated only modest pair-wise correlations in the discovery dataset (Supplementary Table 1).  

 

Table 1. Descriptive statistics of the study population 

  

 
Linkage Studies 

  
  

Exome-sequence  

  

 
ERF = 1860 

  
  

ERF = 1309  

 Mean (S.D.) Minimum  Maximum Mean (S.D.) Minimum Maximum  

Males (n, %) 775 (42%)   509 (40%)   

Age (years) 46.4 (13.8) 16.6 85.3 47.7 (14.1) 18.2 86.1 

BMI (kg/m2) 26.6 (4.6) 15.5 61.8 26.6 (4.4) 15.5 61.8 

Height (cm) 167.4 (9.1) 143.6 196.5 166.8 (9.1) 141.0 196.5 

Weight (kg) 75.9 (15.1) 41.9 161.0 74.29 (14.5) 42.1 161.0 

SBP (mm Hg) 137.7 (19.1) 85.5 217.0 138.3 (19.6) 85.5 239.0 

DBP (mm Hg) 79.6 (9.7) 54.5 120.0 79.5 (9.7) 53.5 127.5 

Hypertension 766 (41.1%)   549 (43%)   

PR 152 (22.4) 92 308 152.8 (22.4) 96.0 308.0 

QT 403.1 (22.4) 336.0 531.0 403.8 (22.0) 336.0 531.0 

QRS 96.8 (9.9) 68.0 120.0 96.7 (9.9) 68.0 120.0 
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Supplementary Table 2 shows the linkage results for the ECG traits, which yielded a total of five regions with 

suggestive LOD scores (LOD > 1.9). QT was suggestively linked to two regions, on chromosome 1 (LOD = 2.63) 

and on chromosome 2 (LOD = 2.05). A suggestive LOD score for QRS was observed on chromosome 1 (LOD = 

2.52) and, for PR, two suggestive regions were located on chromosomes 9 and 14 with LOD scores of 2.20 and 

2.29, respectively (Supplementary Table 2). Plots of the linked regions are shown in Figure 1. 

 
 

 

 
  

 

Figure 1. Linkage peaks for ECG traits 
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Our analysis of coding variants in these linked regions revealed 55,050 variants in coding regions of 

genes under the peaks, as described in Table 2. Of these mutations, 1334 had a frequency less than or equal to 

5%, 437 were predicted to be damaging by at least two of the prediction software packages used, and six were 

nonsense variants. By linkage peak, there were 207 missense damaging mutations and two nonsense 

mutations on 14 and 113 missense damaging mutations and two nonsense mutations on 2q32 for QT; 51 

missense mutations and one nonsense mutation on 1p36 for QRS; and 29 missense mutations on 9q21 and 31 

missense mutations and one nonsense mutation on 14q12 for PR. In total, 21 variants had nominal regression 

P-values less than 0.05 (the smallest P-values under each linkage peak were P = 2.8 × 10-4 for QT on 

chromosome 1, P = 2.3 × 10-2 for QT on chromosome 2, P = 2.6 × 10-2 for QRS on chromosome 1, P = 1.9 × 10-2 

for PR on chromosome 9, and P = 1.9 × 10-2 for PR on chromosome 14) without reaching the significance levels 

needed to account for multiple comparisons (Supplementary Table 3). Looking for known genes under the 

linkage peaks (Supplementary Table 4), we found two variants previously related to heart failure, TTN 

(rs72648923; P = 5.5 × 10-2, MAF = 1.4 × 10-2) and HSD3B1 (P = 3.9 × 10-2 MAF = 1.1 × 10-2). Neither achieved 

statistical significance after Bonferroni correction, although both genes were marginally associated with QT. 

Only a single variant, a C > G (Ser > Cys) variant in FCRL2 (rs74608430; P = 2.8 × 10-4, MAF = 1.9 × 10-2), 

approached the Bonferroni threshold for multiple-testing (P = 1.5 × 10-4). This variant, under the linkage peak 

on chromosome 1q23.1 for QT, is highly conserved (scorePhastCons = 0.998) and also predicted by PolyPhen-2 

to be damaging (0.999). In the whole ERF population, rs74608430 explained 2.42% of the heritability of QT 

(reducing the LOD to 1.1; h2 = 0.87%; P = 0.02). This finding was not replicated in the RS (P = 0.12, β = 0.14). A 

sequence kernel association test analysis of the gene also failed to achieve significance in the replication 

sample (P = 0.44). 

Not much is known about the function of FCRL2. Among the functions predicted by Gene Network are 

the regulation of cytosolic Ca2+ levels (P = 3.3 × 10-3) and AMPK stimulated fatty acid oxidation in muscle (P = 

4.1 × 10-3). In the GEO database, FCRL2 expression was higher in AF [41, 42]. Supplementary Figure 
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1A shows the genes co-expressed with FCRL2, according to Gene Network. Two genes that have been 

associated with ECG outcomes by GWAS emerge: ARHGAP24, associated with PR, and SETBP1, associated with 

QRS [12-14]. In the chromosome 1 region linked to QT, looking for co-expression, we found correlations 

between DMRTA2. CEP350, and MPL with genes previously associated with ECG traits: DMRTA2 is co-expressed 

with LRIG1, a QRS associated gene (Supplementary Figure 1B); MPL is in a module with MEIS1, associated with 

PR (Supplementary Figure 1C); and CEP350 interacts with CREBBP, associated with QT (Supplementary Figure 

1D). These three genes are not in linkage disequilibrium with each other. At the chromosome 2q34 locus linked 

with QT, a heart failure gene, TTN, was under the linkage peak. According to Gene Network analysis, 

expression of TTN is related to expression of three previously known QT genes (ATP1B, TCEA3, and PLN) and 

two QRS and PR associated genes (TBX20 and TBX5) (Supplementary Figure 1E) [8, 12-14]. Additionally, 

SPHKAP, on chromosome 2 under the QT linkage peak, is co-expressed with TBX5 (Supplementary Figure 1F). 

Discussion 

Linkage analysis is an important tool for the identification of genomic regions influencing trait variability. The 

role of TPM1 mutations with sudden death is a clear example of a locus discovered by linkage analysis [43, 44]. 

The advantages of family studies include control of heterogeneity and population stratification [43, 45]. We 

performed a linkage study on ECG measurements and identified five suggestive regions (1p35.1, 1q24.2, 2q34, 

9p22.2, 14q11.2). Rare variant analysis in these regions uncovered two genes related to heart failure, TTN (P = 

5.5 × 10-2) and HSD3B1 (P = 3.9 × 10-2) and one gene with unknown cardiac function FCRL2 (P = 2.8 × 10-4). 

None of them reaches statistical significance level after correction for multiple comparisons. 

This study was conducted in a large, well-characterized family-based cohort, ascertained on the basis 

of genealogy and not phenotype. Multiple levels of genetic data, including a linkage panel and exome sequence 

data, provided a powerful dataset for identifying variants that may not be easily discovered with GWAS. 

Unfortunately, exome data was not available in the whole cohort, which could limit our ability to identify 

causal variants. Additionally, the sequence data did not include extra-genic or intronic variants that may be 

responsible for the observed linkage peaks. 
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Our analysis of rare coding variants in these linkage regions revealed 55,050 variants in coding regions. 

One thousand three hundred and thirty-four of these mutations had a frequency less than or equal to 5% and 

437 were predicted to be damaging; none reached the significance threshold accounting for multiple 

comparisons. These variants spanned genes, including TTN and HSD3B1, which have been previously related to 

CVDs. HSD3B, a gene on chromosome 1 (1p13.1), has two isoforms (HSD3B1 and HSD3B2) that were found to 

be associated with an increase in plasma aldosterone [46]. Changes in circulating aldosterone levels can 

modulate BP and hypertrophy (HT). A genome wide linkage analysis revealed that HSD3B1 is a locus for BP 

variation [46]. 

Another interesting gene covered by these variants was TTN; this gene encodes a sarcomeric protein 

named Titin, with a crucial role in sarcomeric structural integrity and muscle elasticity. Mutations in TTN have 

been shown to cause heart failure in humans. Additionally, mouse models with TTN mutations exhibit weak 

heart contractility and heart failure [47-49] and hearts of mutant embryos displayed weak spontaneous 

contraction [49]. Additionally, the TTN network includes three QT associated genes, ATP1B, TCEA3, and PLN. 

TBX320, a QRS associated gene; and TBX5 (a QRS and QT associated gene). 

We also identified a less frequent C > G missense variant (rs74608430) in the FCRL2 gene under the 

linkage peak on chromosome 1p23.1. This variant explains 2.42% (h2 = 0.87%, P = 0.02) of the total genetic 

variance of QT (h2 = 36%) in the ERF population. FCRL2 has not been previously described with respect to 

cardiac function. Bioinformatics resources, however, showed that FCRL2 expression is associated with 

ARHGAP24 and SETBP1 expression, two genes implicated in ECG variability by GWAS. This suggests that FCRL2 

may be relevant for heart function. FCRL2 is expressed mostly in liver, heart, testis and kidney8. Gene Network 

predicts that it may be relevant for cytosolic Ca2+ levels and AMPK stimulated fatty acid oxidation in muscle. 

These are plausible pathways for QT function. This finding for rs74608430, however, was not replicated in the 

RS, in which the MAF was 2.9 × 10-2. The absence of replication could be related to environmental differences 

influencing complex gene-environment interactions between these two study groups [50]. Another plausible 
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explanation is that, due to longer stretches of linkage disequilibrium in the family-based ERF sample, 

rs74608430 is tagging another variant in ERF and this is not the case in the general population. 

Further, Ingenuity analysis revealed that FCRL2 is correlated with some microRNAs (such as miR-1263, 

miR337-5p, miR-4699-3p, miR518e-3p, miR-507, miR3689a-5p, miR-507, miR-3622a-5p, miR-450b-5p, miR-

4720-3p, and miR-1253). Among these, miR-337-5p is known to be differentially expressed in patients with 

valvular heart disease and patients with chronic AF [51]. This is consistent with the GEO database at NCBI9, 

which suggests that FCRL2 is upregulated in patients with AF and dilated cardiomyopathy. In summary, the 

bioinformatics data available for this gene supports the hypothesis that FCRL2 may be involved in heart 

function, and, specifically, related to ECG variability. 

Additional interesting genes have been uncovered under the linkage peaks. First, the PR linkage peak 

on chromosome 14 contains damaging variants in the alpha and beta subunits of cardiac myosin MYH6 and 

MYH7. Previous studies showed that genetic variants in these two genes have been found in hypertrophic 

cardiomyopathy [52-56], dilated cardiomyopathy [56, 57] and atrial septal defect [58]. Second, we found 

TNNT2 under the linkage peak on chromosome 1 for QT, which harbors known mutations underlying 

hypertrophic cardiomyopathy [59] and familial dilated cardiomyopathy [57]. 

No explanatory variants were found for the other loci, for which there are a number of potential 

explanations. Linkage peaks are not precise in highlighting the location of the causal variant; even the region of 

interest cannot be easily pinpointed. Additionally, we did not take into account alternative forms of genetic 

variation, such as structural and copy number variations (CNVs) or repeats in the linkage regions. Lastly, causal 

rare variants may be located outside the coding sequence, which we did not include in our sequencing 

analyses. 
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Conclusion 

Although the combination of linkage and exome sequencing did not lead to the identification of a causal 

variant, suggestive linkage regions contain a number of plausible candidate genes, including FCRL2. TTN, MYH6, 

MYH7, TNNT2, and HSD321. Further analysis will need to be performed to demonstrate the involvement of 

these proteins in ECG measurements. We could not explain these with exonic sequence variants, so they will 

require more extensive follow-up, but provide potentially important indicators of the location of variation 

influencing ECG. 
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Abstract 

Background. Electrocardiographic measures of left ventricular hypertrophy (LVH) are used as 

predictors of cardiovascular risk. We combined linkage and association analyses to discover novel 

rare genetic variants involved in three such measures and two principal components derived from 

them. 

Methods. The study was conducted among participants from the Erasmus Rucphen Family Study 

(ERF), a Dutch family-based sample from the southwestern Netherlands. Variance components 

linkage analyses were performed using Merlin. Regions of interest (LOD > 1.9) were fine-mapped 

using microarray and exome sequence data. 

Results. We observed one significant LOD score for the second principal component on 

chromosome 15 (LOD score = 3.01) and 12 suggestive LOD scores. Several loci contained variants 

identified in GWAS for these traits; however, these did not explain the linkage peaks, nor did other 

common variants. Exome sequence data identified two associated variants after multiple testing 

corrections were applied. 

Conclusions. We did not find common SNPs explaining these linkage signals. Exome sequencing 

uncovered a relatively rare variant in MAPK3K11 on chromosome 11 (MAF = 0.01) that helped 

account for the suggestive linkage peak observed for the first principal component. Conditional 

analysis revealed a drop in LOD from 2.01 to 0.88 for MAP3K11, suggesting that this variant may 

partially explain the linkage signal at this chromosomal location. MAP3K11 is related to the JNK 

pathway and is a pro-apoptotic kinase that plays an important role in the induction of 

cardiomyocyte apoptosis in various pathologies, including LVH. 
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Background 

Left ventricular hypertrophy (LVH) is a predictor of increased cardiovascular morbidity and 

mortality [1]. Those with LVH have a 2-fold increased risk of adverse events, particularly ischemic 

heart disease and chronic heart failure [2, 3]. Increased left ventricular mass maintains cardiac 

pump performance in response to cardiovascular insults, such as coronary heart disease [3, 4]. 

Risk factors for LVH are elevated systolic blood pressure, obesity, hypertension, insulin resistance, 

valvular heart disease and advanced age, among others [2, 5, 6]. LVH proxy measurements can be 

assessed through noninvasive methods, such as echocardiography and magnetic resonance 

imaging, however, electrocardiographic measurements are the most used worldwide [7]. LVH 

proxy measurements include calculations of the Sokolow-Lyon index (SL), the Cornell voltage 

product (CV) and the 12-lead sum QRS product (12LS). Several studies have demonstrated that 

genetic factors influence electrocardiographic and echocardiographic measures of LVH [2, 4, 5, 8, 

9]. We recently demonstrated that these measures contain a substantial heritable component 

(SL = 0.46, 12LS = 0.49 and CV = 0.34) [10]. 

Genome-wide linkage analyses, candidate gene association studies, genome-wide 

association studies (GWAS) and gene mapping have been conducted to identify genes influencing 

LVH. In the first GWAS of these traits, two loci, PTGES3 and NMB, reached genome-wide 

significance. IGF1R and SCN5A were identified and replicated without reaching genome-wide 

significance [5]. Recently, an expanded GWAS detected a number of novel loci influencing CV, SL, 

and 12LS [11]. Among these were 32 loci containing genes with known cardiac function, coding for 

cardiac sarcomere components or related to cardiac myocyte function. Evidence for linkage of 

echocardiographic LV mass to chromosome 5 (LOD score = 1.6) and electrocardiographic LV mass 

to chromosome 7 (LOD score = 1.67) [8] and chromosome 12 (LOD score = 2.19 and 3.11) [8, 12] 
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were reported in linkage studies, with the strongest evidence for chromosome 12 [3]. As is the 

case for other complex outcomes, most candidate genes studies have not been replicated and do 

not reach genome-wide significance [3]. 

Exome sequencing has been successfully used for Mendelian disorders [13]. More 

recently, this technology has been extended to the analysis of non-Mendelian diseases and 

complex traits, as rare variants with large effects can contribute to the heritability of common 

traits. The aim of this study was to discover rare variants by linkage analysis in a large family-based 

study, the Erasmus Rucphen Family (ERF) study. Linked regions were fine-mapped in detail using 

microarray data and exome sequencing. 

Methods 

Study population 

The ERF study is a family-based study including over 3000 participants descendant from 22 couples 

that lived in the Rucphen region in the southwest Netherlands in the nineteenth century [14]. All 

descendants of those couples were invited to visit the clinical research center in the region where 

they were examined in person [15]. Interviews at the time of blood sampling were performed by 

medical practitioners and included questions on current medication use and medical history [16]. 

Additionally, participants were asked to bring their current medications with them to the study 

center; these were cross-referenced with general practitioner and pharmacy records. Height and 

weight were measured with the participant in light underclothing and body mass index (kg/m2) 

was computed. Blood pressure was measured twice on the right arm in a sitting position after at 

least 5 min rest, using an automated device (OMRON 711, Omron Healthcare, Bannockburn, IL, 

USA). The average of the two measures was used for analysis. Hypertension status was identified 
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through the use of antihypertensive medication and/or through the assessment of blood pressure 

measurements according to the guidelines of the World Health Organization [17]. The Medical 

Ethics Committee of the Erasmus University Medical Center approved the ERF study protocol and 

all participants, or their legal representatives, provided written informed consent. 

ECG interpretation and measurements 

Examinations included 12-lead ECG measurements. A 10 s 12-lead ECG (on average, 8 to 10 beats) 

was recorded with an ACTA-ECG electrocardiograph (Esaote, Florence, Italy) with a sampling 

frequency of 500 Hz. Digital measurements of the ECG parameters were made using the Modular 

ECG Analysis System (MEANS) [18, 19]. Briefly, MEANS operates on multiple simultaneously 

recorded leads, which are transformed to a detection function that brings out the QRS complex 

and the other parts of the signal. MEANS determines common onsets and offsets for all 12 leads 

together on one representative averaged beat, with the use of template matching techniques. The 

measurement and diagnostic performance of MEANS has been extensively evaluated, both by the 

developers and by others [19-22]. The MEANS criteria for MI are mainly based on pathological Q 

waves, QR ratio, and R-wave progression [20]. A cardiologist, specialized in ECG methodology, 

ascertained the final diagnosis of MI. 

MEANS was used to measure QRS complex duration and the three LVH proxies. Sokolow-

Lyon was defined as the sum of the S wave in V1 plus the R wave in V5 or V6, Cornell as the sum of 

R in aVL and S in V3, and 12-lead as the sum of R to S in all 12 leads; these three voltages were 

then multiplied by QRS duration to obtain voltage-duration products as an approximation of the 

area under the QRS complex [21-23]. Principal component (PC) analysis was applied to the three 

original measurements (SL, 12LS and CV) to capture the correlation structure between traits. Two 
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PCs, PC1 and PC2, captured more than 94% of the total variance and were also assessed as 

phenotypes in these analyses. All traits were adjusted for sex, age, BMI and height and the 

residuals were rank transformed prior to analysis. 

Genotyping and statistical analysis of the linkage study 

Illumina’s HumanHap6k Genotyping BeadChip (6 K Illumina Linkage IV Panels®) was used for 

genotyping for the linkage analyses. All genotyping procedures were performed according to the 

manufacturer’s protocols. Only markers with a minor allele frequency (MAF) > 0.05 were selected 

for further analysis. Genotyping errors leading to Mendelian inconsistencies were detected using 

PedCheck [24]. Unlikely double recombination events were detected using MERLIN [25]. All 

detected errors were eliminated from the data. A total of 5250 autosomal SNPs with a call rate 

greater than 95% were utilized for the linkage analyses. Among the 2385 individuals who were 

phenotyped for LVH measures, 1860 people also had genotype data and were included in the 

linkage study. Variance component multipoint linkage was performed using the --vc option in 

MERLIN v.1.0.1 [25, 26]. This program calculates exact IBD sharing probabilities using the Lander-

Green algorithm, requiring restrictions on pedigree size. Because of this, the single ERF pedigree 

with multiple loops was split into non-overlapping fragments of no more than 18 bits with the help 

of the PedSTR program [27]. 

Regions of interest with LOD > 1.9 were selected for further analysis. Borders of the 

linkage areas were defined as LOD score minus 2 support intervals (LOD-2 SI) around the linkage 

peaks. Genes within the LOD-2 SI were annotated using SCAN (SNP and CNV Annotation 

Database). 
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Genotyping and statistical analysis of the association study 

Of 2385 phenotyped people, dense genotypes were available for 2128 subjects, typed on 3 

different genotyping platforms (Illumina 318 K, Illumina 370 K and Affymetrix 250 K), which were 

merged first (median number of quality controlled SNPs per individual = 325,500) and then ~ 2.54 

million SNPs were imputed using MACH (v1.0.16) [28, 29], with the HapMap build 36 (release 22) 

CEU population as reference. Within each genotyping batch, only SNPs with a call rate > 98%, 

MAF > 1% and Hardy-Weinberg Equilibrium P-value > 10− 6 were used for imputations. To account 

for relatedness, a genomic kinship matrix was computed in GenABEL [30]. This matrix was then 

incorporated into linear mixed-effects regression models, as implemented in ProbABEL [31], which 

were used to assess the association of variants in the LOD-2 SI with the LVH phenotypes. P-values 

were adjusted with the FDR-based q-value technique [32]. 

Exome sequencing 

The exomes of 1336 individual from the ERF population were sequenced “in-house” at the Center 

for Biomics of the Department of Cell Biology of the Erasmus MC, the Netherlands, using the 

Agilent version V4 capture kit on an Illumina HiSeq 2000 sequencer using the TruSeq Version 3 

protocol. Mean depth base was 74.23× (median = 57×) and mean depth region was 65.26× 

(median = 52.87×). The sequence reads were aligned to the human genome build 19 (hg19) using 

BWA and the NARWHAL pipeline [33, 34]. The aligned reads were processed further using the 

IndelRealigner, MarkDuplicates and TableRecalibration tools from the Genome Analysis Toolkit 

(GATK) and Picard (http://broadinstitute.github.io/picard/) to remove systematic biases and to 

recalibrate the PHRED quality scores in the alignments. Genetic variants were called using the 

Unified Genotyper tool of the GATK. About 1.4 million Single Nucleotide Variants (SNVs) were 
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called and, after removing the low quality variants (QUAL < 150), we retrieved 577,703 SNVs in 

1309 individuals. ECG and covariate data were available for 1072 of these samples. Further, for 

comparison and to predict the functionality of the variants, annotations were also performed 

using the dbNSFP (database of human non-synonymous SNPs and their functional predictions, 

http://varianttools.sourceforge.net/Annotation/DbNSFP) and Seattle 

(http://snp.gs.washington.edu/SeattleSeqAnnotation138/) databases. These databases gave 

functional prediction results from four different programs, PolyPhen-2, SIFT, MutationTaster and 

LRT, apart from gene and variant annotations. 

We employed a Bonferroni correction for the number of deleterious mutations selected 

for each trait to correct for multiple comparisons in the exome data: 101 for SL (P-

value = 4.9 × 10− 4), 98 for CV (P-value = 5.1 × 10− 4) and 60 for 12 LS (P-value = 8.3 × 10− 4). For 

the PCs, the numbers were 141 for PC1 (P-value = 3.5 × 10− 4) and 71 for PC2 (P-

value = 7.0 × 10− 4). 

Replication 

Four SNPs (rs139580877, rs138968470, rs35996030 and rs142551296) were selected for 

replication in the Rotterdam Study (RS). The Rotterdam Study is a prospective cohort study 

ongoing since 1990 in the city of Rotterdam in the Netherlands [35]. 

Exomes from 1764 individuals from the RS population were sequenced at an average 

depth of 20× using the Nimblegen SeqCap EZ V2 capture kit on an Illumina HiSeq 2000 sequencer 

and the TrueSeq Version 3 protocol. The sequence reads were aligned to hg19 using BWA. 

Subsequently, the aligned reads were processed further using Picard, SAMtools and GATK. Genetic 

variants were called using the Unified Genotyper Tool from GATK. Samples with low concordance 
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to genotyping array (< 95%), low transition/transversion ratio (< 2.3), high heterozygote to 

homozygote ratio (> 2.0) and low call rate (< 80%) were removed from the data. SNVs with a low 

call rate (< 90%) and out of HWE (P-value < 10− 6) were also removed from the data. The final 

dataset consisted of 635,814 SNVs in 1450 individuals with complete phenotype and covariate 

data. 

One SNP, rs139580877, was not available in the Rotterdam Study exome data. This variant 

was imputed using the GIANT 1000 Genomes Phase I Version 3 All reference panel, as previously 

described [36]. In brief, after filtering SNPs genotyped with the Illumina v3 Infinium II 

HumanHap550 microarray for deviations from Hardy-Weinberg proportions (P < 1 × 10− 6), call 

rate (< 98%), MAF (< 0.01), and Mendelian errors (> 100), MACH was used to perform the 

imputations. 

Results 

Table 1 shows characteristics of the participants in the LVH linkage, microarray, and exome 

sequence analyses. The proportion of LVH cases for each proxy measure was determined using 

published cut-off values [37, 38]. There were no significant differences between these overlapping 

groups. Table 2 shows the correlation between the traits (r = 0.76 in the adjusted model for SL and 

12LS, 0.17 between SL and CV, and 0.48 for CV and 12LS). Table 3 shows the loadings of the three 

LVH proxies (SL, CV, 12LS) to the two PCs that were constructed. PC1 predominantly captured SL 

and 12LS, while PC2 correlated strongly with CV and moderately with SL. Table 4 shows the linkage 

results for the LVH proxy measures, which yielded a total of seven regions with suggestive LOD 

scores (LOD > 1.9). SL was linked to three regions, with the highest LOD score for chromosome 20 

(LOD = 2.64) and two additional regions on chromosomes 4 (LOD = 2.14) and 15 (LOD = 1.92). 
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Suggestive LOD scores for CV were seen on chromosomes 1 (LOD = 2.4) and 6 (LOD = 2.17). There 

was suggestive linkage of 12LS to chromosomes 5 (LOD = 2.18) and 20 (LOD = 2.12). Linkage results 

for the principal component analysis of the LVH measures showed one significant LOD score for 

PC2 on 15q11.2 (LOD = 3.01). This region was also linked to SL (LOD = 1.92). Two regions were 

suggestively linked to PC1: 11q13.4 (LOD = 2.01) and 20p12.1 (LOD = 2.83), which was also linked 

to SL and 12LS. For PC2, there were three suggestive linkage results, for chromosomes 6 

(LOD = 2.09), 9 (LOD = 2.35) and 22 (LOD = 1.99). The chromosome 6 region was also linked to CV. 

Plots showing the linked regions by chromosome are provided in Fig. 1. Table 5 shows the top 

common variant microarray-based association signals under the LVH trait linkage peaks, including 

P-values and MAF for each SNP. None achieved statistical significance after correction for multiple 

comparisons. 
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 LVH GWAS Linkage Studies Exon sequence  

 n = 2128 n = 1860 n = 1309 

 

 

Mean (S.D.) 

 

Minimum  

 

Maximum 

  

 

Mean (S.D.) 

 

Minimum  

 

Maximum 

  

 

Mean (S.D.) 

 

Minimum  

 

Maximum 

  

Males 899 (42%)   775 (42%)   408 (38%)   

Age (y) 47.0 (13.82) 16.6 85.3 46.5 (13.79) 16.6 85.3 46.51 (13.7) 18.7 81.0 

BMI (kg/m2) 26.7 (4.57) 15.5 61.8 26.7 (4.58) 15.5 61.8 26.4 (4.3) 15.5 61.8 

Height (cm) 167.6 (9.31) 139.3 196.5 167.4 (9.19) 143.6 196.5 166.7 (9.0) 143.6 196.5 

Weight (kg) 75.1 (15.16) 41.9 161.0 74.9 (15.5) 41.9 161 73.6 (14.3) 42.1 161.0 

SBP (mm Hg) 138.4 (19.5) 85.5 222.0 137.7 (19.1) 85.5 217.0 137.0 (18.7) 85.5 216.0 

DBP (mm Hg) 79.9 (9.8) 53.5 124.0 79.7 (9.7) 54.5 120.0 79.1 (9.6) 53.5 120.0 

Hypertension 913 (43%)   766 (42%)   549 (51%)   

SL 2344 (690.6) 884.0 5288.0 2341 (690.6) 884 52.9 2319 (659.0) 967 5288.0 

CV 1173.5 (505.1) 93.1 4126.1 1170.0 (497.3) 93.1 3952.8 1151.6 (659.0) 155.8 3853.0 

12LS 

13,862 (3812.3) 4993 39250 13,805 

(3767.8) 49.9 39.2 13,610.0 (3628.7) 5485.0 36,364 

LVH (SL) 138 (6.5%)   120 (6.4%)   66 (6.2%)   

LVH (CV) 41 (1.9%)   32 (1.7%)   20 (1.9%)   

LVH (12LS) 176 (8.3%)   147 (7.9%)   76 (7.1%)   

 

Table 1. Descriptive statistics of the Erasmus Rucphen Family (ERF) study population 
Values presented are mean (standard devition) or n (%) 
BMI: Body Mass Index, SBP: Systolic blood pressure, DBP: Diastolic blood pressure, SL: Sokolow-Lyon index, CV: Cornell product, 12LS: 12-lead 
sum product. 
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Unadjusted 

 

Adjusted 

 

SL – 12LS 0.80 0.76 

SL – CV 0.29 0.17 

CV – 12LS 0.56 0.48 

 
Table 2. Pearson’s correlations between LVH proxy measures 
SL: Sokolow-Lyon; CV: Cornell Voltage product; 12LS: twelve-lead sum product; PC1: first principal 
component; PC2: second principal component.  
Adjusted model included age, sex, body-mass index, and height. 
 

 
  

Principal Component 

 PC1 PC2 

SL 0.84 -0.48 

CV 0.61 0.78 

12LS 0.95 -0.08 

 
Table 3. PC Loadings for LVH Proxies 
SL: Sokolow-Lyon; CV: Cornell Voltage product; 12LS: twelve-lead sum product; PC1: first principal 
component; PC2: second principal component.  
Adjusted model included age, sex, body-mass index, and height. 
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Trait N Chr. SNP Position (cM) LODMAX 

SL 1860 4 rs1032328 144.46 2.14 

SL 1860 15 rs290370 112.3 1.92 

SL 1860 20 rs204115 38.11 2.64 

CV 1860 1 rs6619 59.63 2.4 

CV 1860 6 rs2040431 108.31 2.17 

12LS 1860 5 rs1442470 42.3 2.18 

12LS 1860 20 rs466243 40.7 2.12 

PC1 1860 11 rs1530354 65.21 2.01 

PC1 1860 20 rs2077147 45.09 2.83 

PC2 1860 6 rs1391503 99.69 2.09 

PC2 1860 9 rs748530 40.22 2.35 

PC2 1860 15 rs1562203 0 3.01 

PC2 1860 22 rs138383 46.89 1.99 

 
Table 4.  Results of linkage analyses  

PC1: first principal component; PC2: second principal component; N: sample size; Chr.: 
chromosome; LODMAX: LOD score at SNP. 
Model adjusted for age, sex, body-mass index, and height. 
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Figure 1. Linkage peaks for the LVH proxy measures. Plots depicting the linked regions by trait and 

chromosome. The grey dashed horizontal line indicates the threshold for suggestive linkage. The 
red dashed vertical lines show the borders of the LOD score minus 2 support intervals (LOD-2 SI). 
The blue circles contain SNPs identified in previous GWAS for these traits in the LOD-2 S 
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Table 5.  Top association signal under LVH trait linkage peaks 
SL: Sokolow-Lyon; CV: Cornell Voltage product; 12LS: twelve-lead sum product; PC1: first principal 
component; PC2: second principal component; MAF: minor allele frequency. 

Variants in the coding sequence 

The results of the search for less frequent exonic variants are summarized in Additional file 1: 

Table S1. We focused on relatively rare (frequency < 5%) missense variants predicted to be 

deleterious by at least two of the prediction algorithms used and non-sense variants. This 

selection yielded 471 variants in 356 genes in the 13 linkage intervals (LOD-2 SI), which we 

analysed with respect to the LVH proxy measures and PCs. Additional file 1: Table S2 shows the 

results with a nominal P-value ≤0.05 after regressing out the effects of age, BMI, height and sex. 

This effort uncovered an A > G variation (rs139580877) in the SPEF2 gene on 5p13.2, which was 

significantly associated with 12LS when adjusted for multiple testing (P-value = 4.2 × 10− 4). This 

variant, with 108 carriers in ERF, is predicted to be probably damaging by PolyPhen-2 with a score 

of 0.972 and as deleterious by SIFT with a score ranging between 0.02 and 0.03. It is a missense 

variant, among more than 2000 described for this gene. In the principal components analysis, 

rs138968470, on 11q13.1 in the MAP3K11 gene, was associated with PC1 adjusted for multiple 

testing (P-value = 3.5 × 10− 4). SKAT-O and burden tests provided some supporting evidence for 

 

Outcome 

 

Region 

 

SNP 

 

MAF 

 

Gene 

 

P-value 

 

Q-value 

 

SL 4q26 rs6839953 0.27 TRAM1L1 1.34x10-4 0.47 

SL 15q26.2 rs11074275 0.48 MCTP2 4.27x10-4 0.79 

SL 20p12.1 rs721243 0.19 ISM1 7.37x10-5 0.15 

CV 1p35.1 rs16835131 0.06 SYNC 1.35x10-5 0.35 

CV 6q15 rs10944412 0.27 RNGTT 4.60x10-5 0.93 

12LS 5p15.2 rs2589661 0.10 ROPN1L 1.26x10-4 0.46 

12LS 20p11.23 rs6106235 0.18 C20orf26 1.69x10-5 0.09 

PC1 11q12.2 rs1790325 0.04 FADS1 2.85x10-5 0.08 

PC1 20p12.1 rs13036282 0.005 SPTLC3 2.30x10-4 0.63 

PC2 6q16.3 rs1475922 0.06 GRIK2 1.64x10-4 0.94 

PC2 9p24.1 rs10975939 0.003 KDM4C 4.67x10-4 1.00 

PC2 15q11.2 rs8043191 0.03 CYFIP1 5.95x10-3 0.52 

PC2 22q13.33 rs2688089 0.45 C22orf34 7.02x10-5 0.56 



Chapter 4 

 
78 

the association of this gene with LVH proxy measures (Additional file 1: Table S3). Additionally, at 

the SL chromosome 4 locus, we identified a C > G variation (rs142551296) in PRSS12 that 

approached significance (P-value = 8.4 × 10− 4). A second, more common intragenic variant inside 

PRSS12 was nominally associated (rs35996030; P-value = 0.04). We re-ran the linkage analyses 

conditioning on these variants to see if they explained the observed linkage signals. For PC1, the 

LOD score in the 11q13.4 linkage region dropped in the conditional analysis (from 2.01 to 0.88), 

suggesting that the associated variant (rs138968470), or neighbouring variants in linkage 

disequilibrium (LD), explained the linkage signal. This variant also showed evidence of association 

with the two traits (12LS and SL) underlying PC1 (P-value = 3.0 × 10− 4 and P-value = 1.2 × 10− 3, 

respectively). Using Gene Network (http://genenetwork.nl/gene/ENSG00000173327), to perform 

in-depth analyses of the expression of MAP3K11, demonstrated that its expression is strongly 

linked to rho signalling (ARGHGEF15, ARHGDIA) (Fig. 2). 
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Figure 2.  MAP3K11 gene network interactions. 
Looking for interactions for MAP3K11, we searched Gene Network 
(http://genenetwork.nl/gene/ENSG00000173327). One hundred twenty-nine gene-gene 
interactions are shown 
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Five of the linkage peaks contained loci recently identified in GWAS studies [5, 11]. To 

determine if the linkage signals were a result of those common variants, linkage was performed a 

second time, conditioned on the GWAS index SNPs. These analyses demonstrated that the 

observed peaks were not explained by the GWAS SNPs, although the estimates fluctuated 

somewhat, likely as a result of smaller sample sizes (Additional file 1: Table S4). 

Replication 

Summary statistics for the Rotterdam Study sample are provided in Additional file 1: Table S5. The 

variant rs139580877 was imputed, using the 1000 Genomes reference panel; the imputation 

quality score (MACH RSQ) for this variant was 0.65, with a minor allele frequency of 0.008. The 

effect estimate for 12LS was essentially zero, and therefore, did not replicate the ERF findings 

(Additional file 1: Table S6). The other variants of interest, rs35996030, rs138968470 and 

rs142551296, were directly genotyped in a subset of the Rotterdam Study cohort (n = 1450). There 

was no evidence of association for any of these variants in the Rotterdam Study. 

Discussion 

We performed a linkage study on LVH proxy measurements, and PCs, and identified one significant 

locus (15q11.2) and 10 suggestive regions (1p34, 4q31, 5p14, 6q15, 6q21, 9p21, 11q13.4, 15q25, 

20p12, 22q13). Exome variant analysis in these regions uncovered a missense coding variation in 

MAP3K11 on 11q134 for PC1; the MAP3K11 variant substantially decreased the LOD score for this 

peak. The 24 carriers of this missense mutation clustered into five pedigrees in the ERF population 

(Additional file 1: Figure S2). 
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Genetic variants discovered by GWAS, based on individual single-nucleotide 

polymorphisms (SNPs), explain only a small proportion of the heritability of complex traits [10, 39, 

40]; we found variants with larger effect sizes compared to the ones found with GWAS. Our 

analysis of rare coding variants in these linkage regions revealed a variant, rs138968470 on 

11q13.1 in the MAP3K11 gene, associated with PC1. Conditional linkage analysis, including the 

MAP3K11 variant, reduced the LOD score (from 2.01 to 0.88), suggesting that this variant largely 

explained the linkage signal at this chromosomal location. The SNP is located in the first exon of a 

gene encoding a protein that belongs to the serine/threonine kinase family of mitogen-activated 

protein kinases. MAP3K11 (also known as Mixed Lineage Kinase 3 (MLK3)) [34], works as a positive 

regulator of the c-Jun N-terminal kinase (JNK) signalling pathway [41]. MAP3K11 has a CDC42 and 

Rac interacting proteins binding domain (CRIB); autophosphorylation of MAP3K11 and the 

induction of JNK is mediated through this CRIB domain bound to Cdc42/Rac/GTP [42]. JNK, an 

important member of the mitogen-activated protein kinase family (MAPK), is a pro-apoptotic 

kinase that plays an important role in the induction of cardiomyocyte apoptosis in various 

pathologies [43]. Apoptosis increases with LVH, a critical mechanism that mediates the transition 

from compensated hypertrophy to heart failure [44]. In this way, a damaging mutation in 

MAP3K11 may be related to regulation of JNK and the subsequent JNK controlled pathway. 

The other significant missense variant was rs139580877, located on 5p14. This variant is in 

exon 9 of the gene that encodes the sperm flagellar protein (SPEF2), which has been postulated to 

play an important role in spermatogenesis and flagellar assembly [45]. This SNP was not found to 

be responsible for the linkage signal in the region, despite its strong association. The association 

with this relatively common variant (MAF = 0.015) could not be confirmed in the Rotterdam Study. 

One additional finding was studied further: a C/G variant (rs142551296) in the PRSS12 gene, 

underlying the SL locus on chromosome 4, which approached significance (P-value = 8.4 × 10− 4), 
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but did not replicate in the Rotterdam Study. Absence of replication could be related to 

imputation quality for rs139580877 and the low number of carriers for the other SNPs (Additional 

file 1: Table S4). 

A number of the linkage peaks contained SNPs identified in a large GWAS of these traits. 

Linkage analysis, conditioned on the index SNPs from the GWAS, did not significantly alter the 

linkage results. This suggests that the linkage peaks were not driven by the common variants 

identified in the GWAS. 

No explanatory variants were found for most of the loci (suggestively) linked to LVH, for 

which there are a number of potential explanations. Linkage peaks are not precise in highlighting 

the location of the causal variant; even the region of interest cannot be easily pinpointed. 

Additionally, we did not take into account alternative mechanisms, such as structural and copy 

number variations (CNVs) or repeats in the linkage regions. Lastly, causal rare variants may be 

located outside the coding sequence, which we did not include in our sequencing analyses. 

Conclusions 

In conclusion, 13 loci were identified for ECG LVH proxy measures and PCs using linkage analysis in 

a large pedigree; these were subsequently fine-mapped with microarray and exome sequence 

data. Common variation from the microarrays did not explain these peaks. The exome data, 

though, suggested the involvement of MAP3K11 (11q13) in LVH through the regulation of JNK. 

However, we cannot exclude the presence of other variants that are in linkage disequilibrium with 

the MAP3K11 variant (rs138968470) that might explain the observed association. 
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Further analysis will need to be performed to demonstrate the involvement of this protein in LVH. 

A number of other suggestively linked peaks were determined. We could not explain these with 

microarray or exonic sequence variants at present, asking for more extensive follow-up outside 

the coding regions. 
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BMI Body mass index 
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MAPK Mitogen activated protein kinase family 

SPEF2 Sperm flagellar protein 

CNV Copy number variations 

SBP Systolic blood pressure 

DBP Diastolic blood pressure 

dbNSFP Database of human non-synonymous SNPs and their functional predictions 
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Abstract 

Background. Myocardial mass is a key determinant of cardiac muscle function and 

hypertrophy. Myocardial depolarization leading to cardiac muscle contraction is reflected by the 

amplitude and duration of the QRS complex on the electrocardiogram (ECG). Abnormal QRS 

amplitude or duration reflect changes in myocardial mass and conduction, and are associated with 

increased risk of heart failure and death. 

Objectives. This meta-analysis sought to gain insights into the genetic determinants of 

myocardial mass. 

Methods. We carried out a genome-wide association meta-analysis of 4 QRS traits in up 

to 73,518 individuals of European ancestry, followed by extensive biological and functional 

assessment. 

Results. We identified 52 genomic loci, of which 32 are novel, that are reliably associated 

with 1 or more QRS phenotypes at p < 1 × 10−8. These loci are enriched in regions of open 

chromatin, histone modifications, and transcription factor binding, suggesting that they represent 

regions of the genome that are actively transcribed in the human heart. Pathway analyses 

provided evidence that these loci play a role in cardiac hypertrophy. We further highlighted 67 

candidate genes at the identified loci that are preferentially expressed in cardiac tissue and 

associated with cardiac abnormalities in Drosophila melanogaster and Mus musculus. We 

validated the regulatory function of a novel variant in the SCN5A/SCN10A locus in vitro and in vivo. 

Conclusions. Taken together, our findings provide new insights into genes and biological 

pathways controlling myocardial mass and may help identify novel therapeutic targets. 

Key Words. Electrocardiogram; genetic association study; heart failure; left ventricular 

hypertrophy; QRS 



 

95 
 

Abbreviations and Acronyms. DHS, deoxyribonuclease hypersensitivity sites; ECG, 

electrocardiogram; eQTL, expression quantitative trait locus; GWAS, genome-wide association 

study; LD, linkage disequilibrium; RNAi, ribonucleic acid interference; SNP, single nucleotide 

polymorphism; TF, transcription factor 
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CHAPTER 6  

Arhgap24 a suspicious gene involved in heart development. 

Claudia Tamar Silva, Herma van der Linde, Lies-Anne Severijnen, Jan A. Kors, Abbas Dehghan, 

Cornelia M. van Duijn, Aaron Isaacs, Rob Willemsen 

Manustript in preparation 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

 
98 

 

Abbreviations. Genome Wide Association Studies (GWAS), electrocardiogram (ECG),  Erasmus 

Rucphen Family study (ERF), Minor Allele frequency (MAF), splice blocking morpholinos (SB MO), 

cardiac myosin light chain 2 gene (cmlc2), enhanced green fluorescent protein (EGFP), hours post 

fertilization (hpf), complementary DNA (cDNA), Genotype-Tissue expression (GTex), Modular ECG 

Analysis System (MEANS), wildtype (wt), Sokolow-Lyon (SL), Cornell Voltage (CV), 12-lead sum 

(12LS), Myocardial Infarction (MI), Left Ventricualr Hypertrophy (LVH), Genotupe-Tissue 

expression (GTex), Single Nucleotide Variants (SNV), Genome Analysis Toolkit (GATK). 

Abstract.  ARHGAP24 is a gene previously associated with PR interval, but functional variants or 

experiments supporting its role in cardiac development and function are lacking. The aim of this 

project was to establish the normal cellular function of ARHGAP24 related to heart development 

and function, using a morpholino knockdown strategy in zebrafish. Knockdown of this gene in 

zebrafish showed heart abnormalities and a reduction in heart rate in morphants. Additionally, we 

performed exon sequence analyses of ARHGAP24 in an isolated Dutch population. The sequencing 

data revealed six damaging variants predicted by polyPhen and CADD among thirty-nine variants. 

Analysis of these damaging mutations showed that rs144785317 influenced the QT and QRS. 

Nominal evidence for association to QT was found for rs35521695, a missense mutation at the 

exon-intron border. The most strongly associated variant was rs61758879, a missense mutation, 

associated to 12LS. Our findings support a functional role for ARHGAP24 in normal heart function.  

Key words. Electrocardiogram, zebrafish, ARHGAP24, GWAS, ERF.  
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Introduction  

The electrocardiogram (ECG) is an important tool for evaluating the cardiac conduction system. 

The measurements obtained from the ECG include RR interval, PR interval, QRS duration and QT 

interval, representing various aspects of the conduction system. Each of these have been found to 

be predictive of cardiovascular events [1, 2]. Family studies have demonstrated that these 

measurements have a substantial genetic component, with heritabilities that range between 34 

and 40% [3]. 

Genome-wide association studies (GWAS) have identified ~ 75 genes which contribute to 

ECG trait variability [1, 2, 4-12]. Among these,ARHGAP24 gene is a member of the ARHGAP family, 

which encodes for a negative regulator of Rho GTPases and has been implicated in actin 

remodelling, cell polarity and cell migration [13]. A significant association between prolongation of 

the PR interval and common intronic variant rs7660702 in ARHGAP24 was reported. Because their 

role in differentiation and development, this gene is a promising gene with unknown function that 

might be related to cardiac development. However, the strongly associated, rs76922808 

(MAF=0.32) variant is an intronic variant that does not have any known functional effects on the 

protein, asking for more detailedfunctional analyses. Another important challenge in the “post 

GWAS era” is to validate the pathogenicity of ARHGAP24 in animal models. Functional analysis 

using zebrafish as an animal model is advantageous for heart studies because embryonic 

transparency allows for the easy assessment of heart, and other, developmental abnormalities.  

The aim of this project was to establish the normal cellular function of ARHGAP24 in early 

heart development, using a morpholino knockdown strategy in zebrafish, and exome sequence 

analysis in a family based cohort (ERF) population was conducted to establish the role of less 

frequent coding variants.    
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Experimental Section  

Zebrafish strains and husbandry 

The zebrafish (Danio rerio, Hamilton 1822) strains used for this work were transgenic zebrafish 

carrying a cardiac-specific promoter containing the upstream sequence of the zebrafish cardiac 

myosin light chain 2 gene (cmlc2) and a reporter enhanced green fluorescent protein (EGFP) [14, 

15] and the control AB line.  Adults were maintained at 28˚C on a 14 hour-light/10 hour-dark cycle. 

Embryos were collected from natural mating and raised in system water containing methylene 

blue at 28˚C. Developmental stages were determined according to Kimmel [16]. All procedures 

and conditions were in accordance with Dutch animal welfare legislation. The animal protocols 

used in this work were evaluated and approved by the Institutional Review Board for experimental 

animals of Erasmus MC, Rotterdam (DEC Nr. EMC 2088 (140-10-09); October 18th, 2012). They are 

in accordance with FELASA and ARRIVA guidelines and the European law for Laboratory Animal 

Experimentation.  

Zebrafish Arhgap24 gene 

The protein and gene sequences of Arhgap24 from human and zebrafish were taken from the 

Ensemble genome browser (accession numbers ENSDARG0000010097). Three isoforms protein 

coding are reported, arhgap24-003 (ENSDART00000172124.1), which encodes the same peptide as 

arhgap24-201 (ENSDAR00000170710.1) and arhgap-001 (ENSDART00000137809). Sequence 

alignment is shown in Annex 1, which revealed two distinct isoforms. Alignment with human 

isoforms is shown in Annex 2. Sequencing of the first part of the zebrafish gene was carried out in 

order to facilitate morpholino design. 
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Morpholino 

Two non-overlapping morpholino antisense oligonucleotides were used; both morpholinos were 

designed as splice blocking morpholinos (SB MO). One morpholino was designed over the splice 

acceptor site of intron 2 (3 in the other isoform) and the second one was designed over the splice 

donor site of intron 3 (4 in the other isoform). Both morpholinos were obtained from Gene-Tools 

(Philomath, OR, USA):  ATCCCTGAAACACAAGCACACAGGA SB MO 

GTGCATTAAGAGCAAGTACCAGTCA SB MO2. Morpholinos were reconstituted in distilled water and 

further diluted in Danieau buffer and Phenol Red (Sigma Chemical o., St Louis, MO, USA) solution. 

Injections were carried out using eggs at the one or two cell stage, into the yolk sac, using a 

Pneumatic PicoPump (World Precision Instruments, Berlin, Germany). Morpholino titration was 

performed using different concentrations of each morpholino individually and in combination. 

Efficient knockdown and minimum off target effects was established at 4 ng MO of each MOs, we 

use it together. Injected embryos were incubated at 28.5˚C, after 24, 48 and 72 hours post 

fertilization (hpf) morphants were collected. Knockdown efficiency was confirmed through 

quantitative RT-PCR (q RT-PCR), using delta delta CT method. Succinate dehydrogenase complex 

flavoprotein subunit A (Sdha), was use as housekeeping gene. 

Preparation of RNA from zebrafish and quantitative polymerase chain 

reaction 

Total RNA was isolated from 50 uninjected and 50 morpholino injected embryos at 24, 48 and 72 

hpf using RNA bee (Tri-Test.inc). Complementary DNA (cDNA) was obteined using the SuperScript 

First-Strand synthesis system for RT-PCR (Invitrogen, California USA) according to manufacturer’s 

instructions. To measure mRNA levels, q RT-PCR on cDNA samples was carried out using SYBR® 

Select Master Mix for the CFX96 qPCR detection system. Primers used for q RT-PCR were designed 
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using Primer3Plus [17, 18]. Primers for the sdha reference gene were designed using Primer 

Express software (version 2.0.0).  

P53 Coinjection  

Although morpholino injection induces sequence-specific gene knockdown in multiple systems, it 

has been reported that sometimes off-target effects may occur through P53-induced apoptosis. 

Coinjections of Arhgap24 SB MO with p53 MO is a tool to evaluate off-target effects due to P53 

apoptosis [19].  Embryos were injected simultaneously with 4 ng of both Arhgap24 SB MO and 4 

ng of p53 MO in each embryo. Phenotype was assessed after 24, 48 and 72 hpf. 

Microscopy, heartbeat and histology 

Wild type embryos and morphants were analyzed in vivo at 24, 48 and 72 hpf using fluorescence 

microscopy (Leica MZ16FA). Heartbeat was counted for 30 seconds at 48 hpf. Comparisons of the 

heart rate difference between morphants and WT was evaluated in order to establish the effect of 

the knockdown on heart rhythm. For histology, embryos were fixed in 4% paraformaldehyde at 

4˚C overnight, embedded in paraffin using standard procedures and 6 µm sections were cut. 

Subsequently, hematoxilin-eosin staining of the section was carried out using a standard protocol.  

Study population 

The human component of the study was performed in the Erasmus Rucphen Family study (ERF), a 

cohort derived from a region in the southwest of the Netherlands. The population was established 

in the middle of the 18th century by a limited number of founders, has experienced minimal 

immigration and emigration, and has exponentially increased in size in the last century. The ERF 

study was instituted in this population to unravel genes underlying quantitative trait variation in 

humans [20]. Since the population was sampled on the basis of genealogy, and not on a specific 

phenotype, the chances of findings confounded by disease status or co-morbidity are reduced. 
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Medical practitioners performed interviews at the time of blood sampling. The Medical Ethics 

Committee of the Erasmus University Medical Center approved the ERF study protocol and all 

participants, or their legal representatives, provided written informed consent.  

ECG interpretation and measurement 

Examinations included 12-lead ECG measurements. A 10-second 12-lead ECG (on average, 8 to 10 

beats) was recorded with an ACTA-ECG electrocardiograph (Esaote, Florence, Italy) with a 

sampling frequency of 500 Hz. Digital measurements of the ECG parameters were made using the 

Modular ECG Analysis System (MEANS) [21]. Briefly, MEANS operates on multiple simultaneously 

recorded leads, which are transformed to a detection function that brings out the QRS complex 

and the other parts of the signal. MEANS determines common onsets and offsets for all 12 leads 

together on one representative averaged beat, with the use of template matching techniques. The 

measurement and diagnostic performance of MEANS has been extensively evaluated, both by the 

developers and by others [22, 23]. The MEANS criteria for myocardial infarction (MI) are mainly 

based on pathological Q waves, QR ratio, and R-wave progression [21]. A cardiologist, specialized 

in ECG methodology, ascertained the final diagnosis of MI. 

MEANS was used to measure several ECG parameters (QRS, PR, and QT) and the three LVH 

proxies (SL, CV, and 12LS). Sokolow–Lyon was defined as the sum of the S wave in V1 plus the R 

wave in V5 or V6, Cornell as the sum of R in aVL and the S in V3, and 12-lead as the sum of R–S in 

all 12 leads; these three voltages were then multiplied by QRS duration to obtain voltage-duration 

products as an approximation of the area under the QRS complex [24-26]. QT interval was 

adjusted for heart rate using Bazett’s formula [27, 28]. All traits were adjusted for sex, age, BMI, 

height and heart rate (with the exception of QT), and rank transformed prior to analysis. 
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Statistical analysis  

Individuals were excluded from analysis if their ECG showed evidence of atrial fibrillation, 

myocardial infarction, left or right bundle branch block, or atrioventricular block. Additional 

exclusion criteria consisted of pacemaker implantation, Wolff-Parkinson-White syndrome, 

pregnancy, and use of Type I or III anti-arrythmic medications or digoxin, which may shorten the 

QT interval [5]. Individuals with QRS > 120 ms were excluded from the QRS, QT and LVH proxy 

analyses. Those with PR ≥ 320 ms or ≤ 80 ms were excluded from the PR analyses. Those with QRS 

axis > 90 or < -30 were excluded from the LVH proxy analyses. These exclusions were implemented 

to keep our data consistent with the GWAS. Difference among injected and and WT was done by 

Mann-Whitney, Wilcoxon and TTest. Comparison among phenotype positive and WT was done 

using TTest.  

Exome sequencing 

Exomes of 1309 individuals from the ERF Study were sequenced at the Center for Biomics of the 

Department of Cell Biology of the Erasmus MC, the Netherlands, using the Agilent V4 capture kit 

on an Illumina HiSeq2000 sequencer using the TruSeq Version 3 protocol. Mean depth base was 

74.23x (median = 57x) and mean depth region was 65.26x (median = 52.87x). The sequence reads 

were aligned to the human genome build 19 (hg19) using BWA and the NARWHAL pipeline [29, 

30]. The aligned reads were processed further using the IndelRealigner, MarkDuplicates and 

TableRecalibration tools from the Genome Analysis Toolkit (GATK) and Picard 

(http://picard.sourceforge.net) to remove systematic biases and to recalibrate the PHRED quality 

scores in the alignments. Genetic variants were called using the Unified Genotyper tool of the 

GATK. About 1.4 million Single Nucleotide Variants (SNVs) were called and, after removing the low 

quality variants (QUAL < 150), we retrieved 577,703 SNVs in 1,309 individuals. Further, for 

comparison and to predict the functionality of the variants, annotations were also performed 
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using the dbNSFP (database of human non-synonymous SNPs and their functional predictions 

http://varianttools.sourceforge.net/Annotation/DbNSFP) and Seattle 

(http://snp.gs.washington.edu/SeattleSeqAnnotation131/) databases. These databases gave 

functional prediction results from four different programs (polyPhen2, SIFT, MutationTaster and 

LRT), apart from gene and variant annotations.  

eQTL Analyses 

We used the Genotype-Tissue expression (GTex) project database 

(http://www.gtexportal.org/home/) to examine whether interesting variants had cis eQTL effects.  

Results 

Identification and characterization of zebrafish Arhgap24 

A search for Arhgap24 orthologues in zebrafish through the Ensemble database revealed three 

reported isoforms, due to an alternative first exon. Alignment of the human and zebrafish 

Arhgap24 proteins showed homologies of 65% homology in the nucleotide sequence and 72% in 

the amino acid sequence (Annex 1).   

http://snp.gs.washington.edu/SeattleSeqAnnotation131/
http://www.gtexportal.org/home/
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Figure 1. arhgap24 zebrafish isoforms 
ENSDART00000170710.1 and ENSDART00000172124.1 have the same coding sequence, and 
share sequence with ENSDAR00000158836.1 as is shown in the figure since the aa 92 of the 
first two isoforms.  
 

 

Knockdown efficiency 

After determining primer efficiency, we performed q RT-PCR to measure in time the constitutive 

Arhgap24 expression in the wt and cmlc2:GFP transgenic embryos. Arhgap24 expression 

decreased significantly over time in both the wt and cmlc2:GFP embryos, being at the highest level 

at 24 hpf for both lines (Figure 2). All time periods were compared with expression levels in 

embryos at 24 hpf. Expression of Arhgap24 in cmlc2:GFP transgenic embryos, decreased at 48 and 

72 hpf, compared with the expression at 24 hpf, significant difference was found between WT and 

morphants, we use Mann-Whitney and we get a signitivan difference among the expression of 

both groups . 
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Figure 2. Knockdown of arhgap24 in zebrafish 
Difference among expression of WT and MOs shows significant difference among these two 
groups. Statistical analysis givis a P-value of 0.0000. 
 

       Knockdown efficiency was confirmed by q RT-PCR in morphants at different time points. We 

performed injections with of a mix of both MOs and morphants were collected after 24, 48 and 72 

hours. Figure 1 shows the q RT-PCR results, revealing a knockdown efficacy in the cmcl2:GFP 

reporter line of 87%, 83.6% and 73.4% at 24 hrs, 48 hrs and 72 hrs, respectively (Table 1). Similar 

results were obtained for the AB line. Each injected group was compared with control WT embryos 

without injection.  

 

 

 

Table 1. Knockdown efficacy. In this table is showed knockdown percentage. 

Microscopy, heart beating and histology 

This efficiency of knockdown is consistent with heart abnormalities seen in the morphants; in 50% 

of the injected embryos, we observed cardiac defects, as shown in Figure 3. Figure 3A shows a wild 

type embryo, while Figure 3B depicts a morphant lacking a cardiac loop. Additionally, these 

 
Zebrafish line  Knockdown (%)  
cmcl2:GFP 24 0 

24_inj 87 
48 inj 83 
72 inj 73 
AB 24 0 

AB 24 inj 83 
AB 48 inj 78 
AB 72 inj 66 
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embryos suffer from cardiac edema.  Figure 3C shows a morphant with a reverse loop, while the 

morphant in Figure 3D shows an enlarged atrium. Differences in cardiac morphology were also 

confirmed by histological analysis, as illustrated in Figure 4. The panel on the left shows a WT 

embryo heart at 3dpf. The right depicts a morphant at 3 dpf with a dilated heart, loop defect and 

cardiac edema. 

 

Figure 3. Cardiac abnormalities in ARHGAP24 MO Embryos at 48 hpf.3A: Wild-type, 3B: heart 
without cardiac loop, 3C: Embryo with reverse loops and 3D: Embryo with heart with big 
atrium. 

 

 

 

Figure 4. Cardiac changes after MO injection  
The panel on the left shows a WT embryo heart at 3dpf. The right depicts a morphant at 3 dpf with 
a dilated heart, loop defect and cardiac edema. 
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Next, we classified morphants according to their phenotype as phenotype positive 

(reverse loop, big chambers, no loop, etc) and phenotype negative (normal heart). Heart rate was 

assessed in morphants that were phenotype positive, phenotype negative or wild type. Heart rate 

was significantly different between morphants (all injected embryos) and the control group (P = 

4.856x10-5), as illustrated in Figure 5.  

 

 

Figure 5. Heart Beat counts in WT and Morphants of 48 hpf.  

Box plot that represents the significant differences between heart beating in WT embryos and 
morphants (injected).  
 

ARHGAP24 down-regulated genes 

ARHGAP24 is known to be involved in the regulation of two rhoGTPases, Cdc42 and Rac1 [31].  For 

this reason, we explored expression levels of these two genes after MO injection. We performed a 

q RT-PCR for these two downstream genes in the ARHGAP24 pathway, however, we did not 

observe significant differences between WT and morphants at 1 and 2dpf (Data not shown).  

P53 co-injection 
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To analyze off-target effects of the MOs we performed co-injections of our SB-MO with P53. We 

observed the same phenotype between the morphants co-injected with P53 and the morphants 

injected with the morpholino alone. P53 injected embryos did not exhibit differences compared 

with the control group, as depicted in figure 6. 

 

Figure 6. P53 rescue experiment. 
After co-injection with P53 the injected embryos do not show a cardiac phenotype 
 

Exome sequencing of the ARHGAP24 region  

To determine potential rare variants in ARHGAP24, we explored exonic variants in 1309 individuals 

from the ERF study. All subjects gave their informed consent for inclusion before they participated 

in the study. The study was conducted in accordance with the Declaration of Helsinki, and the 

protocol was approved by the Medical Ethics Committee of Erasmus MC. We found thirty nine 

variants, among these six damaging variants, as predicted by polyPhen-2 and CADD: rs144785317, 

rs61758879, rs35521695, rs147870358, 4:86643074 and 4:86916568 (Table 2). T-test analysis of 

these damaging mutations revealed that rs144785317 in codon 67 (G→E) associated the QT and 

QRS intervals (nominal P = 0.04 & 0.045). Prediction of the consequences of rs144785317 using 
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mutation taster[32] included loss of the PH domain of the protein and an altered splice site, which 

PolyPhen-2 predicted as probably damaging (score = 1). Also for rs35521695 a nominal significant 

association to QT was found. This variant results in a missense mutation (P → A) in codon 417 

affecting an exon-intron border, which PolyPhen-2 predicts as probably damaging (score = 0.996).  

The most strongly associated variant is rs61758879, which is associated to 12LS (p=6.2 x10-5). This 

variant involved a missense mutation (R → L). Analyses for the remaining variants did not provide 

any evidence of association.    

 
Variant  Alleles  MAF  polyPhen  

Carriers (n) 
 

 
 

CADD 
 NAP*  

 
 

P-value 

 
rs144785317  A/G  3.4x10-3  1  

9 
 

 
27.70 QT 

QRS 

 
0.04 
0.05 

Chr4:86643074 C/T 3.8x10-4  0.996 1 23.80 - - 

rs61758879 G/T 4.5x10-3 0.996 12 11.09 - - 

rs35521695 C/G 5.0x10-2 0.429 132 22.80 QT 0.01 

rs147870358 C/T 1.0x10-3 0.909 3 23.60 - - 

Chr4: 86916568 A/C 7.6x10-4 0.682 2 9.67 - - 

 

Table 2. ARHGAP24variants predicted to be possibly damaging (0.15-0.85) and probably damaging 
(>0.85) by polyPhen in the ERF Study. *NAP: Nominally associated Phenotype 

eQTL analyses  

No significant cis or trans eQTLs effects for rs7660702, rs7692808, rs144785317, rs35521695, 

rs61758879, rs35521695, rs142672228 or rs147870358 were found in the GTEx project database 

(http://www.gtexportal.org/home/). Even though checking co-expressed genes 

(http://coxpresdb.jp/), we found two interesting genes CAV1 and CXCR4 (Figure 7). CAV1 encodes 

for Caveolae Protein, a component of plasma membrane involved in cytoesqueleton remodeling, 

CXR4 encodes for a CXC chemokine receptor specific for stromal cell-derived factor-1. 

 

http://www.gtexportal.org/home/
http://coxpresdb.jp/
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Figure 7. ARHGAP 24 co-expressed genes 

 

Figure 7A. CAV1 co-expression 

 

Figure 7B. CXCR4 co-expression 
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Discussion 

In the present study, we manipulated the expression of Arhgap24 using a MO antisense strategy 

to examine the contribution of transient Arhgap24 protein knockdown to early cardiac 

development and function. In wild type embryos, expression of this gene starts at an early 

embryonic stage (24 hpf) and is reduced to approximately 60% after 48 and 72 hpf. This expression 

pattern suggests a function during very early development for Arhgap24. The results of our study 

reveals that knockdown of Arhgap24 is related to abnormal heart development and function. 

Morphants, with a knockdown efficacy of approximately 85%, exhibited significant heart 

abnormalities and heart rate reduction.  Our finding that heart rate reductions occurred in fish 

without observable heart abnormalities corroborates with the findings of GWAS that Arhgap24 is 

associated with a mild phenotype. Histological analysis of zebrafish heart in embryos with cardiac 

defects exhibits dilated hearts compared with wild type embryos.  Although the phenotype is mild, 

our results support a role of Arhgap24 in normal cardiac development and function.  

Rho GTPases, including Rac1 and Cdc42, comprise a major branch of the Ras superfamily 

of small GTPases, and Rho GTPase function has been implicated in cancer progression due to their 

function in cell migration, growth, proliferation, survival and angiogenesis [33]. ARHGAP24 is a 

negative regulator of Rho GTPases, particularly Rac1 and Cdc42. We did not observe differences in 

the expression levels of either Cdc42 or Rac1 in embryos of 1 and 2dpf. This does not exclude a 

role for ARHGAP24 as regulator of Cdc42 and Rac1 later in life. Although our observations point to 

a function for Arhgap24 during heart development, further studies are needed, including 

electrocardiograms of morphants and wild type embryos, to confirm electrocardiographic changes 

in the morphants.  

Also our sequence analyses supports the hypothesis that ARHGAP24 is functionally 

involved in cardiac function. Exon sequencing analysis in the ERF population revealed a nominally 
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significant association between rs35521695 to QT and rs144785317 for QT and QRS. Both variants 

are related to altered splice sites and are probably damaging in the case of rs144785317.  The 

rs35521695 variant at codon 414 is predicted to be possibly damaging. These two mutations in ERF 

are related to a loss of function of the protein. The third and most strongly associated variant is 

rs61758879, which is associated to 12LS (p=6.2 x10-5. This variant involved a missense mutation (R 

→ L). These findings extend the GWAS analysis that identified a common intronic variant. 

Conclusions  

Our experiments in zebrafish show that Arhgap24 knock down affects early cardiac development 

and function. Histological evidence of dilated hearts confirms the presence of abnormalities in 

morphant hearts. Additional support is provided by the effects of three damaging ARHGAP24 

genetic variants on ECG in the ERF population. Our experimental studies in zebrafish and 

observational studies in humans suggest that the ARHGAP24 gene is involved in normal cardiac 

development and function. 
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General discussion 

The overarching aim of this thesis is to outline the genetic foundations shaping the heart rhythm 

evaluated as a complex phenotype. In this vein, delineating the phenotypic variance attributed to 

genetic effects (heritability), represents a fundamental task.  To achieve this end, we employed 

modeling from different branches of the genetic epidemiology (defined as the medical science that 

outlines the causes of disease in aggregates of biological relatives) such as linkage analysis [1] 

(evaluation of traits co-segregation in pairs of relatives) and case-control studies (evaluation of 

linkage disequilibrium using genome-wide association studies -GWAS). Finally, we also designed 

functional studies using animal models (zebrafish), to evaluate the potential functional effect of 

those variants harbored in genes that resulted linked and/or associated to cardiophysiological 

processes and underpinning the genetic architecture of the heart rhythm and its pathological 

counterpart (conduction disorders).  

Thereafter, we will discuss our most relevant findings, challenges, clinical implications, and 

future directions of the genetic epidemiological studies of the heart rhythm and conduction 

disorders.  

How much of the heart rhythm phenotype variance in healthy 

individuals can be explained by genetic effects and apportioned to 

polymorphic markers?  

This question was tackled by proposing the hypothesis that a significant part of the heart rhythm 

phenotype variance was explained by the effects of genetic variants harbored in genes implicated 

in cardiac electrophysiological pathways. To contrast this hypothesis, we evaluated the heritability 

underpinning the electrophysiology of the heart rhythm in a cohort of individuals ascertained from 

multigenerational and extended family belonging to a genetic isolate (the ERF cohort). This 
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extended cohort, that originated from 22 families from the 18th century in the southwest of 

Netherlands, exhibit extraordinary unique features that increase the power to detect the 

transmission of genetic effects cosegregating with conduction traits (ECG and LVH) and the 

exceptional possibility of detecting traits cosegregating (linkage) with genomic regions.  

This constituted an original and unique approach since previous studies estimated heart 

rhythm parameters heritability mainly in twin or extended family studies (Table 1), and these 

studies did not evaluate cosegregation with genetic markers. Overwhelming evidence that 

accumulated from the last few decades has demonstrated that the use of extended and 

multigenerational studies ascertained from especial populations i.e., genetic isolates and 

populations resulting from recent effects of admixture are extremely powerful to dissect genetics 

from environmental and to extract these components from random noise [2, 3]. We showed that 

there is a small proportion of heritability that can be explained and apportioned to SNPs: 4% for 

QT, 17% for QRS, 2% for PR and 4% for twelve-lead sum (12LS). Interestingly, we did not find any 

loci explaining heritability for the Cornell voltage (CV) product, and for the Sokolow-Lyon index 

(SL). Additionally, the inclusion of all ECG-associated SNPs further explained an additional 

proportion of the PR heritability (6%), suggesting that the presence of substantial cross traits 

effects may occur. 
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Study 

population 

 

n 

 

Heritabilities measures 

 

Ref

erence 

 

 

Adult 

male twins 

 

251 pairs 

 

RR 77% 

 

[4] 

Female 

Twin 
372 pairs HR 55%, QT 60%, QTc 50% [5] 

Twin 

study 
355 pairs HR 54%, 34% [6] 

Family 

study 
2909 individuals 

from 847 families 

PR 34%, QRS 43%, QTc 

40%, HR 34% 
[7] 

Cohort 

study 
1962 cohort 

participants 

QT 35%, 37% QT peak 

interval, 25% JT 
[8] 

Cohort 

study 

4660 cohort 

participants 
QT 41%, 40%RR [9] 

Twin 

study 

446 monozygotic 

and 365 dizogotic twins 
QT 67%, RR 55%, QTc 42% [10] 

Isolated 

population 
1080 individuals QT 31% [11] 

Isolated 

population 

 

1064 individuals 

 

PR 34%, PR segment 31%, 

Pwave 17%, QRS 3% 

 

[12] 

 

Table 1. Previous twin studies revealed different percentages of heritabilities. 

 

The estimates of ECG traits heritability in our cohort contrast significantly from previously 

family or twin studies e.g. QT (31-67%), QRS (3-43%) and PR (around 34%) (Table 1). I think that 

these, apparently discordant results, can be explained by the different approach and populations 

used by the different studies, highest measurements were obtained through twin studies, it has 

been described that twin inflate heritability estimates, because the equal environment assumption 

[13-15] Since individuals of ERF cohort did not show any heart-related rare condition, they are 
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quite suitable to be evaluated by whole genome scanning data represented by common variants 

(which are expected to explain the phenotypic variance of universal traits like ECG and LVH in 

healthy individuals. An additional and important point is that results of heritability of ECG traits 

obtained in our study are lower than those reported by earlier studies. This could be explained by 

their heritability estimation, the fact that distant relatives were included, which consequently 

affected the likelihood of sharing the same environment. The latter is in complete contrast with 

studies involving twins and parent-offspring pairs where the heterogeneity of the environment is 

lower. 

It is important to discuss that in 2012, when this project started, there were no other 

studies employing similar approaches as those reported in here. In fact, only in 2017, Nolte et al, 

described the heritability of ECG traits using classical twin modeling versus heritability estimation 

using a SNP panel [16]. This study estimated heritabilities of 55% for PR interval and 53% for QRS 

and QTc intervals using classical monozygotic twins heritability, estimation with SNP inclusion the 

heritability estimates were 26% for PR, 23% for QRS and 28% for QTc intervals, which 

corroborated those heritabilities obtained in twin modeling are inflated, and supporting the robust 

basis for future studies exploring genetic variants responsible of cardiac conduction traits. 

Contrary to our findings, and in general to other studies that show figures lower than 10%, these 

findings support the idea that common SNPs used in their study explain a big portion of the 

heritability, which implies that there are a number of SNPs that remain to be found in our cohort. 

Another potential explanation is that the panel of common SNPs used in the study of Nolte et al., 

are not representative of the genomic variation that characterizes the genetic isolate of our ERF 

study This issue was recently addressed by Speed et al [17] in which a more accurate model was 

derived empirically to describe how heritability varies with minor allele frequency, linkage 

disequilibrium, and genotype certainty, indicating that variation of gene frequencies throughout 
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populations might affect the heritabilities estimation. In this vein, a study in a plant model suggest 

that this strong dependency of allelic average effects on genetic background implies that epistasis 

is a major determinant of the additive genetic variance, and thus, the population’s ability to 

respond to natural selection, a factor that has not been considered in the equation [18]. On the 

other side, it is important to mention that almost every method of heritability estimation relies on 

the use of a set of SNPs acting in an additive fashion while Nolte et al use a complete array, I used 

a subset of SNPs previously associated with ECG traits, for PR i.e. we included 9 SNPs, there are 

new uncovered genes that we did not included in this study (table 2).  However, there are many 

examples of genetic effects acting in a non-linear way and shaping epistatic interactions that does 

not follow a Gaussian distribution [14]. Finally, the same argument of significant effects of 

environmental factors underpinning differential risk in distant biological relatives is valid to explain 

discordant estimates of heritabilities.  
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Trai
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SNP Gen  Region 
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36 

rs468771
8 

TKT 3 p21.1 

rs131654
78 

HAND1 5 q33.2 

rs136221
2 

TBX20 7 p14.2 

rs108504
09 

MED13, TBX3  12 q24.21 

rs778477
6 

IGFBP3 7 p12.3 

Table 2. SNPs used for heritability analysis 

 

 Following the publication of our manuscript on heritabilities, we 

participated in several studies where many other new genomic variants were reported 

associated to ECG traits [27-31] (Table 3, to be constructed). For example, Bihlmeyer et al 

used exomeChip analysis (in which functional variants are overrepresented when 

compared to neutral ones), and described 10 loci modulating QT and JT intervals duration 

[29]. Six of these loci were associated to QT: PM20D1, SLC4A3, CASR, NRAP, ZNF37A and 

GOS2 and four with JT interval: SENP2, SLC12A7, CNKN1A and NACA (Table 3, to be 

constructed). Moreover, their analyses showed that some of those genes are involved in 

the generation of physical force of contraction inside the cardiomyocytes, and also in 

electrical conduction. In another study, J. van Setten et al showed seven new loci 

associated. Three of those loci are associated to PR  (KCDN3, NR3C1 and PLN), other three 

associated with QT (KCNE1, SGIP1, and NFKB1), and 1 associated with QRS (ATP2A2) [28] 

(Table 3, to be constructed). Verweij et al reported 28 genome-wide significant loci associated to 

ST-T wave amplitudes [30] (Table 3) and van den Berg et al described 5 novel heart rate loci 

KIAA1755, C10orf71, DALDR3, TESK2 and MAPK8 (Table 3, to be constructed). In chapter 5 (van der 

Harst et al), we described 52 SNPs related to genes influencing myocardial mass [31] (Table 3, to 

be constructed). 
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SNP Chr 
Closest Gene 

Ref 

PR 

rs4648819 1 SKI 

Primma 
submitted paper 
to nature 
communication. 
Van Settern et al.  

rs7538988 1 EPS15 

rs1212770
1 

1 MYBPHL 

rs1126433
9 

1 KRTCAP2 

rs397637 1 OBSCN 

rs3856447 2 ID2 

rs2732860 2 TMEM182 

rs1301810
6 

2 FIGN 

rs922984 2 TTN 

rs9826413 3 EOMES 

rs900669 3 FRMD4B 

rs1308705
8 

3 PDZRN3 

rs1685882
8 

3 PHLDB2 

rs6441111 3 CCNL1 

rs7638853 3 SENP2 

rs1744641
8 

4 CAMK2D 

rs3733409 4 FAT1 

rs7729395 5 PAM 

rs1176385
6 

7 TBX20 / HERPUD2 

rs2129561 7 MKLN1 

rs881301 8 FGFR1 

rs1267871
9 

8 ZFPM2 

rs1235927
2 

10 ALDH18A1 SORBS1 

rs1225756
8 

10 SH3PXD2A OBFC1 

rs1372797 11 NAV2 

rs1106777
3 

12 MED13L 

rs718426 13 EFHA1 

rs2585897 13 XPO4 

rs9590974 13 LRCH1 

rs1146550
6 

14 IL25 / MYH6 
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SNP Chr 
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rs4901308 14 FERMT2 

rs1776739
8 

14 SNORD56B 

rs904974 15 TLE3 

rs1984481 17 MYOCD 

rs7501398
5 

1 
KCND3 

van 
Setten J. EJHG 
submitted paper 

rs1728774
5 

5 
NR3C1 / ARHGAP26 

rs7464069
3 

6 
PLN / SLC35F1 

SL 

41767282 
6p2

1.1 TFEB 

 
 
 
 
 
[31] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

124735610 
8q2

4.13 KLHL38  

61748819 
17q

24.2 PRKCA  

Lea
dsum 

rs2849028 
1p3

6.12 ZNF436 

rs2274317 
1q2

2 MEF2D 

rs1203634
0 

1q2
3.3 OLFML2B 

rs4288653 
1q3

2.1 PLEKHA6 

rs3816849 
2q3

1.2 TTN 

rs1331489
2 

3p1
4.1 MITF 

rs1093722
6 

3q2
7.2 SENP2 

rs1010597
4 

8q2
4.13 LOC105375743 

rs1241436
4 

10q
21.3 CTNNA3 

rs1050928
9 

10q
21.3 CTNNA3 

rs7099599 
10q

22.2 BMS1P4 

rs2926743 
12q

13.3 NACA 

rs7132327 
12q

24.21 TBX3  

rs1408224 
13q

14.13 LRCH1  

https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?geneId=340359
https://www.ebi.ac.uk/gwas/search?query=PRKCA
https://www.ebi.ac.uk/gwas/search?query=OLFML2B
https://www.ebi.ac.uk/gwas/search?query=TBX3
https://www.ebi.ac.uk/gwas/search?query=LRCH1
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rs7183401 
15q

25.3 ALPK3 

rs8038015 
15q

26.3 IGF1R 

rs6565060 
16q

23.3 CDH13 

rs7211246 
17q

11.2 NSRP1 

rs242562 
17q

21.31 MAPT 

rs617759 
18q

12.2 MAPRE2 

rs7283707 
21q

21.1 USP25 

Cor
nell 

rs1092018
4 

1q3
2.1 TNNT2  

rs6710065 
2p2

3.3 DPYSL5 

rs1318559
5 

5q3
3.2 HAND1 

rs1733724 
10q

21.1 DKK1 

rs2269434 
11p

11.2 MYBPC3 

rs736825 
12q

13.13 HOXC6 

rs3929778 
20p

12.3 BMP2 

rs2025096 
20q

11.22 MYH7B  

QR
S 

rs1739190
5 

1p3
2.3 CDKN2C 

rs2207790 
1p3

1.3 NFIA 

rs1203973
9 

1p1
3.1 CASQ2  

rs3770770 
2p2

2.2 STRN  

rs6801957 
3p2

2.2 SCN10A  

rs4687718 
3p2

1.1 TKT 

rs2242285 
3p1

4.1 LRIG1    

rs1344852 4p1 SLIT2 

https://www.ebi.ac.uk/gwas/search?query=NSRP1
https://www.ebi.ac.uk/gwas/search?query=MAPT
https://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?geneId=7139
https://www.ebi.ac.uk/gwas/search?query=MYH7B
https://www.ebi.ac.uk/gwas/search?query=STRN
https://www.ebi.ac.uk/gwas/search?query=SCN10A
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5.31 

rs1321311 
6p2

1.2 CDKN1A 

rs1115373
0 

6q2
2.31 SLC35F1     

rs1419856 
7p1

4.2 TBX20 

rs6968945 
7p1

2.3 TNS3 
rs1177384

5 
7q3

1.2 CAV1    

rs7918405 
10q

25.2 VTI1A  

rs174577 
11q

12.2 FADS2 

rs728926 
13q

22.1 KLF12   

rs1288029
1 

14q
24.2 SIPA1L1   

rs879568 
18q

12.2 FHOD3  

rs1085352
5 

18q
12.3 SETBP1   

rs2863792
2 12 

ATP2A2 / ANAPC7 
van 

Setten J. EJHG 

QT 

rs6588213 1 SGIP1 

van 
Setten J. EJHG 

rs1109778
8 

4 NFKB1 

rs1805128 21 KCNE1 

HR 

rs1785315
9 

1 
TESK2 

[32] 

rs3087866 3 DALRD3 

rs1635852 7 JAZF1 

rs1085747
2 

10 
C10orf71 

rs3793706 10 SEC31B 

rs260505 
1p3

6.33 SKIn 

 

rs2072944 
1p3

6.12 LUZP1, KDM1A, WNT4 

rs2298632 
1p3

6.12 TCEA3 

rs2207792 
1p3

1.3 NFIA 

https://www.ebi.ac.uk/gwas/search?query=VTI1A
https://www.ebi.ac.uk/gwas/search?query=FHOD3


Chapter 7.1 

 
134 

Tra
it 

SNP Chr 
Closest Gene 

Ref 

rs1214537
4 

1p1
3.2 KCND3, FAM212B 

rs1090850
5 

1q2
2 MEF2D 

rs1256731
5 

1q2
3.3 NOS1AP 

rs545833 
1q2

4.2 DPT 

rs7576036 
2p1

5 XPO1 

rs1866666 
2q3

3.1 PLCL1,, MARS2, RFTN2, MOB4 

rs4684185 
3p2

5.1 LSM3, TMEM43 

rs7638909 
3p2

2.2 SCN5A, ACVR2B 

rs6801957 
3p2

2.2 SCN10A, SCN5A, ACVR2B 

rs7756236 
6p2

1.31 CDKN1A 

rs210966 
6q2

2.2 ROS1, VGLL2 

rs9388451 
6q2

2.31 HEY2 

rs1458942 
8p2

3.1 TNKS, SGK223, XKR6, PPP1R3B 

rs7011924 
8p2

3.1 DEFB136, NEIL2 

rs2286582 
12p

13.32 GALNT8 

rs1084235
0 

12p
12.1 SOX5 

rs1085040
9 

12q
24.21 TBX3 

rs728926 
13q

22.1 KLF12 

rs7174918 
15q

26.3 IGF1R 

rs7192150 
16p

13.3 LMF1, SOX8 

rs735951 
16p

13.13 LITAF 

rs4784939 
16q

21 GINS3 

rs8057901 16q NDRG4 
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21 

rs8083566 
18q

12.1 CDH2 

rs1167300
3 

19q
13.33 KCNA7, NTF4, GYS1, HRC 

rs6087666 
20q

11.22 TRPC4AP, EDEM2, MYH7B, NCOA 

rs6088738 
20q

11.22 EDEM2, PROCR, MYH7B, NCOA 
rs1190790

8 
20q

13.13 ZNFX1 (−AS1),  STAU1 

rs6019750 
20q

13.13 KCNB1, STAU1 

 

Table 3. New uncovered genes 

 

How do common variants associated to myocardial mass influence heart 

rhythm?  

There are common variants that were uncovered through association studies, like GWAs, which 

could expand our knowledge about the genetic component of ECG intervals. The cardiac ventricle 

muscular contraction, caused by cardiac repolarization, is represented in the EKG by the QRS 

interval. In chapter 5, I showed 52 loci associated to myocardial mass, which indirectly is a major 

lead to understand those genetic factors influencing the QRS complex. Further, it is valid to 

extrapolate that the dissection of these genes, related with heart function, could be useful to 

predict, preclinical, clinical, follow up and natural history of the cardiovascular disease.   

We revealed genome-wide significant loci associated with cardiac repolarization improving 

the knowledge of ECG architecture [8]. Thus far, we uncover 28 loci associated to the ST-T-wave 

interval. Following this findings, in an additional paper, we studied heart rate and performed a 

meta-analysis of 104,452 individuals of European-ancestry using a exome chip and validated our 

results, by replicating them in a set of independent samples. This meta-analysis revealed 5 new 
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heart rate loci (TESK2, DALRD3, JAZF1, Z10orf71, and SEC31B). Four of these loci were validated in 

our study and also recently published in the UK biobank study (RNF207, SCN10A, 5p13.3 and 

KDELR3). There was another locus, reported with a new secondary signal at previously reported 

KIAA1755 locus. We did not find rare SNV associations with HR, suggesting that we need larger 

sample sizes to reach enough power to detect rare variants [52]. Furthermore, we uncovered 

additional loci associated to QT, PR and QRS traits (Table 3). We revealed new associated genes 

related to ECG traits and consequently related to heart rhythm function. Thus, we included these 

genes together with the previously described ones to perform pathway analysis and ontogenetic 

enrichment under the hypothesis that these loci must be overrepresented in biochemical, cell and 

genetic processes configuring networks. We found that these genes are significantly 

overrepresented in pathways/processes involved in cardiovascular pathology such as: vascular 

fistula, cardiac arrhythmias, cardiomyopathies, cardiovascular disease, heart disease, and 

cardiovascular abnormalities. Gene ontology revealed that genes like MEF2D, TBX3, MEF2, IGF1R, 

LUZP1, HEY2, and NDRG4 are involved in regulation of heart rate and heart development, giving us 

an additional support of the relevance of our findings.  

Are rare variants related to heart rhythm?  

The occurrence of rare mutations, and the large amount of heritability that is not explained by 

common variation, motivates the need for both mutation screening and alternative approaches to 

genome wide association studies that focuses on common variants. Some of the best approaches 

to elucidate these rare mutations are whole exome or genome capture, and next generation 

sequencing. Given that the power of this type of studies is limited because of the rareness of the 

phenotypes and of the genotypes, we followed a classical approach applying genetic linkage 

analysis to families segregating specific ECG phenotypes as outlined by Amin et al [33]. These 

approaches focus in the Mendelian effect of these rare variants, a phenomenon that might be 
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unique and crucial to define real targets for genetic-engineering interventions and for the 

development of new medications.  

In this vein, using linkage analyses of classical ECG outcomes (chapter 3), we found 

suggestive peaks of linkage underpinning the QT interval (1q24, LOD = 2.63; 2q34, LOD = 2.05), 

QRS interval (1p35, LOD = 2.52) and PR interval (9p22, LOD = 2.20; 14q11, LOD = 2.29). [34, 35]. 

Fine-mapping of these suggestive regions using exome sequence and microarray high resolution 

genotyping identified a rare variant (minor allele frequency = 0.0186) harbored in FCRL2 locus 

linked (LOD = 2.63) and associated to QT (P=0.024) and explaining 0.83% of the variance of the QT 

in ERF. In silico bioinformatic analyses showed that levels of expression of FCRL2 are associated to 

ARHGAP24 and SETBP1 expression, two genes previously identified in GWAS associated to PR and 

QRS intervals (Chapter 4) [23, 25, 31, 36].  

In order to identify new rare variants implicated in left ventricular hypertrophy (LVH) as 

defined by ECG parameters, we combined bioinformatics analyses with our association and linkage 

results. We performed principal components (PCs) analyses of the LVH traits that capture such 

effects. The linkage study of LVH proxy PCs measurements identified one significant locus 

(15q11.2-LOD=3.01) and 12 suggestive regions (1p34-LOD=2.4, 4q31-LOD=2.14, 5p14-LOD=2.18, 

6q15-LOD=2.17, 9p21-LOD=2.35, 11q13.4-LOD=2.01, 15q25-LOD=1.92, 20p12.1=LOD=2.634 for SL 

and 2.83 for PC1, 20p11.23-LOD=2.12, 22q13-LOD=1.99).  

Rare variant analyses in these regions uncovered a missense coding variation harbored in 

MAP3K11 gene. This MAP3K11 variant substantially decreased the LOD score for this PC1 linkage 

peak. Conditional analysis revealed a drop from 2.8 to 0.8 for MAP3K11 suggesting that this 

variant explains a large proportion of this chromosome linkage signal. The Principal component 1 

is mainly determined by the ECG parameter 12LS and SL. The MAPK11 variant also showed 

evidence of association with the two traits: the P-value for 12 LS was 3.0 x 10-4 and 1.2 x 10-3 for 
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SL. MAPK11 is related with JNK pathway, which is a pro-apoptotic kinase that plays important roles 

in the induction of cardiomyocyte apoptosis in various pathologies including LVH. 

Are common genes under linkage peaks?  

Of those previously reported loci associated with the QRS interval, CASQ2, CDKN2, NFIA, and 

TRIM63, are under QRS linkage peak in 1p35 [31, 36]. Under this same linkage region, we found 

KCND3 and MFSD2A associated with PR and SGIP1-TCTEX1D1, reported associated with the QT 

interval [27, 28, 37, 38]. Additionally, there is a gene previously associated with resting heart rate, 

RNF220 [39].  

Under the QT linkage peaks in 1q24 and 2q34, there are several genes previously 

associated with QT: NOS1AP, OLFML2B, SH2D1B, DPT, SLC19A2, ATP1B1, OSBPL6, TTN and 

CCDC141 [12, 19, 40-42]. Recently, it was reported a new gene associated to the QT interval 

harbored in 2q35: SCL4A3 [29]. Other genes harbored in these two regions are: MEF2D, HMCN1, 

WIPF1, CCDC141, PDE11A, SPEG and VWC2L, which are associated to QRS, heart rate and the PR 

interval [19, 31, 38, 39]. Finally, inside the PR linkage peak, harbored in 14q11 are three previously 

reported genes: MYH6, NUBPL and ARHGEF40 [23, 39, 43] (Table4). 

As a whole these results show that our described linkage regions contained ECG associated 

genes, in a fashion that significantly and conspicuously differs from randomness, supporting these 

areas as regions that contain candidate/causal genomic variants. 
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Ge
ne 

Associated trait 
Chro

mosome 
position 

Link
age trait 

Refer
ence 

 
CA

SQ2 

 
QRS duration 

 
1p13.

1 

 
QRS 

 
[31] 

KC
ND3 

PR 
1p13.

2 
QRS [28] 

NFI
A 

QRS duration 
1p31.

3 
QRS 

[31, 
36] 

SGI
P1-
TCTEX1D1 

QT 
1p31.

3 
QRS [28] 

CD
KN2C 

QRS 
1p32.

3 
QRS [36] 

RN
F220 

Resting heart rate 
1p34.

1 
QRS [39] 

MF
SD2A 

PR interval 
1p34.

2 
QRS [38] 

TRI
M63 

QRS complex (12-leadsum) 
1p36.

11 
QRS [31] 

TC
EA3 

QT interval 
1p36.

12 
QRS [19] 

ME
F2D 

Resting heart rate 1q22 QT [39] 

NO
S1AP 

QT 
1q23.

3 
QT [19] 

OL
FML2B 

QT interval 
1q23.

3 
QT [19] 

SH
2D1B 

QT interval 
1q23.

3 
QT [19] 

AT
P1B1 

QT 
1q24.

2 
QT [19] 

DP
T 

QT interval 
1q24.

2 
QT [19] 

SLC
19A2 

QT interval 
1q24.

2 
QT [19] 

H
MCN1 

QRS duration 
1q31.

1 
QT [38] 

WI
PF1 

QRS complex (12-leadsum) 
2q31.

1 
QT [31] 

CC
DC141 

Heart rate 
2q31.

2 
QT [41] 

CC
DC141 

QT 
2q31.

2 
QT [19] 

OS
BPL6 

QT interval 
2q31.

2 
QT [44] 

PD Heart rate 2q31. QT [41] 
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E11A 2 
TT

N 
QT 

2q31.
2 

QT [19] 

VW
C2L 

PR interval 2q34 QT [38] 

SPE
G 

Resting heart rate 2q35 QT [39] 

SLC
4A3 

QT 2q35 QT [29] 

AR
HGEF40 

Resting heart rate 
14q11

.2 
PR [39] 

MY
H6  

Electrocardiographic traits  
14q11

.2  
PR  [23]  

Table 4. Associated genes inside linkage ECG regions 

I decided to search for these 52 SNPs related to genes influencing myocardial mass in the 

linkage regions described in chapter 4 and related to LVH proxy measurements. In Table 5 and 

Figure 2, I show these intersected SNPs. We found that rs17391905, associated to the QRS 

interval, is inside the CV linkage region highlighted by the SNP rs6619. The rs17391905 variant is 

located in the neighbourhood of the CDKN2C gene. The CV linkage peak highlighted by the 

rs14442470 SNP contains the rs13185595 SNP that is anchored upstream of the HAND1 gene that 

is associated with CV. Other linkage region, a PC1 with the highest LOD score represented by 

variation at the rs1530354 SNP, contains the rs2269434 SNP, an intronic variant inside the 

MYBPC3, which is associated to CV. Genomic variation harboured in the MYBPC3 gene is 

associated with a causal relationship to to cardiomyopathy.  Inside the same CV region is 

harboured the rs174577 SNP, an intronic variant inside the FADS2 gene that turns out to be 

associated to the QRS interval duration. The SL peak, highlighted by the rs290370, contains the 

rs8038015 SNP, an intronic variant inside the IGF1R gene which is associated to 12LS. Finally, the 

peak highlighted by the rs466243 SNP contains the rs2025096 that is anchored in the 

neighbourhood of the MYH7B gene. Mutations in MYH7B have been recently linked to left 

ventricular non-compaction cardiomyopathy [45].  
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SNP 
Linkage 

region trait 

SNP inside 

linkage region 

Tr

ait 

Closer 

gene 

rs6619 CV rs17391905 
Q

RS 
CDKN2C 

rs1444

2470 
12LS rs13185595 

C

V 
HAND1 

rs1530

354 
PC1 

rs2269434 
C

V 
MYBPC3 

rs174577 
Q

RS 
FADS2 

rs2903

70 
SL rs8038015 

1

2LS 
IGF1R 

rs4662

43 
12LS rs2025096 

C

V 
MYH7B 

 

Table 5. Intersectional SNPs among 52 loci influencing myocardial mass and linkage 
regions associated to LVH. 
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Figure 2. LVH linkage regions overlapping with QRS associated SNPs 
In this figure are shown five of our thirteen LVH linkage regions. In circles six SNPs of our 

52 loci influencing myocardial mass inside previous linkage reported regions.   
 

Deviations of the ST-T wave amplitude can be suggestive to different heart abnormalities. 

In two additional studies, we revealed 28 genome-wide significant loci explaining an important 

phenotypic variance of the ST-T wave amplitudes. ST-segment and the adjacent T wave revealing 

that quantitative endophenotypes underpinning cardiac repolarization might be related to 

repolarization abnormalities. The KCND3 gene gives the strongest signal of association. The KCND3 

gene encodes Kv4.3 a member of voltage-gated potassium channels and it, has been related to 

atrial fibrillation, heart failure and P-wave duration [27, 28, 37]. 
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As a whole, these findings reported by other studies are consistent with those evidently 

remarked under our linkage peaks and they must contain true causal variants underpinning 

cardiac traits. Future analysis of extended families from different populations will help to dissect 

the best these variants/genes. 

How animal models can be used to define the functional role of associated 

variants?  

In chapter 5, we used drosophila and mouse models in an attempt of understanding the role of 

four genes i.e CG4743/SLC25A26, Fhos/FHOD3, Cka/STRN, and NACα/NACA that were associated 

with QRS and leadsum Using RNAi we knocked down the function of these genes, specifically 

within the heart of Drosophila, and found the development of severe cardiac malformations, 

which confirm the critical role of these genes and eventually point out to the fact that variants 

highlighted by the positive findings of our GWAS studies play a major role in causing EKG 

traits(table 6).  
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Gen Phenotype in D.melanogaster 

Previously described 
Mhc/MYH

7B[46] 

Cardiac abnormalities 

Slit/SLIT2[
47] 

EcR/NR1H
[48] 

    

Hand/HA
ND1[49] Cardiac Genesis 

TTN[50] Human cardiomyopathy 

Functional analysis chapter 5 

Hand/HA
ND1 

Reduced cardiac heart rate without heart 
abnormalities 

Cka/STRN 
Reduced cardiac heart rate with reduction in 

diastolic diameters and contractility 

NACalfa/
NACA Complete loss of cardiac tissue beginning at eclosion 

CG4743/S
LC25A26 

Without cardiac phenotype 
Fhos/FHO

D3 

 

Table 6. D. melanogaster functional analysis 

In chapter 6, we describe the effect of one novel PR intronic related locus, ARHGAP24, 

performing a knockdown strategy in zebrafish as a model. ARHGAP24 is one of the genes 

associated to the PR interval (2.5x10-17) in genome wide association studies (Ref). The gene is a 

negative regulator of Rho GTPases implicated in chromatin remodeling, cell polarity, and cell 

migration.  The role of this gene in the heart function is unknown. We showed that the knockdown 

of arhgap24 in zebrfafish morphant embryos developed heart abnormalities when compared to 

control zebrafish and suggested that this gene is a major player during cardiac development. Also, 

in chapter 6, we describe a missense mutation (P → A) at codon 417 ARHGAP24 that is associated 

to QT interval with nominal significance.  A second variant at codon 67 (G→E) is marginally 
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associated to QT and QRS, and a third to LVH. Even though more studies are granted, these 

findings might suggest that there are cross trait effects in ARHGAP24 (pleiotropy).  

Functional analysis are one of the tools to demonstrate the function of a gene, with these 

analysis we showed the function of associated genes, probing their relation with heart function 

and heart development, in the future these associated genes could be helpful in prognosis of heart 

abnormalities.  

How epigenetic explains heart rhythm variability?  

Other approximation to establish genes function are in-silico analysis to know associated genes 

relation with epigenetic important regions. Epigenetics is a field related to gene expression, 

control, and modifications. Epigenetic mechanisms include histone modifications, DNA 

methylation, and RNA interactions. Cis-regulatory elements such as promoters or enhancers 

susceptible to epigenetic modifications are marked by DNase I hypersensitive sites (DHSs). Among 

our findings described in Chapter 5, we found that 42 of 52 sentinel SNPs were in DHSs. 

Additionally, we found 22 of 52 in DHSs in human fetal heart tissue, 11 of them are related to 

transcription factor recognition sites. These findings are important, because polymorphism in 

these sites could modify gene expression of genes related to heart development and function.  

 Furthermore, we also found that some of those genes play important roles as 

transcription factors (for instance HEY2, MEF2D, SOX5 and SOX8 of SOX family) binding to active 

enhancers and promoters.   

Clinical implications and further research 

As described previously, cardiac conduction abnormalities lead to various conditions, including 

sudden cardiac death (SDC), atrial fibrillation (AF), ventricular hypertrophy, and sick sinus 

syndrome, among others. SCD is estimated to occur in between 50-100 individuals per 100,000 per 

annum in the U.S. and the European populations [51], while the prevalence of AF in the European 
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Union is expected to double to 17.6 million cases per year, by 2060 [52]. These illnesses, therefore, 

impose large (and increasing) burdens on their societies. Genetics has been essential in advancing 

our knowledge of cardiac conduction disorders over the last two decades. First, these studies 

helped to clarify the physiological underpinnings of conduction and identified new pathways. Thus 

the results of genomic research provides new target genes and proteins for pharmaceutical 

research, and potentially useful for prediction of genetically transmitted cardiovascular disease.  

Ultimately, increasing our knowledge of genetic variants influencing conduction disorders 

will improve molecular diagnosis and clinical risk prediction. The translation of these findings to 

the clinical setting is expected to occur soon. This thesis described that the GWAS loci identified 

up-to-date explain less than 20% of the heritability in the various ECG parameters. Yet, new 

pathways have been uncovered and there is no evidence that GWAS has reached its limits. By 

increasing sample size and marker density in ECG research, new genes have been identified. 

Particularly, for LVH related parameters a very small percentage of the heritability is explained. 

Indeed, the sample size of studies of LVH related traits have been small. 

This thesis also shows that there may be new rare variants (minor allele frequency <0.05) 

involved in ECG outcomes that can be identified in family-based studies such as Erasmus Rucphen 

Family using a combined linkage and association approach. I expect these results would have 

clinical utility in both the short and long-term future. Although genetic testing does not currently 

perform well for risk stratification, as the number of known variants increases, genetic testing will 

enhance our ability to discriminate those at higher risk for conduction disorders. The incorporation 

of rare(r) variants should dramatically improve the utility of risk prediction profiles in specific 

families in which these variants segregate. This will open opportunities for improved personalized 

medicine in which the preventive strategies are tailored towards (rare) family specific causes of 

disease. One avenue of prevention may be cascade screening in families, as is at present 
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conducted for familial forms of dyslipidemia (references).  In cascade screening all relative of 

carriers of a mutation are invited for genetic screening and tailored personalized prevention is 

offered to carriers with the family. Such families may be extended to 5-10 generations and involve 

hundreds of relatives. 

Another avenue that may improve risk prediction is to model gene-interactions. We have 

not addressed this issue in this thesis. Gene interactions may explain part of the missing 

heritability.  Studies of gene interactions have been hampered by low statistical power. This 

concerns both gene-gene as well as gen-environment interactions. Part of the problem is that 

effects are small for variants identified by GWAS, making it difficult to discriminate one small 

effect from another smaller effect. A new and more powerful avenue for interaction studies may 

be the use of risk scores, in which the effects of multiple genes within and over different biological 

pathways are captured. An interesting question to address will be whether environmental risk 

factors, such as smoking, could interact with the genes representing a single pathway or rather 

with a general risk score representing all pathways. In the latter case, the interaction is more likely 

to occur downstream from the disease pathway. 

One major problem in complex genetic research is to determine which variants are 

causally related to the disease. In this thesis we used a functional approach implemented in an 

animal models, the zebra fish, mouse and drosophila. Although this is a straightforward 

experimental model, there is the need to increase the throughput of these experiments to speed 

up translational research.  

 Finally, we can conclude that in this thesis we get a new approximation for 

heritability analysis, uncovering the proportion of variability of ECG traits due to genes. Although 

we do not find significant genes under linkage peaks, we stablished to new candidate genes for 

ECG and LVH traits: FCRL2 and MAP3K11, it is necessary to perform new studies to determine the 
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relation of these two genes with heart rhythm, which could be useful for prognosis and risk 

determination. Common variants uncover by GWAs give us clues about candidate genes, 

functional analysis support our findings, we can conclude that our uncovered genes has strong 

evidence of association and are involved in heart rhythm, future studies has to be conducted in 

other populations.  
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Summary 

The electrocardiogram (ECG) is a tool to obtain evidence for arrhythmias, which are related with 

cardiac conduction system abnormalities, myocardial ischemias and cardiac response to drugs. 

Additionally, ECG measurements are useful in prediction of the outcomes of patients with heart 

rythm disease, and prediction of cardiovascular mortality in healthy subjects. 

Significant genetic contribution to ECG measurements have been established, at least 58 

loci have been associated with ECG measurements variability. The aim of this study was to 

discover rare and common variants by linkage analysis in a large family-based study the Erasmus 

Rucphen family (ERF) study, moreover we did a heritability estimation and finally we perform a 

functional analysis of ARHGAP24 a gene previously associated with ECG variability. We search the 

linked regions in detail using exon sequencing.  

To find common variants underlying the linkage peaks we performed association analysis 

within the linkage regions using the SNP data from ERF. As common variations did not explain the 

linkage peaks; we next explored the hypothesis whether the linkage is explained by rare exonic 

variants in these regions. This effort does not uncover any significant variation. We establish 

heritability of ECG measurements: 37% for PR and 33% for QT and QRS.  

Looking for common variants, we performed a genome wide association study (GWAs) for 

myocardial mass, and we found 32 novel loci, among 52 genomic loci, associated with this trait. 

Knockdown studies in Drosophila, let us validate some of our findings, since we found specific 

cardiac defects.  

Finally, we perform a functional analysis, using a morpholino strategy; we depleted 

ARHGAP24 expression in zebrafish. Zebrafish embryos exhibit heart abnormalities, cardiac edema 

and heart beating reduction. We can conclude that ARHGAP24 is related with heart development, 

since its knockdown induces changes in heart zebrafish morphology and function. 
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