Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC
URI permanente para esta colección
Nuestro programa de Matemáticas Aplicadas y Ciencias de la Computación, MACC, es la elección ideal para aquellos estudiantes que quieran crear y liderar la transformación digital en el marco de la Revolución 4.0. Estudiar MACC les permitirá comprender el mundo mediante el lenguaje de las matemáticas y las ciencias de la computación. Contamos con líneas de profundización que responden a las necesidades de la Revolución 4.0 y que están encaminadas a que los estudiantes amplíen sus oportunidades laborales en una economía digital. Nuestros egresados tendrán la capacidad de crear puentes entre problemas reales y soluciones digitales, generando transferencia de tecnología y de conocimiento.
Examinar
Examinando Programa de Matemáticas Aplicadas y Ciencias de la Computación - MACC por Director "Caicedo Dorado, Alexander"
Mostrando1 - 3 de 3
Resultados por página
Opciones de clasificación
- ÍtemAcceso AbiertoData driven initialization for machine learning classification models(2022-05-08) López Jaimes, David Santiago; Caicedo Dorado, AlexanderEl principal objetivo de este proyecto de grado es desarrollar una estrategia para la inicialización de los parámetros θ tanto para la regresión logística (clasificador lineal) como para la regresión multinomial, y las redes neuronales clásicas (fully connected feed-forward). Esta inicialización se basó en las propiedades de la distribución estadística de los datos con los que se entrenan los modelos. Esto con el fin de inicializar el modelo en una región de la función de costo más adecuada y así, pueda llegar a una mejorar su tasa de convergencia, y producir mejores resultados en menores tiempos de entrenamiento. La tesis presenta una explicación intuitiva y matemática de los modelos de inicialización propuestos, y contrasta el desarrollo teórico con un benchmark donde se utilizaron diferentes datasets, incluyendo toy examples. Así mismo, también se presenta un análisis de estos resultados, se discuten las limitaciones de las propuestas y el trabajo futuro que se puede derivar a partir de este trabajo.
- ÍtemAcceso AbiertoUna propuesta de neurona artificial: la Unidad Neuro-Vascular Artificial (UNVA)(2022-02-23) Ruiz Ortiz, Juan Camilo; Caicedo Dorado, AlexanderLas neuronas artificiales son un modelo computacional simplificado de cómo funcionan las neuronas biológicas presentes en el cerebro. Sin embargo, los modelos de las primeras neuronas artificiales se fundamentaron únicamente en el procesamiento de información proveniente de señales eléctricas, y no tuvieron en cuenta los cambios vasculares necesarios que permiten entregar nutrientes a las neuronas para que funcionen correctamente, en particular durante su activación eléctrica. Por lo tanto, en esta tesis se propone un nuevo modelo computacional que considera tanto el comportamiento eléctrico como el vascular. Para diseñar la nueva arquitectura, se revisaron las condiciones de estabilidad del descenso del gradiente. Este análisis nos permite definir cotas superiores para la tasa de aprendizaje. Una vez propuesta la arquitectura se evaluó su comportamiento comparado con algoritmos más tradicionales como la regresión lineal.
- ÍtemEmbargoUnsupervised machine learning for the classification of astrophysical X-ray sources(2021-11-24) Pérez Díaz, Víctor Samuel; Martínez Galarza, Juan Rafael; Caicedo Dorado, Alexander; Matemáticas Aplicadas y Computación - MACCContexto. El Chandra Source Catalog (CSC), que recoge las fuentes de rayos X detectadas por el Observatorio de Rayos X Chandra a lo largo de su historia, es un terreno fértil para el descubrimiento, ya que muchas de las fuentes que contiene no han sido estudiadas en detalle. En el CSC podríamos encontrar varios tipos de fuentes, desde objetos estelares jóvenes (YSO) y sistemas binarios, hasta incluso cuásares muy lejanos (QSO) o galaxias activas con agujeros negros supermasivos en sus núcleos. Entre las fuentes que podrían cambiar el paradigma y que podríamos buscar en los datos de Chandra están las fusiones de objetos compactos, los tránsitos de planetas extrasolares, los eventos de disrupción de mareas, etc. Sin embargo, sólo se ha clasificado una pequeña fracción de las fuentes del CSC. Para llevar a cabo una investigación exhaustiva de las fuentes del CSC, y estar preparados para los próximos grandes estudios de rayos X, necesitamos clasificar tantas fuentes del catálogo como sea posible. Objetivos. Este trabajo propone un enfoque de aprendizaje no supervisado para clasificar el mayor número posible de fuentes del Chandra Source Catalog, explorando primero las ventajas y los límites de utilizar sólo los datos de rayos X disponibles. El aprendizaje no supervisado es especialmente adecuado dada la gran cantidad de detecciones que aún no han sido clasificadas de forma independiente. Agrupando las observaciones de las fuentes por sus similitudes, y asociando después estos grupos con objetos previamente clasificados espectroscópicamente, buscamos proponer una nueva metodología que pueda proporcionarnos una clasificación probabilística para una numerosa cantidad de fuentes. Métodos. Empleamos métodos de aprendizaje no supervisado, primero K-means, y luego Gaussian Mixtures, aplicados a una lista de propiedades de rayos X, para clasificar probabilísticamente las fuentes de alta energía en el Chandra Source Catalog (CSC). Esto lo conseguimos asociando clusters específicos con aquellos objetos del CSC que tienen una clasificación en la base de datos SIMBAD, y luego asignando clases probabilísticas por asociación a los objetos no clasificados en cada cluster con un algoritmo basado en la distancia de Mahalanobis. Resultados. Somos capaces de identificar con éxito clusters de objetos previamente identificados que probablemente pertenezcan a la misma clase, e incluso dentro de los grupos que fueron identificados teniendo predominantemente un tipo de fuente, como "galaxias", "QSO", "YSO", encontramos subclases relacionadas con su variabilidad y propiedades espectrales únicas. El resultado de este ejercicio es una clasificación probabilística robusta (es decir, una posterior sobre las clases) para 10090 de las fuentes del CSC. Las tablas correspondientes a cada cluster y el código respectivo están disponibles en https://github.com/BogoCoder/astrox. Conclusiones. Hemos desarrollado una metodología para proporcionar una asignación probabilística de clases a numerosas fuentes de rayos X del Chandra Source Catalog. A través de este proceso hemos visto que es posible construir un pipeline basado en aprendizaje automático no supervisado para esta tarea. Hemos visto que nuestro enfoque funciona bien para determinados tipos de fuentes generales, como un YSO, o fuentes extragalácticas. En otros casos, tenemos ambigüedad en el número de clases presentes en un cluster particular, teniendo clases predominantes muy diferentes dentro de ellos. Esta ambigüedad podría resolverse añadiendo datos de otro régimen de longitudes de onda, como datos ópticos del SDSS (Sloan Digital Survey Summary). Este análisis está previsto para un futuro trabajo. Esta tesis presenta una primera aproximación al objetivo final de clasificar todas las posibles fuentes CSC que carecen de una clase.