Show simple item record

dc.creatorCastro, Carlos 
dc.creatorPreciado Pua, Sergio Andrés 
dc.creatorOrdóñez Herrera, Juan Sebastián 
dc.date.accessioned2016-02-29T16:34:41Z
dc.date.available2016-02-29T16:34:41Z
dc.date.created2016-02-28
dc.date.issued2016
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/11752
dc.description.abstractWe propose and estimate a financial distress model that explicitly accounts for the interactions or spill-over effects between financial institutions, through the use of a spatial continuity matrix that is build from financial network data of inter bank transactions. Such setup of the financial distress model allows for the empirical validation of the importance of network externalities in determining financial distress, in addition to institution specific and macroeconomic covariates. The relevance of such specification is that it incorporates simultaneously micro-prudential factors (Basel 2) as well as macro-prudential and systemic factors (Basel 3) as determinants of financial distress. Results indicate network externalities are an important determinant of financial health of a financial institutions. The parameter that measures the effect of network externalities is both economically and statistical significant and its inclusion as a risk factor reduces the importance of the firm specific variables such as the size or degree of leverage of the financial institution. In addition we analyze the policy implications of the network factor model for capital requirements and deposit insurance pricing.
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.relation.urihttps://ideas.repec.org/p/col/000092/014287.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourcereponame:Repositorio Institucional EdocUR
dc.sourceinstname:Universidad del Rosario
dc.subject.ddcEconomía 
dc.subject.lembEconomía
dc.subject.lembCrisis económica
dc.subject.lembEconometría
dc.titleNetwork externalities across financial institutions
dc.typeworkingPaper
dc.publisherUniversidad del Rosario
dc.publisher.departmentFacultad de Economía
dc.subject.keywordsystemic risk
dc.subject.keywordnetwork models
dc.subject.keywordspatial econometrics
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaDocumento de trabajo
dc.rights.accesoAbierto (Texto completo)
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersion
dc.source.bibliographicCitationAas, K. (2005). The basel ii irb approach for credit portfolios: A survey. Technical report, Norwegian Computing Center.
dc.source.bibliographicCitationAcharya, V. V.and Santos, J. and Yorulmazer, T. (2010). Systemic risk and deposit insurance premiums. FRBNY Economic Policy Review, pages 89–100.
dc.source.bibliographicCitationAllen, F. and Gale, D. (2000). Financial contagion. Journal of Political Economy, 108:1–33.
dc.source.bibliographicCitationAltman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4):589–609.
dc.source.bibliographicCitationAnand, K., Brennan, S., Kapadia, S., Willison, M., and Gai, P. (2009). Complexity and crises in financial systems.
dc.source.bibliographicCitationAnselin, L. (1988). Spatial econometrics: methods and models, volume 4. Springer.
dc.source.bibliographicCitationAnselin, L., Le Gallo, J., and Jayet, H. (2008). Spatial panel econometrics. In The econometrics of panel data, pages 625–660. Springer.
dc.source.bibliographicCitationBabus, A. (2005). Financial Development, Integration and Stability, chapter Contagion risk in financial networks, pages 423–440. UK: Edward Elgar.
dc.source.bibliographicCitationBaltagi, B. H., Egger, P., and Pfaffermayr, M. (2007). A generalized spatial panel data model with random effects. Technical report, Working Paper, Syracuse University.
dc.source.bibliographicCitationBaltagi, B. H., Song, S. H., and Koh, W. (2003). Testing panel data regression models with spatial error correlation. Journal of econometrics, 117(1):123–150.
dc.source.bibliographicCitationBastos, E. and Cont, R. (2010). The brazilian interbank network structure and systemic risk.
dc.source.bibliographicCitationBloecher, E., Seale, G., and Vilim, R. (2003). Options for pricing federal deposit insurance. FDIC Banking Review, 15:1–17.
dc.source.bibliographicCitationBoss, M., Elsinger, H., Summer, M., and Thurner, S. (2003). The network topology of the interbank market.
dc.source.bibliographicCitationBrunnermeier, M. K., Gorton, G., and Krishnamurthy, A. (2011). Risk topography. NBER Macroeconomics Annual, 26(1):149–176.
dc.source.bibliographicCitationCajueiro, D. O. and Tabak, B. M. (2007). The role of banks in the brazilian interbank market : Does type bank matter?
dc.source.bibliographicCitationCase, A. (1992). Neighbourhood influence and technological change. Regional science and urban economics, 22:491–508.
dc.source.bibliographicCitationCastr´en, O. and Kavonius, I. K. (2009). Balance sheet interlinkages and macro-financial risk analysis in the euro area.
dc.source.bibliographicCitationCastro, C. and Ferrari, S. (2010). Measuring the systemic importance of financial institutions using market information. Technical report, Financial stability review National Bank of Belgium.
dc.source.bibliographicCitationChan-Lau, J. A. (2010a). Balance sheet network analysis of tooconnected-to-fail risk in global and domestic banking systems. IMF Working Papers.
dc.source.bibliographicCitationChan-Lau, J. A. (2010b). Regulatory capital charges for tooconnected-to-fail institutions: A practical proposal. IMF Working Papers.
dc.source.bibliographicCitationCliff, A. D. and Ord, J. K. (1973). Spatial autocorrelation. London Pion
dc.source.bibliographicCitationCrosbie, P. and Bohn, J. (2003). Modeling default risk.
dc.source.bibliographicCitationDe Paula, A. (2015). Econometrics of network models.
dc.source.bibliographicCitationDe Servigny, A. and Renault, O. (2004). Measuring and managing credit risk. McGrawHill.
dc.source.bibliographicCitationDegryse, H. and Nguyen, G. (2007). Interbank exposures: An empirical examination of contagion risk in the belgian banking system. International Journal of Central Banking.
dc.source.bibliographicCitationDurlauf, S. and Young, H. (2001). Social Dynamics, chapter The new social economics, pages 1–14. MIT: Press.
dc.source.bibliographicCitationEgloff, D., Leippold, M., and Vanini, P. (2007). A simple model of credit contagion. Journal of Banking and Finance, 31:2475–2492.
dc.source.bibliographicCitationElhorst, J. P. (2003). Specification and estimation of spatial panel data models. International regional science review, 26(3):244–268.
dc.source.bibliographicCitationErgungor, O. E. and Thomson, J. B. (2005). Systemic banking crises. Policy Discussion Papers, (Feb).
dc.source.bibliographicCitationEspinosa-Vega, M. A. and Sole, J. (2010). Cross-border financial surveillance: A network perspective.
dc.source.bibliographicCitationFlannery, M. J. and Sorescu, S. (1996). Evidence of bank market discipline in subordinated debenture yields: 19831991. The Journal of Finance, 51(4):1347–1377.
dc.source.bibliographicCitationGiesecke, K. and Baeho, K. (2011). Systemic risk: What defaults are telling us. Management Science, 57(8):1387–1405.
dc.source.bibliographicCitationGiesecke, K. and Weber, S. (2004). Cyclical correlations, credit contagion and portfolio losses. Journal of Banking and Finance, 28:3009–3036.
dc.source.bibliographicCitationGlasserman, P. and Young, H. P. (2015). How likely is contagion in financial networks? Journal of Banking & Finance, 50:383–399.
dc.source.bibliographicCitationGorton, G.and Pennacchi, G. (1990). Financial intermediaries and liquidity creation. The Journal of Finance, 45(1):49–71.
dc.source.bibliographicCitationHaldane, A. G. (2009). Rethinking the financial network. In Speech delivered at the Financial Student Association.
dc.source.bibliographicCitationHatchett, J. and Kuhn, R. (2006). Effects of economic interactions on credit risk. Journal of Physics A: Mathematical and General, 39:2231–2251.
dc.source.bibliographicCitationJorion, P. and Zhang, G. (2009). Credit contagion from counterparty risk. The Journal of Finance, LXIV:2053.
dc.source.bibliographicCitationKapoor, M., Kelejian, H. H., and Prucha, I. R. (2007). Panel data models with spatially correlated error components. Journal of Econometrics, 140(1):97–130.
dc.source.bibliographicCitationKeiler, S. and Eder, A. (2013). Cds spreads and systemic risk a spatial econometric approach. Technical report, Deutsche Bundesbank.
dc.source.bibliographicCitationKelejian, H. and Prucha (1998). A generagener spatspa two-stage least squares procedure for estimating a spatial autoregrautore model with autoregrautore disturbances. The Journal of Real Estate Finance and Economics, 17(1):99–121.
dc.source.bibliographicCitationLaeven (2004). The political economy of deposit insurance. Journal of Financial Services Research, 26(3):201–224.
dc.source.bibliographicCitationLaeven, L. and Majnoni, G. (2003). Loan loss provisioning and economic slowdowns: too much, too late? Journal of Financial Intermediation, 12(2):178–197.
dc.source.bibliographicCitationLee, L. (2004). Asymptotic distributions of quasi-maximun likelihood estimators for spatial econometric models. Econometrica, 72:1899–926.
dc.source.bibliographicCitationLee, L. (2007). Identification and estimation of econometric models with group interactions, contextual factors and fixed effects. Journal of Econometrics, 140:333–74.
dc.source.bibliographicCitationLeon, C.and Berndsen, R. (2013). Modular scale-free architecture of colombian financial networks: Evidence and challenges with financial stability in view. Technical report, Banco de la Republica de Colombia.
dc.source.bibliographicCitationLin, X. (2005). Peer effects and student academic achivement: an application of spatial autoregressive model with group unobservables. Technical report, Ohio State University.
dc.source.bibliographicCitationManski, C. (1993). Identification of endogenous social effects: the reflection problem. Review of Economic Studies, 60:531–42.
dc.source.bibliographicCitationMerton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates*. The Journal of Finance, 29(2):449– 470.
dc.source.bibliographicCitationNeu, P. and Kunh, R. (2004). Credit risk enhancement in a network of interdependent firms. Physica A, 342:639–655.
dc.source.bibliographicCitationNewman, M. (2010). Networks: An Introduction. Oxford University Press
dc.source.bibliographicCitationon Banking Supervision, B. C. (2010). Basel iii: A global regulatory framework for more resilient banks and banking systems. Technical report, Bank for international settlements.
dc.source.bibliographicCitationPinksey, J. and Slade, M. E. (2009). The future of spatial econometrics. Technical report, The Pennsylvania State University.
dc.source.bibliographicCitationSignori, D. and Gencay, R. (2012). Economic links and counterparty risk. Technical report, Simon Fraser University.
dc.source.bibliographicCitationUhde, A. and Heimeshoff, U. (2009). Consolidation in banking and financial stability in europe: Empirical evidence. Journal of Banking & Finance, 33(7):1299–1311.
dc.source.bibliographicCitationYu, J., de Jong, R., and Lee, L.-f. (2008). Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both¡ i¿ n¡/i¿ and¡ i¿ t¡/i¿ are large. Journal of Econometrics, 146(1):118–134.
dc.format.tipoDocumento
dc.rights.ccAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.subject.jelC21
dc.subject.jelC58
dc.subject.jelG32
dc.relation.citationTitleSerie Documentos de trabajo. Economía


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/2.5/co/