Identidad Institucional CRAI
Logo EdocUR
    • English
    • español
    • português
  •  Carga de trabalho
  •  Perguntas frequentes
  • português 
    • English
    • español
    • português
  • Entrar

Contacto

Twitter

Facebook

Youtube

Ver item 
  •   Repositorio Institucional EdocUR
  • Investigación
  • Artículos
  • Ver item
  •   Repositorio Institucional EdocUR
  • Investigación
  • Artículos
  • Ver item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Computational prediction and experimental assessment of secreted/surface proteins from Mycobacterium tuberculosis H37Rv

  • Exportar citas ▼
    • Exportar a Mendeley
    • Exportar a BibTex
Thumbnail

Data

2010

Autor

Vizcaíno, Carolina
Restrepo-Montoya, Daniel
Rodríguez, Diana
Niño, Luis F.
Ocampo, Marisol
Vanegas, MagnoliaAutoridad Universidad de Rosario
Reguero, María T.
Martínez, Nora L.
Patarroyo, Manuel E.
Patarroyo, Manuel A.Autoridad Universidad de Rosario

Share

Citas

URI


http://repository.urosario.edu.co/handle/10336/18754

Resumo

The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates. © 2010 Vizcaíno et al.

Assunto

Bacterial Protein ; Cytoplasm Protein ; Membrane Protein ; Peptide Vaccine ; Protein Rv178 ; Protein Rv361 ; Protein Rv43C ; Protein Rv835 ; Protein Rv122 ; Protein Rv363 ; Unclassified Drug ; Bacterium Antibody ; Epitope ; Outer Membrane Protein ; Peptide ; Animal Experiment ; Bacterial Genome ; Bacterial Strain ; Cell Fractionation ; Computer Prediction ; Controlled Study ; Cytoplasm ; Drug Identification ; Machine Learning ; Mathematical Computing ; Membrane Structure ; Mycobacterium Tuberculosis ; Nonhuman ; Protein Localization ; Protein Secretion ; Vaccine Production ; Animal ; Artificial Intelligence ; Biology ; Chemistry ; Escherichia Coli ; Immunoblotting ; Immunoelectron Microscopy ; Immunology ; Metabolism ; Methodology ; Mycobacterium Smegmatis ; Polyacrylamide Gel Electrophoresis ; Rabbit ; Statistical Model ; Ultrasound ; Mycobacterium Tuberculosis ; Animals ; Antibodies, Bacterial ; Artificial Intelligence ; Bacterial Outer Membrane Proteins ; Cell Fractionation ; Computational Biology ; Electrophoresis, Polyacrylamide Gel ; Epitopes, B-Lymphocyte ; Escherichia Coli ; Immunoblotting ; Microscopy, Immunoelectron ; Models, Statistical ; Mycobacterium Smegmatis ; Mycobacterium Tuberculosis ; Peptides ; Rabbits ; Sonication ; Subcellular Fractions ;

Keyword

Article ;

Link para a fonte

https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000...

Mostrar registro completo

Collections
  • Artículos [6079]

Itens relacionados

Apresentado os itens relacionados pelo título, autor e assunto.

  • Thumbnail

    NClassG+ : A classifier for non-classically secreted Gram-positive bacterial proteins 

    Restrepo-Montoya, Daniel; Pino, Camilo; Nino, Luis F; Patarroyo, Manuel-Elkin; Patarroyo, Manuel A.
    Background: Most predictive methods currently available for the identification of protein secretion mechanisms have focused on classically secreted proteins. In fact, only two methods have been reported for predicting ...
     Artículo. 2011
  • Thumbnail

    "Functional, biochemical and 3D studies of Mycobacterium tuberculosis protein peptides for an effective anti-tuberculosis vaccine" 

    Ocampo, Marisol; Patarroyo, Manuel A.; Vanegas, Magnolia; Alba, Martha P.; Patarroyo, Manuel E.
    "Tuberculosis (TB) is an air-born, transmissible disease, having an estimated 9.4 million new TB cases worldwide in 2009. Eventual control of this disease by developing a safe and efficient new vaccine able to detain its ...
     Artículo. 2014
  • Thumbnail

    The Mycobacterium tuberculosis membrane protein Rv2560 - Biochemical and functional studies 

    Plaza, David F.; Curtidor, Hernando; Patarroyo, Manuel A.; Chapeton?Montes, Julie A.; Reyes, Claudia; Barreto, Jose; Patarroyo, Manuel E.
    "The characterization of membrane proteins having no identified function in Mycobacterium tuberculosis is important for a better understanding of the biology of this pathogen. In this work, the biological activity of the ...
     Artículo. 2007
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR
 

 

Navegar

Todo o repositórioComunidades e ColeçõesTítulosAutoresTypeAssuntosDirectorPor data do documentoEsta coleçãoTítulosAutoresTypeAssuntosDirectorPor data do documento

Minha conta

EntrarCadastro

Estatística

Ver as estatísticas de uso
Política de Acceso Abierto URPortal de Revistas URRepositorio de Datos de Investigación URCiencia Abierta UR