Show simple item record

dc.contributorNunes, Renato
dc.contributorSalazar, Camilo
dc.contributorWallace, Arianne
dc.contributor.advisorSanchez-Herrera, Melissa 
dc.creatorMongui Torres, Juan Pablo 
dc.date.accessioned2019-08-13T20:43:52Z
dc.date.available2019-08-13T20:43:52Z
dc.date.created2018-12-14
dc.date.issued2018
dc.identifier.urihttp://repository.urosario.edu.co/handle/10336/20101
dc.descriptionProcesos de divergencia genética pueden ocurrir debido a procesos geográficos y/o fenotípicos. No obstante, los polimorfismos fenotípicos causados por selección natural y/o sexual, pueden dificultar encontrar patrones de divergencia genética debido a diferencias entre rasgos genéticos y morfológicos. Las libélulas del género Polythore han demostrado polimorfismos llamativos de color alar que se encuentran a lo largo de su distribución geográfica, la cual incluye la cordillera de los Andes y la cuenca Amazónica. Lo anterior sugiere, son excelentes modelos poner a prueba los efectos de altos polimorfismos fenotípicos y procesos geográficos sobre los patrones de diversidad genética. Nuestro objetivo fue explorar la diversidad genética y morfológica a lo largo de la filogenia de este colorido género. La hipótesis filogenética obtenida para tres loci de mtDNA muestran una asociación estrecha con la geografía, definiendo así cuatro clados geográficos altamente soportados (i.e. Amazónico, Oeste, Noreste y Sureste de los Andes). En general, los patrones de diversidad genética y morfológica del clado Amazónico, fueron altos y congruentes entre las morfoespecies, sugiriendo patrones de divergencia explicado por posibles procesos. Mientras que las morfoespecies Andinas mostraron un patrón de diversificación reciente el cual puede ser explicado por eventos de dispersión. Finalmente, la diversificación del patrón de coloración alar de Polythore parece ser promovida por presiones de selección que pueden ser sexuales o bien, naturales.
dc.description.abstractGenetic divergence across populations can be favored by geographical and/or phenotypic processes. However, phenotype polymorphisms caused by natural and/or sexual selection can obscure patterns of genetic divergence due to disparity across the morphological or behavioral traits with the genetic makeup in the populations. The Neotropical banner damselflies of the genus Polythore, exhibit a striking wing color polymorphism across all its geographical range, which includes the Andes Cordillera and Amazon Basin. The latter suggests that they are excellent model organisms to test the effects of high phenotypic polymorphisms and geographical processes on the patterns of genetic diversity. Our aim was to explore the genetic and morphological diversity across the phylogenetic tree of these colorful damselflies. Our mtDNA phylogenetic reconstruction shows a strong association with geographical location, resulting on the recovery of four well-supported geographical clades (i.e: Amazon clade; and the West, Southeast and Northeast Andean clades). Overall, the patterns of genetic and morphological diversity are high and concordant across all members tested in the Amazon clade; suggesting that these population may have been experiencing divergence due to vicariant events. While for the Andean clades, the morphospecies showed a pattern of recent diversification that might be promoted by dispersal events. Finally, the wing color pattern seems to be shaped by other selective pressures including, sexual and/or natural selection.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.subjectEspecies crípticas
dc.subjectMimetismo
dc.subjectEspecies politípicas
dc.subjectMorfometría geométrica
dc.subjectOdonata
dc.subjectVicarianza
dc.subject.ddcOtros invertebrados 
dc.subject.lembTaxonomía
dc.subject.lembEntomología
dc.subject.lembMimetismo (Biología)
dc.subject.lembPolimorfismo
dc.subject.lembOdonata
dc.titlePatterns of genetic and morphological diversity in the highly polymorphic Neotropical banner damselflies, Polythore (Polythoridae:Odonata)
dc.typebachelorThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeBiólogo
dc.publisher.programBiología
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticas
dc.subject.keywordOdonata
dc.subject.keywordcryptic species
dc.subject.keywordpolytypic species
dc.subject.keywordgeometric morphometry
dc.subject.keywordvicariance
dc.subject.keywordmimetism
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTrabajo de grado
dc.rights.accesoAbierto (Texto Completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.source.bibliographicCitationAdams, D. C., & Otárola-Castillo, E. (2013). Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12035
dc.source.bibliographicCitationAntonelli, A., Nylander, J. A. A., Persson, C., & Sanmartin, I. (2009). Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0811421106
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1985). A revision of the Picta group of Polythore, with a description of a new species, P. lamerceda Spec. Nov. from Peru (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, G H, & Bick, J. C. (1990). Polythore neopicta spec. nov. from Peru (Odonata: Polythoridae). Opuscula Zoologica Fluminensia.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1986). The genus Polythore exclusive of the picta group (Zygoptera: Polythoridae). Odonatologica.
dc.source.bibliographicCitationBick, George H, & Bick, J. C. (1992). A study of family Polythoridae, with details on the genus Euthore Selys, 1869 (Zygoptera). Odonatologica.
dc.source.bibliographicCitationBiomatters Limited. (2018). Geneious - Molecular Biology and NGS Analysis Tools.
dc.source.bibliographicCitationChamberlain, N. L., Hill, R. I., Kapan, D. D., Gilbert, L. E., & Kronforst, M. R. (2009). Polymorphic butterfly reveals the missing link in ecological speciation. Science. https://doi.org/10.1126/science.1179141
dc.source.bibliographicCitationChaves, J. A., Weir, J. T., & Smith, T. B. (2011). Diversification in Adelomyia hummingbirds follows Andean uplift. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2011.05304.x
dc.source.bibliographicCitationCoyne, J. A. (1998). The evolutionary genetics of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rstb.1998.0210
dc.source.bibliographicCitationDe-Silva, D. L., Elias, M., Willmott, K., Mallet, J., & Day, J. J. (2016). Diversification of clearwing butterflies with the rise of the Andes. Journal of Biogeography. https://doi.org/10.1111/jbi.12611
dc.source.bibliographicCitationDick, C. W., Roubik, D. W., Gruber, K. F., & Bermingham, E. (2004). Long-distance gene flow and cross-Andean dispersal of lowland rainforest bees (Apidae: Euglossini) revealed by comparative mitochondrial DNA phylogeography. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.2004.02374.x
dc.source.bibliographicCitationEdgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research. https://doi.org/10.1093/nar/gkh340
dc.source.bibliographicCitationExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.source.bibliographicCitationFord, E. B. (1955). Polymorphism and taxonomy. Heredity. https://doi.org/10.1038/hdy.1955.24
dc.source.bibliographicCitationGarcía-R, J. C., Crawford, A. J., Mendoza, Á. M., Ospina, O., Cardenas, H., & Castro, F. (2012). Comparative Phylogeography of Direct-Developing Frogs (Anura: Craugastoridae: Pristimantis) in the Southern Andes of Colombia. PLoS ONE. https://doi.org/10.1371/journal.pone.0046077
dc.source.bibliographicCitationGuarnizo, C. E., Amézquita, A., & Bermingham, E. (2009). The relative roles of vicariance versus elevational gradients in the genetic differentiation of the high Andean tree frog, Dendropsophus labialis. Molecular Phylogenetics and Evolution. https://doi.org/10.1016/j.ympev.2008.10.005
dc.source.bibliographicCitationHADRYS, H., BALICK, M., & SCHIERWATER, B. (1992). Applications of random amplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology. https://doi.org/10.1111/j.1365-294X.1992.tb00155.x
dc.source.bibliographicCitationHancock, J. M., Zvelebil, M. J., & Cummings, M. P. (2014). FigTree. In Dictionary of Bioinformatics and Computational Biology. https://doi.org/10.1002/9780471650126.dob0904
dc.source.bibliographicCitationHeads, M. (2019). Passive uplift of plant and animal populations during mountain‐building. Cladistics. https://doi.org/10.1111/cla.12368
dc.source.bibliographicCitationHerrera, M. S., Kuhn, W. R., Lorenzo-Carballa, M. O., Harding, K. M., Ankrom, N., Sherratt, T. N., … Beatty, C. D. (2015). Mixed signals? Morphological and molecular evidence suggest a color polymorphism in some Neotropical Polythore damselflies. PLoS ONE. https://doi.org/10.1371/journal.pone.0125074
dc.source.bibliographicCitationJiggins, C. D. (2008). Ecological Speciation in Mimetic Butterflies. BioScience. https://doi.org/10.1641/b580610
dc.source.bibliographicCitationKuhn et al. 2019. Introducing the Targeted Odonata Wing Digitization (TOWD) Project for North American Odonata. In prep.
dc.source.bibliographicCitationLeigh, J. W., & Bryant, D. (2015). POPART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution. https://doi.org/10.1111/2041-210X.12410
dc.source.bibliographicCitationLowry, D. B., & Gould, B. A. (2016). Speciation Continuum. In Encyclopedia of Evolutionary Biology. https://doi.org/10.1016/B978-0-12-800049-6.00080-9
dc.source.bibliographicCitationMacherey-Nagel. (2011). Plasmid DNA Purification User Manual NucleoBond® Xtra Midi. In Cell.
dc.source.bibliographicCitationMallet, J. (1995). A species definition for the modern synthesis. Trends in Ecology & Evolution. https://doi.org/10.1016/0169-5347(95)90031-4
dc.source.bibliographicCitationMallet, J. (2013). Species, Concepts of. In Encyclopedia of Biodiversity: Second Edition. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
dc.source.bibliographicCitationMallet, J., Beltrán, M., Neukirchen, W., & Linares, M. (2007). Natural hybridization in heliconiine butterflies: The species boundary as a continuum. BMC Evolutionary Biology. https://doi.org/10.1186/1471-2148-7-28
dc.source.bibliographicCitationMartin, P. R., Montgomerie, R., & Lougheed, S. C. (2010). Rapid sympatry explains greater color pattern divergence in high latitude birds. Evolution. https://doi.org/10.1111/j.1558-5646.2009.00831.x
dc.source.bibliographicCitationMatsubayashi, K. W., Ohshima, I., & Nosil, P. (2010). Ecological speciation in phytophagous insects. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/j.1570-7458.2009.00916.x
dc.source.bibliographicCitationMesquite Project Team. (2014). Mesquite: A modular system for evolutionary analysis. https://doi.org/10.1017/CBO9781107415324.004
dc.source.bibliographicCitationMinh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/mst024
dc.source.bibliographicCitationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msu300
dc.source.bibliographicCitationOrr, H. A. (1995). The population genetics of speciation: The evolution of hybrid incompatibilities. Genetics, 139(4), 1805–1813. https://doi.org/10.1534/genetics.107.081810
dc.source.bibliographicCitationOutomuro, D., Ángel-Giraldo, P., Corral-Lopez, A., & Realpe, E. (2016). Multitrait aposematic signal in Batesian mimicry. Evolution; International Journal of Organic Evolution. https://doi.org/10.1111/evo.12963
dc.source.bibliographicCitationPROMEGA. (2007). GoTaq® DNA Polymerase. Promega. https://doi.org/M3178
dc.source.bibliographicCitationRasband, W. S. (1997). Image J.
dc.source.bibliographicCitationRincon-Sandoval, M., Betancur-R, R., & Maldonado-Ocampo, J. A. (2019). Comparative phylogeography of trans-Andean freshwater fishes based on genome-wide nuclear and mitochondrial markers. Molecular Ecology. https://doi.org/10.1111/mec.15036
dc.source.bibliographicCitationSanchez Herrera, M., Beatty, C., Nunes, R., Realpe, E., Salazar, C., & Ware, J. L. (2018). A molecular systematic analysis of the Neotropical banner winged damselflies (Polythoridae: Odonata). Systematic Entomology. https://doi.org/10.1111/syen.12249
dc.source.bibliographicCitationShimodaira, H., & Hasegawa, M. (2001). CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics (Oxford, England).
dc.source.bibliographicCitationSimon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (2015). Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Annals of the Entomological Society of America. https://doi.org/10.1093/aesa/87.6.651
dc.source.bibliographicCitationSobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64(2), 295–315. https://doi.org/10.1111/j.1558-5646.2009.00877.
dc.source.bibliographicCitationTajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. https://doi.org/PMC1203831
dc.source.bibliographicCitationWinger, B. M., Hosner, P. A., Bravo, G. A., Cuervo, A. M., Aristizábal, N., Cueto, L. E., & Bates, J. M. (2015). Inferring speciation history in the Andes with reduced-representation sequence data: An example in the bay-backed antpittas (Aves; Grallariidae; Grallaria hypoleuca s. l.). Molecular Ecology. https://doi.org/10.1111/mec.13477
dc.source.bibliographicCitationZink, R. M., Blackwell-Rago, R. C., & Ronquist, F. (2000). The shifting roles of dispersal and vicariance in biogeography. Proceedings of the Royal Society B: Biological Sciences. https://doi.org/10.1098/rspb.2000.1028
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.type.documentTrabajo de grado
dc.identifier.doihttps://doi.org/10.48713/10336_20101
dc.creator.degreetypeFull time
dc.source.instnameinstname:Universidad del Rosario
dc.source.reponamereponame:Repositorio Institucional EdocUR


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia