Show simple item record

dc.contributor.advisorRamírez, Juan David 
dc.creatorVega Romero, Laura Camila 
dc.date.accessioned2020-02-13T21:32:00Z
dc.date.available2020-02-13T21:32:00Z
dc.date.created2020-01-22
dc.identifier.urihttps://repository.urosario.edu.co/handle/10336/20872
dc.descriptionDentro de los millones de microorganismos que componen la microbiota intestinal, Clostridium difficile y Blastocystis pueden tener un efecto modulador en diferentes maneras. El siguiente estudio tuvo como objetivo la descripción del bacterioma y eucarioma de cuatro grupos de pacientes: con coinfección por Blastocystis y C. difficile, infección únicamente por C. difficile, colonización únicamente por Blastocystis y pacientes libres de colonización/infección por estos microorganismos. Así mismo, se identificaron los subtipos de Blastocystis dentro de las muestras usando “amplicon sequencing” de los genes 16S-ARNr y 18S-ARNr. Los resultados obtenidos muestran que los subtipos más abundantes de Blastocystis fueron: ST1 (36,4%), ST3 (37,5%) y ST5 (19,3%). Aunque se ha propuesto que los ambientes de disbiosis previenen la colonización por Blastocystis, este estudio mostró una posible adaptación de Blastocystis a este escenario; gracias a los mecanismos de su hidrogenosoma y a los recursos que puede encontrar en este ambiente. De acuerdo con los resultados obtenidos, las diferencias significativas sobre la composición del bacterioma y eucarioma de los cuatro grupos se presentó sólo dentro de algunos géneros evaluados en el estudio. De esta manera, Blastocystis puede favorecer el aumento de poblaciones de bacterias benéficas de la microbiota, al cumplir con su rol predatorio. Lo anterior, ayudaría a esclarecer el estatus debatible de Blastocystis, inclinándose hacia la hipótesis de que podría ser un miembro benéfico para la microbiota intestinal. El presente estudio también brinda una visión holística sobre la competencia que existe entre los miembros de la microbiota bajo un escenario de disbiosis, especialmente en la competencia por recursos entre Blastocystis y algunos hongos. Este estudio contribuye al conocimiento de la composición de la microbiota y la interacciones de sus miembros.
dc.description.abstractWithin the thousands of microorganisms that make up the intestinal microbiota, Clostridium difficile and Blastocystis can have a modulatory effect in different ways. The following study aimed to describe the bacteriome and eucariome of four patient groups: with Blastocystis and Clostridium difficile, only with infection by C. difficile, only with colonization by Blastocystis and patients without colonization/infection by the aforementioned microorganisms. Likewise, we identified Blastocystis subtypes in the samples, using amplicon sequencing of 16S-rRNA, 18S-rRNA. We found ST1 (36.4%), ST3 (37.5%) and ST5 (19.3%) as the most abundant subtypes of Blastocystis within the samples. Although it has been proposed that dysbiosis environments prevent the colonization by Blastocystis, this study showed a possible adaptation of Blastocystis to this scenario; due to the mechanisms of its hydrogenosome and to the resources that can be found in this environment. Hence, Blastocystis can favor the increasement of populations of beneficial bacteria of the microbiota, by performing its predatory role. Thus, our results would help clarify the debatable status of Blastocystis, leaning towards the hypothesis that it could be a beneficial member of the intestinal microbiota. The present study can also provide a holistic insight into the competition that exists among members of the microbiota under a scenario of dysbiosis, especially in the competition for resources between Blastocystis and some fungi. This study contributes to improve our knowledge about the composition of the intestinal microbiota and the interactions of its members.
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.sourceinstname:Universidad del Rosario
dc.sourcereponame:Repositorio Institucional EdocUR
dc.subjectBlastocystis
dc.subjectClostridium difficile
dc.subjectBacterioma
dc.subjectEucarioma
dc.subjectDisbiosis
dc.subject.ddcMicrobiología 
dc.subject.lembBiotecnología microbiana
dc.subject.lembIntestino-Diversidad microbiana-Investigaciones
dc.subject.lembBacteriología intestinal
dc.subject.lembEnfermedades intestinales
dc.subject.lembLixiviación de bacterias
dc.titleCambios en el bacteriana y eucariota intestinal en pacientes con blastocystis y clostridium difficile.
dc.typebachelorThesis
dc.publisherUniversidad del Rosario
dc.creator.degreeBiólogo
dc.publisher.programBiología
dc.publisher.departmentFacultad de Ciencias Naturales y Matemáticas
dc.title.alternativeChanges in the bacterial and intestinal eukaryotic in patients with blastocystis and clostridium difficile.
dc.subject.keywordBlastocystis
dc.subject.keywordClostridium difficile
dc.subject.keywordBacteriome
dc.subject.keywordEucariome
dc.subject.keywordDysbiosis
dc.rights.accesRightsinfo:eu-repo/semantics/openAccess
dc.type.spaTrabajo de grado
dc.rights.accesoAbierto (Texto Completo)
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.source.bibliographicCitationAbt, M. C., McKenney, P. T., Pamer, E. G. 2016. Clostridium difficile colitis: pathogenesis and host defence. Nature Reviews Microbiology, 14(10), 609.
dc.source.bibliographicCitationAlfellani, M. A., Stensvold, C. R., Vidal-Lapiedra, A., Onuoha, E. S. U., Fagbenro-Beyioku, A. F., Clark, C. G. 2013. Variable geographic distribution of Blastocystis subtypes and its potential implications. Acta tropica, 126(1), 11-18.
dc.source.bibliographicCitationAndersen, L. B., Karim, A. B., Roager, H. M., Vigsnæs, L. K., Krogfelt, K. A., Licht, T. R., Stensvold, C. R. 2016. Associations between common intestinal parasites and bacteria in humans as revealed by qPCR. European Journal of Clinical Microbiology & Infectious Diseases, 35(9), 1427-1431.
dc.source.bibliographicCitationAntharam, V. C., Li, E. C., Ishmael, A., Sharma, A., Mai, V., Rand, K. H., Wang, G. P. 2013. Intestinal dysbiosis and depletion of butyrogenic bacteria in Clostridium difficile infection and nosocomial diarrhea. Journal of clinical microbiology, 51(9), 2884-2892.
dc.source.bibliographicCitationAudebert, C., Even, G., Cian, A., et al. 2016. Colonization with the enteric protozoa Blastocystis is associated with increased diversity of human gut bacterial microbiota. Scientific reports, 6, 25255.
dc.source.bibliographicCitationBalakrishnan, D. D., Kumar, S. G. 2014. Higher Caspase-like activity in symptomatic isolates of Blastocystis spp. Parasites & vectors, 7(1), 219.
dc.source.bibliographicCitationBolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, et al. 2018. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science (No. e27295v1). PeerJ Preprints.
dc.source.bibliographicCitationCallahan, B. 2018. Silva taxonomic training data formatted for DADA2 (Silva version 132) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.1172783.
dc.source.bibliographicCitationCallahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature methods, 13(7), 581.
dc.source.bibliographicCitationCani, P. D. 2018. Human gut microbiome: hopes, threats and promises. Gut, 67(9), 1716-1725.
dc.source.bibliographicCitationCian, A., El Safadi, D., Osman, M., et al. 2017. Molecular epidemiology of Blastocystis sp. in various animal groups from two French zoos and evaluation of potential zoonotic risk. PLoS One, 12(1), e0169659.
dc.source.bibliographicCitationCohen, S. H., Gerding, D. N., Johnson, S., Kelly, C. P., Loo, V. G., McDonald, L.C., et al. 2010. Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infect. Control Hosp. Epidemiol. 31, 431–455. doi: 10.1086/651706.
dc.source.bibliographicCitationChudnovskiy, A., Mortha, A., Kana, V., et al. 2016. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell, 167(2), 444-456.
dc.source.bibliographicCitationCheung, M. K., Au, C. H., Chu, K. H., Kwan, H. S., Wong, C. K. 2010. Composition and genetic diversity of picoeukaryotes in subtropical coastal waters as revealed by 454 pyrosequencing. The ISME journal, 4(8), 1053.
dc.source.bibliographicCitationDavid, L. A., Maurice, C. F., Carmody, R. N., et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559.
dc.source.bibliographicCitationEme, L., Gentekaki, E., Curtis, B., et al. 2017. Lateral gene transfer in the adaptation of the anaerobic parasite Blastocystis to the gut. Current Biology, 27(6), 807-820.
dc.source.bibliographicCitationGorvitovskaia, A., Holmes, S. P., Huse, S. M. 2016. Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome, 4(1), 15.
dc.source.bibliographicCitationHooks, K. B., O'Malley, M. A. 2019. Contrasting Strategies: Human Eukaryotic Versus Bacterial Microbiome Research. Journal of Eukaryotic Microbiology.
dc.source.bibliographicCitationJiménez, P. A., Jaimes, J. E., Ramírez, J. D. 2019. A summary of Blastocystis subtypes in North and South America. Parasites & vectors, 12(1), 376.
dc.source.bibliographicCitationKodio, A., Coulibaly, D., Koné, A. et al. 2019. Blastocystis Colonization Is Associated with Increased Diversity and Altered Gut Bacterial Communities in Healthy Malian Children. Microorganisms, 7(12), 649.
dc.source.bibliographicCitationLaforest-Lapointe, I., Arrieta, M. C. 2018. Microbial eukaryotes: a missing link in gut microbiome studies. MSystems, 3(2), e00201-17.
dc.source.bibliographicCitationLiang, D., Leung, R. K. K., Guan, W., Au, W. W. 2018. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut pathogens, 10(1), 3.
dc.source.bibliographicCitationLynch, S. V., Pedersen, O. 2016. The human intestinal microbiome in health and disease. New England Journal of Medicine, 375(24), 2369-2379.
dc.source.bibliographicCitationMaloney, J. G., Molokin, A., Santin, M. 2019. Next generation amplicon sequencing improves detection of Blastocystis mixed subtype infections. Infection, Genetics and Evolution, 73, 119-125.
dc.source.bibliographicCitationMarchesi, J. R., Ravel, J. 2015. The vocabulary of microbiome research: a proposal.
dc.source.bibliographicCitationMilani, C., Ticinesi, A., Gerritsen, J., Nouvenne, A., et al. (2016). Gut microbiota composition and Clostridium difficile infection in hospitalized elderly individuals: a metagenomic study. Scientific reports, 6, 25945.
dc.source.bibliographicCitationMolinero, N., Ruiz, L., Sanchez, B., et al. 2019. Intestinal bacteria interplay with bile and cholesterol metabolism: implications on host physiology. Frontiers in physiology, 10, 185.
dc.source.bibliographicCitationMullany, P., Allan, E., Roberts, A. P. 2015. Mobile genetic elements in Clostridium difficile and their role in genome function. Research in microbiology, 166(4), 361-367.
dc.source.bibliographicCitationMuñoz, M., Ríos-Chaparro, D. I., Herrera et al. 2018. New Insights into Clostridium difficile (CD) Infection in Latin America: Novel Description of Toxigenic Profiles of Diarrhea-Associated to CD in Bogotá, Colombia. Frontiers in microbiology, 9, 74.
dc.source.bibliographicCitationNagel, R., Traub, R.J., Allcock, R.J.N., Kwan, M.M.S., Bielefeldt-Ohmann, H. 2016. Comparison of faecal microbiota in Blastocystis-positive and Blastocystis-negative irritable bowel syndrome patients. Microbiome 4(1):47. doi:10.1186/s40168-016-0191-0.
dc.source.bibliographicCitationNash, A.K., Auchtung, T.A., Wong, M.C. et al. 2017. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 5, 153. doi:10.1186/s40168-017-0373-4.
dc.source.bibliographicCitationNieves-Ramírez, M. E., Partida-Rodríguez, O., Jin, M. et al. 2018. Asymptomatic intestinal colonization with protist Blastocystis is strongly associated with distinct microbiome ecological patterns. mSystems, 3(3), e00007-18.
dc.source.bibliographicCitationNourrisson, C., Scanzi, J., Pereira, B., et al. 2014. Blastocystis is associated with decrease of fecal microbiota protective bacteria: comparative analysis between patients with irritable bowel syndrome and control subjects. PLoS One 9(11), e111868.
dc.source.bibliographicCitationOozeer, R., Rescigno, M., Ross, R. P., Knol, J., Blaut, M., Khlebnikov, A., Doré, J. 2010. Gut health: predictive biomarkers for preventive medicine and development of functional foods. British journal of nutrition, 103(10), 1539-1544.
dc.source.bibliographicCitationParfrey, L. W., Walters, W. A., Lauber, C. L., et al. 2014. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Frontiers in microbiology, 5, 298.
dc.source.bibliographicCitationPfeiffer, T., Morley, A. 2014. An evolutionary perspective on the Crabtree effect. Frontiers in molecular biosciences, 1, 17.
dc.source.bibliographicCitationPintong, A. R., Sunyanusin, S., Prasertbun, R., et al. 2018. Blastocystis subtype 5: Predominant subtype on pig farms, Thailand. Parasitology international, 67(6), 824-828.
dc.source.bibliographicCitationRamírez, J. D., Flórez, C., Olivera, M., Bernal, M. C., Giraldo, J. C. 2017. Blastocystis subtyping and its association with intestinal parasites in children from different geographical regions of Colombia. PloS one, 12(2), e0172586.
dc.source.bibliographicCitationRamírez, J. D., Sánchez, L. V., Bautista, D. C., Corredor, A. F., Flórez, A. C., Stensvold, C. R. 2014. Blastocystis subtypes detected in humans and animals from Colombia. Infection, Genetics and Evolution, 22, 223-228.
dc.source.bibliographicCitationRamírez, J. D., Sánchez, A., Hernández, C., Flórez, C., Bernal, et al. 2016. Geographic distribution of human Blastocystis subtypes in South America. Infection, Genetics and Evolution, 41, 32-35.
dc.source.bibliographicCitationR Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.source.bibliographicCitationRigottier-Gois, L. 2013. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. The ISME journal, 7(7), 1256.
dc.source.bibliographicCitationScanlan, P. D., Stensvold, C. R. 2013. Blastocystis: getting to grips with our guileful guest. Trends in parasitology, 29(11), 523-529.
dc.source.bibliographicCitationShahi, S. K., Freedman, S. N., Mangalam, A. K. 2017. Gut microbiome in multiple sclerosis: the players involved and the roles they play. Gut microbes, 8(6), 607-615.
dc.source.bibliographicCitationShreiner, A. B., Kao, J. Y., Young, V. B. 2015. The gut microbiome in health and in disease. Current opinion in gastroenterology, 31(1), 69.
dc.source.bibliographicCitationSkraban, J., Dzeroski, S., Zenko, B., Mongus, D., Gangl, S., Rupnik, M. 2013. Gut microbiota patterns associated with colonization of different Clostridium difficile ribotypes. PloS one, 8(2), e58005.
dc.source.bibliographicCitationSokol, H., Pigneur, B., Watterlot, L., Lakhdari, O., et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proceedings of the National Academy of Sciences, 105(43), 16731-16736.
dc.source.bibliographicCitationStechmann, A., Hamblin, K., Pérez-Brocal, V., et al. 2008. Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Current biology, 18(8), 580-585
dc.source.bibliographicCitationStensvold, C. R. 2019. Pinning down the role of common luminal intestinal parasitic protists in human health and disease–status and challenges. Parasitology, 146(6), 695-701.
dc.source.bibliographicCitationStensvold, C. R., Ahmed, U. N., Andersen, L. O. B., Nielsen, H. V. 2012. Development and evaluation of a genus-specific, probe-based, internal-process-controlled real-time PCR assay for sensitive and specific detection of Blastocystis spp. Journal of clinical microbiology, 50(6), 1847-1851.
dc.source.bibliographicCitationStensvold, C. R., Clark, C. G. 2016. Current status of Blastocystis: a personal view. Parasitology international, 65(6), 763-771.
dc.source.bibliographicCitationStensvold, C. R., Suresh, G. K., Tan, K. S., Thompson, R. A., et al. 2007. Terminology for Blastocystis subtypes–a consensus. Trends in parasitology, 23(3), 93-96.
dc.source.bibliographicCitationStensvold, C. R., van der Giezen, M. 2018. Associations between gut microbiota and common luminal intestinal parasites. Trends in parasitology, 34(5), 369-377.
dc.source.bibliographicCitationTachezy, J. 2019. Hydrogenosomes and mitosomes: mitochondria of anaerobic eukaryotes (Vol. 9). Springer.
dc.source.bibliographicCitationTito, R. Y., Chaffron, S., Caenepeel, C., et al. 2019. Population-level analysis of Blastocystis subtype prevalence and variation in the human gut microbiota. Gut, 68(7), 1180-1189.
dc.source.bibliographicCitationTsaousis, A. D., Hamblin, K. A., Elliott, et al. 2018. The human gut colonizer Blastocystis respires using Complex II and alternative oxidase to buffer transient oxygen fluctuations in the gut. Frontiers in cellular and infection microbiology, 8, 371
dc.source.bibliographicCitationYakoob, J., Jafri, W., Beg, M. A., et al. 2010. Irritable bowel syndrome: is it associated with genotypes of Blastocystis hominis. Parasitology research, 106(5), 1033-1038.
dc.source.bibliographicCitationYason, J. A., Liang, Y. R., Png, C. W., Zhang, Y., Tan, K. S. W. 2019. Interactions between a pathogenic Blastocystis subtype and gut microbiota: in vitro and in vivo studies. Microbiome, 7(1), 30.
dc.source.bibliographicCitationYu, Y., Lee, C., Kim, J., Hwang, S. 2005. Group‐specific primer and probe sets to detect methanogenic communities using quantitative real‐time polymerase chain reaction. Biotechnology and bioengineering, 89(6), 670-679.
dc.source.bibliographicCitationZhu, W., Tao, W., Gong, B., et al. 2017. First report of Blastocystis infections in cattle in China. Veterinary parasitology, 246, 38-42.
dc.source.bibliographicCitationGuillou, L., Bachar, D., Audic, S., Bass, D., Berney, C., Bittner, L., et al. (2013). The Protist Ribosomal Reference database. PR2. a catalog of unicellular eukaryote small subunit rRNA sequences with curated taxonomy. Nucleic acids research, 41(Database issue), D597–D604. doi:10.1093/nar/gks1160160
dc.rights.licenciaEL AUTOR, manifiesta que la obra objeto de la presente autorización es original y la realizó sin violar o usurpar derechos de autor de terceros, por lo tanto la obra es de exclusiva autoría y tiene la titularidad sobre la misma.
dc.type.documentTrabajo de grado
dc.creator.degreetypeFull time
dc.contributor.tutorHerrera Ossa, Giovanny Andres
dc.contributor.coadvisorMuñoz Diaz, Claudia Marina


Files in this item

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Colombia
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Colombia

 

Reconocimientos: